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Abstract: 

We have examined the potential role of fatty acid oxidation (FAO) in 

AMP-activated protein kinase (AMPK)-induced meiotic maturation. Etomoxir 

and malonyl CoA, two inhibitors of carnitine palmitoyl transferase-1 (CPT1), 

and thus FAO, blocked meiotic induction in dbcAMP-arrested cumulus cell-

enclosed oocytes (CEO) and denuded oocytes (DO) by the AMPK activator, 

AICAR. C75, an activator of CPT1 and FAO, stimulated meiotic resumption in 

CEO and DO. This effect was insensitive to the AMPK inhibitor, compound C, 

indicating an action downstream of AMPK. Palmitic acid or carnitine also 

promoted meiotic resumption in DO in the presence of AICAR. Since C75 also 

suppresses the activity of fatty acid synthase (FAS), we tested another FAS 

inhibitor, cerulenin. Cerulenin stimulated maturation in arrested oocytes, but 

to a lesser extent, exhibited significantly slower kinetics and was effective in 
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CEO but not DO. Moreover, etomoxir completely blocked C75-induced 

maturation but was ineffective in cerulenin-treated oocytes, suggesting that 

the meiosis-inducing action of C75 is through activation of FAO within the 

oocyte, while that of cerulenin is independent of FAO and acts within the 

cumulus cells. Finally, we determined that long chain, but not short chain, 

fatty acyl carnitine derivatives were stimulatory to oocyte maturation. 

Palmitoyl carnitine stimulated maturation in both CEO and DO, with rapid 

kinetics in DO; this effect was blocked by mercaptoacetate, a downstream 

inhibitor of FAO. These results indicate that activation of AMPK stimulates 

meiotic resumption in mouse oocytes by eliminating a block to FAO. 

Keywords: fatty acid oxidation, oocyte maturation, AMPK. 

 

Introduction 

Oocyte maturation in mammals is a carefully regulated process 

critically dependent on the interaction of the germ and somatic 

compartments of the ovarian follicle. Once meiotic competence is 

achieved in the developing oocyte, the granulosa cells serve to sustain 

a prophase I arrest until the appropriate hormonal signal triggers 

meiotic resumption. This is exemplified by the spontaneous meiotic 

resumption that occurs when oocytes from Graafian follicles are 

isolated and cultured in vitro in the absence of inhibitory follicular 

components. The stimulatory signal for meiotic resumption in vivo 

originates in the granulosa cells in response to gonadotropin binding at 

the time of the mid-cycle hormonal surge and is transmitted to the 

oocyte where it induces germinal vesicle breakdown (GVB). Recent 

studies indicate that meiotic maturation in vivo requires the release of 

EGF-like peptides from the somatic compartment that act in a 

paracrine/autocrine fashion on the cumulus granulosa cells to generate 

such a stimulus (Conti et al, 2006; Downs and Chen, 2008)). The 

downstream meiosis-inducing signal that results from stimulation by 

gonadotropin and EGF-like peptides is unknown and remains a 

challenging area of research. 

We have recently presented evidence that AMP-activated protein 

kinase (AMPK) is present in mouse oocytes and that, when activated, 

can stimulate GVB in meiotically arrested oocytes in vitro (Downs et al, 

2002; Chen et al, 2006). AMPK is an important regulatory enzyme that 

helps maintain energy homeostasis in cells such that when energy 

levels are low, AMPK shuts down energy-depleting pathways and turns 
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on energy-generating pathways (Hardie, 2003). An important 

substrate of AMPK is acetyl CoA carboxylase (ACC; Davies et al, 

1992), a rate-limiting enzyme in fatty acid synthesis that generates 

malonyl CoA from acetyl CoA (see Fig. 1). AMPK phosphorylates, and 

thereby inactivates, ACC, leading to a decrease in malonyl CoA levels 

(Tong, 2005). AMPK has also been reported to stimulate the activity of 

malonyl CoA decarboxylase, which catalyzes the reverse reaction, the 

decarboxylation of malonyl CoA to acetyl CoA (Park et al, 2002a). 

Malonyl CoA is the first intermediate of lipogenesis and is an important 

negative regulator of carnitine palmitoyltransferase I (CPT1; 

Ruderman et al, 2003; Wolfgang and Lane, 2006), the enzyme located 

on the outer mitochondrial membrane that catalyzes the replacement 

of the acyl CoA group of large chain fatty acids with carnitine. This 

addition of carnitine promotes fatty acid entry into mitochondria and is 

the rate-limiting step for the β-oxidation of long-chain fatty acids 

(McGarry and Brown, 1997). Hence, malonyl CoA is an important 

negative regulator of fatty acid oxidation, and one of the significant 

consequences of AMPK activation in cells is stimulation of fatty acid 

oxidation by virtue of a decrease in malonyl CoA levels and subsequent 

removal of the block to this metabolic pathway (Ruderman et al, 

2003). 
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Figure 1 Flow diagrams of fatty acid metabolism. A, Modulation of fatty acid 

metabolism by different molecules. AMPK, stimulated by AICAR, phosphorylates and 

inactivates acetyl CoA carboxylase (ACC), thereby lowering malonyl CoA levels. 

Malonyl CoA and etomoxir are negative regulators of carnitine palmitoyltransferase-1 

(CPT1) and restrict fatty acid entry into mitochondria, thereby blocking fatty acid 

oxidation. C75 has an opposite, positive effect on CPT1 and promotes fatty acid entry 

and β–oxidation. C75 also suppresses fatty acid synthase (FAS) activity and thereby 

reduces fatty acid synthesis, an effect mimicked by cerulenin. MCD, malonyl CoA 

decarboxylase. B, Regulation of fatty acid entry into mitochondria. Fatty acids are 

transported into the mitochondria following replacement of the CoA moiety with 

carnitine through the action of CPT1. This action is blocked by malonyl CoA that is 

produced by ACC1, which is associated with the outer membrane of the 

mitochondrion. Oxidation occurs after the carnitine is replaced with CoA by the action 

of CPT2. Cytoplasmic ACC1 produces the malonyl CoA that serves as precursor for 

fatty acid synthesis. Figure B is adapted from Tong, 2005. 

ACC is an important substrate of AMPK (Carling et al, 1989; 

Davies et al, 1992; Park et al, 2002b) and its phosphorylation state 

serves as an effective indirect assay for AMPK activation. We have 
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shown by western analysis that ACC phosphorylation in mouse oocytes 

is associated with AMPK activation and meiotic resumption (Chen et al, 

2006, 2008; LaRosa and Downs, 2006, 2007). It follows that 

suppression of ACC activity in mouse oocytes by AMPK would lower 

malonyl CoA levels and relieve its inhibitory influence on fatty acid 

oxidation. ATP generated by oxidation of fatty acids could 

subsequently serve important energy needs as well as provide 

phosphate for kinase reactions within signal transduction pathways 

involved in meiotic induction. The present study was therefore carried 

out to test the possible involvement of fatty acid oxidation in meiotic 

resumption in mouse oocytes, and data presented herein support the 

idea that fatty acid oxidation is an essential downstream regulatory 

pathway participating in AMPK-induced meiotic induction. 

RESULTS 

CPT1 inhibitors block AICAR-induced meiotic 

maturation 

Initial experiments tested the effect of inhibitors of CPT1 on 
AICAR-induced meiotic resumption in dbcAMP-arrested denuded 
oocytes (DO). DO were cultured 4 h in medium containing 300 μm 

dbcAMP, to which was added 250 μM AICAR plus increasing 
concentrations of one of two inhibitors, etomoxir or malonyl CoA. 
Etomoxir is a pharmacological inhibitor of carnitine palmitoyl 

transferase I (CPT1; Declercq et al, 1987), while malonyl CoA, as an 
intermediate in the fatty acid synthetic pathway, is a physiological 

inhibitor of CPT1 (Ruderman et al, 2002; see Fig. 1). Blocking CPT1 
activity prevents entry of large chain fatty acids into mitochondria and 
their β-oxidation. AICAR stimulated oocyte maturation by 42-51%, 

and this meiotic induction was completely suppressed in dose-
dependent fashion by either etomoxir (Fig. 2A) or malonyl CoA (Fig. 

2B). 
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Figure 2  Inhibition of meiotic induction by etomoxir and malonyl CoA. Denuded 

oocytes were maintained in meiotic arrest with 3000 μM dbcAMP and were stimulated 
to resume maturation with 250 μM AICAR. Etomoxir (A) or malonyl CoA (B) was added 
in increasing concentrations and GVB was assessed 4 h later. The effects of etomoxir 
were then tested under similar conditions but with meiotic arrest maintained with 
milrinone (C) or hypoxanthine (D). Groups with no common letter are significantly 
different. 

We next tested the effects of etomoxir on AICAR-stimulated 

maturation when DO were maintained in meiotic arrest with two 
different inhibitors: hypoxanthine or the phosphodiesterase 3A 
inhibitor, milrinone. In the hypoxanthine-treated groups, AICAR 

increased the maturation percentage from 18.5 to 73.1%. Etomoxir 
did not significantly alter AICAR-induced maturation at 100 μM, but at 

a dose of 250 μM reduced meiotic induction by 25% (Fig. 2C). In 
milrinone-treated DO, AICAR increased the maturation frequency from 
3.8% to 86.6%, and the effects of etomoxir were essentially identical, 

with a 33.7% reduction in GVB at the higher dose of 250 μM (Fig. 2D). 
In either inhibitory condition, etomoxir had no effect in the absence of 

AICAR. 
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To determine if etomoxir or malonyl CoA have an inhibitory 
effect on non-stimulated oocytes, DO were cultured 3 h in inhibitor-

free control medium or medium containing 100 μM dbcAMP, plus either 
250 μM etomoxir or 4 mM malonyl CoA. In the absence of dbcAMP, 

95% of the oocytes underwent GVB, and neither etomoxir nor malonyl 
CoA had an inhibitory effect. In the presence of dbcAMP, 89% of 
oocytes had resumed maturation, and maturation was completely 

suppressed by the higher dose of etomoxir, with a nominal reduction 
in the presence of malonyl CoA (69% GVB; Fig. 3). When these 

etomoxir-treated oocytes were washed and placed in control, inhibitor-
free medium overnight, 100% resumed maturation and over 90% 
extruded a polar body, demonstrating that etomoxir had no permanent 

toxic effect. When DO were cultured 2 h in dbcAMP plus etomoxir, 
washed and cultured an additional 3 h in etomoxir alone, more than 

95% of the oocytes resumed maturation (data not shown), suggesting 
that the lack of effect in spontaneously maturing oocytes was not due 
to meiotic commitment before assimilation of etomoxir by the oocyte. 
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Figure 3  Effect of etomoxir and malonyl CoA on nonstimulated oocytes. Denuded 

oocytes were cultured 3 h in control medium or in medium supplemented with 100 μM 

dbcAMP, in the presence or absence of 250 μM etomoxir or 4 mM malonyl CoA, and 

then assessed for GVB. 

To examine the possibility that etomoxir has a general toxic 
effect that interferes with normal meiotic regulation, the effects of this 

inhibitor were tested on FSH-stimulated cumulus expansion. These 
results are shown in Table 1. When cultured in medium supplemented 

with 300 μm dbcAMP, negligible cumulus expansion occurred, with a 
cumulus expansion index of only 0.08 (range 0-4.0); similar results 
were obtained with the addition of either 100 or 250 μM etomoxir. FSH 

stimulated nearly complete expansion, with a CEI of 3.65, and this 
response was unaffected by etomoxir at either dose, demonstrating 

that the inhibitor has selective effects on the oocyte-cumulus cell 
complex. 

 

TABLE 1    Effects of Etomoxir on cumulus expansion 

*Complexes were cultured 17-18 h in medium containing 300 μM dbcAMP. At the 

conclusion of culture, expansion was assessed on a subjective scale from 0-4 and a 
cumulus expansion index (CEI) for the pooled data was calculated. Data are pooled 
from 2-3 experiments. 
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An activator of CPT1 stimulates meiotic resumption in 

etomoxir-sensitive fashion 

Since results of these experiments suggested a mediating role 
for fatty acid oxidation in meiotic induction, C75, an activator of CPT1 

and, thus, fatty acid oxidation (Thupari et al, 2002; Landree et al, 
2004; Yang et al, 2005), was next tested on meiotically arrested DO 
and CEO. Oocytes were cultured 17-18 h in medium containing 300 

μm dbcAMP plus increasing concentrations of C75. As shown in Fig. 
4A, this agent stimulated the maturation of DO and CEO in dose-

dependent fashion, with more effective meiotic induction in CEO at the 
lower doses. Essentially all DO and CEO resumed maturation at the 
highest dose tested (100 μM). 

 

Figure 4 Effect of C75 and cerulenin on meiotic maturation. A, CEO and DO were 

cultured 17-18 h in medium containing 300 μM dbcAMP plus increasing concentrations 

of C75. B, CEO or DO were cultured 17-18 h in medium containing 1 mM guanosine 

(Guan), 2 μM milrinone (Mil) or 4 mM hypoxanthine (Hyp), in the presence or absence 

of 100 μM C75. In all groups, C75 stimulated a significant increase in GVB. CEO and 
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DO were cultured 17-18 h in medium containing 300 μM dbcAMP (C) or 4 mM 

hypoxanthine (D) plus increasing concentrations of cerulenin. Cerulenin had no effect 

on DO but did stimulate maturation in CEO. 

To assess whether this was a general effect of C75, the agent 

was tested on three additional meiotic inhibitors--guanosine, milrinone 
and hypoxanthine--during overnight culture. For each treatment 
group, significant stimulation of GVB by C75 was achieved in both DO 

and CEO (Fig. 4B), indicating the C75 effect was not dependent upon 
the type of inhibitor used to maintain meiotic arrest. 

Because C75 can also act to prevent fatty acid synthesis 

(Kuhajda et al, 2000; Loftus et al, 2000), we tested whether another 

inhibitor of fatty acid synthesis, cerulenin (Omura, 1976; Kawaguchi et 

al, 1982; Loftus et al, 2000), could stimulate maturation in dbcAMP-

arrested oocytes. While cerulenin had no effect on DO, meiotic 

resumption was stimulated in CEO in dose-dependent fashion, with the 

highest dose, 10 μM, increasing the maturation percentage by 33.9%, 

from 12.8% to 46.9% GVB (Fig. 5A). This was the maximum 

induction, because higher doses proved toxic. When the experiment 

was repeated in hypoxanthine-supplemented medium, cerulenin again 

produced a dose-dependent stimulation of maturation in CEO, with the 

percent GVB increasing from 26% to 82% at 10μM (Fig. 5B). 

Consistent with previous studies, hypoxanthine was a weaker inhibitor 

than dbcAMP in DO, with 56% of the oocytes resuming maturation. 

Despite this limited potency of hypoxanthine, cerulenin again failed to 

induce maturation in DO
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Figure 5  Comparative actions of C75 and cerulenin on oocyte maturation. A, 

Kinetics of meiotic induction. CEO were cultured in 4 mM hypoxanthine, plus or minus 

100 μM C75 or 10 μM cerulenin, and GVB was assessed after varying culture times. 

B,C, Effects of etomoxir on meiotic induction by C75 and cerulenin. CEO were cultured 

18 h in 300 μM dbcAMP (B) or 4 mM hypoxanthine (C) and stimulated to undergo 

maturation with 100 μM C75 or 10 μM cerulenin. Etomoxir was administered at a 

concentration of 100 μM in dbcAMP-supplemented medium and 250 μM in 

hypoxanthine-supplemented medium. D, CEO were cultured 17-18 h in medium 

containing dbcAMP and stimulated to undergo maturation with 250 μM AICAR or 100 

μM C75. They were treated with 2.5 μM compound C and 17-18 h later assessed for 

GVB. Groups with no common letter are significantly different. 

Since a pronounced meiosis-inducing effect was observed in 

CEO following either C75 or cerulenin treatment, we compared the 

kinetics of meiotic resumption in hypoxanthine-arrested CEO exposed 

to the optimal dose of each (100 μm C75, 10 μM cerulenin). As shown 

in Fig. 6, meiotic resumption occurred at a much faster rate in C75-

treated CEO, as induction was initiated between 6 and 9 h of culture, 
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and complete induction (96.9% GVB compared to 20.4% in controls) 

was observed by 12 h of culture. On the other hand, no stimulation of 

GVB by cerulenin had occurred after 12 h; rather, meiotic induction 

required at least 15 h of culture time and, by 18 h, the maturation 

percentage had reached only 74.1% compared to 30.5% in controls. 

Thus, the kinetics of meiotic induction were considerably slower, the 

extent of induction was lower, and only CEO responded in cerulenin-

treated oocytes. 
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Figure 6 Effect of palmitic acid and carnitine on meiotic induction in DO. DO were 

cultured 4 h in medium containing 300 μM dbcAMP plus or minus 125 μM AICAR and 

were exposed to increasing concentrations of palmitic acid (A) or carnitine (B). An 

asterisk denotes a significant difference from controls. 

If C75 stimulates oocyte maturation by activating fatty acid 

oxidation, then blocking this pathway should prevent C75-induced 

maturation. CEO were therefore cultured 18 h in dbcAMP or 

hypoxanthine plus 100 μM C75 or 10 μM cerulenin and treated with 

etomoxir. Since intial experiments determined that etomoxir was more 

potent in dbcAMP-supplemented medium than in hypoxanthine-

supplemented medium, 100 and 250 μm etomoxir was used in the 

dbcAMP and hypoxanthine experiments, respectively. Under both 

inhibitory conditions, C75 again stimulated a high percentage of 

oocytes to resume maturation when meiotic arrest was maintained by 

either hypoxanthine (Fig. 5B) or dbcAMP (Fig. 5C), and this stimulation 

was eliminated by treatment with etomoxir. Cerulenin also stimulated 

maturation, but in each case to a lesser extent, and etomoxir failed to 

block maturation in either group. These data suggest that the meiosis-

inducing effect of C75, but not cerulenin, is mediated by activation of 

fatty acid oxidation. 

Inhibition of AMPK fails to block C75-induced 

maturation 

If C75 acts downstream of AMPK to stimulate meiotic 

resumption, then blocking AMPK activity should have little effect on 

C75-induced maturation. To test this idea, dbcAMP-arrested CEO 

stimulated with C75 or AICAR were treated with the AMPK inhibitor, 

compound C (Zhou et al, 2001), during overnight cultures. AICAR 

increased the maturation frequency from 20% to 99%, and the 

response to AICAR was reduced to 28% GVB by compound C (Fig. 

5D). C75 also stimulated most of the oocytes to resume maturation 

(90% GVB), but compound C had no significant impact on GVB in C75-

treated oocytes, which indicates that C75 is not acting through AMPK. 

Palmitic acid and carnitine promote meiotic induction 

induced by AICAR 

To assess whether fatty acids have a positive effect on meiotic 

maturation, DO maintained in meiotic arrest with dbcAMP in the 
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presence or absence of AICAR were exposed to increasing 

concentrations of palmitic acid during 4 h cultures. A concentration of 

125 μm AICAR was chosen to produce a modest meiosis-inducing 

effect; in this way, the potential stimulatory effects of palmitic acid 

could be tested under conditions of presumptive fatty acid oxidation 

stimulation. These results are shown in Fig. 6A. Only negligible oocyte 

maturation was observed in dbcAMP alone (3% GVB), and no further 

change was seen with the addition of palmitic acid. Treatment with 

AICAR increased the maturation percentage to 35%, and palmitic acid 

at the highest dose tested (500 μM) significantly increased the meiotic 

response to 57%. 

Since fatty acyl CoA uptake by mitochondria requires the 

replacement of the CoA group with carnitine, we tested the effects of 

carnitine on AICAR-induced maturation of dbcAMP-arrested DO during 

4 h cultures. Little maturation occurred when oocytes were cultured in 

300 μM dbcAMP, and carnitine alone was unable to stimulate meiotic 

resumption (Fig. 6B). The addition of 125 μM AICAR increased the 

maturation percentage by 38%, and this was further increased in 

dose-dependent fashion by carnitine, such that a significant 

stimulation of maturation (54% GVB) occurred at 2 mM. Thus, like the 

results with palmitic acid, stimulation of maturation by carnitine 

required treatment with AICAR. 

Meiotic induction by carnitine derivatives of fatty acids 

If fatty acids have a positive influence on oocyte maturation 

following the addition of carnitine to acyl derivatives and their 

subsequent oxidation, then carnitine derivatives of fatty acids would 

be able to bypass the need for CPT1 (see Fig. 1) and may exhibit a 

meiosis-inducing effect. We therefore tested the effects of the C16 

carnitine derivative, palmitoylcarnitine, on meiotically arrested 

oocytes. For these experiments, oocytes were maintained in meiotic 

arrest with hypoxanthine, since initial experiments using dbcAMP 

resulted in inconsistent data. CEO or DO were cultured 17-18 h in 

medium containing 4 mM hypoxanthine in the presence of increasing 

concentrations of palmitoylcarnitine. As shown in Fig. 7A, meiotic 

resumption was induced in dose-dependent fashion by 

palmitoylcarnitine in both CEO and DO. However, an increase in oocyte 

death was observed at the two higher doses of palmitoyl carnitine, 

with 24.5% of DO dead at 75 μM and 29.6% and 51.5% of CEO and 
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DO, respectively, dead at 100 μM. Less than 10% of the oocytes failed 

to survive culture in all other groups. 

 

Figure 7 Meiotic induction by carnitine derivatives of fatty acids. A, Dose response 

effect of C75. CEO and DO were cultured 17-18 h in medium containing 4 mM 

hypoxanthine plus increasing concentrations of palmitoyl carnitine. B, Time course of 

meiotic induction. DO were cultured 1-4 h in medium containing hypoxanthine in the 

presence or absence of 75 μM palmitoyl carnitine. C, effect of etomoxir on meiotic 

induction. DO were cultured 4 h in 4 mM hypoxanthine plus 75 μM palmitoyl carnitine 

or 250 μM AICAR, plus or minus 250 μM etomoxir. An asterisk denotes a significant 

difference from the –etomoxir group. D, Effect of fatty acid chain length on meiotic 

induction. DO were cultured 4 h in 4 mM hypoxanthine plus fatty acyl carnitines at a 

concentration of 75 μM. Palmitoyl and stearoyl carnitines were also added at 50 μM. 

Numbers at the top of the bar denote the mean percentage of dead oocytes for each 

treatment. An asterisk denotes a significant difference from the control group. 
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The kinetics of palmitoylcarnitine-induced maturation were next 

evaluated. DO were cultured 1, 2, 3 or 4 h in medium containing 4 mM 

hypoxanthine in the presence or absence of 75 μM palmitoyl carnitine. 

Remarkably, significant stimulation of meiotic resumption occurred 

within 2 h (an increase from 7.2% to 62% GVB), and this number was 

increased to 83.6% after 4 h, although the control maturation 

frequency had also increased at a comparable rate to 31.2% (Fig. 7B). 

Since palmitoyl carnitine is produced by the activity of CPT1 

(see Fig. 1), it should therefore be able to bypass this target of 

etomoxir inhibition. To test this, DO were cultured 4 h in 4 mM 

hypoxanthine plus 75 μM palmitoyl carnitine plus or minus 250 μM 

etomoxir. As a positive control, oocytes were also stimulated with 

AICAR. While etomoxir significantly reduced AICAR-induced maturation 

(by 26.2%), it had no effect on palmitoyl carnitine-stimulated 

maturation (Fig. 7C), consistent with the idea that palmitoyl CoA acts 

downstream of CPT1 (Fig. 1). 

To determine the effect of fatty acid chain length on meiotic 

induction, carnitine derivatives of different saturated fatty acids were 

tested. DO were cultured 4 h in 4 mM hypoxanthine plus fatty acyl 

carnitines at a concentration of 75μM. Palmitoyl and stearoyl carnitines 

were also added at 50 μM due to the increased number of dead 

oocytes at the higher concentration when compared to the other 

groups. As shown in Fig. 7D, the acetyl (C2), hexanoyl (C6), octanoyl 

(C8) and lauroyl (C12) derivatives had no effect on oocyte maturation, 

but palmitoyl (C16) and stearoyl (C18) carnitine each stimulated a 

significant number of oocytes to resume maturation. A dose-

dependent effect was evident with palmitoyl carnitine, but 50μM 

stearoyl carnitine was as effective as 75 μm in triggering GVB. It is 

also important to note that two-thirds (66.4%) of the oocytes exposed 

to 75 μM stearoyl carnitine died within 4 h compared to 28.6% 

exposed to 50 μm. Consistent with earlier experiments, 38.2% of 

oocytes treated with 75 μm palmitoyl carnitine died after 4 h of 

culture. These results show that long chain, but not short chain, fatty 

acyl carnitine derivatives are stimulatory to oocyte maturation; in 

addition, this effect was associated with increased oocyte death. 
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Inhibitors of fatty acid oxidation enzymes block 

palmitoylcarnitine-induced maturation 

Replacement of the carnitine moiety with CoA within the 

mitochondrion converts fatty acids into substrates for the first enzyme 

of FAO, acyl CoA dehydrogenase (see Fig. 1B). If β–oxidation of 

palmitoyl carnitine is required for its meiosis-inducing effect, then 

inhibition of acyl CoA dehyrogenase should block its action. Thus, DO 

were cultured 4 h in hypoxanthine-supplemented medium containing 

75 μm palmitoylcarnitine plus increasing concentrations of the acyl 

CoA dehydrogenase inhibitor, mercaptoacetate (MA; Bauche et al, 

1982). While palmitoylcarnitine increased the percentage of 

hypoxanthine-arrested oocytes undergoing GVB from 25% to 88%, 

this effect was eliminated in dose-dependent fashion by MA (Fig.8A). It 

is important to note that 1.5 mM MA completely suppressed meiotic 

induction without increasing the number of dead oocytes, although 

oocyte death was increased at the higher dose of 2 mM. Moreover, 

when at the end of culture germinal vesicle-stage oocytes that were 

exposed to the two highest doses of MA were transferred to control, 

inhibitor-free medium and cultured overnight, 84% resumed 

maturation and more than half of these formed polar bodies. 
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Figure 8 Effect of fatty acid oxidation inhibitors on meiotic induction by palmitoyl 

carnitine. DO were cultured 0.5 h in 4 mM hypoxanthine plus or minus increasing 

concentrations of mercaptoacetate (MA, A) or 8-bromo-octanoic acid (B) and then 75 

μm palmitoyl carnitine was added to each tube. Cultures were continued for 4 h before 

oocytes were assessed for GVB. Numbers at the top of the bar denote the mean 

percentage of dead oocytes for each treatment. Groups with no common letter are 

significantly different. 

To further assess the dependency of palmitoylcarnitine-induced 

maturation on fatty acid oxidation, the experiment was repeated with 

2-bromo-octanoic acid, an inhibitor of thiolase, the downstream and 

rate-limiting enzyme of fatty acid β-oxidation (Rupp et al, 2002). As 

shown in Fig. 8B, 2-bromo-octanoic acid dose-dependently suppressed 

palmitoylcarnitine-induced maturation in DO. The effects of this agent 

were also reversible, as 93% of the GV-stage oocytes exposed to the 

two highest concentrations resumed maturation and more than half 

formed polar bodies. The reversibility of the inhibition by both agents 
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suggests that their effect on maturation was not due to a nonspecific 

toxic effect on the oocyte. 

DISCUSSION 

In this study we have presented evidence that increased fatty 

acid oxidation within the mouse oocyte is associated with induction of 
meiotic maturation. C75, an activator of fatty acid oxidation, 

stimulated meiotic resumption in arrested mouse oocytes, while two 
separate inhibitors of CPT1 (etomoxir and malonyl CoA) prevented the 
meiotic induction brought about by the AMPK activator, AICAR. The 

effectiveness of C75 in both DO and CEO suggests that the oocyte is 
the target for its action. Cerulenin, an inhibitor of fatty acid synthesis, 

also stimulated meiotic resumption, but only in CEO, and it was less 
potent, exhibited much slower kinetics, and was insensitive to 
etomoxir inhibition. Palmitic acid and carnitine augmented the meiotic 

induction brought about by AICAR in DO, but had no effect in the 
absence of AICAR, suggesting their positive action required activation 

of fatty acid oxidation within the oocyte. Carnitine derivatives of long 
chain fatty acids were effective inducers of meiotic maturation in both 
CEO and DO, with rapid kinetics of meiotic resumption, and this action 

was insensitive to CPT1 inhibition but sensitive to inhibitors of fatty 
acid oxidation. These data support the idea that AMPK-induced meiotic 

resumption in mouse oocytes in vitro is dependent on activation of the 
fatty acid oxidation pathway. 

Since a prominent response of cells to AMPK activation is an 

increase in fatty acid oxidation (Hardie, 2003), we examined the 
possibility that AMPK-induced meiotic resumption is associated with an 
increase in the activity of this metabolic pathway. Initial experiments 

involved the use of two inhibitors of CPT1, malonyl CoA and etomoxir. 
Malonyl CoA is the product of ACC activity and thus is an intermediate 

within the fatty acid synthetic pathway, while etomoxir is a 
pharmacological inhibitor. Both agents significantly suppressed AICAR-
induced maturation in dbcAMP-arrested DO, suggesting that the 

transport of fatty acids into the mitochondria for β-oxidation helps 
drive meiotic induction. This response was not unique to dbcAMP-

arrested oocytes, since etomoxir was also inhibitory to meiotic 
induction when hypoxanthine or milrinone was used to maintain 
meiotic arrest. Also, the response to etomoxir was unique for ligand-

stimulated maturation, since spontaneous maturation was not 
affected, though this inhibitor augmented the extent of meiotic arrest 

in oocytes cultured in dbcAMP alone. While the reason for this 
response is not known, it may explain the better inhibitory potency of 
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this agent in stimulated oocytes maintained in meiotic arrest with this 
cyclic nucleotide analog. 

Since inhibitors of CPT1 were able to block meiotic induction, it 

followed that activators of this pathway might have the opposite 
effect—ie, stimulation of meiotic resumption. To test this idea, we used 

C75, an established inhibitor of fatty acid synthesis that was recently 
shown to stimulate fatty acid oxidation via activation of CPT1, the 

enzyme that replaces the CoA on fatty acyl CoA with carnitine and 
promotes entry of fatty acids into the mitochondrion for subsequent 
oxidation (Thupari et al, 2002). C75 proved to be a potent inducer of 

meiotic maturation in both CEO and DO and under a variety of 
meiosis-inhibiting conditions. Thus, the oocyte is the site of C75 

action, which is consistent with the results of the inhibitor 
experiments. In addition, as predicted, C75 acts downstream of AMPK, 
since the AMPK inhibitor, compound C, blocked AICAR-induced 

maturation but was unable to block C75-induced maturation. 

However, because C75 is also an inhibitor of fatty acid 
synthesis, it was important to test the effects of another FAS inhibitor, 

cerulenin, on meiotically arrested oocytes. While cerulenin also 
exhibited meiosis-inducing ability, it was less potent, slower acting, 
and completely ineffective in DO. Moreover, etomoxir was able to 

block C75-induced, but not cerulenin-induced, maturation of CEO, 
indicating that these agents act by separate mechanisms to trigger 

GVB. It is not clear how cerulenin stimulates meiotic maturation, but it 
is apparently an indirect effect, mediated through the cumulus cells. 
One possible interpretation is that interfering with fatty acid synthesis 

in the cumulus cells somehow leads to a positive action on the oocyte, 
but further experimentation is required before definitive conclusions 

can be drawn. 

To determine if precursors of fatty acyl carnitine could augment 
meiotic induction, dose response experiments were carried out with 

palmitic acid and carnitine in AICAR-stimulated DO that were 
maintained in meiotic arrest with dbcAMP. While neither agent had any 
effect in the absence of AICAR, under modest stimulatory conditions 

both palmitic acid and carnitine augmented the meiosis-inducing effect 
of AICAR. These results demonstrate that precursors of fatty acyl 

carnitine can promote meiotic maturation, but also suggest that this 
response requires CPT1 stimulation. 

In a previous study, we utilized palmitoylcarnitine to examine 
the potential role of protein kinase C (PKC) in mouse oocyte meiotic 

regulation (Downs et al, 2001), because palmitoylcarnitine has been 
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shown to be a PKC antagonist (Katoh et al, 1981; Wise and Kuo, 
1983). In that study, the meiosis-inducing action of palmitoylcarnitine 

was attributed to a PKC-suppressing activity within the oocyte, since 
its effects were mimicked by other PKC inhibitors (Downs et al, 2001). 

The action of palmitoylcarnitine on oocytes was revisited in the present 
study with the idea that it is situated downstream of CPT1 and could 
enter mitochondria, undergo oxidation and trigger GVB. Thus, the 

effects of fatty acyl carnitine derivatives on hypoxanthine-maintained 
meiotic arrest were tested in CEO and DO. Higher molecular weight 

(C16, C18), but not lower molecular weight (C2-C12), derivatives were 
effective inducers of meiotic maturation, and significant stimulation of 
GVB was observed in DO within only 2 h of culture. Such a rapid 

induction of meiosis, plus the fact that palmitoylcarnitine action was 
insensitive to etomoxir but sensitive to fatty acid oxidation inhibitors, 

provides further evidence for the participation of fatty acid oxidation in 
oocyte maturation. In addition, the meiosis-inducing action of the 
larger carnitine derivatives implicates the involvement of long-, and 

perhaps very long-, chain acyl-CoA dehydrogenase in meiotic 
resumption. However, it cannot be determined from these data 

whether the effect of palmitoylcarnitine is related to an interaction with 
PKC. 

Ratchford et al (2007) recently reported that acyl CoA 

dehydrogenase activity in oocytes from diabetic mice was impaired 
when compared to controls, in association with a reduction in meiotic 
resumption. Moreover, treatment of these oocytes with AICAR 

stimulated AMPK and restored the maturation deficit. Interestingly, a 
deficiency of long-chain acyl-CoA dehydrogenase in mice results in 

reduced litter sizes (Cox et al, 2001), and this may be explained, at 
least in part, by an inability of preimplantation embryos to form a 
blastocoel (Berger and Wood, 2004). This same pathway is also 

important for oocyte maturation in domestic species (Sturmey and 
Leese, 2003; Ferguson and Leese, 2006), and treatment of pig oocytes 

during in vitro maturation with MA or the CPT1 inhibitor, methyl 
palmoxirate, compromised embryo development following in vitro 
fertilization (Sturmey et al, 2006). 

The results of this study provide compelling evidence that fatty 
acid oxidation is an important regulator of oocyte meiotic maturation 
in mice and is influenced by the level of AMPK activity. While this 

conclusion was reached using pharmacological manipulators of 
metabolism, it is also supported by results of preliminary experiments 

using more physiological activators of maturation. The involvement of 
fatty acid metabolism in oocyte maturation is somewhat surprising 
considering that oocytes can undergo maturation with simple 
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carbohydrates such as pyruvate as the sole energy source (Biggers et 
al, 1967; Eppig, 1976). It is for this reason that considerable effort has 

been expended in the past examining the importance of carbohydrate 
metabolism during oocyte maturation, but little is known about how 

carbohydrate and fatty acid metabolic pathways interact throughout 
oocyte and embryo development. It will be important in future studies 
to examine the extent of fatty acid oxidation activity in the oocyte 

under different conditions of meiotic regulation, including energy 
supplementation, and how this relates to meiotic status. 

MATERIALS AND METHODS 

Oocyte isolation and culture conditions 

Animals were raised in the research colony of the principal 
investigator (SMD). All experiments were carried out with prior 
approval of the Marquette University Institutional Animal care and Use 

Committee. C57BL/6JxSJL/J Fl mice, 19-23 days old, were used for all 
experiments. Mice were primed with 5 IU equine choronic 
gonadotropin and killed 48 h later by cervical dislocation. Ovaries were 

removed and placed in the culture medium, and cumulus cell-enclosed 
oocytes (CEO) were obtained by puncturing large antral follicles with 

sterile needles. Denuded oocytes were prepared by repeated pipetting 
with a Pasteur pipette or by passage through mouth-operated small 

bore pipets. Tubes were gassed with a humidified mixture of 5% CO2, 
5% O2 and 90% N2 and placed in a water bath at 37°C for the duration 
of culture. 

The culture medium used was Eagle’s minimum essential 

medium with Earle’s salts (GIBCO/Invitrogen; Carlsbad, CA), 
supplemented with 0.23 mM pyruvate, penicillin, streptomycin sulfate 

and 3 mg/ml crystallized lyophilized bovine serum albumin (ICN 
ImmunoBiologicals, Lisle, IL) and buffered with 26 mM bicarbonate. 

Cumulus Expansion 

Cumulus expansion was assayed following a 17-18 h incubation 
in MEM supplemented with 5% fetal bovine serum. Expansion was 

scored according to a subjective scale ranging from 0 (no expansion) 
to +4 (complete expansion), and a cumulus expansion index was 
calculated as previously described (Fagbohun and Downs, 1990). 
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Chemicals 

AICAR was purchased from Toronto research Chemicals, Inc. 
(North York, Ontario), and C75 was supplied by Alexis Biochemicals 
(Axxora LLC, San Diego, CA). Sigma Chemical Co (St Louis, MO) was 

the source for dibutyryl cyclic AMP, hypoxanthine, malonyl CoA, 
palmitic acid, L-carnitine, guanosine, milrinone, cerulenin, etomoxir, 

and all fatty acyl carnitine derivatives. Highly purified ovine FSH was 
obtained from the National Hormone and Peptide Program (NHPP), 

NIDDK, and Dr. A.F. Parlow. 

Statistical Analysis 

Oocyte maturation experiments were repeated at least 3 times 
with at least 25 oocytes per group per experiment. Data are reported 
as mean percentage GVB ± SEM. Maturation frequencies were 
analyzed statistically by ANOVA followed by Duncan’s multiple range 

test. For all statistical analyses, a P value less than 0.05 was 
considered significant. 
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