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ABSTRACT 
ASSESSMENT OF PERFORMANCE VALIDITY DURING 

NEUROPSYCHOLOGICAL EVALUATION  
IN PATIENTS WITH EPILEPSY 

 

Nichelle D. Rothong, MS 
 

Marquette University, 2014 
 

 Patients with epilepsy are considered a motivated population without clear 
incentive to perform suboptimally on neuropsychological testing. However, in the limited 
research exploring performance validity testing (PVT) in patients with epilepsy, the base 
rate of suboptimal performance has ranged from 4 (Hill, Ryan, Kennedy, & Malamut, 
2003) to 28% (Loring, Lee, & Meador, 2005). These findings are concerning, as 
suboptimal PVT scores have been found to be associated with significantly lower 
neuropsychological performance across most cognitive domains (e.g., Green, Rohling, 
Lees-Haley, & Allen, 2001). 
 
 One possible explanation for the variance in base rate of suboptimal performance 
is the significant cognitive impairment commonly associated with epilepsy (Bortz, 2003). 
The present study investigated this unexplored theory by utilizing the Word Memory Test 
(WMT). The WMT is a PVT that indicates whether scores below failure cutoff likely 
reflect suboptimal performance or significant cognitive impairment, a determination 
made by General Memory Impairment Profile (GMIP) analysis. Using WMT normative 
cutoffs, patients in the current study were categorized into optimal, suboptimal, and 
GMIP performance groups. Subsequently, differences among groups on a variety of 
neuropsychological measures were explored. The validity of the GMIP was also 
examined to provide support for its use with this population.  
 
 Findings indicated that 43% of the sample fell into the WMT optimal group, 36% 
into the suboptimal group, and 21% into the GMIP group. Although WMT performance 
accounted for 29% of the variance in overall neuropsychological performance, PV did 
not impact all cognitive domains equally. WMT performance groups scored significantly 
differently across most neuropsychological measures; patients in the suboptimal and 
GMIP groups typically obtained significantly lower scores than patients in the optimal 
group. Results also largely supported the validity of the GMIP in its ability to identify 
WMT scores below failure cutoff due to borderline memory impairment. Overall, current 
findings encourage the use and further investigation of the WMT and GMIP analysis in 
patients with epilepsy. 
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CHAPTER I: INTRODUCTION 

Background Context 

 During neuropsychological assessment, neuropsychologists must examine the 

validity of test performance, determining whether observed low test scores are due to 

neurological illness or injury, or instead reflective of suboptimal performance (Binder, 

1990; Binder, 1993; Green, 2001; Slick, Sherman, & Iverson, 1999). Determination of 

performance validity (PV) is an important part of neuropsychological assessment as 

results are used to assist in formulating diagnoses, impressions, and recommendations. 

Neuropsychological test results may also be used as the main source of evidence to 

support or refute claims for financial compensation (Guilmette, Hart, & Guiliano, 1993; 

Slick et al., 1999). 

 Stand-alone forced-choice performance validity tests (PVTs; Larrabee, 2012) 

have been found to be the most sensitive and specific method for determining the validity 

of test scores during neuropsychological evaluation (Heilbronner et al., 2009; Vickery, 

Berry, Inman, Harris, & Orey, 2001). PVTs are designed to appear more difficult than 

they actually are (Heilbronner et al., 2009; Inman & Berry, 2002), so much so that 

individuals with known neurologic, psychiatric, and developmental disorders typically 

perform normally (Heilbronner et al., 2009; Sweet, 1999). PVTs are designed to be 

relatively insensitive to genuine cognitive impairment and the effects of psychological 

illness but sensitive to suboptimal performance (Bianchini, Mathias, & Greve, 2001).  

 Much of the research investigating PV has been conducted with patients who 

report cognitive symptoms yet have no apparent deficits on neurological testing (e.g., 
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mild traumatic brain injury [mTBI]) (Binder, 1990). Such patients are frequently seeking 

compensation for an alleged injury or involved in litigation, both of which can serve as 

external incentives to perform suboptimally on testing. Research examining PVT scores 

in this population has largely demonstrated that mTBI patients involved in litigation or 

seeking compensation perform significantly worse on PVTs than patients with moderate 

to severe head injuries not seeking compensation (e.g., Binder & Kelly, 1996; Boone & 

Lu, 2007; Green & Iverson, 2001; Greiffenstein, Baker & Gola, 1994; Slick et al., 2003). 

Overall, the estimate of suboptimal performance during neuropsychological evaluation in 

the mTBI population is 40% (Larrabee, 2003; Larrabee, 2005). However, poor scores on 

PVTs are not limited to the mTBI population. High rates of suboptimal performance have 

also been found in other compensation-seeking patient populations without brain injuries, 

such as patients with chronic pain (42%; Gervais, Green, Allen, & Iverson, 2001a), 

fibromyalgia (44%; Gervais et al., 2001b), and toxin exposure (40%; Greve et al., 2006a; 

56.7%; Greve et al., 2006b).  

 Studies have also found evidence of poor PVT scores in patients not seeking 

compensation or involved in litigation. One such patient group is the epilepsy population. 

Patients with epilepsy are considered to be motivated for neuropsychological testing with 

no apparent external reasons (e.g., financial incentives) to underperform. They are 

usually not being evaluated as a component of a litigation or disability case; in fact, they 

may already be receiving disability due to their epilepsy. However, research has shown 

that it cannot be assumed that all patients with epilepsy perform optimally during 

neuropsychological testing. In the limited amount of research specifically aimed at 

exploring PVT scores in patients with epilepsy, the base rate of suboptimal performance 
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has been found to range from 4 (Hill, Ryan, Kennedy, & Malamut, 2003) to 28% (Loring, 

Lee, & Meador, 2005). Reasons for suboptimal performance in this population are 

unknown. Therefore, further exploration is called for, which constitutes one of the 

purposes of the current study. However, regardless of underlying reasons, poor PVT 

scores are apparent in patients with epilepsy. These poor scores are concerning and 

require further investigation, as poor PVT scores are associated with significantly lower 

test scores across most cognitive domains (Constantinou, Bauer, Ashendorf, Fisher, & 

McCaffrey, 2005; Green, Lees-Haley, & Allen, 2002; Green, Rohling, Lees-Haley, & 

Allen, 2001). This is especially problematic for patients with epilepsy, as results of 

neuropsychological testing are used to assess seizure lateralization, pre- and post-surgical 

cognitive functioning, and psychiatric status.  

Statement of the Problem 

 There is limited research specifically examining PVTs in patients with epilepsy. 

In the research that does exist, the base rate of suboptimal performance on such tests has 

been found to vary from 4 (Hill et al., 2003) to 28% (Loring et al., 2005). As patients 

with epilepsy are considered to be motivated for neuropsychological evaluation, this wide 

range of suboptimal performance on PVTs is unexpected and requires further 

investigation. Such an investigation would not only help clarify the base rate of 

suboptimal performance in this population, but may also shed light on possible 

explanations for this variance in base rate.  

 Reasons for the variance in base rate of suboptimal performance in patients with 

epilepsy remain unknown and largely unexplored. One possible explanation for this 

variance is the significant cognitive impairment commonly associated with epilepsy 
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(Bortz, 2003), although this theory needs to be further explored. For example, Drane et al. 

(2006) suggested that profound cognitive impairment likely explained four epilepsy 

patients’ low scores on the Word Memory Test (WMT; Green, Allen, & Astner, 1996), a 

measure thought to be largely insensitive to significant cognitive impairment (Goodrich-

Hunsaker & Hopkins, 2009; Green & Allen, 1999). However, this study was limited due 

to its small samples size and because WMT Genuine Memory Impairment Profile 

(GMIP) analysis was not employed. GMIP analysis indicates whether WMT scores 

below failure cutoff (≤ 82.5% on the Immediate Recognition [IR], Delayed Recognition 

[DR], or Consistency [CNS] subtests) are likely due to significant cognitive impairment 

or instead to suboptimal performance. GMIP analysis involves computing the difference 

between the mean of the WMT easy subtests (IR, DR, and CNS) and the WMT hard 

subtests (Multiple Choice [MC], Paired Associates [PA], and Free Recall [FR]). A GMIP 

is defined as at least a 30-point difference between the mean of the WMT easy and hard 

subtests, and suggests that WMT scores below failure cutoff are likely due to significant 

cognitive impairment rather than suboptimal performance. Given the limitations of the 

Drane et al. study, and the absence of other research exploring possible reasons for the 

varying base rate of suboptimal performance in this population, further investigation is 

warranted.  

Secondly, there is a lack of research examining the relationship between PVT 

scores and neuropsychological test scores in the epilepsy population. The few studies that 

have explored this relationship have found that poor scores on PVTs were generally 

associated with lower scores on neuropsychological tests (Dodrill, 2008; Drane et al., 

2006; Locke, Berry, Fakhoury, & Schmitt, 2006; Loring et al., 2005). However, only 
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Drane et al. excluded likely false positives (patients who likely perform suboptimally on 

PVTs due to significant cognitive impairment) before conducting their analyses. It is 

therefore possible that the findings of Dodrill, Locke et al., and Loring et al. are 

confounded by data from patients with significant cognitive impairment. Thus, 

conclusions about the relationship between PVT scores and neuropsychological test 

scores in this population may be inaccurate, and further examination is warranted.  

Purpose of the Study 

 The first purpose of this study is to investigate performance on all subtests of a 

highly sensitive and specific PVT, the WMT, in patients with epilepsy. Patients will be 

categorized into one of the following groups based on WMT scores: optimal performance, 

suboptimal performance, or GMIP. By utilizing GMIP analysis, this study will seek to 

differentiate patients who score below failure cutoff on the WMT due to suboptimal 

performance from those who score below failure cutoff due to significant cognitive 

impairment. The use of GMIP analysis has not yet been explored in patients with 

epilepsy, and may uncover that a significant number of patients with epilepsy score 

below failure cutoff on the WMT due to significant cognitive impairment and not due to 

suboptimal performance. Therefore, employing GMIP analysis may help clarify the 

varying published base rate of poor PVT scores (4 to 28%) in this population. This 

clarification would be helpful because patients with epilepsy are considered to be 

motivated for testing, and therefore, not expected to obtain low PVT scores. 

 The second purpose of this study is to explore the relationship between WMT 

performance and neuropsychological test scores in patients with epilepsy. This 

relationship will be explored by examining differences among each WMT group’s 
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neuropsychological test scores. Only four studies have explored the relationship between 

PVT scores and neuropsychological test scores in patients with epilepsy, two of which 

(Dodrill, 2008; Drane et al., 2006) only employed portions of the WMT. Using the WMT 

GMIP, this will be the first study to remove likely false positives (patients who perform 

suboptimally on the WMT likely due to significant cognitive impairment) from the 

suboptimal performance group before investigating the relationship between poor WMT 

scores and neuropsychological test scores. Additionally, this will be the first study to 

explore the relationship between GMIPs and neuropsychological test scores.  

 As such, the final purpose of this study is to explore the validity of the GMIP in 

patients with epilepsy. More specifically, this study seeks to examine whether or not 

GMIP scores are associated with impaired performance on neuropsychological memory 

tests. If GMIP scores are associated with memory impairment, this association would 

provide support for the validity of the GMIP in identifying patients who perform below 

WMT failure cutoff due to significant cognitive impairment. If no significant relationship 

is found, questions about the validity of the GMIP in this population will be raised, as it 

would be anticipated that patients who receive a GMIP score of ≥ 30 would also have 

impaired memory test scores if the GMIP accurately identifies the presence of significant 

cognitive impairment. This study will also explore the validity of the GMIP by examining 

how much each of the WMT subtests, as well as constructed PV and memory composites, 

explains total GMIP score. Investigations of the validity of the GMIP have yet to be 

conducted in patients with epilepsy.  

Implications of the Study 
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 Significant findings from the present study seek to inform clinical practice and 

future research. This study aims to clarify the varying base rate of suboptimal 

performance on PVTs in patients with epilepsy through the use of WMT GMIP analysis. 

If GMIP analysis reveals that a significant number of patients score below WMT failure 

cutoff due to significant cognitive impairment, neuropsychologists would be encouraged 

to administer all WMT subtests so that GMIP scores can be computed. GMIP analysis 

may therefore aid neuropsychologists with the interpretation of WMT results in this 

population.  

 This study also seeks to investigate the relationship between WMT performance 

and neuropsychological test scores in patients with epilepsy. If results indicate that 

patients who perform suboptimally on the WMT have significantly lower 

neuropsychological test scores than patients who perform optimally on the WMT, 

neuropsychologists would be encouraged to use the WMT with epilepsy patients to 

identify those who underperform. Significantly lowered test scores due to suboptimal 

performance are problematic for patients with epilepsy, as such scores are used to inform 

neuropsychologists’ impressions about seizure lateralization, pre- and post-surgical 

cognitive functioning, and psychiatric status. These impressions may be inaccurate if 

suboptimal performance is not identified through the use of a PVT like the WMT. 

Neuropsychologists should mention evidence of suboptimal performance during testing 

in their reports and note that test results likely underestimate the patient’s optimal 

abilities and should be interpreted with caution.  

 The present study additionally seeks to investigate the validity of the GMIP in 

patients with epilepsy. If findings from the current study support the validity of the GMIP, 
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neuropsychologists would be encouraged to use GMIP analysis in order to differentiate 

epilepsy patients who score below WMT failure cutoff due to significant cognitive 

impairment from those who score below WMT failure cutoff due to suboptimal 

performance. Further, results supporting the validity of the GMIP in patients with 

epilepsy may lead to future research employing the WMT GMIP with other populations, 

especially those with significant cognitive impairment. Such studies may help clarify the 

high false positive rates of other PVTs (e.g., the Test of Memory Malingering [TOMM]; 

Tombaugh, 1996) in patients with significant cognitive impairment (e.g., dementia).  

Research Questions 

1. What are the base rates of optimal, suboptimal, and GMIP performance as 

measured by the WMT?  

2. Are there differences on WMT subtest scores among WMT groups (optimal 

performance, suboptimal performance, and GMIP)? 

3. Are there differences in neuropsychological test scores among WMT groups? 

4. What is the relationship between GMIP scores and scores on 

neuropsychological memory tests? 

5. How much does each of the WMT subtests explain total GMIP score?  

 To answer these questions, WMT and neuropsychological test data from patients 

with epilepsy will be retrospectively analyzed using one-way analyses of variance 

(ANOVAs), multiple regressions with dummy coding, and simple linear regression.  

Definition of Terms 



 9

 Performance validity (PV): “the validity of actual ability task performance, 

assessed either by stand-alone tests such as Dot Counting or by atypical performance on 

neuropsychological tests such as Finger Tapping” (Larrabee, 2012, p. 626). In this study, 

PV will be assessed by the WMT.  

 Performance Validity Tests (PVTs): measures that “clarify the extent to which a 

person’s test performance is or is not an accurate reflection of their (sic) actual level of 

ability” (Larrabee, 2012, p. 626). PVTs have been commonly referred to as symptom 

validity tests (SVTs) or effort tests in the literature; however, as effort continues to 

remain a poorly defined construct and as symptom validity more appropriately describes 

“the accuracy of symptomatic complaint on self-report measures” (Larrabee, 2012, p. 

626), the more accurately descriptive term of PVT will be used in this study.  

  Sensitivity: the true positive rate (hit rate) for a test; that is, the number of 

individuals with a condition who have positive test results divided by all individuals with 

the condition (Hennekens & Buring, 1987). Thus, the sensitivity of a PVT indicates the 

number of subjects performing suboptimally who are identified as such by the PVT 

divided by all subjects performing suboptimally. High sensitivity indicates that the 

majority of subjects performing suboptimally on a PVT are identified as such. Low 

sensitivity indicates that a certain cut score produces a substantial number of false 

negative errors, which means that a percentage of subjects performing suboptimally go 

undetected.  

 Specificity: the true negative rate; that is, the number of individuals without a 

condition who have negative test results divided by all individuals without the condition 

(Hennekens & Buring, 1987). Thus, the specificity of a PVT indicates the number of 
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subjects performing optimally who are identified as such by the PVT divided by all 

subjects performing optimally. High specificity indicates that the majority of subjects 

performing optimally on a PVT are identified as such. Low specificity indicates that a 

certain cut score produces a substantial number of false positive errors, which means that 

a percentage of subjects performing optimally are misclassified as performing 

suboptimally.  

 Malingering: Slick et al. (1999) defined the malingering of neurocognitive 

dysfunction as  

The volitional exaggeration or fabrication of cognitive dysfunction for the 
purpose of obtaining substantial material gain, or avoiding or escaping formal 
duty or responsibility. Substantial material gain includes money, goods, or 
services of nontrivial value (e.g., financial compensation for personal injury). 
Formal duties are actions that people are legally obligated to perform (e.g., prison, 
military, or public service, or child support payments or other financial 
obligations). Formal responsibilities are those that involve accountability or 
liability in legal proceedings (e.g. competency to stand trial) (p. 552).  
 

 Simulators: “normal,” non-injured subjects, often college students, who have been 

instructed to simulate (fake) memory impairment or cognitive deficit in anticipation of 

monetary compensation (Bianchini et al., 2001; Grote & Hook, 2007). Simulators may be 

coached as to the best way(s) to avoid detection of suboptimal performance or provided 

with specific instructions designed to maximize their ability to effectively malinger 

(Grote & Hook, 2007; Inman & Berry, 2002). Simulators may also be uncoached (naïve). 
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CHAPTER II: LITERATURE REVIEW   

Overview of Performance Validity Testing 

History 

  Neuropsychologists must examine the validity of test performance, determining 

whether observed deficits due to neurological illness or injury, or are instead feigned or 

exaggerated (Binder, 1990; Binder, 1993; Green, 2001; Slick et al., 1999). This task may 

be difficult because, at times, individuals may exaggerate or malinger for apparent 

secondary gain (Bush et al., 2005; Heilbronner et al., 2009). In addition, some individuals 

may underperform, either intentionally or unintentionally, and may be skilled at 

preventing detection (Larrabee, 1992; Slick et al., 1999). The reasons for 

underperformance are unclear and have not been well studied.  

 Psychologists’ subjective assessments of PV and malingering have been found to 

be inaccurate (Faust, Hart, & Guilmette, 1998; Faust, Hart, Guilmette, & Arkes, 1988; 

Heaton, Smith, Lehman, & Vogt, 1978). This inaccuracy in subjective assessment is 

concerning, as high rates of poor scores on objective PV measures have been found in 

compensation-seeking patients who report subtle cognitive symptoms (e.g., 42% of 

chronic pain patients seeking disability; Gervais et al., 2001a; 41% of patients with mTBI 

seeking compensation or involved in litigation; Mittenberg, Patton, Canyock, & Condit, 

2002) and in non-litigating patients with significant cognitive impairment (e.g., 28% of 

epilepsy surgical candidates; Loring et al., 2005). Besides the presence of secondary 

gains, reasons for poor scores on PVTs have not been studied and remain largely 

unknown; however, it is clear that a substantial amount of patients perform suboptimally. 
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As such, the American Academy of Clinical Neuropsychology (AACN) and the National 

Academy of Neuropsychology (NAN) advocate for neuropsychologists to move beyond 

clinical judgment and strongly recommend formal assessment of PV regardless of 

whether a financial incentive to exaggerate cognitive impairment exists (AACN, 2007; 

Bianchini et al., 2001; Boone, 2007; Boone, 2009; Bush et al., 2005; Heilbronner et al., 

2009; Lynch, 2004; Slick et al., 1999).  

The roots of performance validity testing (PVT) lie in the application of operant 

learning methods in which an individual’s behavior is modified by consequences (e.g., 

reinforcements, punishments, extinction). Brady and Lind (1961) used such methods to 

detect feigned neurological symptoms in a patient with hysterical blindness. Grosz and 

Zimmerman (1965) reassessed Brady and Lind’s patient three years later using a forced-

choice method. Slightly modifying the techniques used by Brady and Lind and Grosz and 

Zimmerman, Theodor and Mandelcorn (1973) utilized a two-alternative, forced-choice 

procedure to investigate hysterical blindness. In 1975, Pankratz, Fausti, and Peed applied 

such methods to investigate hysterical or malingered sensory deficits. Essentially, these 

early versions of modern-day PVTs began to quantify inconsistencies between ability and 

performance.  

In 1983, Pankratz applied the two-alternative, forced-choice technique to assess 

the validity of memory deficits in a method he called “symptom validity testing (SVT).” 

In SVT, a stimulus is presented followed by two alternative stimuli (one target and one 

foil) from which the patient must select the correct response. The patient has a 50% 

probability of guessing the correct answer. Patients attempting to exaggerate or feign 

disability will perceive that a 50% hit rate is too successful (Pankratz, 1983; Pankratz et 
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al., 1975), and will therefore attempt to appear more impaired than they actually are. In 

doing so, they will score poorly, and, at times, worse than chance (Grosz & Zimmerman, 

1965; Theodor & Mandelcorn, 1973; Pankratz et al., 1975). Below chance level of 

performance signifies that the patient recognizes correct responses (targets) but instead 

intentionally chooses incorrect responses (foils) (Binder, 1990; Pankratz, 1983; Vickery 

et al., 2001). Although Reynolds (1998) argued that worse-than-chance performance is 

neither random nor based on chance and instead denotes “purposive distortion” (p. 272), 

it is difficult if not impossible to determine one’s intent in performing poorly on a SVT 

(Boone, 2007). 

Pankratz’s (1983) SVT procedure has been adapted to assess various sensory 

deficits (e.g., blindness, color blindness, blurry vision, tunnel vision, deafness) and 

memory complaints (Pankratz, 1988). In 1989, Hiscock and Hiscock further refined 

Pankratz’s SVT procedure with the advent of what can be considered the first stand-alone 

forced-choice PVT, the Digit Memory Test (DMT). The DMT consists of 72 trials (three 

24-item blocks) in which a five-digit number string is presented followed by a 5, 10, or 

15-second delay (delays increase with each block) and then a two-choice recognition trial. 

Performance is based on scoring above or significantly below chance.  

 Currently, the design created by Hiscock and Hiscock (1989) generally serves as 

the foundation of most PVTs used today (Bianchini et al., 2001). The majority of such 

tests involve the presentation of visual or verbal stimuli followed by forced-choice 

recognition trails (Bianchini et al., 2001; Bickart, Meyer, & Connell, 1991). Most PVTs 

rely on a recognition memory format and appear to be assessing memory, but actually 
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very little memory is required to perform well (Guilmette, Hart, Guiliano, & Leninger, 

1994; Heilbronner et al., 2009; Inman & Berry, 2002).  

 As noted in Chapter I, individuals with known neurologic, psychiatric, and 

developmental disorders typically perform well on most PVTs (Heilbronner et al., 2009; 

Sweet, 1999), providing support for their relative insensitivity to significant cognitive 

impairment and the effects of psychological illness (specificity). In contrast, research has 

consistently demonstrated that compensation-seeking/litigating patients who report subtle 

cognitive symptoms (e.g., mTBI) perform significantly worse on PVTs than do patients 

with similar or worse injuries or disorders who are not seeking compensation or involved 

in litigation (e.g., Binder & Willis, 1991; Constantinou et al., 2005; Gierok, Dickson, & 

Cole, 2005; Green, Iverson, & Allen, 1999; Green et al., 2002; Green et al., 2001). These 

findings support the sensitivity of such tests to suboptimal performance. The underlying 

basis of PVT is that individuals who perform suboptimally during evaluation will receive 

an improbably low score on these seemingly difficult tests, when, in fact, they should be 

performing normally (Bickart et al., 1991).  

 Methods for scoring PVTs. As previously noted, the probability of a correct 

response on a two-alternative forced-choice test is 50% (Theodor & Mandelcorn, 1973). 

The probability of attaining any given score can be determined by referring to a table of 

binomial probabilities (Bickart et al., 1991). By using this table, scores can be determined 

to be either significantly above or below chance, and subsequently interpreted as 

indicative of optimal or suboptimal performance. For example, if a PVT has 50 forced-

choice trials, an individual would be expected to obtain a score of approximately 25 

correct and 25 incorrect simply by guessing. If this individual were to obtain a score of 
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17, this would indicate suboptimal performance and would only be expected to occur by 

chance about 16 out of 1,000 times. However, more recently, research has indicated that 

the significantly below-chance level of performance has low sensitivity for identifying 

suboptimal performance or malingering (Binder, 2002; Grote et al., 2000; Guilmette et al., 

1993; Hiscock, Branham, & Hiscock, 1994; Martin, Bolter, Todd, Gouvier, & Niccolls, 

1993; Martin, Hayes, & Gouvier, 1996). These studies found that a substantial number of 

feigning individuals, especially those involved in litigation, scored above chance (e.g., 

>50% correct) on various PVTs, yet significantly below performance expectations given 

their actual, or, in the case of simulation studies, feigned, injury status. For example, 

Guilmette et al. found that only 34% of simulators asked to feign memory impairment on 

the DMT scored significantly below chance. Martin et al. found that only 28% of 

simulators scored significantly below chance in another study using the same measure.  

 Findings from these and the additional above-referenced studies led to the 

creation of two methods for determining above-chance cutoff scores (Bianchini et al., 

2001). The first method – the statistical approach – uses a fixed, random, numeric cut 

score (e.g., 90% correct) to interpret performance. The second method – the normative-

based approach – utilizes empirically derived cut scores based on the performance of 

individuals with documented brain damage without any known motivation or external 

incentives to malinger or exaggerate difficulties (Binder & Willis, 1991; Guilmette et al., 

1993). Overall, below-chance level of performance on PVTs is a relatively rare 

phenomenon and has low sensitivity for identifying suboptimal performance. As such, 

over time, scoring procedures have been modified in order to be more sensitive to 

suboptimal performance and malingering.  
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Neuropsychologists’ Current Practices in Assessing PV 

 Presently, it appears that neuropsychologists are heeding the advice of the AACN 

and NAN. Five studies examining neuropsychologists’ practices in assessing PV revealed 

that the majority of respondents, ranging from 56 to 79%, reported using at least one PVT 

during evaluation (Lally, 2003; Mittenberg et al., 2002; Rabin, Barr, & Burton, 2005; 

Sharland & Gfeller, 2007; Slick, Tan, Strauss, & Hultsch, 2004). The results of these 

studies suggest that neuropsychologists most frequently use the TOMM and Rey 15-Item 

Test (FIT; Rey, 1964), followed by the WMT. Sweet (2011) and others (e.g., Bush et al., 

2005; Heilbronner et al., 2009) have recommended that PVT become a standard of 

practice, and survey results indicate that neuropsychologists are moving in that direction.  

Types of PVTs 

 The two forms of PVT include embedded indices in standard neuropsychological 

tests (e.g., Reliable Digit Span [RDS]; Greiffenstein et al., 1994; Vocabulary-Digit Span 

[VDS]; Mittenberg, Theroux-Fichera, Zielinski, & Heilbronner, 1995) and stand-alone 

measures used solely to measure PV (e.g., WMT, DMT). Embedded measures will not be 

reviewed, as they are not relevant to this study. Generally, stand-alone PVTs have been 

found to have moderate levels of sensitivity and strong levels of specificity. Stand-alone 

measures can be subdivided into non-forced-choice and forced-choice.  

 Non-forced-choice PVTs. Non-forced-choice PVTs are measures that permit a 

range of responses (Heilbronner et al., 2009). In order to identify suboptimal performance, 

these tests may assess random responding, extremely slow or incorrect responding, and 

inconsistency of response patterns (Heilbronner et al., 2009). The FIT is the most 
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frequently used non-forced-choice PVT (Lees-Haley, Smith, Williams, & Dunn, 1995; 

Sharland & Gfeller, 2007; Slick et al., 2004). Other non-forced-choice PVTs include the 

Rey Dot Counting Test (DCT; Rey, 1941), b Test (Boone, Lu, & Herzberg, 2002; Boone 

et al., 2000), and the Rey Word Recognition Test (WRT; Rey, 1941). Research has found 

that non-forced-choice measures (e.g., FIT) tend to be less sensitive and specific than 

forced-choice tests (e.g., Reznek, 2005; Vickery et al., 2001).  

 Forced-choice PVTs. Forced-choice tests are the most common type of PVT 

employed during neuropsychological assessment (Boone & Lu, 2007; Nitch & Glassmire, 

2007). These measures rely on a forced-choice recognition memory format in which 

subjects are presented with a set of target stimuli (words, numbers, or pictures). They are 

then shown pairs of stimuli (targets and foils) and must choose the target items (Boone & 

Lu, 2007; Heilbronner et al., 2009). Forced-choice PVTs include the DMT, WMT, 

TOMM, Portland Digit Recognition Test (PDRT; Binder, 1993; Binder & Willis 1991), 

Victoria Symptom Validity Test (VSVT; Slick, Hopp, & Strauss, 1995; Slick, Hopp, 

Strauss, & Thompson, 1997), Computerized Assessment of Response Bias (CARB; Allen, 

Conder, Green, & Cox, 1997; Conder, Allen, & Cox, 1992), Validity Indicator Profile 

(VIP; Frederick, 1997; Frederick & Crosby, 2000), Medical Symptom Validity Test 

(MSVT; Green, 2004), and Non-Verbal Medical Symptom Validity Test (NV-MSVT; 

Green, 2006). Forced-choice PVTs have been validated with various populations, 

including patients with neurological injuries or disorders, psychiatric disorders, and 

medical illnesses (e.g., Binder & Willis, 1991; Conder et al., 1992; Frederick & Crosby, 

2000; Iverson, Green, & Gervais, 1999; Slick, Hopp, Strauss, & Spellacy, 1996; 
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Tombaugh, 1996). These measures tend to be more sensitive and specific when compared 

to non-forced-choice PVTs (Heilbronner et al., 2009; Vickery et al., 2001).  

 Overall, the WMT has been found to be the most sensitive and specific forced-

choice PVT (Drane et al., 2006; Green & Allen, 1999; Green, 2005; Iverson et al., 1999; 

Tan, Slick, Strauss, & Hultsch, 2002). Through the use of GMIP analysis, it also provides 

information on whether low scores are likely due to significant cognitive impairment or 

suboptimal performance. This is a useful feature that addresses weaknesses found in 

other PVTs, such as the high false positive rates of the TOMM, FIT, and DCT when used 

with patients with profound cognitive impairment (e.g., dementia and mental retardation). 

Despite this strength, few studies (Green, Flaro, & Courtney, 2009; Green, Montijo, & 

Brockhaus, 2011; Henry, Merten, Wolf, & Harth, 2009; Howe, Anderson, Kaufman, 

Sachs, & Loring, 2007; Howe & Loring, 2009; Singhal, Green, Ashaye, Shankar, & Gill, 

2009) have employed GMIP analysis. Overall, results of these studies strongly supported 

the application of GMIP analysis to WMT, MSVT, and NV-MSVT results in patients 

with significant cognitive impairment such as that seen in dementia. Specificity rates in 

the 90s (as high as 98%; Green et al., 2011) have been achieved using GMIP analysis on 

WMT, MSVT, and NS-MSVT scores in patients with possible mild cognitive impairment, 

probable dementia, and other neurological disorders associated with significant cognitive 

impairment (e.g., Henry et al., 2009; Howe et al., 2007; Howe & Loring, 2009). 

Additional studies utilizing GMIP analysis would be able to improve classification 

accuracy (i.e., reduce false positives) in other patient populations likely to have 

significant cognitive impairment (e.g., epilepsy), meaning that such patients would be 
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identified as scoring below failure cutoff due to significant cognitive impairment and not 

due to suboptimal performance.  

 Critical Nature of PVT within Neuropsychological Assessment 

 As noted in Chapter I, PVTs have become a critical part of neuropsychological 

assessment. Low scores on these measures call into question the validity of 

neuropsychological test results (Constantinou et al., 2005; Green et al., 2002, Green et al., 

2001) and raise concerns regarding the validity of symptoms being reported. Questions 

about the validity of test results and reported symptoms impact the neuropsychologist’s 

ability to accurately make diagnoses, prognoses, and appropriate referrals (Constantinou 

et al., 2005).  

 A few studies have explored the relationship between PVT scores and 

neuropsychological test scores. In a study of 904 heterogeneous outpatients who 

underwent neuropsychological evaluation as part of a compensation claim or litigation, 

Green et al. (2001) found that a PV composite index (comprised of scores from the WMT, 

CARB, and California Verbal Learning Test) accounted for 49 to 54% of the variance in 

overall neuropsychological performance. PV explained more score variance than injury 

severity, demographic variables, and neuropsychological test scores. Of the measures 

used in this study, the WMT was the best predictor of overall neuropsychological 

performance. Patients who did poorly on the WMT, as indicated by scores below failure 

cutoff, performed significantly worse on neuropsychological tests than those who scored 

above failure cutoff. WMT scores below failure cutoff also suppressed overall 

performance 4.5 times more than did moderate-to-severe brain injury. These data suggest 
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that suboptimal performance on the WMT more strongly predicts neuropsychological test 

scores than brain injury or neurological disease.  

 Other studies have found similar results. Using the Green et al. (2001) sample, 

Green et al. (2002) found that the average of the WMT IR, DR, and CNS scores 

accounted for 49% of the variance in overall neuropsychological profile (r = .70). 

Similarly, Rohling, Allen, and Green (2002) found that a PV composite (comprised of the 

CARB total score and the average of the WMT IR, DR, and CNS scores) accounted for 

36 to 45% of the variance in overall neuropsychological profile (r = .67) in 561 patients 

with various disorders involved in compensation claims. More recently, using the Green 

et al. (2001) database plus 403 additional cases, Green (2007) found that patients who 

scored in the bottom WMT performance range (mean of IR, DR, and CNS scores ≤ 50%) 

scored approximately two standard deviations below those in the top performance range 

(91-100%) on eight neuropsychological tests. Constantinou et al. (2005) retrospectively 

analyzed neuropsychological data and TOMM scores from 69 litigants with mTBI. 

Results indicated that poor performance on the TOMM explained 47% of the variance in 

the overall neuropsychological deficit score on the Halstead-Reitan Neuropsychological 

Battery for Adults (HRNB-A; Reitan & Wolfson, 1993). Similar to Green et al.’s (2001) 

findings, litigants who performed poorly on the TOMM obtained neuropsychological test 

scores that were much lower than what is typically expected from mTBI patients and 

significantly lower than the litigants who received high scores on the TOMM. Finally, 

Stevens, Friedel, Mehren, and Merten (2008) found that poor performance on the WMT 

and MSVT explained up to 35% of the variance in neuropsychological test scores in a 
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retrospective analysis of data from 233 Workers’ Compensation Boards patients and 

personal injury litigation claimants.  

 The above findings highlight the critical nature of PVT during neuropsychological 

evaluation, as PVT scores have been found to account for up to 54% of the variance in 

neuropsychological test scores. Further, these findings support Green et al.’s (2002) 

statement that failure on PVTs most likely leads to suboptimal scores on other tests. The 

above findings have led to the recommendation that neuropsychologists employ PVT 

with all patients so that low neuropsychological test scores are not automatically 

attributed to neurological injuries or disorders, psychiatric disorders, or medical illnesses. 

PVT in Patients with Epilepsy   

 Epilepsy, also known as seizure disorder, is a common neurological disorder that 

affects individuals cognitively, psychologically, and physically (Epilepsy Foundation of 

America [EFA], 2010; Schachter, 2009; Sirven, 2002). Research has demonstrated that 

patients with epilepsy may have impairments in one or more areas of cognitive or motor 

functioning (Bortz, 2003; Ettinger & Kanner, 2007; Jones-Gotman et al., 2010). 

Additionally, psychological difficulties (e.g., depression, anxiety, psychoses, attention 

and impulsivity problems, and personality and behavioral disorders) are present in a large 

number of patients with epilepsy, sometimes in greater numbers than the general 

population (Bortz, 2003; Ettinger & Kanner, 2007; Hessen, Lossius, & Gjerstad, 2008; 

Marcangelo & Ovsiew, 2007; Moore & Baker, 2002; Sadock & Sadock, 2007; Torta & 

Keller, 1999). Although much research has been devoted to the study of 

neuropsychological functioning in epilepsy, this research has not typically included PVTs 

(Locke et al., 2006). As previously noted, if patients do not perform to the best of their 
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ability during evaluation, test results may be invalid (Green et al., 2002), or, at the very 

least, underestimate their true abilities. This is especially troublesome for patients with 

epilepsy, as the results of neuropsychological evaluation are used to help lateralize 

seizure focus, determine pre- and post-surgical cognitive functioning, and assess 

psychiatric status. 

There is limited research specifically focused on assessing PV within the epilepsy 

population. Instead, many studies have included patients with epilepsy as neurological 

controls to demonstrate that PVTs are largely insensitive to significant cognitive 

impairment. Several studies (Binder & Willis, 1991; Green et al., 2001; Grote et al., 

2000; Prigatano, Smason, Lamb, & Bortz, 1997; Rohling et al., 2002; Slick et al., 1996) 

found that epilepsy patients tended to perform better on PVTs than simulators, 

compensation-seeking patients with head injury, and patients suspected of malingering. 

These findings appear to support the contention that PVTs are relatively insensitive to 

significant cognitive impairment, but, as will be described below, larger studies of 

patients with epilepsy challenge these conclusions. 

Most studies examining PVTs within the epilepsy population have used these 

measures to aid in the differential diagnosis of patients with epilepsy and patients with 

psychogenic nonepileptic seizures (PNES), a conversion or somatoform disorder not 

caused by underlying neuropathology. In such studies, it was presumed that patients with 

epilepsy would perform better on PVTs than patients with PNES, as they typically lack 

external incentives to perform poorly and are considered to be motivated for testing. 

Consistent with this presumption, Binder, Salinsky, and Smith (1994) and Binder, 

Kindermann, Heaton, and Salinsky (1998) found that patients with epilepsy scored 
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significantly higher on the PDRT than patients with PNES. Contrary to these findings, 

however, Hill et al. (2003) found no difference in mean performance across TOMM trials 

in 48 patients with epilepsy and 57 patients with PNES. Reasons for this discrepancy in 

findings have not been specifically investigated in patients with epilepsy, but studies with 

other populations suggest that the TOMM may not be as sensitive or specific as other 

PVTs, and that the test might not be appropriate for use with individuals with significant 

cognitive impairment. For example, the WMT, VSVT, and CARB have been found to be 

more sensitive than the TOMM in simulators and disability claimants (Gervais, Rohling, 

Green, & Ford, 2004; Tan et al., 2002). Another study (Teichner & Wagner, 2004) found 

the TOMM to have a high misclassification rate (poor specificity) in patients with 

dementia. These findings, along with results from Hill et al., suggest that the TOMM may 

not be appropriate for use with epilepsy patients, many of whom may have significant 

cognitive impairment.   

Other studies of the differential diagnosis of epilepsy and PNES also presumed 

that patients with epilepsy would perform well on PVTs; but this was not the case. 

Williamson, Drane, Stroup, Miller, and Holmes (2003) found that 13% of patients with 

epilepsy scored below failure cutoff on the WMT, compared to 64% of patients with 

PNES. These results indicated that 13% of patients with epilepsy did not perform 

optimally on the WMT and, therefore, that their neuropsychological test scores were 

potentially invalid. More recently, Cragar et al. (2006) investigated the performance of 41 

patients with epilepsy, 21 patients with PNES, and 18 patients with epilepsy plus PNES 

on four PVTs: the DMT, Letter Memory Test (LMT; Inman et al., 1998), TOMM, and 

PDRT. Results revealed that 22% of patients with epilepsy, 24% of patients with PNES, 
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and 11% of patients with epilepsy plus PNES scored below cutoffs on at least one PVT. 

As expected, findings from these studies indicated that patients with PNES performed 

below cutoffs on PVTs at significantly higher rates than patients with epilepsy. However, 

patients with epilepsy also scored below cutoffs at higher rates than expected. These 

findings are surprising since, as previously noted, patients with epilepsy are presumed to 

do well on PVTs.   

 Evidence of suboptimal performance on PVTs in the epilepsy population has also 

been found in two recent studies (Hoskins, Binder, Chaytor, Williamson, & Drane, 2010; 

Loring et al., 2005) that did not explore differential diagnosis. Hoskins et al. (2010) found 

evidence of suboptimal performance in patients with epilepsy in an investigation of the 

oral versus computerized versions of the WMT. Subjects included 67 inpatients at an 

epilepsy center and 58 forensic and clinical referrals without epilepsy. Results indicated 

that 21% of patients with epilepsy scored below failure cutoff on the computer version, 

14% scored below failure cutoff on the oral version, and 23% scored below failure cutoff 

on regardless of version. These results indicated that a substantial number of patients with 

epilepsy performed suboptimally on the WMT regardless of version. Loring et al. (2005) 

found evidence of suboptimal performance on the VSVT in a retrospective study of 120 

non-litigating epilepsy surgical candidates. Findings indicated that 20 patients had 

questionably valid results and 14 patients had invalid results. Combined, these results 

indicated that approximately 28% of the sample performed suboptimally on the VSVT. 

These findings are unexpected, given that previous research assumed that epilepsy 

surgical candidates put forth optimal performance during testing because they were 

motivated for surgery. It is noteworthy that Loring et al. and Hoskins et al. found that 
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some subjects performed poorly on PVTs due to genuine cognitive impairment (e.g., low 

intellectual function), but this cannot account for all poor performances in their studies. 

Finally, while Lee, Loring, and Martin’s study (1992) did not demonstrate suboptimal 

performance in their epilepsy patients, they employed the FIT, a PVT that has been found 

to have a low level of sensitivity (e.g., Reznek, 2005). Therefore, their results should be 

interpreted cautiously. 

Relationship Between PVT Scores and Neuropsychological Test Scores 

A few studies have explored differences in neuropsychological test performance 

between patients with epilepsy and patients with PNES using PVTs to control for 

suboptimal performance. Drane et al. (2006) found that patients with epilepsy who 

performed poorly on the WMT, as indicated by scores below failure cutoff, had more 

neuropsychological test scores below normal limits than patients who scored above 

failure cutoff. PNES patients with WMT scores below failure cutoff had more impaired 

test scores than did PNES patients and epilepsy patients who scored above cutoff, as well 

as epilepsy patients who scored below cutoff. Patients with PNES who scored above 

WMT failure cutoff displayed the least amount of neuropsychological impairment when 

compared to all other patient groups. In a similar investigation, Dodrill (2008) found that 

poor WMT scores in patients with epilepsy and patients with PNES were associated with 

lower scores on various neuropsychological tests. Locke et al. (2006) also found that poor 

performance on the TOMM was significantly predictive of lower IQ, memory, language, 

visuospatial, and motor functioning scores in patients with epilepsy and patients with 

PNES.  
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Loring et al. (2005) was the only study identified that that did not examine 

differences in neuropsychological test performance between patients with epilepsy and 

PNES. Instead, this study examined VSVT performance of 120 epilepsy surgical 

candidates. Patients who had valid VSVT scores had the highest performances on a 

variety of neuropsychological measures. Suboptimal performance on the VSVT was 

associated with decreased scores on a variety of neuropsychological tests.

Conclusion 

 Neuropsychologists must examine the validity of test performance during 

evaluation to help determine whether observed low test scores are due to neurological 

illness or injury or if instead they reflect suboptimal performance. Forced-choice PVTs 

have been found to be the most sensitive and specific measures of PV. Their utilization is 

critical because low PVT scores have been found to account for up to 54% of the 

variance in neuropsychological test scores (Constantinou et al., 2005; Green, 2007; Green 

et al., 2002; Green et al., 2001; Rohling et al., 2002; Stevens et al., 2008), and patients 

with low PVT scores have been found to score significantly lower on neuropsychological 

tests across cognitive domains. 

  Most of the research investigating PVTs has been conducted on compensation-

seeking/litigating patients who report cognitive symptoms yet fail to show deficits on 

neurological testing (e.g., mTBI). These patients typically perform poorly on PVTs. 

Surprisingly, however, low PVT scores have also been found in patients with no apparent 

external incentives to underperform. One such group is patients with epilepsy, but there is 

limited research specifically examining PVT with this population.  
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 In the preliminary research available, the base rate of suboptimal performance in 

patients with epilepsy has been found to range from 4 (Hill et al., 2003) to 28% (Loring 

et al., 2005). One possible explanation for this variance may be the significant cognitive 

impairment commonly associated with epilepsy (Bortz, 2003), although this theory has 

not been directly explored. One study (Drane et al., 2006) suggested that profound 

cognitive impairment accounted for low scores on the WMT in four patients with 

epilepsy. However, the false positive rate remains unknown for this study, as GMIP 

analysis was not employed. Presently, the impact of significant cognitive impairment on 

PVTs has yet to be fully explored in the epilepsy population. The WMT would be an 

ideal PVT to employ in future investigations, as the WMT with the GMIP has 

demonstrated high classification accuracy indices with other patient populations (e.g., 

Green et al., 2009; Howe et al., 2007; Howe & Loring, 2009). Future research using all 

subtests of the WMT and GMIP analysis may help identify patients with epilepsy who 

perform poorly due to significant cognitive impairment and thus help clarify the varying 

rates of suboptimal performance during neuropsychological evaluation in this population. 

 Finally, there have been several studies examining the relationship between PVT 

scores and neuropsychological test scores in the epilepsy population (Dodrill, 2008; 

Drane et al., 2006; Locke et al., 2006; Loring et al., 2005). Initial findings have generally 

been consistent with findings from other studies with other patient populations 

(Constantinou et al., 2005; Green, 2007; Green et al., 2002; Green et al., 2001; Rohling et 

al., 2002; Stevens et al., 2008), with lower PVT scores associated with significantly lower 

test scores across most cognitive domains. However, only Drane et al. removed patients 

with profound cognitive impairment (likely false positives) before conducting analyses. 
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Patients with significant cognitive impairment need to be identified and eliminated from 

datasets before examining the relationship between PVT scores and neuropsychological 

test scores. The WMT with GMIP analysis is best suited for this task. However, as 

Dodrill, Locke et al., and Loring et al. did not utilize GMIP analysis, it is possible that 

their findings are confounded by data from patients with significant cognitive impairment. 

As such, conclusions about the relationship between PVT scores and neuropsychological 

test scores in this population may be inaccurate. Therefore, further investigation is 

warranted using GMIP analysis to identify and remove likely false positives before 

examining the relationship between WMT performance and neuropsychological test 

scores. Future research should also examine the relationship between GMIP scores and 

neuropsychological memory test scores in order to establish the validity of the GMIP in 

the epilepsy population.   
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CHAPTER III: METHODOLOGY 

Participants 

 The participants in this study were retrospectively identified from the Aurora St. 

Luke’s Regional Epilepsy Center database maintained at Aurora St. Luke’s Center for 

Neuropsychological Services in Milwaukee, WI. Patients were referred for 

neuropsychological evaluation in order to assess candidacy for epilepsy surgery (pre-

surgical) or to assess cognitive functioning and psychological status (non-surgical). All 

patients had a history of medically intractable seizures, and all pre-surgical patients 

underwent 24-hour video-EEG monitoring to clarify seizure focus. Patients were 

diagnosed with epilepsy by a board certified neurologist at Aurora St. Luke’s Regional 

Epilepsy Center.  

Eligibility criteria. Patients were eligible for inclusion if the following criteria 

were met: (1) the patient had a diagnosis of epilepsy; (2) the patient was either a pre-

surgical candidate or non-surgical; (3) the patient underwent neuropsychological 

evaluation and completed the full battery of tests; and (4) the patient was administered 

the first six subtests of the WMT during neuropsychological evaluation. Exclusion 

criteria included: (1) the patient underwent previous epilepsy surgery and (2) the patient 

was not administered the WMT. If a patient was evaluated more than once, either pre-

surgically or non-surgically, data from his or her first testing session was used to remove 

potential practice effects for neuropsychological measures as well as the WMT.  

Measures 
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 As part of the standard evaluation process at Aurora St. Luke’s Center for 

Neuropsychological Services, patients were administered an extensive battery of 15 

neuropsychological tests and the WMT. The neuropsychological tests were selected to 

evaluate a variety of cognitive domains. The WMT was selected because it is a highly 

sensitive and specific PVT that allows for GMIP analysis.  

 WMT. The WMT is a PVT that consists of six subtests. As defined in Chapter 1, 

the IR, DR, and CNS subtests are measures of PV (Green, 2005). The multiple choice 

(MC), paired associates (PA), free recall (FR), and long delayed free recall (LDFR) 

subtests are measures of memory (Green, 2005). The WMT requires the patient to learn a 

list of 20 word pairs (e.g., fish-fin, dog-cat) presented twice. The patient then choses the 

words from the original list from new pairs of words containing both the target word and 

a foil word (IR). Thirty minutes later, the patient discriminates the original words from a 

different set of foils (DR). Next, the first word from each pair is presented and the patient 

selects the word that was paired with it from eight choices (MC). Afterwards, the 

examiner read the first word in each pair aloud and the patient provides the second word 

(PA). He or she is then asked to freely recall all of words from the original list in any 

order (FR). The LDFR (optional subtest) may be given 20 minutes later and consists of 

the patient freely recalling as many of the original words as possible in any order. This 

subtest was not administered. The WMT can be administered verbally or self-

administered on a computer. The computerized version was administered. 

 Per the manual, scores above 90% on IR, DR, or CNS indicate a clear pass. 

Scores at or below 82.5% on IR, DR, or CNS indicate a clear fail. Scores between 83 and 

90% are classified as caution. Although MC and PA are classified as memory subtests, 
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MC scores of 70% or below and PA scores of 50% or below are classified as warning. 

Such low scores on MC and PA warrant further investigation and are considered 

suspicious of suboptimal performance when dementia or other profound cognitive 

impairments have been ruled out (Green, 2005). Additionally, scores on six of the 

subtests can be used to compute a GMIP score. This score indicates whether poor 

performance is likely due to significant cognitive impairment (and thus not likely 

attributable to suboptimal performance) or is secondary to suboptimal performance. A 

GMIP is defined as at least a 30-point difference between the mean of the easy subtests 

(IR, DR, and CNS) and the mean of the hard subtests (MC, PA, and FR).  

 Psychometrics. Initial validation studies on the WMT were conducted on data 

from more than 1,250 consecutive outpatients referred for neuropsychological evaluation 

over a period of eight years. These studies found the WMT to be a sensitive and specific 

PVT with various populations, including healthy adults, simulators, patients with 

neurological disorders, and patients with impaired memory. First, an initial validation 

study compared WMT scores of 40 healthy adults (Iverson et al., 1999) to those of 57 

patients with moderate-to-severe TBI (Green & Allen, 1999). Patients with TBI averaged 

IR and DR scores above 95% correct and averaged 95.1% correct across all PV subtests, 

indicating that the WMT is largely insensitive to neurological impairment secondary to 

serious head injury. Second, patients with neurological disorders have been found to 

perform above failure cutoff despite having significant impairment (Gorissen, Sanz de la 

Torre, & Schmand, 2003, cited in Green, 2005; Green & Allen, 1999). For example, in 

Green and Allen’s sample of 40 neurological patients, no significant differences in WMT 

PV subtest scores were found between patients with impaired and normal scores on the 
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CLVT, a measure of verbal memory; however, those with impaired CLVT scores scored 

significantly lower on the WMT memory subtests. Another study found that amnestic 

patients with hippocampal damage scored above failure cutoff, further supporting the 

insensitivity of the WMT PV measures to severe cognitive impairment (Goodrich-

Hunsaker & Hopkins, 2009). Finally, initial studies conducted on TBI patients have 

shown that patients with severe brain injuries scored significantly higher on WMT PV 

subtests than those with mild brain injuries (Green, 2005; Green et al., 1999). These 

results contradict what would be expected if the WMT PV subtests were sensitive to 

brain injury; if that were the case, it would be expected that those with severe head 

injuries would fail these subtests. Instead, the mean DR score in those with severe brain 

injuries (as indicated by abnormal brain scans) was 90.7% correct, which was 

significantly higher than the mean DR score in those with normal brain scans (82.5% 

correct) (Green, 2005). Green (2005) concluded that those with mTBIs may be more 

likely to exaggerate their impairment by putting forth suboptimal performance on the 

WMT and scoring significantly lower than those with severe TBIs. Overall, the WMT PV 

subtests have been found to be relatively insensitive to significant cognitive impairment 

and neurological disorders (Gorissen et al., 2003, cited in Green, 2005; Green, 2005; 

Green & Allen, 1999) and sensitive to suboptimal performance (Green, 2005; Green et al., 

1999). The WMT memory subtests have been found to be sensitive to impaired memory 

(Green & Allen, 1999).  

 The WMT has also been found to be a reliable measure of PV with high levels of 

internal consistency and test-retest reliability. In a sample of 1,207 outpatients, internal 

consistency was found to be strong between IR and DR (r = .88); MC and PA (r = .90); 
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and FR and LDFR (r = .86) (Green, 2005). Test-retest reliability of the mean IR and DR 

scores was found to be very high in a sample of 20 healthy adults (r = .97) (Green, 2005). 

Test-retest reliability of the mean MC and PA scores was found to be extremely high (r 

= .99) and very high for the mean of the DR and LDFR scores (r = .92). However, it is 

important to note that test-retest reliability may not be as strong when examining clinical 

cases, as clinical patients’ performance is more likely to fluctuate over time possibly due 

to becoming involved in litigation or applying for compensation (Green, 2005). In fact, 

Green’s initial clinical validation sample of over 1,250 outpatients demonstrated poor 

test-retest reliabilities of .43 for IR scores and .33 for DR scores. The poor test-retest 

reliabilities of these subtests likely reflected variable engagement during testing and were 

not likely indicative of a lack of reliability of WMT scores (Green, 2005).   

 Finally, the WMT has been found to be a highly sensitive and specific PVT. In 

the initial validation study, 20 clinical patients being evaluated for disability scored above 

failure cutoff, with an average DR score of 98.2% (Green, 2005). The same patients were 

then instructed to fake memory impairment. All patients scored below failure cutoff on at 

least one of the PV measures, resulting in a sensitivity of 100%. Sensitivity was 96% for 

a group of 25 simulators who scored below failure cutoff on at least one of the PV 

subtests (Green, 2005). When the two simulator groups were combined, the WMT was 

found to have a sensitivity of 97.7%. The WMT has also been found to have strong 

specificity. Data from a study with healthy adult controls (Iverson et al., 1999) and 

moderate-to-severe TBI patients (Green & Allen, 1999) indicated a specificity of 100%. 

Results from Tan et al. (2002) also found a WMT specificity of 100%. Overall, the WMT 

has been found to be a highly sensitive and specific PVT. 
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 Wechsler Adult Intelligence Scale–Third Edition (WAIS–III).  The WAIS–III 

(Wechsler, 1997a) is a clinical instrument for assessing the intellectual ability of 

individuals aged 16 through 89 years (The Psychological Corporation, 2002). It is 

comprised of 14 subtests: Picture Completion, Vocabulary, Digit-Symbol Coding, 

Similarities, Block Design, Arithmetic, Matrix Reasoning, Digit Span, Information, 

Picture Arrangement, Comprehension, Symbol Search, Letter-Number Sequencing, and 

Object Assembly. Depending on which subtests are administered, the WAIS–III can 

provide three IQ scores: Full Scale Intelligence Quotient (FSIQ), Verbal Intelligence 

Quotient (VIQ), and Performance Intelligence Quotient (PIQ). Four Index scores can also 

be computed: Verbal Comprehension Index (VCI), Perceptual Organization Index (POI), 

Working Memory Index (WMI), and Processing Speed Index (PSI). The WAIS-III as 

opposed to the WAIS-IV was administered in this study, as the WAIS-III was part of a 

previously established neuropsychological test battery administered to all epilepsy 

patients undergoing evaluation.  

 WAIS–III indexes and subtests. The VCI is a measure of acquired knowledge 

and verbal reasoning (The Psychological Corporation, 2002). It is comprised of the 

Vocabulary, Similarities, and Information subtests. The Vocabulary subtest, a measure of 

word knowledge (Sattler & Ryan, 2009), requires the patient to orally define a series of 

visually and orally presented words. The Similarities subtest, which measures the ability 

to recognize and verbalize relationships between two objects or concepts (Sattler & Ryan, 

2009), requires the patient to verbally explain the similarity of orally presented word 

pairs. The Information subtest, a measure of general fund of knowledge (Sattler & Ryan, 
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2009), requires the patient to orally answer a series of verbally presented questions that 

tap his or her knowledge of common events, objects, places, and people.  

 The POI is a measure of nonverbal, fluid reasoning, attentiveness to detail, and 

visual-motor integration (The Psychological Corporation, 2002). It is comprised of the 

Picture Completion, Block Design, and Matrix Reasoning subtests. The Picture 

Completion subtest, a measure of visual-perceptual reasoning ability (Sattler & Ryan, 

2009), requires the patient to identify an important missing part in pictures of common 

objects and settings. The Block Design subtest, a measure of spatial visualization and 

perceptual reasoning skills (Sattler & Ryan, 2009), requires the patient to replicate 

modeled or two-dimensional geometric patterns using two cubes. The Matrix Reasoning 

subtest, a measure of nonverbal problem-solving skills (Sattler & Ryan, 2009), requires 

the patient to complete a series of incomplete gridded patterns by pointing to or saying 

the number of the correct response from five possible choices.  

 The WMI is a measure of auditory working memory and attention (The 

Psychological Corporation, 2002). It is comprised of the Arithmetic, Digit Span, and 

Letter-Number Sequencing subtests. The Arithmetic subtest measures one’s ability to 

carry out mental arithmetic, which involves numerical reasoning abilities, attention, 

auditory short-term memory, and long-term memory (Sattler & Ryan, 2009). In this 

subtest, the patient is read a series of arithmetic problems that he or she must solve 

mentally and respond to orally. The Digit Span subtest, a measure of auditory short-term 

memory (Sattler & Ryan, 2009), requires the patient to repeat a series of orally presented 

number sequences. The patient must repeat the sequences verbatim in Digits Forward and 

backward in Digits Backward. The Letter-Number Sequencing subtest also measures 
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auditory short-term memory (Sattler & Ryan, 2009). In this subtest, the patient must track 

and orally repeat sequences of numbers and letters, putting the numbers in ascending 

order and the letters in alphabetical order.  

 The PSI is a measure of processing speed (The Psychological Corporation, 2002). 

It is comprised of the Digit-Symbol Coding and Symbol Search subtests. The Digit-

Symbol Coding subtest measures processing speed (Sattler & Ryan, 2009). This subtest 

consists of a series of numbers that are each paired with their own corresponding symbol 

in a key. Using the key, the patient writes the symbol corresponding to its number as fast 

as possible. The Symbol Search subtest measures visual discrimination and visual-

perceptual scanning ability (Sattler & Ryan, 2009). This subtest consists of a series of 

paired groups, with each pair consisting of a target group and a search group. By marking 

the appropriate box, the patient indicates whether either target symbol appears in the 

search group. 

 WAIS–III subtest raw scores are converted to age-corrected scaled scores. Index 

scores (standard scores) are also computed. Pearson computer scoring was used to score 

WAIS–III protocols.  

 Psychometrics. The WAIS–III was standardized on 2,450 healthy individuals 

aged 16 to 89 years. The sample was separated into 13 age groups and stratified by 

demographic variables including age, sex, education level, and geographic region of the 

United States (U.S.) according to U.S. 1995 census data (The Psychological Corporation, 

2002). Per the technical manual, average internal consistency reliability coefficients for 

all of the subtests except Picture Arrangement, Symbol Search, and Object Assembly 

range from .82 to .93. Picture Arrangement and Object Assembly were found to have 
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lower average reliability coefficients of .74 and .70, respectively. As Symbol Search and 

Symbol-Digit Coding are speeded subtests, test-retest reliability coefficients were 

calculated. Symbol Search and Symbol-Digit Coding were found to have average test-

retest reliabilities of .77 and .84, respectively. Average reliability coefficients for the four 

Indexes range from .88 to .96. Average reliability coefficients for FSIQ, VIQ, and PIQ 

scores range from .94 to .98.  

 The manual also provides evidence of convergent and discriminant validity for 

the WAIS-III. Overall, a high magnitude of intercorrelation was found between most of 

the subtests, supporting the notion of the presence of a general intelligence factor (g). 

Most of the subtests correlated with each other at a moderate level. All Index subtests 

were found to have at least moderate intercorrelations, providing evidence of convergent 

validity. Verbal subtests’ intercorrelation coefficients ranged from .70 to .77. Perceptual 

organization subtests’ intercorrelation coefficients ranged from .48 to .60. Working 

memory subtests’ intercorrelation coefficients ranged from .52 to .57. Processing speed 

subtests’ intercorrelation was .65. Subtests were found to strongly correlate with their 

Indexes. Finally, subtests that measure constructs that are not expected to be strongly 

correlated with each other (e.g., Vocabulary and Picture Completion) were found to have 

relatively lower intercorrelations when compared to intercorrelations between measures 

within domains, providing evidence of discriminant validity.  

 Further evidence of convergent validity was provided by moderate to high 

correlations (rs ranging from .50 to .91) between most of the WAIS–III IQ and Index 

scores and other measures of cognitive abilities, including the Wechsler Adult 

Intelligence Scale–Revised (WAIS–R; Wechsler, 1981), Wechsler Intelligence Scale for 
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Children–Revised (WISC–R; Wechsler, 1974), Standard Progressive Matrices (Raven, 

1976), the Information Processing Accuracy Index of the MicroCog: Assessment of 

Cognitive Functioning (Powell et al., 1993), and the total score of the Dementia Rating 

Scale (DRS; Mattis, 1988). WAIS–III VCI and the MicroCog Information Processing 

Accuracy Index were not strongly correlated (r = .28), providing evidence of discriminant 

validity for the VCI.  

 Wechsler Memory Scale – Third Edition (WMS–III). The WMS–III (Wechsler, 

1997b) is a neuropsychological battery of learning, memory, and working memory 

measures that can be used with individuals aged 16 to 89 years. It is comprised of 11 

subtests. The six primary subtests include: Logical Memory I and II (LM II and II), 

Verbal Paired Associates I and II, Letter Number Sequencing, Faces I and II, Family 

Pictures I and II, and Spatial Span. The five optional subtests include: Information and 

Orientation, Word Lists I and II, Mental Control, Digit Span, and Visual Reproduction I 

and II (VR I and II). Many of the subtests contain an immediate and a delayed condition, 

which is administered 25 to 35 minutes following the immediate condition. The WMS–

III provides eight Primary Index scores: Auditory Immediate, Visual Immediate, 

Immediate Memory, Auditory Delayed, Visual Delayed, Auditory Recognition Delayed, 

General Memory, and Working Memory. Four Auditory Process Composites are also 

computed: Single-Trial Learning, Learning Slope, Retention, and Retrieval. LM I and II 

and VR I and II will be reviewed below, as they were the only WMS–III subtests that 

were administered to patients in this study. The WMS-III as opposed to the WMS-IV was 

administered, as the WMS-III was part of a previously established neuropsychological 

test battery administered to all epilepsy patients undergoing evaluation.  
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 LM I and II. The LM subtest is a measure of immediate and delayed auditory 

memory (The Psychological Corporation, 2002). During LM I, two short stories are read 

to the patient. The second story is read twice. The patient is asked to immediately recall 

the stories from memory. Twenty-five to 35 minutes later (LM II), the patient is asked to 

recall both stories again. A recognition trail follows where the patient answers yes/no 

questions about the stories. Six scores are computed from this subtest: LM I Recall Total, 

LM II Recall Total, LM I Thematic Total, LM II Thematic Total, LM II % Retention, and 

LM II Recognition Total. The LM II Recognition Total was not used in analyses, as it 

cannot be converted from a raw score to a scaled score or percentile. Subtest raw scores 

are converted to age-corrected scaled scores. 

 VR I and II. The VR subtest is a measure of immediate and delayed visual 

memory (The Psychological Corporation, 2002). During VR I, the patient is shown a 

series of five designs, one at a time, for 10 seconds. After each design is presented, the 

patient must draw the design from memory. During VR II (25 to 35 minutes later), the 

patient is asked to draw the designs from memory in any order. A recognition trail 

follows where the patient is shown a series of 48 designs, one at a time, and has to 

identify the designs presented in VR I. Six scores are computed from this subtest: VR I 

Recall Total, VR II Recall Total, VR II Recognition Total, VR % Retention, VR II Copy 

Total (copy trial not administered), and VR II Discrimination (discrimination trial not 

administered). Subtest raw scores are converted to age-corrected scaled scores. 

 Psychometrics. The WMS–III was standardized on 1,250 healthy individuals 

aged 16 through 89 years. The sample was separated into 13 age groups and stratified by 

demographic variables including age, sex, education level, and geographic region of the 
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U.S. according to U.S. 1995 census data (The Psychological Corporation, 2002). The 

internal consistencies of the LM and VR subtests have been found to be high. Per the 

technical manual, LM I and II Recall Totals have average internal consistency reliability 

coefficients of .88 and .79, respectively. LM I and II Thematic Totals have average 

generalizability reliability coefficients of .77 and .79, respectively. VR I and II Recall 

Totals have average generalizability reliability coefficients of .79 and .77, respectively. 

THE VR II Recognition Total has an average generalizability reliability coefficient of .75.  

 The manual also provides evidence of convergent and discriminant validity for 

the LM and VR subtests. The intercorrelation coefficients of the LM subtests ranged 

from .70 to .88, providing support that such subtests are measuring a similar construct. 

The intercorrelation coefficients for the VR subtests ranged from .27 to .67, with lower 

correlations found between VR II Copy and all other VR subtests. Overall, both the LM 

and VR subtests were found to have acceptable discriminant validity as evidenced by 

weak to moderate intercorrelation coefficients with subtests that measure different types 

of memory and learning. 

 Boston Naming Test (BNT). The BNT (Kaplan, Goodglass, & Weintraub, 1983) 

is a measure of confrontational naming. It was originally published by Kaplan, Goodglass, 

and Weintraub (1978) as an experimental 85-item version and was later revised to the 

current 60-item version. The test consists of 60 ink drawings of items ranging in 

familiarity (e.g., beaver, sphinx) (Lezak, 1995). The patient is shown each drawing and 

asked to provide the name for each object. The test begins at item 30 for adults. If any of 

the next eight items are failed, the patient is administered the items backward starting 

with item 29 until eight consecutive items are passed. Forward testing is then resumed 



 41

until six consecutive items are failed. If the patient cannot perceive what the object is or 

gives an indication that the object has been misperceived, a semantic cue is given (e.g., 

for beaver, “it’s an animal”). A phonemic cue (e.g., for beaver, “bea”) is given 20 

seconds after the original presentation of the drawing or 20 seconds after the sematic cue 

was given (if it was necessary) if the patient is still unable to correctly name the item. The 

raw score is the total number of spontaneously correct responses plus the number of 

correct responses following a stimulus cue between the baseline and ceiling items. This 

number is then added to the number of items that precede the baseline. For this study, raw 

scores were converted to age-, education-, sex-, and ethnicity-corrected T-scores using 

the Heaton, Grant, and Matthews (1991) external norms, as the normative data provided 

in the manual are sparse.  

 Psychometrics. Normative data for the BNT can be found in Heaton et al. (1991). 

Participants in the Heaton et al. normative project were assessed in several studies over 

25 years. Participants were from rural and urban areas across the U.S. As part of this 

project, the BNT was standardized on 1,000 individuals with a mean age of 50.3 years 

old (SD = 17.9). Mean level of education was 13.5 years (SD = 2.5). Slightly more than 

half of the sample was male (53.3%). The BNT has been found to have strong reliability 

and validity. Huff, Collins, Corkin, and Rosen (1986) divided the 85-item version into 

two equivalent forms. Internal consistency between the forms was found to be high, with 

a coefficient alpha of .96. Between-forms correlations of .81 in healthy adults and .97 in 

individuals with Alzheimer’s disease were also reported. Sawrie, Chelune, Naugle, and 

Luders (1996) found a strong test-retest reliability of .94 after 8 months in a sample of 51 

patients with epilepsy. Thompson and Heaton (1989) found correlations to range from .92 
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to .96 between the 85-item, 60-item, and Huff et al.’s two, non-overlapping 42-item 

versions in 49 patients, providing further support for the reliability of the measure.  

 Examining construct validity, Axelrod, Ricker, and Cherry (1994) found that the 

BNT loaded highly on three major intelligence factors in adults: verbal comprehension, 

perceptual organization, and freedom from distractibility. Axelrod et al. also reported that 

the BNT has been found to have acceptable concurrent validity with the Visual Naming 

Test of the Multilingual Aphasia Examination (MAE; Benton, Hamsher, & Sivan, 1994a). 

Finally, correlations ranging from .74 to .87 have been found between the BNT and the 

Gates-McGinite Reading Vocabulary Test across normal and clinical adult populations, 

providing further evidence for the test’s concurrent validity (Hawkins et al., 1993).  

 MAE Token Test. The Token Test is one of nine subtests of the MAE (Benton et 

al., 1994a). It is a 22-item oral language comprehension test that is an abbreviated and 

modified version of De Renzi and Vignolo’s (1962) Token Test. There are two forms of 

this test (A and B) that consist of equivalent items (Benton et al., 1994a). Twenty small 

and large circles and squares in five colors (red, black, green, yellow, and white) are used 

to assess the patient’s ability to comprehend and carry out simple tasks (Benton et al., 

1994a). If the patient does not carry out the task correctly on the first trial, a second trial 

is implemented. The patient receives 2 points for correct responses on the first trial, and 1 

point for correct responses on the second trial. The raw score is converted to a standard 

score and percentile based on control norms (patients without aphasia) provided in the 

manual. 

 Psychometrics. As part of the MAE standardization sample, the Token Test was 

normed on 360 individuals aged 16 to 69 years whose native language was English 
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(Benton et al., 1994a). No individual showed evidence or history of hemispheric brain 

disease. Individuals with a history of mental retardation or a psychiatric hospitalization 

were excluded from the sample. Reliability data are not presented in the manual or in 

major neuropsychological texts (e.g., Lezak, 1995; Spreen & Strauss, 1998).   

 Regarding validity, the Token Test was found to effectively discriminate between 

115 control and 48 aphasic subjects (Benton et al., 1994a). Only 3.5% of the control 

subjects were misclassified by normative cutoffs, and 85.4% of individuals with aphasia 

were correctly classified, supporting the ability of the test to effectively discriminate 

between normals and individuals with aphasia. Further supporting the validity of this test, 

patients with left temporal lobe epilepsy have been found to score lower than patients 

with right hemisphere impairment (Hermann, Seidenberg, Haltiner, & Wyler, 1992; 

Hermann & Wyler, 1988). The test has also been shown to be sensitive to delirium in 

nonaphasic patients (Lee & Hamsher, 1988). Finally, high frequency of naming errors, 

defective associative word finding, and impaired comprehension on this test was found to 

correlate with head injury severity in a sample of closed-head injured patients (Levin, 

Grossman, & Kelly, 1976; Levin, Grossman, Sarwar, & Meyers, 1981).  

 MAE Sentence Repetition Test. The Sentence Repetition Test is also one of the 

nine MAE subtests. It consists of 14 sentences of progressively increasing length. The 

purpose of this test is to assess auditory verbal attention for sentences of increasing length. 

There are two forms of this test (A and B) that have equivalent difficulty levels (Benton 

et al., 1994a). The sentences in each form range from three to 18 words long. There are 

seven grammatical constructions (positive declaration, positive interrogative, imperative, 

negative declaration, negative interrogative, compound, and complex) in each form. The 
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examiner reads the sentences aloud to the patient, who then is asked to repeat the 

sentence verbatim. Sentences cannot be repeated. The test is discontinued after four 

consecutive incorrect responses. The patient receives one point for each correct response. 

Total raw scores are corrected for education level and age. Corrected raw scores are then 

converted into standard scores and percentiles. 

 Psychometrics. The Sentence Repetition Test was normed on the same sample as 

the MAE Token Test (see Token Test psychometrics section for details) (Benton et al., 

1994a). Reliability data are not presented in the manual or in major neuropsychological 

texts (e.g, Lezak, 1995; Spreen & Strauss, 1998). Regarding validity, this test was found 

to effectively discriminate between 115 control and 48 aphasic subjects (Benton et al., 

1994a). Only 3.5% of the control subjects were misclassified by normative cutoffs, and 

75% of individuals with aphasia were correctly classified, supporting the ability of the 

test to effectively discriminate between normals and individuals with aphasia. The test 

has also been found to have acceptable discriminant validity as indicated by a modest 

correlation with a test that measures visual naming abilities (MAE Visual Naming) (r 

= .39) (Benton et al., 1994a).  

 MAE Controlled Oral Word Association (COWA).  The COWA is one of nine 

subtests of the MAE. It is an oral fluency test in which the patient is required to make 

verbal associations to different letters of the alphabet by saying all the words he or she 

can think of that begin with a certain letter in 60 seconds (Benton et al., 1994a). The 

patient is asked to name ordinary words. Proper names (e.g., Bob, Boston), different 

forms of the same word (e.g., eat, eating), and substantives derived from previously given 

verbs or adjectives (e.g., fun, funny) are prohibited. The patient is presented with three 
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letters of progressively increasing associative difficulty (C, F, L). The difficulty level of 

each letter was defined by the frequency of words beginning with that letter found in 

standard English dictionaries. There are two forms of this test (A and B). Form A consists 

of the letters CFL. Form B consists of the letters PRW. The raw score consists of the 

number of acceptable responses for the three letters. The raw score is converted into an 

age- and education-corrected standard score and percentile based on control norms 

(patients without aphasia) provided in the manual.  

 Psychometrics. The COWA was normed on the MAE standardization sample (see 

Token Test psychometrics section for details) (Benton et al., 1994a). Reliability data are 

not presented in the manual or in major neuropsychological texts (e.g., Lezak, 1995; 

Spreen & Strauss, 1998); however, the test has been found to have adequate validity. For 

example, the two forms of this test were found to strongly correlate with each other (r 

= .82) (Benton et al., 1994a). The COWA was found to adequately discriminate between 

115 control and 48 aphasic subjects (Benton et al., 1994a). Only 7% of control subjects 

were misclassified by the normative cutoffs, and 70.8% of individuals with aphasia were 

correctly classified. A modest correlation (r = .56) was found between COWA and MAE 

Visual Naming, reflecting the word retrieval aspect of both tasks (Benton et al., 1994a). 

On the other hand, a weaker correlation between COWA and Sentence Repetition was 

found (r = .34), indicating that both tests measure different constructs (Benton et al., 

1994a).   

 Judgment of Line Orientation (JLO). The JLO (Benton, Hannay, & Varney, 

1975) is a measure of spatial perception. It assesses one’s ability to estimate angular 

relationships between line segments by visually matching angled line pairs to 11 
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numbered radii forming a semicircle (Lezak, 1995). It consists of 30 items each 

presenting a different pair of angled lines to be matched to the display cards (Lezak, 

1995). The two forms, H and V, consist of the same items presented in a different order. 

Raw scores are corrected for age and sex. Standard scores and percentiles for score 

ranges are provided. 

 Psychometrics. The JLO was normed on 137 normal or control subjects, divided 

into six age-sex groups (Benton, Varney, & Hamsher, 1978). This test has been found to 

have acceptable levels of reliability and validity. Corrected split-half reliability of Form 

H was found to be .94 in a sample of 40 subjects; it was found to be .89 for Form V in a 

sample of 124 subjects (Benton, Sivan, Hamsher, Varney, & Spreen, 1994b). A test-retest 

reliability coefficient of .90 was found in a sample of 37 subjects who were administered 

both forms of the test (Benton et al., 1994b). Studies have found that patients with right 

hemisphere dysfunction consistently perform worse than normals and patients with left 

hemisphere impairment (Benton et al., 1994b; Levick, 1982; Trahan, 1991). These 

findings support the assumption that there is an association between impaired 

performance and right hemisphere dysfunction (Benton et al., 1994b), and that this test is 

a valid measure of spatial perception. Evidence of discriminant validity has been 

demonstrated by a weak partial correlation coefficient (r = .27) between the JLO and 

Facial Recognition Test (FRT; Benton & Van Allen, 1968).   

 Facial Recognition Test (FRT). The FRT was developed to examine the ability 

to recognize and discriminate unfamiliar human faces without involving a memory 

component (Benton et al., 1994b; Lezak, 1995). There are two forms of this test. The 

Long Form consists of 54 items. The Short Form (Levin, Hamsher, & Benton, 1975) was 
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developed to reduce administration time and consists of 27 items. The Short Form was 

administered to patients in this study. The test consists of three parts. Part one consists of 

matching of identical front-view photographs. The patient is presented with a single 

front-view photograph of a face and asked to identify it (by pointing to it or saying its 

number) in a display of six front-view photographs appearing below the single 

photograph. Three male and three female faces are presented for matching, requiring a 

total of six responses. Part two consists of matching front-view with three-quarter view 

photographs. The patient is presented with a single front-view photograph of a face and 

asked to locate it three times in a display of six three-quarter views, three being of the 

presented target face and three being of other faces. In the Short Form, one male and 

three female faces are presented, requiring a total of 12 responses. Part three consists of 

matching front-view photographs under different lighting conditions. The patient is 

presented with a single front-view photograph of a face taken under full lighting 

conditions and instructed to locate it three times in a display of six front views taken 

under different lighting conditions; three photographs in the display are of the presented 

face and three are of other faces. In the Short Form, two male faces and one female face 

are presented, requiring a total of nine responses. Short Form raw scores are converted to 

Long Form raw scores, and are then corrected for age and education. Corrected Long 

Form scores are then converted into standard scores and percentiles.  

 Psychometrics. The FRT was normed on 286 individuals aged 16 to 74 years 

(Benton et al., 1994b). One sample consisted of 196 neurological, neurosurgical, and 

medical patients from the University of Iowa Hospitals. The second sample consisted of 

90 normal individuals aged 60 to 74 years who had volunteered to participate in a study 
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about aging. Differences in age and education level were found to affect test performance 

to a modest degree, which resulted in age and education score corrections.  

 Studies have found the FRT to have acceptable levels of reliability and validity. 

Test-retest reliability after one year in a sample of elderly control subjects was .60 (Levin, 

Llabre, & Reisman, 1991). Correlations between the Long and Short forms have been 

found to be strong, ranging from .88 in normals to .92 in patients with brain damage 

(Benton et al., 1994b). Internal consistency has been found to be moderate, with a 

coefficient alpha of .57; however, after omitting the first six items of the FRT, it 

improved to .66 (Hoptman & Davidson, 1993). Studies have found that patients with 

right parietal lesions performed worse than patients with right temporal lesions (Dricker, 

Butters, Berman, Samuels, & Carey, 1978; Warrington & James, 1967). Patients with 

right-hemisphere strokes have been found to score in the lowest percentile range (Egelko 

et al., 1988). Patients with left hemisphere lesions, who were not aphasic or who were 

aphasic without comprehension deficits, were have been found to perform similar to 

normal controls (Hamsher, Levin, & Benton, 1979). These findings suggest that the FRT 

is a valid visuospatial measure.  

 Hopkins Verbal Learning Test–Revised (HVLT–R). The HVLT–R (Brandt & 

Benedict, 2001) is a word-list learning and memory test intended primarily for use with 

brain-disordered populations. There are six forms of the HVLT–R, each of which consists 

of a list of 12 nouns. Four items on each list are drawn from three semantic categories 

that vary across the six forms. The patient is read the word list and then asked to recall as 

many words as possible, in any order. This process is repeated two more times for a total 

of three learning trials. After a 20 to 25 minute delay, a delayed recall trial is 
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administered. A recognition trial follows where the patient is read a list of 24 randomly 

ordered words (12 targets and 12 foils). The patient is asked to identify as many of the 

target words as possible with a yes response and to respond no to foils. Four scores can be 

computed: Recall Total, Delayed Recall, % Retention, and Recognition/Discrimination. 

Raw scores are converted into age-corrected T-scores.  

 Psychometrics. The HVLT–R normative sample consisted of 1,179 healthy 

individuals aged 16 to 92 years (M = 59 years, SD = 18.62) (Brandt & Benedict, 2001). 

Years of education ranged from 2 to 20 years (M = 13.47 years, SD = 2.88). The HVLT–

R has been found to have acceptable reliability, with test-retest coefficients for the Total 

Recall and Delayed Recall of .74 and .66, respectively (Benedict, Schretlen, Groninger, 

& Brandt, 1998). The six forms of the HVLT–R have been found to have similar 

psychometric properties with respect to recall trials (Benedict et al., 1998; Brandt & 

Benedict, 2001). Modest differences were present in recognition trials (Benedict et al., 

1998). Concurrent validity has been found to be acceptable, with correlations between 

total learning and delayed recall on the HVLT–R and immediate and delayed recall on 

the WMS–R (Wechsler, 1987) LM of .75 and .77, respectively (Shapiro, Benedict, 

Schretlen, & Brandt, 1999). Weaker correlations were found between HVLT–R total 

learning and delayed recall and WMS–R VR immediate and delayed recall (rs = .54 

and .69, respectively), evidencing moderate levels of discriminant validity (Shapiro et al., 

1999). Shapiro et al. also found the HVLT–R’s measures of new learning and delayed 

recall to load on a single factor distinct from measures of visual memory and general 

cognitive function, further supporting the test’s discriminant validity.   
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 Category Fluency Test. Animal naming is a frequently used category fluency 

task. This test is useful to assess fluency in patients who are not able to name many 

scorable words when administered abstract letter fluency tasks (e.g., COWA) (Lezak, 

1995). In this test, the patient is asked to name as many animals as possible in 60 seconds. 

For this study, raw scores were converted to age-, education-, sex-, and ethnicity-

corrected T-scores using the Heaton et al. (1991) external norms.  

 Psychometrics. Normative data for the Category Fluency Test can be found in 

Heaton et al. (1991). Participants in the Heaton et al. normative project were assessed in 

several studies over 25 years. Participants were from rural and urban areas across the U.S. 

As part of this project, the Category Fluency Test was standardized on 1,148 individuals 

with a mean age of 50 years old (SD = 19.2). Mean level of education was 13.8 years (SD 

= 2.5). Slightly more than half of the sample was male (52.4%). Although reliability data 

could not be found, this test has been found to discriminate between Alzheimer’s patients 

and normal controls (Monsch, Bondi, Butters, & Salmon, 1992), and patients with 

dementia and those with depression (Hart, Kwentus, Taylor, & Hamer, 1988), better than 

a letter fluency task. Other studies have found that elderly control patients and patients 

with dementia named more animals than CFL words, further supporting its validity 

(Rosen, 1980; Monsch et al., 1992; Monsch et al., 1994).  

 Trail Making Test (TMT).  The TMT (Partington & Leiter, 1949) is a test of 

visual conceptual and visuomotor tracking that was originally part of the Army Individual 

Test Battery (1944). It consists of two parts, Part A and Part B. In Part A, the patient is 

asked to draw lines connecting consecutively numbered circles (numbered 1 through 25). 

In Part B, the patient is asked to draw lines connecting consecutively numbered and 
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lettered circles by alternating between the two sequences. The patient must complete 

these two tasks as quickly as possible without lifting the pencil from the paper. The 

examiner immediately points out any errors and has the patient proceed from the point 

the mistake occurred. Trials are discontinued after 300 seconds. Scoring for each part is 

based on the completion time in seconds. For this study, raw scores were converted to 

age-, education-, sex-, and ethnicity-corrected T-scores using the Heaton et al. (1991) 

external norms.  

 Psychometrics. Normative data for the TMT can be found in Heaton et al. (1991). 

Participants in the Heaton et al. normative project were assessed in several studies over 

25 years. Participants were from rural and urban areas across the U.S. As part of this 

project, the TMT was standardized on 1,212 individuals with a mean age of 46.6 years 

old (SD = 18.1). Mean level of education was 13.6 years (SD = 2.8). More than half of 

the sample was male (56.8%). Reliability coefficients have generally been found to range 

from .64 to .98 (Spreen & Strauss, 1998). Interrater reliability was found to be .94 for 

Part A and .90 for Part B (Fals-Stewart, 1991). Lezak (1982) found the reliability of Part 

A to remain high throughout three administrations to normal controls at 6- and 12-month 

intervals (W = .78), whereas the reliability of Part B was found to be lower (W = .67). 

Parts A and B have been found to moderately correlate with each other (r = .49), 

suggesting that they measure somewhat different constructs (Heilbronner, Henry, Buck, 

Adams, & Fogle, 1991). The TMT has been found to load on both a rapid visual search 

and visuospatial sequencing factor (des Rosiers & Kavanagh, 1987; Fossum, Holmberg, 

& Reinvang, 1992), as well as a cognitive set-shifting factor (Pontius & Yudowitz, 1980). 

The TMT has been found to correlate with an object-finding test and a hidden pattern 
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tests (rs ranging from .36 to .93) (Ehrenstein, Heister, & Cohen, 1982). Strong 

correlations were not found between verbal tests (e.g., Token Test), indicating acceptable 

discriminant validity.  

 Wisconsin Card Sorting Test (WCST). The WCST (Berg, 1948; Grant & Berg, 

1948) is considered to be a measure of executive function that was developed to assess 

abstract reasoning ability and the ability to shift cognitive set (Heaton, Chelune, Talley, 

Kay, & Curtiss, 1993). The test consists of four stimulus cards and 128 response cards 

that depict figures of various forms (crosses, circles, triangles, or stars), colors (red, blue, 

yellow, or green), and numbers (one, two, three, or four). The four stimulus cards are 

placed before the patient. The patient is handed a deck of 64 response cards and told to 

match each consecutive card from the deck with one of the four stimulus cards. The 

patient is not told how to match the cards, but he or she is told each time whether his or 

her response is right or wrong. Once the patient has matched 10 consecutive cards 

correctly, the sorting principle is changed without warning. The test proceeds in this 

manner through a number of set shifts until six successful categories are completed or 

both decks are exhausted. There is an oral and a computer version of the WCST; the oral 

version was used in this study. Many scores can be derived from this test. For this study, 

Perseverative Responses and Total Number of Errors were calculated. Raw scores were 

converted to age- and education-corrected standard scores. The WCST computer scoring 

program was used to score all protocols.  

 Psychometrics. The WCST was normed on a sample of 899 normal individuals 

whose data was aggregated from six distinct samples (Heaton et al., 1993). The 

individuals ranged in age from 6 to 89 years. Level of education ranged from 
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Kindergarten to 20 years. The WSCT has been found to have acceptable reliability and 

validity. Interscorer and intrascorer reliability were found to be acceptable, with 

intraclass correlation coefficients ranging from .75 to .97 (Axelrod, Goldman, & 

Woodard, 1992). In a sample of 46 children and adolescents, generalizability coefficients 

were found to range from .39 to .72 (m = .57) for the WCST scores, indicating largely 

acceptable scale reliability (Heaton et al., 1993). Factor analytic studies have found 

evidence of acceptable construct validity. For example, Shute and Huertas (1990) found 

the perseverative error score to load on the factor defined by a measure of Piagetian 

formal operations. Another study found that the number of categories achieved loaded on 

the complex intelligence and planning-organization factors, and the error score loaded on 

the complex intelligence and planning-flexibility factors (Daigneault, Braun, Gilbert, & 

Proulx, 1988). This test has been found to be a valid measure of executive functioning in 

children, adolescents, and adults with neurological impairments. Patients with disorders 

such as epilepsy, multiple sclerosis, Parkinson’s disease, and schizophrenia, as well as 

patients with structural brain lesions of other etiologies, have been found to perform in 

the impaired range when compared with normal adults (Heaton et al., 1993). 

 Grooved Pegboard Test. The Grooved Pegboard Test (Kløve, 1963; Matthews & 

Kløve, 1964) is a manipulative dexterity test (Lafayette Instrument, 1989). It consists of a 

small board containing a 5 x 5 set of slotted holes angled in varying directions. Each peg 

has a key-like ridge at each end requiring it to be rotated into position for correct 

insertion into a hole. The dominant hand trial is administered first. The patient is told to 

place the pegs one at a time in the board as fast as possible, using only their dominant 

hand, going across the board in rows from left to right. The non-dominant trial follows, 
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with the patient placing the pegs in the board from right to left as fast as possible. The 

examiner records the completion time in seconds for each trial. Trials may be 

discontinued after 5 minutes. For this study, two trials per hand were sometimes 

administered (e.g., if the non-dominant hand was faster than the dominant hand). In these 

cases, the fastest time for each hand was used as the final score. Raw scores were 

converted to age-, education-, sex-, and ethnicity-corrected T-scores using the Heaton et 

al. (1991) external norms. 

 Psychometrics. Normative data for the Grooved Pegboard Test can be found in 

Heaton et al. (1991). Participants in the Heaton et al. normative project were assessed in 

several studies over 25 years. Participants were from rural and urban areas across the U.S. 

As part of this project, the Grooved Pegboard Test was standardized on 1,482 individuals 

with a mean age of 46 years old (SD = 17.1). Mean level of education was 13.5 years (SD 

= 2.8). More than half of the sample was male (60.1%). The test has been found to have 

acceptable test-retest reliability (r = .82) (Kelland, Lewis, & Gurevitch, 1992). It has been 

found to be sensitive to general slowing due to medication (Lewis & Rennick, 1979) and 

progression of disease processes (Matthews & Haaland, 1979). It has also been shown to 

help in the identification of lateralized dysfunction (Haaland & Delaney, 1981).  

 Grip Strength Test. The Grip Strength Test, also known as Hand Dynamometer, 

is a test used to measure hand strength (Reitan & Davison, 1974). This test operates 

under the assumption that lateralized brain impairment may affect the strength of the 

contralateral hand (Lezak, 1995). For this test, the patient is asked to hold the upper part 

of the dynamometer in their dominant hand first, palm down. The patient is told to hold 

his or her arm down by his or her side, away from the body, and asked to squeeze the 
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dynamometer as hard as possible. Two trials for each hand are performed, alternating 

between hands. The raw score is the force exerted in kilograms for each hand averaged 

for the two trials (Lezak, 1995). For this study, raw scores were converted to age-, 

education-, sex-, and ethnicity-corrected T-scores using the Heaton et al. (1991) external 

norms. 

 Psychometrics. Normative data for the Grip Strength Test can be found in Heaton 

et al. (1991). Participants in the Heaton et al. normative project were assessed in several 

studies over 25 years. Participants were from rural and urban areas across the U.S. As 

part of this project, this test was standardized on 1,482 individuals with a mean age of 46 

years old (SD = 17.1). Mean level of education was 13.5 years (SD = 2.8). More than half 

of the sample was male (60.1%). This test has been found to have acceptable reliability, 

with reliability coefficients ranging from .52 to .98 in normal and neurologically impaired 

subjects (Spreen & Strauss, 1998). Average test-retest reliability for men and women has 

been found to be high (r for men = .91; r for women = .94) (Reddon, Stefanyk, Gill, & 

Renney, 1985). Kelland et al. (1992) found a test-retest reliability of .98. Differences 

between hands have not been found to be highly reliable and may be influenced by 

variable motivation (Provins & Cunliffe, 1972). This measure has been found to be useful 

in discriminating between patients with epilepsy with left hemisphere dysfunction from 

those with right hemisphere dysfunction (Strauss & Wada, 1988), in differentiating 

patients with brain damage from normals (Spreen & Strauss, 1998), and in identifying 

brain lesion laterality (e.g., Dodrill, 1978).  

 Finger Tapping Test (FTT). The FTT (Reitan, 1969), also known as the Finger 

Oscillation Test, is a test of simple motor speed that is part of the HRNB. It is a widely 
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used test of manual dexterity and may be used to aid in the detection of lateralized 

impairment (Lezak, 1995). It consists of a tapping key attached to a counter that records 

the number of taps. The patient is asked to tap as fast as possible with their index finger, 

not moving their hand or arm. Five 10-second trials with brief rest periods between trials 

are administered for each hand, dominant hand first (Psychological Assessment 

Resources [PAR] Staff, 1992). Trials are administered until five consecutive trials 

produce scores within a five-tap range (PAR Staff, 1993). If this criterion is not met, 

additional trials are given. A maximum of 10 trials per hand is allowed. The examiner 

records the number of taps per each 10-second trial. A finger tapping score is computed 

for each hand. If five consecutive trials produced scores within a five-tap range, the mean 

number of taps for those trials is calculated (PAR Staff, 1993). If 10 trails were 

administered because the five-tap criterion was not met, the mean of all 10 trails is 

calculated (PAR Staff, 1993). For this study, raw scores were converted to age-, 

education-, sex-, and ethnicity-corrected T-scores using the Heaton et al. (1991) external 

norms. 

 Psychometrics. Normative data for the FTT can be found in Heaton et al. (1991). 

Participants in the Heaton et al. normative project were assessed in several studies over 

25 years. Participants were from rural and urban areas across the U.S. As part of this 

project, the FTT was standardized on 1,212 individuals with a mean age of 46.6 years old 

(SD = 18.1). Mean level of education was 13.6 years (SD = 2.8). More than half of the 

sample was male (56.8%). Spreen and Strauss (1998) reported that reliability coefficients 

have generally been found to range from .58 to .93 for intraindividual comparisons of 

same-hand performances. Performance with each hand has been found to be relatively 
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stable over time, even with intervals up to 2 years between retest sessions (Spreen & 

Strauss, 1998). Intraindividual differences between dominant and nondominant hands 

have been found to be more variable (e.g., r > .70; Massman & Doody, 1996; Provins & 

Cunliffe, 1972; r = .50; Morrison, Gregory, & Paul, 1979). The FTT has been found to be 

sensitive to the presence and laterality of brain lesion, with worse performance usually 

found in the hand contralateral to the lesion (Spreen & Strauss, 1998).  

Research Design 

 This study employed a retrospective, cross-sectional design. A retrospective 

design was chosen because the nature of this study is exploratory and because it would be 

difficult to recruit patients with epilepsy to undergo neuropsychological evaluation unless 

medically necessary. Further, all clinically relevant variables for this study were 

previously collected at the time of neuropsychological evaluation and available in patient 

charts. The study consisted of a chart review of pertinent medical history and 

neuropsychological data for patients with epilepsy who underwent neuropsychological 

evaluation at the Center for Neuropsychological Services from January 2007 through 

November 2012.  

Consent for Research Participation 

 A waiver of informed consent was granted by the Institutional Review Boards 

(IRBs) of Aurora St. Luke’s Medical Center and Marquette University for the following 

reasons. First, this study presented no more than minimal risk to participants: (1) 

identifiable information was removed from the database after data entry was completed, 

(2) data (e.g., demographic information, neuropsychological test scores) were already 
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present in patients’ medical records, and (3) no additional evaluations or procedures were 

performed on participants. Second, due to the nature of the topic, it would have been 

unadvisable to contact participants to obtain consent. If this were done, participants 

would have had to be told about PVT and the impact that suboptimal performance can 

have on test scores. As many of the participants in this study were evaluated years ago, 

this information may have caused them unnecessary worry about their past performance 

and neuropsychological findings.  

Human Subjects Consideration 

 All data were collected in accordance with the ethical principles of research 

outlined by the American Psychological Association, the IRB of Marquette University, 

and the Research Subject Protection Program (RSPP)/IRB of Aurora St. Luke’s Medical 

Center. Precautions were taken to protect the identity of study participants and the 

confidentiality of data. Only the minimal demographic, medical, and neuropsychological 

data necessary for conducting this study were collected. These data were transferred from 

medical records to data coding packets. Each packet was assigned a unique identifier to 

protect patient identity and maintain the confidentiality of data. Unique identifiers were 

connected to patient names in a password-protected document that was deleted upon 

completion of data entry. Data coding packets were stored in a locked cabinet in the 

Center for Neuropsychological Services. Data were entered into a password-protected 

database. Results and documentation of results through manuscripts or presentations will 

maintain participant confidentiality.  

Procedures 
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 Marquette University’s IRB and Aurora St. Luke’s Medical Center RSPP/IRB 

granted approval for this study. All patients underwent neuropsychological evaluation at 

Aurora St. Luke’s Center for Neuropsychological Services. January 2007 was chosen as 

the study’s start date because that is when the Center started consistently administering 

the WMT. Pre-surgical patients had previously undergone video-EEG monitoring at 

Aurora St. Luke’s Regional Epilepsy Center to attempt to classify their seizures. For the 

neuropsychological evaluation, patients first completed a clinical interview with Dr. 

Joseph Cunningham, neuropsychologist. They were next administered a comprehensive 

battery of neuropsychological tests and the WMT. Order of test administration was not 

controlled. Tests were administered according to standardized instructions per their 

respective manuals. Patients were administered the computer version of the WMT. The 

six main WMT subtests (IR, DR, CNS, MC, PA, and FR) were administered. Patients 

were not administered the LDFR subtest as it is optional. Neuropsychological tests were 

scored according to standardized procedures outlined in their respective manuals. Raw 

neuropsychological data were converted into standard, scaled, or T-scores relative to 

normative data. Scores were converted into percentiles using a psychometric conversion 

table. Please refer to the Measures section for information about the norms used to score 

each test.  

 WMT data. During data collection, a discrepancy in the interpretation of IR, DR, 

and CNS scores of 90 was discovered: Per the WMT manual, IR, DR, or CNS scores 

“above 90% correct” are interpreted as clear passes (Green, 2005, p. 9). IR, DR, or CNS 

scores “between 83% and 90%” should be interpreted with caution (Green, 2005, p. 9). 

However, per the WMT computer program printouts, scores of 90 on IR, DR, and CNS 
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are interpreted as “pass,” and not as “caution” as stated in the manual. Through an e-mail 

exchange, Dr. Green acknowledged this discrepancy in score interpretation and advised 

to use the interpretations provided in the manual (P. Green, personal communication, 

March 8, 2013). Therefore, Green’s (2005) normative recommended cutoffs were used to 

score the WMT. As described in Table 1, patients were categorized into one of three 

WMT performance groups:  

Table 1  
WMT Performance Group Criteria 

WMT Performance Groups 
Optimal  Suboptimal  GMIP  

IR, DR, and CNS scores > 
90% (clear pass) 

At least one IR, DR, or CNS 
score between 83 and 90% 

(caution range) 

At least one IR, DR, or 
CNS score ≤ 82.5% 

(clear fail) and a ≥ 30 
point difference between 

the mean of the easy 
subtests (IR, DR, and 
CNS) and the mean of 
the hard subtests (MC, 

PA, and FR) 

 
MC scores >70%  

(non-warning range) 

 
At least one IR, DR, or CNS 

score ≤ 82.5% (clear fail) 
 

PA scores > 50%  
(non-warning range) 

 
MC scores ≤ 70%  
(warning range) 

  
PA scores ≤ 50%  
(warning range) 

Note. IR = Immediate Recognition; DR = Delayed Recognition; CNS = Consistency; MC 
= Multiple Choice; PA = Paired Associates; FR = Free Recall; GMIP = General Memory 
Impairment Profile. 
 

Additionally, GMIP scores were calculated for all patients in order to explore the validity 

of the GMIP.  

 Neuropsychological data. For each patient, neuropsychological test scores were 

converted into z-scores based on standard or scaled scores. This was done to convert the 

scores to a common scale from which they could be compared. Doing so also allowed for 

the generalizability of results to patients with epilepsy outside of this sample. Unlike in 

Rohling et al. (2002), z-scores relative to patients within the sample were not calculated. 
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Rohling et al. used relative z-scores because their sample was extremely heterogeneous; 

as this sample was homogeneous, normative z-scores were preferred.  

 Following Rohling’s Interpretive Method (RIM; Miller & Rohling, 2001) for 

analyzing neuropsychological data, each test’s z-score was assigned to one of the 

following cognitive domains: (1) Verbal Functions (VF; language abilities, semantic 

knowledge, crystallized abilities); (2) Perceptual Organizational (PO; visuospatial 

abilities); (3) Executive Function (EF; cognitive flexibility, abstraction, problem solving); 

(4) Learning and Memory (LM; immediate, delayed, auditory, visual); (5) Attention and 

Concentration (AC; focus execute, sustained, span, shift, divided); (6) Processing Speed 

(PS; psychomotor speed); and (7) Manual Dexterity (MD; motor skills). These domains 

are commonly used in neuropsychological research (Miller & Rohling, 2001; Zakzanis, 

Leach, & Kaplan, 1999). Tests and their respective z-scores were categorized into 

domains based on factor analytic studies that have identified which tests load the highest 

on which domain (e.g., Ardila, Galeano, & Rosselli, 1998; Larrabee & Curtis, 1995; 

Leonberger, Nicks, Larrabee, & Goldfader, 1992), as well as based on theoretical and 

practice-related a priori classifications (e.g., Lezak, 1995). Groupings were as follows:  

 (1) VF (n = 6): WAIS–III (Vocabulary, Similarities, Information); BNT; MAE 

Token Test; MAE Sentence Repetition 

 (2) PO (n = 5): WAIS–III (Picture Completion, Block Design, Matrix Reasoning); 

JLO; FRT 

 (3) EF (n = 5): MAE COWA; Category Fluency Test; TMT Part B; WCST 

(Perseverative Responses, Total Number of Errors) 



 62

 (4) LM (n = 13): WMS–III (LM I Recall Total, LM II Recall Total, LM I 

Thematic Total, LM II Thematic Total, LM II % Retention, VR I Recall Total, VR II 

Recall Total, VR % Retention, VR II Recognition Total); HVLT–R (Recall Total, 

Delayed Recall, % Retention, Recognition/Discrimination) 

 (5) AC (n = 4): WAIS–III (Arithmetic, Digit Span, Letter-Number Sequencing); 

TMT Part A  

 (6) PS (n = 2): WAIS–III (Digit-Symbol Coding and Symbol Search) 

 (7) MD (n = 6): Grooved Pegboard Test (bilateral); Grip Strength Test (bilateral); 

FTT (bilateral) 

 Reliability analyses were conducted to explore each domain’s internal consistency. 

Coefficient alphas of each domain should be .70 or higher, indicating that the tests that 

make up the domain “hang together” (Nunnally, 1978). Results indicated that the 

domains possessed acceptable levels of reliability, with standardized coefficient alphas 

ranging from .75 (EF domain) to .93 (LM domain). For each domain, all corrected item-

total correlations were greater than .30, indicating that the tests that constructed each 

domain correlated well with the overall domain (Field, 2009). The deletion of tests from 

their respective domains did not significantly increase any scale’s reliability; therefore, 

no tests were removed from their original domains.  

 Next, per RIM, the mean of each domain was calculated, yielding a domain mean 

z-score for each domain. The mean domain z-scores were then averaged, yielding a 

domain test battery mean (DTBM; Miller & Rohling, 2001).     

Power Analysis 
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 As inferential statistics were employed (e.g., ANOVA, multiple regression, 

simple linear regression), power analyses were conducted to determine sample size 

estimates. A power analysis determines the minimum sample size necessary for a 

statistical test to find a significant difference when such a difference exists (the 

probability of rejecting the null hypothesis when it is false) (Cohen, 1988). For this study, 

power analyses were conducted for each statistical test. A power analysis was not carried 

our for research question 1, as inferential statistics were not required to answer that 

question. The following power analyses were carried out for research questions 2 through 

5:  

 Research question 2. Six one-way ANOVAs were conducted. Cohen’s f was set 

at .40 to detect a large effect (Cohen, 1992). It is hypothesized that there will be large 

effect sizes because the patients in each WMT performance group are expected, based on 

normative data, to have large differences in their scores on WMT subtests. For example, 

a large effect size is expected between optimal and suboptimal performance groups on 

the IR and DR subtests, given that a score of 90% on IR or DR (reflective of suboptimal 

performance) is more than two standard deviations below the normal adult control group 

mean on IR or DR, and more than one standard deviation below the mean IR or DR score 

in patients with severe TBI (Green, 2005). Further, a score of 82.5% (failure cutoff) on 

IR is 5.5 standard deviations below the normal adult control group mean on IR (Green, 

2005). A score of 82.5% on DR is 6.7 standard deviations below the normal adult control 

group mean on DR (Green, 2005). These normative data served as rationale for using a 

large effect size in the power analysis. Per Bonferroni adjustment results, an alpha value 

of .008 was used to control for the multiple comparison problem that results from 
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conducting six ANOVAs. Power was set at the generally accepted level of .80 (Cohen, 

1988). Number of groups was entered as three. Power analysis results indicated that a 

sample size of 96 was required to find statistically significant differences when such 

differences exist. Although the N was slightly lower (N = 81) than the suggested 96, it 

was decided that it would be better to have a robust study with data representative of 

what was necessary to conduct the study rather than a larger sample size with 

questionable data. Additionally, it would have difficult to recruit additional patients with 

epilepsy to participate, as they only undergo neuropsychological evaluation when 

medically necessary.  

 Research question 3. Multiple regressions using dummy coding were conducted. 

Cohen’s f2 was set at .35 to detect a large effect (Cohen, 1988). Rationale for the 

anticipated large effect sizes for each regression is based on existing research examining 

the relationship between PVT scores and neuropsychological test scores (see 

Constantinou et al., 2005; Green et al., 2001; Green et al., 2002; Green, 2007; Rohling et 

al., 2002; Stevens et al., 2008). Results of these studies found that PVT scores accounted 

for up to 54% of the variance in neuropsychological tests scores, with R2 values ranging 

from .35 to .54). As such, it was hypothesized that there would be similarly large effect 

sizes in each regression and Cohen’s f2 was therefore set at .35. The alpha value was set 

at .05. Power was set at .80 (Cohen, 1988). For multiple regressions that included number 

of years of education as a covariate, number of predictors was entered as three. For 

multiple regressions that did not include the covariate, number of predictors was entered 

as two. Results indicated that a sample size of 36 was required for multiple regressions 
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with three predictors, and a sample size of 31 was required for multiple regressions with 

two predictors. As N = 81, there was sufficient power to conduct these analyses. 

 Research question 4. Two regressions were conducted; therefore, separate power 

analyses were carried out. First, a simple (bivariate) linear regression was conducted. In a 

bivariate linear regression the data analyzed are the same as in a correlational analysis; 

therefore, a bivariate normal model correlation power analysis was conducted. The 

hypothesis for this research question was one-tailed; therefore, number of tails was 

entered as one. Correlation ρ H1 was set at .50 to detect a large effect (Cohen, 1988). 

Rationalization for the large effect size is based on existing research examining the 

performance of patients with significant cognitive impairment (e.g., dementia) on the 

WMT, NV-MSVT, and MSVT (see Green, 2005; Green et al., 2009; Green et al., 2011; 

Henry et al., 2009; Howe et al., 2007; Howe & Loring, 2009; Singhal et al., 2009). 

Results of these studies indicated that a substantial number of patients who scored below 

failure cutoff on at least one of the easy PV subtests in the WMT, NV-MSVT, or MSVT, 

and had significant cognitive impairment as evidenced by neuropsychological test scores 

and clinical history, demonstrated a GMIP. Thus, for this study, it was hypothesized that 

if the GMIP indeed signifies the presence of significant cognitive impairment such as that 

seen in dementia, GMIP scores would predict, and explain a large proportion of the 

variance in, neuropsychological memory scores. As such, correlation ρ H1 was set at .50 

to detect a large effect. The alpha value was set at .05. Power was set at .80 (Cohen, 

1988). Correlation ρ H0 was set at 0. Results indicated that a sample size of 23 was 

required to detect a correlation coefficient of r = .50 in the sample. As N = 81, there was 

sufficient power to conduct this analysis.  
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 The second analysis conducted was a multiple regression with a dichotomous 

predictor variable. Cohen’s f2 was set at .35 to detect a large effect (Cohen, 1988). 

Rationalization for the anticipated large effect size is based on existing research with the 

WMT and the MSVT (see Green, 2005; Green et al., 2009; Green et al., 2011; Howe et 

al., 2007; Howe & Loring, 2009). Results of these studies indicated that patients with 

severe cognitive impairment (e.g., dementia) tended to score below failure cutoff on at 

least one PV subtest and had a ≥ 30-point difference between the mean of the easy (PV) 

and hard (memory) WMT subtests (or a ≥ 20-point difference on the MSVT). Thus, these 

patients had GMIPs on the WMT or MSVT signifying significant cognitive impairment 

that was corroborated with clinical history and neuropsychological test performance. In 

this study, it therefore follows that patients with scores below failure cutoff on at least 

one PV subtest and GMIP scores ≥ 30 would likely have much lower neuropsychological 

memory scores than patients with GMIP scores < 30. As such, a large effect size was 

anticipated and Cohen’s f2 was set to .35 to detect a large effect. The alpha value was set 

at .05. Power was set at .80 (Cohen, 1988). Number of predictors was entered as two. 

Results indicated that a sample size of 31 was required. As N = 81, there was sufficient 

power to conduct this analysis. 

 Research question 5. Two hierarchical regressions were conducted. As the 

regressions had different numbers of predictors, separate power analyses were conducted. 

The first multiple regression had six predictors. Cohen’s f2 was set at .35 to detect a large 

effect (Cohen, 1988). The rationale for the anticipated large effect size is based on the 

WMT normative research that established the harder subtests (MC, PA, FR) as the 

memory subtests and the easier subtests (IR, DR, CNS) as the PV subtests (Green, 2005). 



 67

Therefore, it is hypothesized that the harder memory subtests will each explain a much 

larger proportion of the variance in GMIP score than will each of the PV subtests. As 

such, Cohen’s f2 was set at .35. The alpha value was set at .05. Power was set at .80 

(Cohen, 1988). Number of predictors was entered as six. Results indicated that a sample 

size of 46 was required. As N = 81, there was sufficient power to conduct this analysis.  

 The second hierarchical regression had two predictors. Cohen’s f2 was set at .35 to 

detect a large effect (Cohen, 1988). It is hypothesized that there will be a large effect size 

because the subtests that comprise the WMT memory composite have been identified 

primarily as memory subtests (Green, 2005). If the GMIP is a valid indicator of 

significant cognitive impairment, then the WMT memory composite would be anticipated 

to explain a much larger proportion of the variance in GMIP score than would the PV 

composite. As such, Cohen’s f2 was set to .35. The alpha value was set at .05. Power was 

set at .80 (Cohen, 1988). Number of predictors was entered as two. Results indicated that 

a sample size of 31 was required. As N = 81, there was sufficient power to conduct this 

analysis. 

Exploration of Covariates   

 For each research question, potential covariates of sex, race, age, and education 

level were explored by conducting a correlation analysis between each potential covariate 

and outcome variable (e.g., WMT subtest scores, GMIP scores, cognitive domain z-

scores, DTBM). Results indicated significant positive correlations between education 

level and the VF, PO, AC, and PS cognitive domain z-scores, as well as the DTBM. As 

the majority of data violated the parametric assumption of normality, Spearman’s 

correlation coefficients (rss) were computed and ranged from .24 to .30 (all ps < .05). 
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Thus, when indicated, education level was entered as a covariate in the multiple 

regressions that explored the relationship between WMT performance and 

neuropsychological test scores. Education level was centered around its grand mean 

because, in multiple regression, the intercept represents the value of the outcome when 

each of the predictors take a value of 0 (Field, 2009). In this case, a value of 0 would 

have been meaningless, as education level ranged from 8 to 18.  

 No significant relationships were found between education level and the LM, EF, 

or MD cognitive domain z-scores (all ps > .05); therefore, education level was not entered 

as a covariate in the multiple regressions with these outcome variables. No significant 

relationships were found between the other potential covariates (sex, race, age) and WMT 

subtest scores, GMIP scores, cognitive domain z-scores, or the DTBM; therefore, these 

variables were not considered to be covariates and were not included in analyses.   

Data Analysis 

 Research question 1. What are the base rates of optimal, suboptimal, and GMIP 

performance as measured by the WMT?   

 Data analysis method.  Frequencies were run to calculate the number of patients 

in each WMT performance group (optimal, suboptimal, and GMIP). Patients were 

categorized into groups based on the WMT normative criteria described in the Procedures 

section. Descriptives were run to obtain measures of central tendency for the six WMT 

subtests (IR, DR, CNS, MC, PA, and FR) in each WMT performance group. 

 Research question 2. Are there differences on WMT subtest scores among WMT 

groups? 
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 Null hypothesis. There are no differences on WMT subtest scores among WMT 

groups. 

 Alternative hypothesis. Patients in the optimal performance group will have 

higher WMT subtest scores than patients in the suboptimal performance and GMIP 

groups.  

 Data analysis method. Six one-way ANOVAs were conducted to explore the 

difference in mean WMT subtest scores among the three groups. Multiple t-tests were 

carried out to explore significant differences among group means. A Bonferroni 

adjustment was performed to explore whether obtained differences were significant 

(α .05/6 = .008). Effect sizes (Cohen’s d) were calculated in order to establish the 

magnitude of the differences in standard deviation units. Cohen’s d was selected because 

it is an appropriate effect size for comparisons between two means (Cohen, 1988), and 

because it is preferred over Pearson’s correlation coefficient r as a measure of effect size 

when group sizes are discrepant (McGrath & Meyer, 2006).  

 Research question 3. Are there differences in neuropsychological test scores 

among WMT groups? 

 Null hypothesis. WMT performance will not predict neuropsychological test 

scores.   

 Alternative hypothesis. Patients with the highest WMT performance (optimal 

performance group) will have higher neuropsychological test scores than patients in the 

suboptimal performance and GMIP groups.   

 Data analysis method. Multiple regression using dummy coding was conducted. 

Multiple regression allows for the examination of the relationships involved when 
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multiple predictor variables (also known as independent variables) are related to a single 

outcome variable (also known as a dependent variable) (Cohen & Cohen, 1983). Dummy 

coding is a procedure that allows for the quantitative representation of a nominal 

(categorical) predictor variable that has more than two levels (Cohen & Cohen, 1983). 

Through dummy coding, a nominal predictor variable with multiple levels is transformed 

into a set of g – 1 different predictors (g = some number > 1), each representing one 

aspect of the distinctions among the g groups (Cohen & Cohen, 1983). Dummy coding 

uses dichotomous variables (zeros and ones) to convey group membership.  

 In this study, dummy coding was used to code the WMT performance predictor 

variable. This variable was a nominal predictor with three levels (GMIP, suboptimal 

performance, and optimal performance). Each level was transformed into separate 

predictors, or g groups, to represent distinctions in WMT performance. Each case was 

assigned to only one of the g groups (g = 3; GMIP, suboptimal performance, or optimal 

performance). As illustrated in Table 2, dummy code g – 1 variables were created (X1 and 

X2). X1 represented “significant cognitive impairment-ness” and X2 represented 

“suboptimalness.” A “1” or “0” represented whether a patient was, or was not, a member 

of each g – 1 group. This information was not represented for one of the groups because 

doing so would have been redundant; a “0” for both X1 and X2, indicated that the patient 

was a member of the remaining optimal performance group, which served as the 

reference group. This group was chosen as the reference group so that comparisons could 

be made between the neuropsychological test performance of patients who were 

considered to have performed optimally on the WMT and those who received suboptimal 

or GMIP ratings.  
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Table 2 
Dummy Coding 
Group WMT Performance Level X1 X2 
G1 GMIP 1 0 
G2 Suboptimal 0 1 
G3 Optimal 0 0 
Note. GMIP = Genuine Memory Impairment Profile. 

 Multiple regression analyses were conducted following dummy coding. Seven 

multiple regressions with dummy coding were conducted to explore the relationship 

between WMT performance and each of the seven cognitive domain z-scores. Education 

level was entered as a covariate when indicated per results of the correlational analyses 

previously described. Each cognitive domain (VF, PO, EF, LM, AC, PS, and MD) z-

score was entered as the outcome variable for its respective multiple regression. Forced 

entry (also known as Enter), the regression method in which all predictors are 

simultaneously forced into the model (Field, 2009), was used for the multiple regressions 

that did not include the covariate. Hierarchical regressions were conducted for the 

regressions that included the covariate. This regression method was used because 

correlational analyses results revealed significant relationships between the covariate and 

certain outcome variables (VF, PO, AC, and PS cognitive domain z-scores). Thus, the 

covariate was entered in the first block as a predictor and both dummy variables were 

entered (Forced entry) as predictors in the second block.  

 Partial regression coefficients (Bi), which indicate the amount and direction of net 

change in the outcome variable, expressed in units of the outcome variable, of a change 

in one unit of Xi, will be reported for each dummy variable (Cohen & Cohen, 1983). The 

effect of the partialling process on a dummy variable is to relate Gi to Gg; for example, to 

relate the GMIP groups’ (G1) VF scores to the optimal groups’ (Gg; reference group) VF 
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scores. Regression coefficients for the covariate will also be reported when indicated. 

Zero-order correlation coefficients (r; also known as Pearson correlation coefficients), 

which represent the correlation between each predictor and each outcome variable, will 

be reported. The sign of r indicates the direction of the relationship, and with dummy 

variables, indicates whether the mean of the outcome variable, for example, in G1, is 

larger (positive) or smaller (negative) than the mean of the outcome variable for 

nonmembers of G1 (Cohen & Cohen, 1983). The square of each zero-order correlation 

coefficient (r2) will also be reported, indicating the proportion of the variance in each 

outcome variable accounted for by each predictor. Partial correlation coefficients (pr) 

will be reported, representing the correlation between each predictor and outcome 

variable after common variance with other predictors has been removed from both the 

outcome and the predictor of interest (Stevens, 2003). In other words, a partial correlation 

coefficient represents the correlation between the outcome variable and a predictor, when 

the effects of the other predictors on both the predictor of interest and the outcome are 

held constant (Cohen & Cohen, 1983; Field, 2009). Squares of semi-partial (part) 

correlation coefficients (sr2) will also be reported, indicating the amount by which R2 (the 

proportion of the variance in an outcome variable accounted for by the predictor 

variables) would be reduced if Xi (in this case, either the GMIP or the suboptimal group) 

were omitted from the predictor variables (Cohen & Cohen, 1983). R2 values for each 

multiple regression will be reported. Finally, as R2 provides the proportion of the 

outcome variable accounted for in the sample and overestimates that proportion in the 

population, adjusted R2 values will also be reported (Cohen & Cohen, 1983).  
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 A multiple regression using dummy coding was next conducted to explore the 

relationship between WMT performance and the DTBM. The hierarchical method of 

regression was used as, previously noted, a correlational analysis revealed a significant 

relationship between the covariate and the DTBM. Thus, the covariate was entered in the 

first block as a predictor and both dummy variables were entered (Forced entry) as 

predictors in the second block. The DTBM was entered as the outcome. Regression 

coefficients will be reported, along with r, r2, pr, sr2, R2, and adjusted R2 values.  

 Research question 4. What is the relationship between GMIP scores and scores 

on neuropsychological memory tests? 

 Null hypothesis. GMIP scores will not predict memory test scores.   

 Alternative hypothesis. Patients who score below failure cutoff on at least one PV 

subtest and have GMIP scores ≥ 30 will have lower memory test scores than patients with 

GMIP scores < 30.    

 Data analysis method. Two regressions were conducted. In the first analysis, a 

simple linear regression was conducted. GMIP score was entered as the predictor and the 

LM cognitive domain z-score (which represents memory tests) was entered as the 

outcome variable. The regression coefficient will be reported, along with R2, adjusted R2, 

r, and r2. 

 In the second analysis, a multiple regression with a dichotomous predictor 

variable was conducted. The continuous GMIP variable was transformed into a 

dichotomous categorical variable to define two distinct groups of GMIP performance: 

patients with GMIP scores < 30 (“Non-GMIP” group; coded as 0) and patients with 

scores below failure cutoff on at least one PV subtest and GMIP scores ≥ 30 (“GMIP” 
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group; coded as 1). The LM cognitive domain z-score was entered as the outcome 

variable. Regression coefficients will be reported, along with R2, adjusted R2, r, and r2. 

 Research question 5: How much does each of the WMT subtests explain total 

GMIP score?  

 Null hypothesis. Each WMT subtest score will account for the same amount of 

variance in GMIP score.  

 Alternative hypothesis. Memory subtest (MC, PA, FR) scores will account for a 

greater proportion of the variance in GMIP score than will PV subtest (IR, DR, CNS) 

scores.  

 Data analysis method. A hierarchical regression was first conducted to examine 

how much variance in GMIP score was accounted for by each WMT subtest score. Each 

WMT subtest score was entered into its own block. As the latter subtests are considered 

the “memory subtests” of the WMT (Green, 2005), they were entered into the regression 

model first because they were hypothesized to have greater importance in predicting 

GMIP scores than were the PV subtests. As such, the FR score was entered into block 

one, PA score into block two, MC into block three, CNS into block four, DR into block 

five, and IR into block six. GMIP score was entered as the outcome variable. An R2 value 

will be reported. An adjusted R2 value, which adjusts the coefficient of determination (R2) 

to account for the fairly large number of predictor variables in the regression model, will 

also be reported. Zero-order and partial correlation coefficients will be reported. 

 The second hierarchical regression examined how much the PV and the memory 

subtests explained total GMIP score. WMT PV and memory composites were first 

computed. The WMT PV composite score consisted of the average of the IR, DR, and 
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CNS scores. The WMT memory composite score consisted of the average of the MC, PA, 

and FR scores. Reliability analyses were conducted on the composites. Results indicated 

strong levels of reliability for both the PV composite (α = .90) and the memory composite 

(α = .93). For each composite, corrected item-total correlations were greater than .70, 

indicating that the subtests correlated well with their respective composites. The deletion 

of subtests from their respective composites did not significantly increase either 

composite’s reliability; therefore, no subtests were removed. 

 After determining that the composites possessed adequate levels of reliability, a 

hierarchical regression was conducted. As noted above, the subtests that comprised the 

WMT memory composite have been identified primarily as memory tests (Green, 2005). 

Therefore, the WMT memory composite was hypothesized to have more importance in 

predicting the outcome (GMIP score) and was entered in block one. The WMT PV 

composite was entered in block two. GMIP score was entered as the outcome variable. 

Zero-order and partial correlation coefficients will be reported. R2 and adjusted R2 values 

will also be reported.  

Sample Size 

 Review of available medical records identified 133 patients with epilepsy who 

were referred for neuropsychological evaluation between January 2007 and November 

2012. Of these patients, 13 were seen for both pre- and post-surgical evaluations. As the 

inclusion criteria for this study specified that participants must be pre-surgical candidates 

or non-surgical, only pre-surgical data for these patients were used. Fourteen patients 

were excluded from the study because they underwent post-surgical neuropsychological 

evaluations only. Another fourteen patients were excluded because they were not 
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administered the WMT. Twenty-two patients were excluded because they were not 

administered the full battery of neuropsychological tests. One patient was not eligible 

because, although referred, did not go through with the evaluation. Another patient was 

not eligible because the WMT was discontinued. The remaining 81 patients were 

included for analyses.  

 Although smaller than anticipated, a sample size of 81 was sufficient to achieve 

the power necessary for the majority of analyses. As power analyses provide estimates of 

sample sizes necessary to detect effects, it was decided that a slightly smaller N 

sufficiently reflected a robust sample containing the necessary data required for each 

analysis. Further, considering the retrospective design of this study and that patients with 

epilepsy undergo neuropsychological evaluation only when medically necessary, 

recruiting additional patients would have posed both a challenge and a deviation from the 

study’s design.  

Data Screening 

 Accuracy of the data file. Prior to conducting data analyses, data were screened 

for errors and outliers. Frequencies for all variables were examined to ensure entered 

values were within appropriate ranges. For continuous variables, the plausibility of means, 

standard deviations, minimum, and maximums were examined. For categorical variables, 

responses not part of the item scale (e.g., a response of 6 on a scale that ranged from 1 to 

5) were checked against respective patients’ data coding packets and medical records. All 

errors were corrected according to the data in patients’ medical records. After correcting 

data entry errors, values for continuous variables were plausible (e.g., age at time of 

neuropsychological evaluation ranged from 16 to 70 years old, M = 39.98, SD = 14.28), 
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and values for categorical variables fell within predefined ranges. An outlier was 

identified in the variable examining frequency of seizures per month: One patient 

reported experiencing 20 absence seizures, brief staring episodes with impairment of 

awareness and responsiveness (Devinsky, 2004), per day (600 seizures per month). 

Therefore, the median instead of the mean was reported for this variable, as the median is 

relatively unaffected by extreme scores at either end of the distribution (Field, 2009).  

 Missing and problematic data. After IRB approval, an examination of the data 

revealed that not all patients referred for evaluation between January 2007 and November 

2012 were administered the same battery of neuropsychological tests. Two tests were 

identified as especially problematic for different reasons: The Brief Visuospatial Memory 

Test–Revised (BVMT–R; Benedict, 1997), a visual memory test, was only administered 

to 60 of the 81 participants (74%). The Wide Range Achievement Test (WRAT; 

Wilkinson, 1993; Wilkinson & Robertson, 2006) Word Reading subtest, which measures 

letter and word decoding through letter identification and word recognition, was 

administered to all participants; however, 21 patients (26%) were administered the 

WRAT-3 and 60 patients (74%) were administered the revised WRAT-4. Although the 

WRAT-3 and WRAT-4 Word Reading subtests inherently aim to measure the construct 

of verbal functioning, the tests are not identical and therefore theoretically represent the 

construct in a different way. Rather than dropping the patients who were not administered 

the BVMT-R and WRAT-4, these two tests were dropped from the study to maintain the 

study’s N. Further support for dropping these tests was that the constructs they measure 

were well represented by other tests completed by all participants.  
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 After dropping the BVMT-R and WRAT, only patients with complete 

neuropsychological and WMT datasets were included in the analyses. Although missing 

data is common in research and can occur for a variety of reasons (Field, 2009), methods 

used to deal with missing data (i.e., inputting the overall sample mean of the item, using a 

regression model to predict the missing value based on cases with complete data; Little & 

Rubin, 2001) were not implemented. Missing data imputation methods were not utilized 

in order to ensure that the data included in the analyses accurately reflected patients’ 

genuine neuropsychological test performance, rather than estimations or predictions. As a 

result, 22 patients were excluded from the study because they were not administered the 

full battery of neuropsychological tests, and therefore were missing significant amounts 

of the neuropsychological data required to conduct the analyses. As previously noted, 14 

additional patients were excluded because they were not administered the WMT. One 

patient was excluded because the WMT was discontinued.  

 A discrete missing value of “99” was entered to represent missing or unknown 

demographic data. Non-applicable demographic information was left blank (e.g., if a 

patient indicated that he/she was not employed, the “Employed” variable was coded “no,” 

and the subsequent “Employment Status” variable was left blank).  
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CHAPTER IV: RESULTS 

Preliminary Analyses 

 Exploring assumptions of parametric tests. There are four assumptions of 

parametric tests that were explored prior to conducting analyses: normally distributed 

data, homogeneity of variance, interval data, and independence (Field, 2009). Although 

the first assumption can mean different things for different statistical tests, it generally 

means that the sampling distribution is approximately normal. There are various ways to 

examine normality, including checking data visually, inspecting skewness and kurtosis 

values, and comparing the distribution to a normal distribution to see if it differs (Field, 

2009).  

 For data that were used in analyses (education level, neuropsychological data, and 

WMT data), histograms and probability-probability (P-P) plots, skewness and kurtosis 

values, and Kolmogorov-Smirnov (K-S) test results of the overall distribution were 

examined to assess normality. Histograms, P-P plots, and skewness and kurtosis values 

revealed that the majority of data were not normally distributed. These results were 

further supported by K-S test results, which indicated that 71% of data used in analyses, 

Ds(81) ranging from .10 to .24, ps < .05, were significantly non-normal. As research 

questions 2 and 3 involved comparing WMT performance groups, the K-S tests were re-

conducted to investigate whether the distribution of data was normal in each group. 

Results revealed that data were more normally distributed within the three groups 

compared to the overall distribution. For the optimal performance group, 45% of data, 

Ds(35) ranging from .15 to .37, ps < .05, were significantly non-normal. For the 

suboptimal performance group, 43% of data, Ds(29) ranging from .16 to .29, ps < .05, 
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were significantly non-normal. For the GMIP group, 29% of data, Ds(17) ranging 

from .21 to .39, ps < .05, were significantly non-normal. Overall, assessments of 

normality indicated that much of the data were significantly non-normal and thus violated 

the assumption of normality. 

 Homogeneity of variance is the assumption that the variance of one variable is 

stable (i.e., fairly similar) at all levels of another variable (Field, 2009). This assumption 

was explored for data in the three WMT performance groups. Levene’s tests results 

revealed that for the majority of neuropsychological data (84%), the variances were equal 

for patients in the optimal, suboptimal, and GMIP groups, Fs(2, 78) ranging from .02 to 

3.00, ns. Variances were also equal across groups for the cognitive domain variables and 

the DTBM variable, Fs(2, 78) ranging from .20 to 2.66, ns. However, for the WMT IR, 

DR, CNS, MC, and GMIP variables, variances were significantly different across the 

three groups, Fs(2, 78) ranging from 3.53 to 19.82, ps < .05. The variances for three 

neuropsychological variables (Category Fluency Test, HVLT-R Delayed Recall, HVLT-

R Recognition/Discrimination) also differed significantly across the three groups, Fs(2, 

78) ranging from 4.31 to 9.57, ps < .05. Overall, results indicated that the assumption of 

homogeneity of variance was not met for all variables across WMT performance groups.  

 The final two assumptions of parametric tests state that data should be measured 

at least at the interval level and should be independent (Field, 2009). In this study, data 

were measured at the interval level. As independence can mean different things 

depending on the test being conducted, independence as it relates to the assumptions of 

ANOVA and multiple regression is detailed below.  
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 Approach to dealing with non-normality and unequal variances. Various 

transformations were explored to attempt to correct the largely non-normal dataset. 

Transforming data involves doing something to each piece of data to correct for 

distribution problems, unequal variances, or outliers (Field, 2009). Specific 

transformations can be performed to correct for skewness and unequal variances; 

however, the necessity and usefulness of performing transformations is a complex, 

debatable issue and depends on the robustness of the statistics performed (Field, 2009). 

Robustness is the ability of a test estimate statistics that are reliable even when the 

normal assumptions of the statistic are not met (Field, 2009). For this study, log and 

square root transformations were explored to correct for the positive skew and unequal 

variances of some of the variables. The transformations were not helpful, as some data 

that were initially normal became non-normal and some data remained non-normal 

despite the transformation. As ANOVA and multiple regression are considered fairly 

robust tests, data were not transformed.   

Sample Characteristics  

 Sample demographics. Eighty-one patients met inclusion criteria and were 

included in statistical analyses. As expected, the majority of patients (69%) were pre-

surgical, indicating that they underwent neuropsychological evaluation to aid in the 

determination of their candidacy for epilepsy surgery. Patients ranged in age from 16 to 

70 years old (M = 39.98, SD = 14.28). The sample consisted of approximately equal 

numbers of males (n = 39) and females (n = 42), the majority of whom identified as 

Caucasian (86%). Most patients were either married (48%) or single (42%). Education 

level ranged from 8 to 18 years (M = 12.62, SD = 2.15). Slightly more than half of 
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patients identified as unemployed (53%). It is likely that some of these patients were 

receiving Social Security Disability Insurance (SSDI) because of their epilepsy; in fact, 

32% of patients reported that they were receiving SSDI at the time of the evaluation, 

while 30% of patients reported that they were not. Slightly more than one-third of 

patients (38%) did not disclose SSDI status. The majority of patients were right-handed 

(88%), and 57% denied a family history of sinistrality (left-handedness). Mean WAIS-III 

FSIQ score was in the high end of the low average range (M = 89.59, SD = 13.87). Mean 

WAIS-III Verbal IQ was also in the high end of the low average range (M = 89.96, SD = 

13.39). Mean WAIS-III Performance IQ was in the low end of the average range (M = 

90.67, SD = 14.30) Table 3 provides more detailed demographic information.  

Table 3 
Sample Demographics (N = 81) 
Variable n % 
Patient Status   
   Pre-surgical 56 69.1 
   Non-surgical 25 30.9 
Gender   
   Female 42 51.9 
   Male 39 48.1 
Age at NP Evaluation   
   16-19 6 7.4 
   20-29 18 22.2 
   30-39 15 18.5 
   40-49 18 22.2 
   50-59 17 21.0 
   60-69 6 7.4 
   70-79 1 1.2 
Race   
   Caucasian 70 86.4 
   African American 5 6.2 
   Hispanic 5 6.2 
   Asian 1 1.2 
Marital Status    
   Married 39 48.1 
   Never Married 34 42.0 
   Divorced 7 8.6 
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   Widowed 1 1.2 
Employment Status   
   Unemployed 43 53.1 
   Employed  31 38.3 
   Student 7 8.6 
Education Level   
   0-8 years 3 3.7 
   9-11 years 11 13.6 
   12 years 36 44.4 
   13-15 years 19 23.5 
   16-17 years 10 12.3 
   18-20 years 2 2.5 
Handedness   
   Right-handed 71 87.7 
   Left-handed 8 9.9 
   Ambidextrous 2 2.5 
Note. NP = Neuropsychological.  

 Epilepsy characteristics. Per inclusion criteria, all participants had been 

diagnosed with epilepsy by a board certified neurologist. Age of seizure onset ranged 

from birth to 65 years old (M = 22.77, SD = 1.90). Duration of seizure disorder ranged 

from 0 to 63 years (M = 16.96, SD = 1.75). The median number of seizures experienced 

by patients per month was 3.50. The median is reported for this variable to account for an 

outlier (600 absence seizures per month), as the median is relatively unaffected by 

extreme scores at either end of the distribution (Field, 2009).   

 Data regarding the side of seizure onset were available for approximately 83% 

(67/81) of the sample; of those, 26 had seizures arising from the right hemisphere, 32 

from the left hemisphere, and 9 had bilateral seizure foci. Approximately 28% of patients 

were diagnosed with left temporal lobe epilepsy (TLE) and 24% were diagnosed with 

right TLE. Data regarding number of seizure types were available for approximately 96% 

(78/81) of the sample; of those, 55% experienced two or three types of seizures, with 

complex partial/partial generalized/generalized the most frequently endorsed combined 
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seizure type. Forty-five percent of patients experienced one seizure type – simple partial, 

complex partial, partial generalized, or generalized. Data regarding most common seizure 

type were available for 95% (77/81) of the sample. Complex partial seizures were the 

most common type of partial seizure, experienced by 53% of patients. Tonic-clonic 

seizures were the most common type of generalized seizure, experienced at least once by 

62% of the sample. Most patients (74%) never experienced status epilepticus. The 

majority of patients (64%) denied a family history of seizures. All but two patients were 

taking antiepileptic drugs (AEDs) at the time of the evaluation, with the majority (94%) 

taking one to three AEDs.  

Statistical Analyses 

 Research question 1. What are the base rates of optimal, suboptimal, and GMIP 

performance as measured by the WMT?   

 Base rates of WMT performance. Frequencies were conducted to calculate the 

number of patients in each WMT performance group. Thirty-five patients (43%) were in 

the optimal performance group and 29 patients (36%) were in the suboptimal 

performance group. Seventeen (21%) patients were in the GMIP group, indicating that 

they likely performed poorly on the WMT because of significant cognitive impairment 

and not because of suboptimal performance. Means and standard deviations of the WMT 

subtests and GMIP score for the WMT performance groups are presented in Table 4.  
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Table 4 
Optimal, Suboptimal, and GMIP Groups’ Performance on WMT (N = 81) 
WMT Group IR DR CNS MC PA FR GMIP 
Optimal        
   M  98.57 98.57 97.43 92.14 87.14 56.07 19.23 
   SD  1.94 1.85 2.81 7.50 12.08 13.44 9.13 
Suboptimal        
   M  90.78 92.33 86.38 72.41 65.69 39.83 32.21 
   SD  11.61 3.53 10.87 14.12 14.06 12.97 11.50 
GMIP        
   M  78.68 79.12 72.21 39.71 38.82 20.29 43.47 
   SD  12.53 7.12 9.10 14.52 10.83 9.01 5.78 
Note: IR = Immediate Recognition; DR = Delayed Recognition; CNS = Consistency; 
MC = Multiple Choice; PA = Paired Associates; FR = Free Recall; GMIP = Genuine 
Memory Impairment Profile.  
 

 As can be seen in Table 4, patients in the WMT optimal performance group 

scored in the “clear pass” range (IR, DR, and CNS scores > 90%) on all WMT PV 

subtests, and in the “non-warning range” (MC scores > 70% and PA scores > 50%) on 

the memory subtests. Patients in this group scored higher across all WMT subtests, and 

obtained lower GMIP scores (suggesting that WMT performance was not negatively 

impacted by significant cognitive impairment), than patients in the suboptimal and GMIP 

groups. Performance in the suboptimal group was, on average, characterized by 

“cautionary” (at least one IR, DR, or CNS score between 83 and 90%) rather than 

“failure” (at least one IR, DR, or CNS score ≤ 82.5%) scores across the PV subtests (IR, 

DR, and CNS). Patients in the suboptimal group also averaged GMIP scores slightly 

higher than the ≥ 30 cutoff; however, per the WMT manual, such scores would indicate a 

GMIP only if they had failed one of the PV subtests. Patients who failed one of the first 

three PV subtests and had a ≥ 30 point difference between the mean of the easy subtests 

(IR, DR, and CNS) and the mean of the hard subtests (MC, PA, and FR) were placed into 

the GMIP group, thereby assuring that each group was mutually exclusive. Patients in the 
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GMIP group averaged scores in the “failure” range across the PV subtests and in the 

“warning” range on the memory subtests (MC and PA). Patients in this group also had 

the highest GMIP scores, suggesting that their performance on the WMT was negatively 

impacted by significant cognitive impairment.  

 Research question 2. Are there differences on WMT subtest scores among WMT 

groups? 

 Assumptions of ANOVA. The assumptions of ANOVA under which the F-

statistic is reliable are the same as those previously described for all parametric tests: 

normally distributed data, homogeneity of variance, interval data, and independence 

(Field, 2009). For the current analyses, the last two assumptions were met: the outcome 

variables (WMT subtest scores) were measured on an interval scale and all observations 

were independent of each other. However, as described below, the first two assumptions 

were not met.  

 In ANOVA, normality refers to whether the distribution of data is normal within 

groups (Field, 2009). K-S tests were conducted to investigate normality. For the optimal 

performance group, WMT subtest scores, Ds(35) ranging from .15 to .37, ps < .05, were 

significantly non-normal. For the suboptimal performance group, WMT subtest scores, 

Ds(29) ranging from .12 to .29, ps < .05, were significantly non-normal. For the GMIP 

group, the FR score, D(17) = .24, p < .05, was significantly non-normal; all other WMT 

subtest scores for this group were normally distributed. Overall, results indicated that 

WMT subtest score distributions were significantly non-normal in the optimal and 

suboptimal performance groups, thereby violating the assumption of normality. Except 

for the FR score, WMT subtest scores were normally distributed in the GMIP group. 
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 Exploratory transformations were conducted to attempt to correct non-normal 

data. Despite the transformations, WMT scores remained non-normal; therefore, data 

were not transformed. Although the F-statistic in ANOVA can be robust to violations of 

normality when group sizes are equal (Field, 2009), in this study, group sizes were 

unequal. Consequently, the accuracy of the F-statistic was likely impacted by skew, and 

the power of F may have been affected by non-normality (Field, 2009).  

 In ANOVA, homogeneity of variance refers to whether the variances in each 

group are fairly similar (Field, 2009). This assumption was explored for WMT subtest 

scores in the groups. For IR, DR, CNS, and MC scores, the variances were significantly 

different for patients in the optimal, suboptimal, and GMIP groups, Fs(2,78) ranging 

from 4.46 to 19.82, ps < .05. However, for PA and FR scores, the variances were equal 

across groups, Fs(2,78) ranging from .95 to .99, ns. Overall, results indicated that the 

variances of the majority of WMT subtest scores were significantly different across 

groups, and therefore the assumption of homogeneity was largely violated. Exploratory 

transformations (i.e., log, square root, 1/square root, reciprocal) were conducted to 

attempt to correct for heterogeneity of variances. The transformations were not 

particularly helpful; in fact, transformations caused heterogeneity of variances for scores 

that previously had similar variances (e.g., conducting a reciprocal transformation 

resulted in the variances for PA and FR scores becoming significantly different across 

groups). As such, WMT data were not transformed.  

 While ANOVA is considered robust to violations of homogeneity of variance 

when samples sizes are equal (Field, 2009), it was not considered robust to such 

violations in this study because sample sizes were unequal among WMT groups. Since 
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the optimal group – the group with the largest sample size – had smaller variances in 

most WMT subtest scores than the other groups with smaller sample sizes, the F-ratio 

may produce a significant result when there is no difference between groups (Field, 2009). 

To rectify the increased possibility of making a Type I error, Welch’s F, an alternative F-

ratio designed to be robust to violations of homogeneity of variance, is reported for the 

ANOVAs that violated the assumption homogeneity of variance. 

 Differences on WMT subtest scores among groups. Six one-way ANOVAs were 

conducted to test for differences in mean WMT subtest scores among the three groups. 

The first ANOVA indicated that WMT IR scores differed significantly across groups, 

Welch’s F(2, 27.99) = 26.55, p < .001. Post hoc comparisons using Bonferroni adjusted 

alpha levels of .008 (.05/6) indicated that the optimal group (M = 98.57, SD = 1.94) had 

significantly higher mean IR scores than the suboptimal (M = 90.78, SD = 11.61), p 

= .003, Cohen’s d = .94, and GMIP groups (M = 78.68, SD = 12.53), p < .001, Cohen’s d 

= 2.22. Post hoc tests also revealed that the suboptimal group (M = 90.78, SD = 11.61) 

had significantly higher mean IR scores than the GMIP group (M = 78.68, SD = 12.53), p 

< .001, Cohen’s d = 1.00. Results indicated that, in general, patients in the optimal group 

had significantly higher IR scores than did patients in the suboptimal and GMIP groups. 

Mean IR scores for the optimal and suboptimal groups differed by nearly one standard 

deviation, indicating a large difference in means. Mean IR scores for the optimal and 

GMIP groups differed by more than 2 standard deviations, reflecting a large difference in 

means. On average, patients in the suboptimal group had significantly higher IR scores 

than did patients in the GMIP group. Mean IR scores for the suboptimal and GMIP 

groups differed by one standard deviation, representing a large difference in means.  
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 The second ANOVA showed that WMT DR scores differed significantly across 

groups, Welch’s F(2, 31.54) = 89.70, p < .001. Post hoc comparisons using the 

Bonferroni adjustment indicated that the optimal group (M = 98.57, SD = 1.85) had 

significantly higher mean DR scores than the suboptimal (M = 92.33, SD = 3.53), p 

< .001, Cohen’s d = 2.31, and GMIP groups (M = 79.12, SD = 7.12), p < .001, Cohen’s d 

= 3.74. Post hoc tests also revealed that the suboptimal group (M = 92.33, SD = 3.53) had 

significantly higher mean DR scores than the GMIP group (M = 79.12, SD = 7.12), p 

< .001, Cohen’s d = 2.35. Results indicated that, in general, patients in the optimal group 

had significantly higher DR scores than did patients in the suboptimal and GMIP groups. 

Mean DR scores for the optimal and suboptimal groups differed by more than two 

standard deviations, indicating a large difference in means. Mean DR scores for the 

optimal and GMIP groups differed by more than three and a half standard deviations, 

reflecting a large difference in means. On average, patients in the suboptimal group had 

significantly higher DR scores than did patients in the GMIP group. Mean DR scores for 

the suboptimal and GMIP groups differed by more than two standard deviations, 

representing a large difference in means.  

The third ANOVA revealed that WMT CNS scores differed significantly across 

groups, Welch’s F(2, 29.69) = 72.35, p < .001. Post hoc comparisons using the 

Bonferroni adjustment indicated that the optimal group (M = 97.43, SD = 2.81) had 

significantly higher mean CNS scores than the suboptimal (M = 86.38, SD = 10.87), p 

< .001, Cohen’s d = 1.39, and GMIP groups (M = 72.21, SD = 9.10), p < .001, Cohen’s d 

= 3.74. Post hoc tests also revealed that the suboptimal group (M = 86.38, SD = 10.87) 

had significantly higher mean CNS scores than the GMIP group (M = 72.21, SD = 9.10), 
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p < .001, Cohen’s d = 1.41. Results indicated that, in general, patients in the optimal 

group had significantly higher CNS scores than did patients in the suboptimal and GMIP 

groups. Mean CNS scores for the optimal and suboptimal groups differed by more than 

one standard deviation, indicating a large difference in means. Mean CNS scores for the 

optimal and GMIP groups differed by more than three and a half standard deviations, 

reflecting a large difference in means. On average, patients in the suboptimal group had 

significantly higher CNS scores than did patients in the GMIP group. Mean CNS scores 

for the suboptimal and GMIP groups differed by nearly one and a half standard 

deviations, representing a large difference in means.  

The fourth ANOVA indicated that WMT MC scores differed significantly across 

groups, Welch’s F(2, 34.29) = 107.36, p < .001. Post hoc comparisons using the 

Bonferroni adjustment indicated that the optimal group (M = 92.14, SD = 7.50) had 

significantly higher mean MC scores than the suboptimal (M = 72.41, SD = 14.12), p 

< .001, Cohen’s d = 1.75, and GMIP groups (M = 39.71, SD = 14.52), p < .001, Cohen’s 

d = 4.54. Post hoc tests also revealed that the suboptimal group (M = 72.41, SD = 14.12) 

had significantly higher mean MC scores than the GMIP group (M = 39.71, SD = 14.52), 

p < .001, Cohen’s d = 2.28. Results indicated that, in general, patients in the optimal 

group had significantly higher MC scores than did patients in the suboptimal and GMIP 

groups. Mean MC scores for the optimal and suboptimal groups differed by more than 

one and a half standard deviations, indicating a large difference in means. Mean MC 

scores for the optimal and GMIP groups differed by four and a half standard deviations, 

reflecting a large difference in means. On average, patients in the suboptimal group had 

significantly higher MC scores than did patients in the GMIP group. Mean MC scores for 
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the suboptimal and GMIP groups differed by more than two standard deviations, 

representing a large difference in means.  

The fifth ANOVA showed that WMT PA scores differed significantly across 

groups, F(2, 78) = 86.06, p < .001. Post hoc comparisons using the Bonferroni 

adjustment indicated that the optimal group (M = 87.14, SD = 12.08) had significantly 

higher mean PA scores than the suboptimal (M = 65.69, SD = 14.06), p < .001, Cohen’s d 

= 1.64, and GMIP groups (M = 38.82, SD = 10.83), p < .001, Cohen’s d = 4.21. Post hoc 

tests also revealed that the suboptimal group (M = 65.69, SD = 14.06) had significantly 

higher mean PA scores than the GMIP group (M = 38.82, SD = 10.83), p < .001, Cohen’s 

d = 2.14. Results indicated that, in general, patients in the optimal group had significantly 

higher PA scores subtest than did patients in the suboptimal and GMIP groups. Mean PA 

scores for the optimal and suboptimal groups differed by more than one and a half 

standard deviations, indicating a large difference in means. Mean PA scores for the 

optimal and GMIP groups differed by more than four standard deviations, reflecting a 

large difference in means. On average, patients in the suboptimal group had significantly 

higher PA scores than did patients in the GMIP group. Mean PA scores for the 

suboptimal and GMIP groups differed by more than two standard deviations, representing 

a large difference in means.  

The final ANOVA revealed that WMT FR scores differed significantly across 

groups, F(2, 78) = 48.24, p < .001. Post hoc comparisons using the Bonferroni 

adjustment indicated that the optimal group (M = 56.07, SD = 13.44) had significantly 

higher mean FR scores than the suboptimal (M = 39.83, SD = 12.97), p < .001, Cohen’s d 

= 1.23, and GMIP groups (M = 20.29, SD = 9.01), p < .001, Cohen’s d = 3.13. Post hoc 
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tests also revealed that the suboptimal group (M = 39.83, SD = 12.97) had significantly 

higher mean FR scores than the GMIP group (M = 20.29, SD = 9.01), p < .001, Cohen’s d 

= 1.75. Results indicated that, in general, patients in the optimal group had significantly 

higher FR scores than did patients in the suboptimal and GMIP groups. Mean FR scores 

for the optimal and suboptimal groups differed by more than one standard deviation, 

indicating a large difference in means. Mean FR scores for the optimal and GMIP groups 

differed by more than three standard deviations, reflecting a large difference in means. 

On average, patients in the suboptimal group had significantly higher FR scores than did 

patients in the GMIP group. Mean FR scores for the suboptimal and GMIP groups 

differed by more than one and a half standard deviations, representing a large difference 

in means.  

Research question 3. Are there differences in neuropsychological test scores 

among WMT groups? 

Assumptions of multiple regression. To apply a regression model from a sample 

to a population of interest, several assumptions must be met. Assumption 1 states that 

predictor variables must be quantitative or categorical, and that the outcome variable 

must be quantitative, continuous, and unbounded (Field, 2009). Quantitative predictors 

should be measured at the interval level and categorical variables must have two 

categories (Field, 2009). In this study, quantitative predictors were measured at the 

interval level. As the categorical predictor had three categories, dummy coding was used. 

Outcome variables were unbounded, which means that there were no restrictions on the 

variability of the outcome (Field, 2009).  
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Assumption 2 states that the predictors should have some variation in value (Field, 

2009). All predictors had variances greater than 0, signifying that Assumption 2 was met.  

Assumption 3 indicates that there should be no perfect multicollinearity, which 

means that there should be no perfect linear relationship between two or more of the 

predictors (Field, 2009). In other words, the predictors should not correlate too strongly. 

If predictors correlate too strongly, or perfectly, it becomes nearly impossible to obtain 

unique estimates of the regression coefficients because there are a limitless number of 

coefficient combinations that would work equally well (Field, 2009).  

Multicollinearity can be identified through different methods. One method is to 

scan a correlation matrix of the predictor variables and see if any correlate very highly 

(≥ .80) (Field, 2009). Scanning a correlation matrix of predictors revealed correlation 

coefficients ranging from -.39 to .04, indicating that there were no strong correlations 

between predictors. As this method may miss more subtle forms of multicollinearity, two 

collinearity diagnostic statistics should also be checked: the variance inflation factor 

(VIF) and the tolerance statistic (Field, 2009). The VIF shows whether a predictor has a 

strong linear relationship with the other predictor(s) (Field, 2009). A VIF greater than 10 

is problematic (Myers, 1990), and an average VIF of all the predictors of considerably 

greater than 1 indicates that the regression may be biased (Bowerman & O’Connell, 

1990). No regressions had VIFs greater than 10. Average VIFs were 1.13 for the 

regressions with the covariate and 1.17 for the regressions without the covariate, 

confirming that collinearity was not a problem for the regression models.  

The tolerance statistic is the reciprocal of the VIF (Field, 2009). Tolerance values 

below .1 reflect a serious problem, and values below .2 are cause for concern (Menard, 
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1995). Tolerance values ranged from .83 to .98 for the regressions with the covariate, and 

were .85 for the regressions without the covariate, providing further support for 

collinearity not being problematic for the regression models.  

Another way to investigate collinearity is to check the collinearity diagnostics, 

which provide eigenvalues of the scaled, uncentered cross-products matrix, condition 

indexes, and variance proportions (Field, 2009). For the regressions with the covariate, 

the largest difference between eigenvalues was 1.52. This difference was fairly small, 

indicating that the eigenvalues were relatively similar and that the regression models 

were likely unchanged by small changes in the measured variables. The condition 

indexes are another way of expressing the eigenvalues and symbolize the square root of 

the ratio of the biggest eigenvalue to the eigenvalue of interest (Field, 2009). There are no 

cutoffs for how much larger a condition index needs to be to reflect a problem with 

collinearity. In this case, condition indexes did not vary too much from 1 (2.70 was the 

largest value), suggesting that collinearity was not a problem.  

The final way to check for collinearity is to look for predictors that have large 

variance proportions on the same small eigenvalue, as this indicates that their regression 

coefficients are dependent (Field, 2009). This was first explored for regression models 

that included the covariate. For the covariate (education level), 0% of the variance of the 

regression coefficient was associated with eigenvalue number 1, 44% was associated with 

eigenvalue number 2, 54% was associated with eigenvalue number 3, and 2% was 

associated with eigenvalue number 4. For the first dummy variable representing 

“GMIPness,” 7% of the variance of the regression coefficient was associated with 

eigenvalue number 1, 20% was associated with eigenvalue number 2, 24% was 
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associated with eigenvalue number 3, and 49% was associated with eigenvalue number 4. 

For the second dummy variable representing “suboptimalness,” 10% of the variance of 

the regression coefficient was associated with eigenvalue number 1, 9% was associated 

with eigenvalue number 2, 11% was associated with eigenvalue number 3, and 71% was 

associated with eigenvalue number 4. In these regression models, the two dummy 

variables had substantial variance proportions on eigenvalue number 4, suggesting 

dependency between these two variables. However, conducting a Pearson correlation 

revealed a moderate, negative relationship between these variables (r = -.39, p < .001), 

suggesting that strong collinearity was not present.  

Variance proportions were also checked for the regression models without the 

covariate. For the first dummy variable, 7% of the variance of the regression coefficient 

was associated with eigenvalue number 1, 42% was associated with eigenvalue number 2, 

and 50% was associated with eigenvalue number 3. For the second dummy variable, 10% 

of the variance of the regression coefficient was associated with eigenvalue number 1, 

20% was associated with eigenvalue number 2, and 70% was associated with eigenvalue 

number 3. Similar to the regression models with the covariate, the dummy variables in 

the regression models without the covariate had considerable variance proportions on the 

same small eigenvalue, suggesting some dependency between them. However, as these 

variables were not found to highly correlate with each other (r = -.39, p < .001), strong 

collinearity was likely not problematic.  

Assumption 4 states that predictors should not be correlated to external variables, 

which are variables not included in the regression model that influence the outcome 

variable (Field, 2009). This assumption was tested by exploring the relationships between 
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the predictors and the potential covariates of sex, race, age, and education level. As 

described in Chapter 3, no significant correlations were found, indicating that 

Assumption 4 was met.  

Assumption 5 deals with homoscedasticity and states that at each level of the 

predictor variables, the variance of the residual terms should be constant (Field, 2009). In 

other words, at each level of the predictors, the residuals should have the same variance 

(homoscedasticity). To check this assumption for each regression model, the standardized 

residuals (standardized differences between the observed data and the values predicted by 

the model) were plotted against the standardized predicted values of the outcome variable 

based on the model. If the graph reflects homoscedasticity, data should appear to be 

evenly distributed around zero (Field, 2009). If the data funnel out, then the graph likely 

indicates heteroscedasticity, or that the variances are very unequal (Field, 2009). A 

curved graph indicates that the assumption of linearity has likely been broken (Field, 

2009). Graphs funneled out for the majority of the regression models (models with the 

DTBM and the VF, PO, AC, and PS domains as outcome variables), indicating that there 

was heteroscedasticity in the data. For the EF, LM, and MD regressions, residuals were 

spread across three separate vertical lines. Residuals had unequal variances at various 

levels of the predictor, indicating heteroscedasticity was also a problem for these 

regression models. Although the residuals were clustered into three separate vertical lines 

for the LM and MD regressions, the residuals were respectively relatively symmetrically 

distributed around 0 at each level of the predictor, indicating that there was a linear 

relationship between WMT performance and these respective domain scores. However, 

for the EF regression, residuals were mostly negative when the predicted value of Y was 
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approximately -1.5, mostly positive when the predicted value of Y was slightly smaller 

than 0, and mostly negative when the predicted value of Y was 1. These results suggested 

that the relationship between WMT performance and EF scores was not linear. Overall, 

the assumption of homoscedasticity was violated for all of the regression models. As 

previously described, transforming the data did not improve non-normality or 

heterogeneity of variance, and thus, data remained untransformed. Failure to meet this 

assumption means that findings cannot be generalized beyond this sample.  

Assumption 6 states that residual terms should be uncorrelated for any two 

observations (Field, 2009). The Durbin-Watson test is used to test this assumption. Test 

statistic values can range from 0 to 4 with a value of 2 signifying that the residuals are 

uncorrelated (Field, 2009). Durbin-Watson values ranged from 1.68 to 2.17 for the 

regression models, suggesting that the residuals were largely uncorrelated.  

Assumption 7 states that the residuals in each regression model are random, 

normally distributed variables with a mean of, or very close to, zero (Field, 2009). To 

check the normality of residuals, histograms and normal P-P plots were examined for 

each model. For the VF model, the histogram distribution appeared slightly non-normal 

with slight deviations from normality also evidenced on the normal P-P plot. For the 

DTBM and the PO, EF, LM, MD, AC, and PS models, histogram distributions were 

largely normal though normal P-P plots evidenced slight deviations from normality.   

Assumption 8 states that all of the values of the outcome variable are independent 

(Field, 2009). This assumption was met, as all values of each outcome variable came 

from a different patient.  
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The final assumption states that the relationship being modeled is a linear one. As 

noted above, a residual versus predicted scatterplot revealed a nonlinear relationship 

between WMT performance and EF scores. As such, the generalizability of findings from 

this regression is extremely limited. All other relationships modeled were linear.  

Assessing the regression models: Diagnostics. Outliers and influential cases 

should be explored to see whether the model fits the observed data well (Field, 2009). 

Outliers are cases that substantially differ from the majority of observed cases, and can 

add bias to a regression model because they impact estimated regression coefficient 

values (Field, 2009). Outliers can be identified by checking standardized residuals. 

Standardized residuals with absolute values greater than 3.29 are likely problematic 

(Field, 2009). If more than 1% of the sample has standardized residuals with absolute 

values greater than 2.58, or, if more than 5% of the sample has standardized residuals 

with absolute values greater than 2, the model may be an inaccurate representation of the 

sample data (Field, 2009). Standardized residuals were checked for each model. No 

model had cases with standardized residuals with absolute values greater than 3.29. For 

three regression models (EF, MD, and DTBM), more than 1% of their samples had 

standardized residuals with absolute values greater than 2.58: the EF and DTBM 

regression models each had 1 case (1.23%) outside the limit, and the MD regression 

model had 2 cases (2.47%) outside the limit. As absolute values of standardized residuals 

for these regression samples were between 1 to 2% of what was expected, it was 

concluded that the samples largely appeared to conform to what would be expected for 

fairly accurate models. Only the LM regression model had slightly more than 5% of cases 

(6.17%) that had standardized residuals with absolute values greater than 2. However, as 
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this sample was within 1.17% of what was expected, it was concluded that the sample 

appeared to conform to what would be expected for a fairly accurate model.  

Regression models were also checked for influential cases. Adjusted predicted 

values were compared to predicted values to ensure that cases did not have large 

influences over the model. For each model, all adjusted predicted values were very 

similar to predicted values, suggesting that the models were stable. Cook’s Distances, 

which are measures of the influence of a case on the model (Cook & Weisberg, 1982), 

were examined. Cook’s values greater than 1 indicate a possible problem (Cook & 

Weisberg, 1982). No model contained cases with Cook’s values close to 1, suggesting 

that there were no cases that greatly influenced each model’s ability to predict all cases. 

Average leverage values, which are measures of the effect of the observed value of the 

outcome over the predicted values (Field, 2009), were calculated for each regression. 

Following recommendations from Hoaglin and Welsch (1978) and Stevens (2002), cases 

were examined to check for values two to three times greater than the average leverage 

value for each model. For all models, all cases were within the boundary of three times 

the average leverage; however, five models (VF, PO, AC, PS, and DTBM) had one case 

each that was slightly greater than two times the average leverage. As the number of 

cases outside the smaller of the recommended average leverage values was very small, no 

cases were considered to have undue influences over the model. Mahalanobis distances, 

which indicate the distance of cases from the means of the predictors (Field, 2009), were 

examined for high values. For smaller sample sizes (N = 100) with around 3 predictors, 

Mahalanobis distances greater than 15 are troublesome (Field, 2009). Mahalanobis 

distances ranged from 1.30 to 9.32 across models, indicating that values were well within 
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suggested parameters. Standardized DFBeta values, which indicate differences between 

parameters of regression models estimated using all cases and estimated with one case 

excluded, were investigated. Standardized BFBetas with absolute values greater than 1 

identify cases that markedly affect the model parameters (Field, 2009). All standardized 

DFBeta absolute values were less than 1. Finally, covariance ratios (CVRs), which are 

measures of whether a case impacts the variance of the regression parameter (Field, 

2009), were examined. Per recommendations from Belsey, Kuh, and Welsch (1980), 

cases were examined for CRV values greater than 1 plus three times the leverage and for 

CRV values less than 1 minus three times the leverage. All CVRs fell within, or just 

outside, recommended ranges. Overall, examination of these values suggested that no 

influential cases were present in the regression models. 

Exploration of the covariate. The independence of the covariate (education level) 

and treatment effect (WMT performance) was explored prior to conducting regression 

analyses. Levene’s test indicated that for education level, the variances were equal for 

patients in each WMT group, F(2, 78) = 2.03, ns. Thus, the experimental effect was not 

confounded with the effect of the covariate.   

Differences in VF test scores among WMT performance groups. Correlation and 

multiple regression analyses were conducted to examine differences in VF scores among 

WMT performance groups after controlling for education level. Table 5 summarizes the 

descriptive statistics and correlational analyses results. As can be seen, there was a 

significant positive correlation between education level and VF scores, rCOV (79) = .23, p 

< .05, indicating that patients with more years of education had higher VF scores. 

Education level accounted for 5% of the variance in VF scores, r2
COV = .05, p < .05. 
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GMIPness was significantly negatively correlated with VF scores, r  X1(79) = -.41, p 

< .001, indicating that the mean of the VF scores in the GMIP group was smaller than the 

mean of the VF scores for non-GMIP group members. GMIPness accounted for 17% of 

the variance in VF scores, r2
X1 = .17, p < .001. Suboptimalness was not significantly 

correlated with VF scores, r  X2(79) = -.01, p = ns, indicating that the mean of the VF 

scores in the Suboptimal group was not significantly different than the mean of the VF 

scores for non-Suboptimal group members.  

Table 5 
Correlation Coefficients, Means, and Standard Deviations for WMT  
Performance Dummy Variables, Education Level Covariate, and VF Scores  

          r 
Variables Y COV X1 X2 r2

Yi 
Y 1.00 .23* -.41***  -.01 – 
COV .23* 1.00 .04 -.16 .05* 
X1 -.41***  .04 1.00 -.39***  .17***  
X2 -.01 -.16 -.39***  1.00 .00 
      
M -.54 .00 .21 .36  
SD .66 2.15 .41 .48  
Note. Y = VF scores; COV = education level; X1 = GMIP group;  
X2 = suboptimal group; r = zero-order (Pearson) correlation coefficient.  
*p < .05. *** p < .001. 
 

 Table 6 displays partial and semipartial (part) correlation coefficients between the 

predictors and VF scores. As can be seen, there was a significant positive relationship 

between education level and VF scores after common variance with the dummy variables 

was removed from both the education level covariate (residualized predictor) and VF 

score outcome variable (residualized outcome), prCOV(77) = .25, p < .05. There was also a 

significant positive relationship between education level and VF scores after removing 

variance that the education level covariate had in common with the dummy variables, 



 102

srCOV(77) = .22, p < .05. Education level uniquely accounted for 5% of the variance in VF 

scores, sr2COV = .05, p < .05.  

 There was a significant negative difference, in correlational terms, in VF scores 

between the GMIP and optimal (reference) groups holding constant the effects of 

education level and Suboptimalness on both the GMIP group and VF scores, prX1(77) =   

-.46, p < .001. Nineteen percent of the variance in VF scores was accounted for by 

defining GMIP as a category distinct from the optimal category, sr2X1 = .19, p < .001. In 

other words, 19% of the variance in VF scores was explained by the fact that the GMIP 

group averaged different VF scores than the optimal group. Additionally, sr2 indicates the 

amount by which R2 would be reduced if Xi were omitted from the predictor variables 

(Cohen & Cohen, 1983). This means that the loss of the distinction between the GMIP 

and optimal groups would result in a loss of 19% of the variance accounted for in VF 

scores, or, that R2 would drop from .25 to .06.   

 There was not a significant difference, in correlational terms, in VF scores 

between the suboptimal and optimal groups when the effects of education level and 

GMIPness on both the suboptimal group and VF scores were held constant, prX2(77) =    -

.17, p = ns. A significant portion of the variance in VF scores was not accounted for by 

defining suboptimal as a category distinct from the optimal category, sr2X2 = .02, p = ns.  

Table 6 
Partial and Semipartial Correlation Coefficients for WMT  
Performance Dummy Variables, Education Level Covariate,  
and VF Scores 
Variables   pri     sri   sr2i 
COV  .25*  .22*  .05* 
X1  -.46***   -.44***   .19***  
X2  -.17  -.14  .02 
Note. pri = partial correlation coefficient; sri

 = semipartial  
(part) correlation coefficient. *p < .05. *** p < .001. 
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 The overall regression model was statistically significant, F(3, 77) = 8.58, p 

< .001. As shown in Table 7, education level alone accounted for 5% of the variance in 

VF scores, F(1, 79) = 4.38, p < .05, and the WMT performance dummy variables 

explained an additional 20% of the variance, Fchange(2, 77) = 10.16, p < .001. Thus, a total 

of 25% of the variance in VF scores was explained by education level and WMT 

performance. More specifically, holding WMT performance constant, each additional 

year of education was associated with a .07 increase in VF scores. Controlling for the 

effects of education level and suboptimalness, there was a significant difference between 

the mean VF scores of GMIP and optimal group members. As a patient changed from 

performing optimally on the WMT to having a GMIP performance, VF scores decreased 

by .77 points. In other words, patients in the GMIP group averaged VF scores .77 points 

lower than patients in the optimal group. Mean VF scores between patients in the 

suboptimal and optimal groups were not found to significantly differ, indicating that VF 

scores were relatively similar whether patients performed optimally or suboptimally on 

the WMT. Mean VF scores for each WMT performance group are presented in Table 8.  

Table 7 
Summary of Hierarchical Regression Analysis for Differences in VF Scores Among WMT 
Performance Groups Accounting for Education Level (N = 81) 
 
Variables 

Model 1 Model 2 
B SE B Beta    B SE B Beta 

Constant -.54 .07     
COV .07 .03 .23*    
       
Constant    -.30 .10  
COV    .07 .03 .22* 
X1    -.77 .17 -.48***  
X2    -.22 .15  -.16 
Note. B = unstandardized regression coefficient; SE B = standard error of the regression 
coefficient; Beta  = standardized regression coefficient; Model 1: R2 = .05 (p < .05), 
adjusted R2 = .04; Model 2: R2 = .25 (p < .001), adjusted R2 = .22,ΔR2 = .20 (p < .001). 
*p < .05. *** p < .001. 
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Table 8  
WMT Performance Groups’ Mean VF Scores  
WMT Performance Group Mean VF Scores 
Optimal -.30 
GMIP -1.07 
Suboptimal -.52 
Note. Scores are presented as z-scores.  
 

Differences in PO test scores among WMT performance groups. Correlation and 

multiple regression analyses were conducted to examine differences in PO scores among 

WMT performance groups after controlling for education level. Table 9 summarizes the 

descriptive statistics and correlational analyses results. As can be seen, there was a 

significant positive correlation between education level and PO scores, rCOV(79) = .31, p 

< .01, indicating that patients with more years of education had higher PO scores. 

Education level accounted for 10% of the variance in PO scores, r2
COV = .10, p < .01. 

GMIPness was significantly negatively correlated with PO scores, rX1(79) = -.40, p 

< .001, indicating that the mean of the PO scores in the GMIP group was smaller than the 

mean of the PO scores for non-GMIP group members. GMIPness accounted for 16% of 

the variance in PO scores, r2
X1 = .16, p < .001. Suboptimalness was not significantly 

correlated with PO scores, rX2(79) = -.06, p = ns, indicating that the mean of the PO 

scores in the suboptimal group was not significantly different than the mean of the PO 

scores for non-suboptimal group members.  
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Table 9 
Correlation Coefficients, Means, and Standard Deviations for WMT  
Performance Dummy Variables, Education Level Covariate, and PO Scores  

          r 
Variables Y COV X1 X2 r2

Yi 
Y 1.00 .31** -.40***  .06 – 
COV .31** 1.00 .04 -.16 .10**  
X1 -.40***  .04 1.00 -.39***  .16***  
X2 -.06 -.16 -.39***  1.00 .00 
      
M -.27 .00 .21 .36  
SD .76 2.15 .41 .48  
Note. Y = PO scores. *p < .05. ** p < .01. *** p < .001. 
 

 Table 10 displays partial and semipartial correlation coefficients between the 

predictors and PO scores. As can be seen, there was a significant positive relationship 

between education level and PO scores after common variance with the dummy variables 

was removed from both the education level covariate and the PO outcome variable, 

prCOV(77) = .34, p < .01. There was also a significant positive relationship between 

education level and PO scores after removing variance that the education level covariate 

had in common with the dummy variables, srCOV (77) = .31, p < .01. Education level 

uniquely accounted for 10% of the variance in PO scores, sr2COV = .10, p < .01.  

 There was a significant negative difference, in correlational terms, in PO scores 

between the GMIP and optimal groups holding constant the effects of education level and 

suboptimalness on both the GMIP group and PO scores, prX1(77) = -.42, p < .001. Fifteen 

percent of the variance in PO scores was accounted for by defining GMIP as a category 

distinct from the optimal category, sr2X1 = .15, p < .001. The loss of the distinction 

between the GMIP and optimal groups would result in a loss of 15% of the variance 

accounted for in PO scores, or, that R2 would drop from .26 to .11.  
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 There was not a significant difference, in correlational terms, in PO scores 

between the suboptimal and optimal groups when the effects of education level and 

GMIPness on both the suboptimal group and PO scores were held constant, prX2(77) =     

-.06, p = ns. A significant portion of the variance in PO scores was not accounted for by 

defining suboptimal as a category distinct from the optimal category, sr2X2 = .00, p = ns. 

Table 10 
Partial and Semipartial Correlation Coefficients for WMT  
Performance Dummy Variables, Education Level Covariate,  
and PO Scores 
Variables   pri     sri   sr2i 
COV  .34**  .31**  .10** 
X1  -.42***   -.39***   .15***  
X2  -.06  -.05  .00 
Note. *p < .05. ** p < .01. *** p < .001. 
 

 The overall regression model was statistically significant, F(3, 77) = 9.07, p 

< .001. As shown in Table 11, education level alone accounted for 9% of the variance in 

PO scores, F(1, 79) = 8.21, p < .01, and the WMT performance dummy variables 

explained an additional 17% of the variance, Fchange(2, 77) = 8.70, p < .001. Thus, a total 

of 26% of the variance in PO scores was explained by education level and WMT 

performance. More specifically, holding WMT performance constant, each additional 

year of education was associated with a .11 increase in PO scores. Controlling for the 

effects of education level and suboptimalness, there was a significant difference between 

the mean PO scores of GMIP and optimal group members. As a patient changed from 

performing optimally on the WMT to having a GMIP performance, PO scores decreased 

by .80 points. Stated differently, patients in the GMIP group averaged PO scores .80 

points lower than patients in the optimal group. Mean PO scores between patients in the 

suboptimal and optimal groups were not found to significantly differ, indicating that PO 
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scores were relatively similar whether patients performed optimally or suboptimally on 

the WMT. Mean PO scores for each WMT performance group are presented in Table 12.  

Table 11 
Summary of Hierarchical Regression Analysis for Differences in PO Scores Among WMT 
Performance Groups Accounting for Education Level (N = 81) 
 
Variables 

Model 1 Model 2 
B SE B Beta    B SE B Beta 

Constant -.27 .08     
COV .11 .04 .31**    
       
Constant    -.07 .11  
COV    .11 .04 .31** 
X1    -.80 .20 -.43***  
X2    -.08 .17  -.05 
Note. Model 1: R2 = .09 (p < .01), adjusted R2 = .08; Model 2: R2 = .26 (p < .001), 
adjusted R2 = .23,ΔR2 = .17 (p < .001). ** p < .01. *** p < .001. 
 
 
Table 12 
WMT Performance Groups’ Mean PO Scores 
WMT Performance Group Mean PO Scores 
Optimal -.07 
GMIP -.87 
Suboptimal -.15 
Note. Scores are presented as z-scores.  
 

 
Differences in EF test scores among WMT performance groups. Correlation and 

multiple regression analyses were conducted to examine differences in EF scores among 

WMT performance groups. Table 13 summarizes the descriptive statistics and 

correlational analyses results. As can be seen, GMIPness was significantly negatively 

correlated with EF scores, rX1(79) = -.35, p < .01, indicating that the mean of the EF 

scores in the GMIP group was smaller than the mean of the EF scores for non-GMIP 

group members. GMIPness accounted for 12% of the variance in EF scores, r2
X1 = .12, p 

< .01. Suboptimalness was not significantly correlated with EF scores, rX2(79) = -.11, p = 
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ns, indicating that the mean of the EF scores in the suboptimal group was not 

significantly different than the mean of the EF scores for non-suboptimal group members. 

Table 13 
Correlation Coefficients, Means, and Standard Deviations for  
WMT Performance Dummy Variables and EF Scores  

          r 
Variables Y X1 X2 r2

Yi 
Y 1.00 -.35** -.11 – 
X1 -.35** 1.00 -.39***  .12**  
X2 -.11 -.39***  1.00 .01 
     
M -.75 .21 .36  
SD .88 .41 .48  
Note. Y = EF scores. ** p < .01. *** p < .001. 
  

 Table 14 displays partial and semipartial correlation coefficients between the 

predictors and EF scores. As is evident, there was a significant negative difference, in 

correlational terms, in EF scores between the GMIP and optimal groups holding constant 

the effect of suboptimalness on both the GMIP group and EF scores, prX1(78) = -.42, p 

< .001. Eighteen percent of the variance in EF scores was accounted for by defining 

GMIP as a category distinct from the optimal category, sr2X1 = .18, p < .001. The loss of 

the distinction between the GMIP and optimal groups would result in a loss of 18% of the 

variance accounted for in EF scores, or, that R2 would drop from .19 to .01.  

 There was also a significant negative difference, in correlational terms, in EF 

scores between the suboptimal and optimal groups when the effect of GMIPness on both 

the suboptimal group and EF scores was held constant, prX2(78) = -.28, p < .05. Seven 

percent of the variance in EF scores was accounted for by defining suboptimal as a 

category distinct from the optimal category, sr2X2 = .07, p < .05. The loss of the 
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distinction between the suboptimal and optimal groups would result in a loss of 7% of the 

variance accounted for in EF scores, or, that R2 would drop from .19 to .12. 

Table 14 
Partial and Semipartial Correlation Coefficients for WMT  
Performance Dummy Variables and EF Scores 
Variables   pri     sri   sr2i 
X1  -.42***   -.42***   .18***  
X2  -.28*  -.26*  .07* 
Note. *p < .05. *** p < .001. 
 

 The regression model was statistically significant, F(2, 78) = 9.02, p < .001, and 

accounted for 19% of the variance in EF scores (R2 = .19, Adjusted R2 = .17). As shown 

in Table 15, controlling for the effect of suboptimalness, there was a significant 

difference between the mean EF scores of GMIP and optimal group members. As a 

patient changed from performing optimally on the WMT to having a GMIP performance, 

EF scores decreased by .98 points. In other words, patients in the GMIP group averaged 

EF scores .98 points lower than patients in the optimal group. Holding constant the effect 

of GMIPness, there was also a significant difference between the mean EF scores of 

suboptimal and optimal group members. As a patient changed from performing optimally 

to suboptimally on the WMT, EF scores decreased by .51 points, indicating that patients 

in the suboptimal group averaged EF scores .51 points lower than patients in the optimal 

group. Mean EF scores for each WMT performance group are presented in Table 16.  
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Table 15 
Summary of Regression Analysis for Differences in EF  
Scores Among WMT Performance Groups (N = 81) 
Variables B SE B Beta 
Constant -.36 .14  
X1 -.98 .24 -.46***  
X2 -.51 .20 -.28* 
Note. R2 = .19 (p < .001), adjusted R2 = .17. *p < .05.  
*** p < .001. 
 
 
Table 16 
WMT Performance Groups’ Mean EF Scores  
WMT Performance Group Mean EF Scores 
Optimal -.36 
GMIP -1.34 
Suboptimal -.87 
Note. Scores are presented as z-scores.  
 
 

Differences in LM test scores among WMT performance groups. Correlation 

and multiple regression analyses were conducted to examine differences in LM scores 

among WMT performance groups. Table 17 summarizes the descriptive statistics and 

correlational analyses results. As can be seen, GMIPness was significantly negatively 

correlated with LM scores, rX1(79) = -.54, p < .001, indicating that the mean of the LM 

scores in the GMIP group was smaller than the mean of the LM scores for non-GMIP 

group members. GMIPness accounted for 29% of the variance in LM scores, r2
X1 = .29, p 

< .001. Suboptimalness was not significantly correlated with LM scores, rX2(79) = -.09, p 

= ns, indicating that the mean of the LM scores in the suboptimal group was not 

significantly different than the mean of the LM scores for non-suboptimal group 

members. 
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Table 17 
Correlation Coefficients, Means, and Standard Deviations for  
WMT Performance Dummy Variables and LM Scores  

          r 
Variables Y X1 X2 r2

Yi 
Y 1.00 -.54*** -.09 – 
X1 -.54***  1.00 -.39***  .29*** 
X2 -.09 -.39***  1.00 .01 
     
M -.73 .21 .36  
SD .88 .41 .48  
Note. Y = LM scores. *** p < .001. 
 

 Table 18 displays partial and semipartial correlation coefficients between the 

predictors and LM scores. As can be seen, there was a significant negative difference, in 

correlational terms, in LM scores between the GMIP and optimal groups holding constant 

the effect of suboptimalness on both the GMIP group and LM scores, prX1(78) = -.63, p 

< .001. Thirty eight percent of the variance in LM scores was accounted for by defining 

GMIP as a category distinct from the optimal category, sr2X1 = .38, p < .001. The loss of 

the distinction between the GMIP and optimal groups would result in a loss of 38% of the 

variance accounted for in LM scores, or, that R2 would drop from .40 to .02.  

 There was also a significant negative difference, in correlational terms, in LM 

scores between the suboptimal and optimal groups when the effect of GMIPness on both 

the suboptimal group and LM scores was held constant, prX2(78) = -.38, p < .01. Ten 

percent of the variance in LM scores was accounted for by defining suboptimal as a 

category distinct from the optimal category, sr2X2 = .10, p < .01. The loss of the 

distinction between the suboptimal and optimal groups would result in a loss of 10% of 

the variance accounted for in LM scores, or, that R2 would drop from .40 to .30. 
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Table 18 
Partial and Semipartial Correlation Coefficients for WMT  
Performance Dummy Variables and LM Scores 
Variables   pri     sri   sr2i 
X1  -.63***   -.62***   .38***  
X2  -.38**  -.32**  .10** 
Note. ** p < .01. *** p < .001. 
 

 The regression model was statistically significant, F(2, 78) = 25.68, p < .001, and 

accounted for 40% of the variance in LM scores (R2 = .40, Adjusted R2 = .38). As 

displayed in Table 19, controlling for the effect of suboptimalness, there was a significant 

difference between the mean LM scores of GMIP and optimal group members. As a 

patient changed from performing optimally on the WMT to having a GMIP performance, 

LM scores decreased by 1.45 points. In other words, patients in the GMIP group 

averaged LM scores 1.45 points lower than patients in the optimal group. Holding 

constant the effect of GMIPness, there was also a significant difference between the mean 

LM scores of suboptimal and optimal group members. As a patient changed from 

performing optimally to suboptimally on the WMT, LM scores decreased by .63 points, 

indicating that patients in the suboptimal group averaged LM scores .63 points lower than 

patients in the optimal group. Mean LM scores for each WMT performance group are 

presented in Table 20.  

Table 19 
Summary of Regression Analysis for Differences in LM  
Scores Among WMT Performance Groups (N = 81) 
Variables B SE B Beta 
Constant -.20 .12  
X1 -1.45 .20 -.68***  
X2 -.63 .17 -.35** 
Note. R2 = .40 (p < .001), adjusted R2 = .38. ** p < .01.  
*** p < .001. 
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Table 20 
WMT Performance Groups’ Mean LM Scores 
WMT Performance Group Mean LM Scores 
Optimal -.20 
GMIP -1.65 
Suboptimal -.83 
Note. Scores are presented as z-scores.  
 
 

Differences in AC test scores among WMT performance groups. Correlation and 

multiple regression analyses were conducted to examine differences in AC scores among 

WMT performance groups after controlling for education level. Table 21 summarizes the 

descriptive statistics and correlational analyses results. As can be seen, there was a 

significant positive correlation between education level and AC scores, rCOV(79) = .25, p 

< .05, indicating that patients with more years of education had higher AC scores. 

Education level accounted for 6% of the variance in AC scores, r2
COV = .06, p < .05. 

GMIPness was significantly negatively correlated with AC scores, rX1(79) = -.37, p 

< .001, indicating that the mean of the AC scores in the GMIP group was smaller than the 

mean of the AC scores for non-GMIP group members. GMIPness accounted for 14% of 

the variance in AC scores, r2
X1 = .14, p < .001. Suboptimalness was not significantly 

correlated with AC scores, rX2(79) = -.12, p = ns, indicating that the mean of the AC 

scores in the suboptimal group was not significantly different than the mean of the AC 

scores for non-suboptimal group members.  
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Table 21 
Correlation Coefficients, Means, and Standard Deviations for WMT  
Performance Dummy Variables, Education Level Covariate, and AC Scores  

          r 
Variables Y COV X1 X2 r2

Yi 
Y 1.00 .25* -.37***  -.12 – 
COV .25* 1.00 .04 -.16 .06* 
X1 -.37***  .04 1.00 -.39***  .14***  
X2 -.12 -.16 -.39***  1.00 .01 
      
M -.67 .00 .21 .36  
SD .86 2.15 .41 .48  
Note. Y = AC scores. *p < .05. *** p < .001. 
 

 Table 22 displays partial and semipartial correlation coefficients between the 

predictors and AC scores. As can be seen, there was a significant positive relationship 

between education level and AC scores after common variance with the dummy variables 

was removed from both the education level covariate and the AC outcome variable, 

prCOV(77) = .25, p < .05. There was also a significant positive relationship between 

education level and AC scores after removing variance that the education level covariate 

had in common with the dummy variables, srCOV (77) = .22, p < .05. Education level 

uniquely accounted for 5% of the variance in AC scores, sr2COV = .05, p < .05.  

 There was a significant negative difference, in correlational terms, in AC scores 

between the GMIP and the optimal group holding constant the effects of education level 

and suboptimalness on both the GMIP group and AC scores, prX1(77) = -.46, p < .001. 

Nineteen percent of the variance in AC scores was accounted for by defining GMIP as a 

category distinct from the optimal category, sr2X1 = .19, p < .001. The loss of the 

distinction between the GMIP group and the optimal group would result in a loss of 19% 

of the variance accounted for in AC scores, or, that R2 would drop from .26 to .07.  
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 There was also a significant negative difference, in correlational terms, in AC 

scores between the suboptimal and optimal groups when the effects of education level 

and GMIPness on both the suboptimal group and AC scores were held constant, prX2(77) 

= -.28, p < .05. Six percent of the variance in AC scores was accounted for by defining 

suboptimal as a category distinct from the optimal category, sr2X2 = .06, p < .05. The loss 

of the distinction between the suboptimal and optimal groups would result in a loss of 5% 

of the variance accounted for in AC scores, or, that R2 would drop from .26 to .21. 

Table 22 
Partial and Semipartial Correlation Coefficients for WMT  
Performance Dummy Variables, Education Level Covariate,  
and AC Scores 
Variables   pri     sri   sr2i 
COV  .25*  .22*  .05* 
X1  -.46***   -.44***   .19***  
X2  -.28*  -.25*  .06* 
Note. *p < .05. *** p < .001. 
 

 The overall regression model was statistically significant, F(3, 77) = 9.15, p 

< .001. As shown in Table 23, education level alone accounted for 6% of the variance in 

AC scores, F(1, 79) = 5.20, p < .05, and the WMT performance dummy variables 

explained an additional 20% of the variance, Fchange(2, 77) = 10.50, p < .001. Thus, a total 

of 26% of the variance in AC scores was explained by education level and WMT 

performance. More specifically, holding WMT performance constant, each additional 

year of education was associated with a .09 increase in AC scores. Controlling for the 

effects of education level and suboptimalness, there was a significant difference between 

the mean AC scores of GMIP and optimal group members. As a patient changed from 

performing optimally on the WMT to having a GMIP performance, AC scores decreased 

by 1 point. Stated differently, patients in the GMIP group averaged AC scores 1 point 
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lower than patients in the optimal group. Holding constant the effect of GMIPness, there 

was also a significant difference between the mean AC scores of suboptimal and optimal 

group members. As a patient changed from performing optimally to suboptimally on the 

WMT, AC scores decreased by .48 points, indicating that patients in the suboptimal 

group averaged AC scores .48 points lower than patients in the optimal group. Mean AC 

scores for each WMT performance group are presented in Table 24.  

Table 23 
Summary of Hierarchical Regression Analysis for Differences in AC Scores Among WMT 
Performance Groups Accounting for Education Level (N = 81) 
 
Variables 

Model 1 Model 2 
B SE B Beta    B SE B Beta 

Constant -.67 .09     
COV .10 .04 .25*    
       
Constant    -.29 .13  
COV    .09 .04 .22* 
X1    -1.00 .22 -.48***  
X2    -.48 .19  -.27* 
Note. Model 1: R2 = .06 (p < .05), adjusted R2 = .05; Model 2: R2 = .26 (p < .001), 
adjusted R2 = .23,ΔR2 = .20 (p < .001). *p < .05. *** p < .001. 
 
 
Table 24 
WMT Performance Groups’ Mean AC Scores  
WMT Performance Group Mean AC Scores 
Optimal -.29 
GMIP -1.29 
Suboptimal -.77 
Note. Scores are presented as z-scores.  

 

Differences in PS test scores among WMT performance groups. Correlation and 

multiple regression analyses were conducted to examine differences in PS scores among 

WMT performance groups after controlling for education level. Table 25 summarizes the 

descriptive statistics and correlational analyses results. As can be seen, there was a 

significant positive correlation between education level and PS scores, rCOV(79) = .30, p 
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< .01, indicating that patients with more years of education had higher PS scores. 

Education level accounted for 9% of the variance in PS scores, r2
COV = .09, p < .01. 

GMIPness was significantly negatively correlated with PS scores, r  X1(79) = -.39, p 

< .001, indicating that the mean of the PS scores in the GMIP group was smaller than the 

mean of the PS scores for non-GMIP group members. GMIPness accounted for 15% of 

the variance in PS scores, r2
X1 = .15, p < .001. Suboptimalness was not significantly 

correlated with PS scores, rX2(79) = -.01, p = ns, indicating that the mean of the PS scores 

in the suboptimal group was not significantly different than the mean of the PS scores for 

non-suboptimal group members.  

Table 25 
Correlation Coefficients, Means, and Standard Deviations for WMT  
Performance Dummy Variables, Education Level Covariate, and PS Scores  

          r 
Variables Y COV X1 X2 r2

Yi 
Y 1.00 .30** -.39***  -.01 – 
COV .30** 1.00 .04 -.16 .09** 
X1 -.39***  .04 1.00 -.39***  .15***  
X2 -.01 -.16 -.39***  1.00 .00 
      
M -.77 .00 .21 .36  
SD .86 2.15 .41 .48  
Note. Y = PS scores. ** p < .01. *** p < .001. 
 

 Table 26 displays partial and semipartial correlation coefficients between the 

predictors and PS scores. As can be seen, there was a significant positive relationship 

between education level and PS scores after common variance with the dummy variables 

was removed from both the education level covariate and the PS outcome variable, 

prCOV(77) = .32, p < .01. There was also a significant positive relationship between 

education level and PS scores after removing variance that the education level covariate 
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had in common with the dummy variables, srCOV (77) = .29, p < .01. Education level 

uniquely accounted for 8% of the variance in PS scores, sr2COV = .08, p < .01.  

 There was a significant negative difference, in correlational terms, in PS scores 

between the GMIP and the optimal group holding constant the effects of education level 

and suboptimalness on both the GMIP group and PS scores, prX1(77) = -.44, p < .001. 

Eighteen percent of the variance in PS scores was accounted for by defining GMIP as a 

category distinct from the optimal category, sr2X1 = .18, p < .001. The loss of the 

distinction between the GMIP group and the optimal group would result in a loss of 18% 

of the variance accounted for in PS scores, or, that R2 would drop from .27 to .09.  

 There was not a significant difference, in correlational terms, in PS scores 

between the suboptimal and optimal groups when the effects of education level and 

GMIPness on both the suboptimal group and PS scores were held constant, prX2(77) =     -

.15, p = ns. A significant portion of the variance in PS scores was not accounted for by 

defining suboptimal as a category distinct from the optimal category, sr2X2 = .02, p = ns. 

Table 26 
Partial and Semipartial Correlation Coefficients for WMT  
Performance Dummy Variables, Education Level Covariate,  
and PS Scores 
Variables   pri     sri   sr2i 
COV  .32**  .29**  .08** 
X1  -.44***   -.42***   .18***  
X2  -.15  -.13  .02 
Note. ** p < .01. *** p < .001. 
 

 The overall regression model was statistically significant, F(3, 77) = 9.55, p 

< .001. As shown in Table 27, education level alone accounted for 9% of the variance in 

PS scores, F(1, 79) = 7.94, p < .01, and the WMT performance dummy variables 

explained an additional 18% of the variance, Fchange(2, 77) = 9.50, p < .001. Thus, a total 
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of 27% of the variance in PS scores was explained by education level and WMT 

performance. More specifically, holding WMT performance constant, each additional 

year of education was associated with a .12 increase in PS scores. Controlling for the 

effects of education level and suboptimalness, there was a significant difference between 

the mean PS scores of GMIP and optimal group members. As a patient changed from 

performing optimally on the WMT to having a GMIP performance, PS scores decreased 

by .96 points. In other words, patients in the GMIP group averaged PS scores .96 points 

lower than patients in the optimal group. Mean PS scores between patients in the 

suboptimal and optimal groups were not found to significantly differ, indicating that PS 

scores were relatively similar whether patients performed optimally or suboptimally on 

the WMT. Mean PS scores for each WMT performance group are presented in Table 28.  

Table 27 
Summary of Hierarchical Regression Analysis for Differences in PS Scores Among WMT 
Performance Groups Accounting for Education Level (N = 81) 
 
Variables 

Model 1 Model 2 
B SE B Beta    B SE B Beta 

Constant -.77 .09     
COV .12 .04 .30**    
       
Constant    -.48 .13  
COV    .12 .04 .30** 
X1    -.96 .22 -.46***  
X2    -.25 .19  -.14 
Note. Model 1: R2 = .09 (p < .01), adjusted R2 = .08; Model 2: R2 = .27 (p < .001), 
adjusted R2 = .24,ΔR2 = .18 (p < .001). ** p < .01. *** p < .001. 
 
 
Table 28 
WMT Performance Groups’ Mean PS Scores  
WMT Performance Group Mean PS Scores 
Optimal -.48 
GMIP -1.44 
Suboptimal -.73 
Note. Scores are presented as z-scores.  
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Differences in MD test scores among WMT performance groups. Correlation 

and multiple regression analyses were conducted to examine differences in MD scores 

among WMT performance groups. Table 29 summarizes the descriptive statistics and 

correlational analyses results. As can be seen, GMIPness was not significantly correlated 

with MD scores, rX1(79) = -.14, p = ns, indicating that the mean of the MD scores in the 

GMIP group was not significantly different than the mean of the MD scores for non-

GMIP group members. Suboptimalness was also not significantly correlated with MD 

scores, rX2(79) = .04, p = ns, indicating that the mean of the MD scores in the suboptimal 

group was not significantly different than the mean of the MD scores for non-suboptimal 

group members. 

Table 29 
Correlation Coefficients, Means, and Standard Deviations  
for WMT Performance Dummy Variables and MD Scores  

          r 
Variables Y X1 X2 r2

Yi 
Y 1.00 -.14 .04 – 
X1 -.14 1.00 -.39***  .02 
X2 .04 -.39***  1.00 .00 
     
M -.91 .21 .36  
SD .81 .41 .48  
Note. Y =MD scores. *** p < .001. 
 

 Table 30 displays partial and semipartial correlation coefficients between the 

predictors and MD scores. As is evident, there was not a significant difference, in 

correlational terms, in MD scores between the GMIP and optimal groups when the effect 

suboptimalness on both the GMIP group and MD scores was held constant, prX1(78) =    -

.14, p = ns. A significant portion of the variance in MD scores was not accounted for by 

defining GMIP as a category distinct from the optimal category, sr2X1 = .02, p = ns.  
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 There also was not a significant difference, in correlational terms, in MD scores 

between the suboptimal and optimal groups when the effect GMIPness on both the 

suboptimal group and MD scores was held constant, prX2(78) = -.02, p = ns. A significant 

portion of the variance in MD scores was not accounted for by defining suboptimal as a 

category distinct from the optimal category, sr2X2 = .00, p = ns.  

Table 30 
Partial and Semipartial Correlation Coefficients for WMT  
Performance Dummy Variables and MD Scores 
Variables   pri     sri   sr2i 
X1  -.14  -.14  .02 
X2  -.02  -.02  .00 
Note. All correlation coefficients were ns. 
 

 The regression model was not statistically significant, F(2, 78) = .80, p = ns, and 

therefore did not account for any of the variance in MD scores. As can be seen in Table 

31, controlling for the effect of suboptimalness, there was not a significant difference 

between the mean MD scores of GMIP and optimal group members. Similarly, 

controlling for the effect of GMIPness, there was not a significant difference between the 

mean MD scores of suboptimal and optimal group members. Mean MD scores for each 

WMT performance group are presented in Table 32.  

Table 31 
Summary of Regression Analysis for Differences in MD  
Scores Among WMT Performance Groups (N = 81) 
Variables B SE B Beta 
Constant -.84 .14  
X1 -.29 .24 -.15 
X2 -.03 .20 -.02 
Note. R2 = .02 (p = ns), adjusted R2 = -.01. 
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Table 32 
WMT Performance Groups’ Mean MD Scores  
WMT Performance Group Mean MD Scores 
Optimal -.84 
GMIP -1.13 
Suboptimal -.87 
Note. Scores are presented as z-scores.  

 

Differences in DTBM test scores among WMT performance groups. Correlation 

and multiple regression analyses were conducted to examine differences in DTBM scores 

among WMT performance groups after controlling for education level. Table 33 

summarizes the descriptive statistics and correlational analyses results. As can be seen, 

there was a significant positive correlation between education level and DTBM scores, 

rCOV(79) = .25, p < .05, indicating that patients with more years of education had higher 

DTBM scores. Education level accounted for 6% of the variance in DTBM scores, r2
COV 

= .06, p < .05. GMIPness was significantly negatively correlated with DTBM scores, r  

X1(79) = -.48, p < .001, indicating that the mean of the DTBM scores in the GMIP group 

was smaller than the mean of the DTBM scores for non-GMIP group members. 

GMIPness accounted for 23% of the variance in DTBM scores, r2
X1 = .23, p < .001. 

Suboptimalness was not significantly correlated with DTBM scores, rX2(79) = -.05, p = ns, 

indicating that the mean of the DTBM scores in the Suboptimal group was not 

significantly different than the mean of the DTBM scores for non-suboptimal group 

members.  
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Table 33 
Correlation Coefficients, Means, and Standard Deviations for WMT  
Performance Dummy Variables, Education Level Covariate, and DTBM Scores  

          r 
Variables Y COV X1 X2 r2

Yi 
Y 1.00 .25* -.48***  -.05 – 
COV .25* 1.00 .04 -.16 .06* 
X1 -.48***  .04 1.00 -.39***  .23***  
X2 -.05 -.16 -.39***  1.00 .00 
      
M -.66 .00 .21 .36  
SD .63 2.15 .41 .48  
Note. Y = DTBM scores. *p < .05. *** p < .001. 
 

 Table 34 displays partial and semipartial correlation coefficients between the 

predictors and DTBM scores. As can be seen, there was a significant positive relationship 

between education level and DTBM scores after common variance with the dummy 

variables was removed from both the education level covariate and the DTBM outcome 

variable, prCOV(77) = .28, p < .05. There was also a significant positive relationship 

between education level and DTBM scores after removing variance that the education 

level covariate had in common with the dummy variables, srCOV (77) = .23, p < .05. 

Education level uniquely accounted for 5% of the variance in DTBM scores, sr2COV = .05, 

p < .05.  

 There was a significant negative difference, in correlational terms, in DTBM 

scores between the GMIP and the optimal group holding constant the effects of education 

level and suboptimalness on both the GMIP group and DTBM scores, prX1(77) = -.55, p 

< .001. Twenty-nine percent of the variance in DTBM scores was accounted for by 

defining GMIP as a category distinct from the optimal category, sr2X1 = .29, p < .001. The 

loss of the distinction between the GMIP group and the optimal group would result in a 
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loss of 29% of the variance accounted for in DTBM scores, or, that R2 would drop 

from .35 to .06.  

 There was also a significant negative difference, in correlational terms, in DTBM 

scores between the suboptimal and optimal groups when the effects of education level 

and GMIPness on both the suboptimal group and DTBM scores were held constant, 

prX2(77) = -.26, p < .05. Four percent of the variance in DTBM scores was accounted for 

by defining suboptimal as a category distinct from the optimal category, sr2X2 = .04, p 

< .05. The loss of the distinction between the suboptimal and optimal groups would result 

in a loss of 4% of the variance accounted for in DTBM scores, or, that R2 would drop 

from .35 to .31. 

Table 34 
Partial and Semipartial Correlation Coefficients for WMT  
Performance Dummy Variables, Education Level Covariate,  
and DTBM Scores 
Variables   pri     sri   sr2i 
COV  .28*  .23*  .05* 
X1  -.55***   -.54***   .29***  
X2  -.26*  -.21*  .04 * 
Note. *p < .05. *** p < .001. 
 

 The overall regression model was statistically significant, F(3, 77) = 13.81, p 

< .001. As shown in Table 35, education level alone accounted for 6% of the variance in 

DTBM scores, F(1, 79) = 5.31, p < .05, and the WMT performance dummy variables 

explained an additional 29% of the variance, Fchange(2, 77) = 16.99, p < .001. Thus, a total 

of 35% of the variance in DTBM scores was explained by education level and WMT 

performance. More specifically, holding WMT performance constant, each additional 

year of education was associated with a .07 increase in DTBM scores. Controlling for the 

effects of education level and suboptimalness, there was a significant difference between 
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the mean DTBM scores of GMIP and optimal group members. As a patient changed from 

performing optimally on the WMT to having a GMIP performance, DTBM scores 

decreased by .89 points. Stated differently, patients in the GMIP group averaged DTBM 

scores .89 points lower than patients in the optimal group. Holding constant the effects of 

education level and GMIPness, there was also a significant difference between the mean 

DTBM scores of suboptimal and optimal group members. As a patient changed from 

performing optimally to suboptimally on the WMT, DTBM scores decreased by .31 

points, indicating that patients in the suboptimal group averaged DTBM scores .31 points 

lower than patients in the optimal group. Mean DTBM scores for each WMT 

performance group are presented in Table 36.  

Table 35 
Summary of Hierarchical Regression Analysis for Differences in DTBM Scores Among 
WMT Performance Groups Accounting for Education Level (N = 81) 
 
Variables 

Model 1 Model 2 
B SE B Beta    B SE B Beta 

Constant -.66 .07     
COV .07 .03 .25*    
       
Constant    -.37 .09  
COV    .07 .03 .24* 
X1    -.89 .15 -.58***  
X2    -.31 .13  -.23* 
Note. Model 1: R2 = .06 (p < .05), adjusted R2 = .05; Model 2: R2 = .35 (p < .001), 
adjusted R2 = .33,ΔR2 = .29 (p < .001). *p < .05. *** p < .001. 
 
 
Table 36 
WMT Performance Groups’ Mean DTBM Scores  
WMT Performance Group Mean DTBM Scores 
Optimal -.37 
GMIP -1.26 
Suboptimal -.68 
Note. Scores are presented as z-scores.  
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Research question 4. What is the relationship between GMIP scores and scores 

on neuropsychological memory tests? 

Assumptions of regression. For the linear and multiple regressions that were 

conducted for research question 4, Assumptions 1 (variable types) and 2 (non-zero 

variance) were met: quantitative predictors were measured at the interval level; 

categorical variables had two categories; outcome variables were quantitative, measured 

at the interval level, and unbounded; and all predictors had variances greater than zero. 

The assumption of multicollinearity (Assumption 3) was not applicable to either 

regression as the first regression had one continuous predictor and the second regression 

had one dichotomous categorical predictor. Predictors were not significantly correlated 

with external variables, which were previously identified as the potential covariates of 

sex, race, education, or age, indicating that Assumption 4 was met.  

The assumption of homoscedasticity (Assumption 5) was not met for either 

regression. In the linear regression, the data were observed to funnel out. In the multiple 

regression, the variance of residual terms was different for each level of the predictor. As 

previously described, transforming the data did not improve heteroscedasticity, and thus, 

data remained untransformed. Failure to meet the assumption of homoscedasticity means 

that findings cannot be generalized beyond this sample.  

The assumption of independent errors (Assumption 6) was met for both 

regressions. Durbin-Watson values were 1.57 for the linear regression and 1.67 for the 

multiple regression. To check the normality of residuals for Assumption 7, histograms 

and normal P-P plots were examined. For the linear regression, the histogram distribution 

appeared largely normal though the normal P-P plot demonstrated slight deviations from 
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normality. For the multiple regression, the histogram distribution was slightly negatively 

skewed; slight deviations from normality were also evident on the normal P-P plot.  

The assumption of independence (Assumption 8) was met for both regressions, as 

all values of each outcome variable came from a different patient. Finally, the assumption 

of linearity was met for both regressions.  

Assessing the regression models: Diagnostics. Outliers and influential cases were 

explored to see whether the models fit the observed data well. To detect outliers, 

standardized residuals were checked for each regression. No regression model had cases 

with standardized residuals with absolute values greater than 3.29. The linear regression 

model had 1 case (1.23% of the sample) that had a standardized residual with an absolute 

value greater than 2.58 and 2 cases (2.47% of the sample) that had standardized residuals 

with absolute values greater than 2. The multiple regression model had 2 cases (2.47% of 

the sample) that had standardized residuals with absolute values greater than 2.58 and 3 

cases (3.70% of the sample) that had standardized residuals with absolute values greater 

than 2. As absolute values of standardized residuals for the first regression model were 

within 1% of what was expected, it was concluded that the sample largely appeared to 

conform to what would be expected for a fairly accurate model. The second regression 

model had slightly more than 5% of cases (6.17%) that had standardized residuals with 

absolute values greater than 2. However, as this sample was within 1.17% of what was 

expected, it was concluded that the sample appeared to conform to what would be 

expected for a fairly accurate model.  

Regression models were also checked for influential cases. Adjusted predicted 

values were compared to predicted values to ensure that cases did not have large 
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influences over the model. For both models, adjusted predicted values were very similar 

to predicted values, suggesting that the models were stable. Cook’s Distances were 

examined next. Neither regression model contained cases with Cook’s values close to 1, 

suggesting that no cases greatly influenced either model’s ability to predict all cases. 

Average leverage values were calculated for each regression. All cases in both regression 

models were within the boundary of two times their respective average leverage values, 

suggesting that no cases had undue influence over the models. Mahalanobis distances 

were examined for high values. Mahalanobis distances ranged from .01 to 3.80 across 

models, indicating that values were well within suggested parameters previously 

described. Standardized DFBeta values were investigated. All standardized DFBeta 

absolute values were less than 1, signifying that no cases substantially influenced the 

models’ parameters. Finally, CVRs were examined. For the linear regression model, one 

case fell well below the bottom limit; however, the ratio was still close to 1 therefore 

indicating that the case had very little influence on the variances of the model parameters. 

For the multiple regression model, 2 cases fell slightly below the bottom limit; however, 

the ratios were close to 1, signifying that the cases had little influence on the variances of 

the model parameters. Overall, examination of all of these values suggested that no 

influential cases were present in the regression models. 

 Relationship between GMIP scores and scores on neuropsychological memory 

tests. GMIP scores were used in a simple linear regression analysis to predict LM scores. 

The correlations of the variables are shown in Table 37. As can be seen, there was a 

significant negative correlation between GMIP scores and LM scores, rXi(79) = -.74, p 

< .001, indicating that patients with higher GMIP scores had lower LM scores. As a 
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reminder, the higher the GMIP score, the more likely the patient performed poorly on the 

WMT due to significant cognitive impairment. GMIP score accounted for 55% of the 

variance in LM scores, r2
Xi = .55, p < .001. 

Table 37 
Correlation Coefficients, Means, and Standard  
Deviations for GMIP Scores and LM Scores  

          r 
Variables Y Xi r2

Yi 
Y 1.00 -.74***  – 
X i -.74***  1.00 .55***  
    
M -.73 28.96  
SD .88 13.36  
Note. Y = LM scores; Xi = GMIP scores.  
*** p < .001. 
  

 The regression model was statistically significant, F(1, 79) = 98.24, p < .001, and 

accounted for 55% of the variance in LM scores (R2 = .55, Adjusted R2 = .55). As can be 

seen in Table 38, when GMIP scores were zero, the model predicted average LM scores 

of .69. A one-point increase in GMIP scores predicted that LM scores would decrease 

by .05 points. The standardized beta value indicated that as GMIP scores increased by 

one standard deviation, LM scores decreased by .74 standard deviations.  

Table 38 
Summary of Regression Analysis of GMIP Scores  
Predicting LM Scores (N = 81) 
Variables B SE B Beta 
Constant .69 .16  
X i -.05 .01 -.74***  
Note. R2 = .55 (p < .001), adjusted R2 = .55. *** p < .001. 
 
 
 Correlation and multiple regression analyses were next conducted to examine 

differences in LM scores among GMIP performance groups. Patients with GMIP scores < 

30 were categorized into the non-GMIP group (reference) and patients with GMIP scores 
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≥ 30 who failed at least one PV subtest were categorized into the GMIP group. As a 

reminder, GMIP scores < 30 are not suggestive of a GMIP and instead indicate that 

performance on the WMT was not likely influenced by significant cognitive impairment. 

Failure on at least one PV subtest and GMIP scores ≥ 30 suggest a GMIP, indicating that 

a patient likely performed poorly on the WMT because of significant cognitive 

impairment. Descriptive statistics and correlations are shown in Table 39. As can be seen, 

GMIPness was significantly negatively correlated with LM scores, rXi(79) = -.54, p 

< .001, indicating that the mean of the LM scores in the GMIP group was smaller than 

the mean of the LM scores from non-GMIP group members. GMIPness accounted for 

29% of the variance in LM scores, r2
Xi = .29, p < .001.  

Table 39 
Correlation Coefficients, Means, and Standard  
Deviations for GMIP Performance Dummy Variable  
and LM Scores  

r 

Variables Y Xi r2
Yi 

Y 1.00 -.54***  – 
X i -.54***  1.00  .29***  
    
M -.73 .21  
SD .88 .41  
Note. Y = LM scores; Xi = GMIP group. *** p < .001. 
  

 The regression model was statistically significant, F(1, 79) = 33.09, p < .001, and 

accounted for 30% of the variance in LM scores (R2 = .30, Adjusted R2 = .29). As can be 

seen in Table 40, there was a significant difference between the mean LM scores of 

GMIP and non-GMIP group members. As a patient changed from not having a GMIP to 

having a GMIP, LM scores decreased by 1.16 points. In other words, patients in the 
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GMIP group averaged LM scores 1.16 points lower than patients in the non-GMIP group. 

Mean LM scores for each GMIP performance group are presented in Table 41.  

Table 40 
Summary of Regression Analysis for Differences in LM  
Scores Among GMIP Performance Groups (N = 81) 
Variables B SE B Beta 
Constant -.48 .09  
X i -1.16 .20 -.54***  
Note. R2 = .30 (p < .001), adjusted R2 = .29. *** p < .001. 
 
 
Table 41  
GMIP Performance Groups’ Mean LM Scores  
GMIP Performance Group Mean LM Scores 
Non-GMIP -.48 
GMIP -1.64 
Note. Scores are presented as z-scores.  

 

Research question 5. How much does each of the WMT subtests explain total 

GMIP score?  

Assumptions of multiple regression. In the hierarchical regressions that were 

conducted, predictor variables were quantitative and measured at the interval level, and 

outcome variables were quantitative, measured at the interval level, and unbounded, 

indicating that Assumption 1 was met. Assumption 2 was met, as all predictors had 

variances greater than zero.  

The assumption of multicollinearity was not met in either regression model. The 

correlation matrix of predictors for the first model revealed correlation coefficients 

ranging from .48 to .91. Two pairs of predictors (IR and CNS; MC and PA) correlated 

very highly (r = .88 and r = .91, respectively). As such, their b-values were less 

trustworthy and the size of R may have been limited. Further, high levels of collinearity 

between these two pairs of predictors made it difficult to assess the respective importance 
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of each predictor. There was not as high of a correlation between the two predictors in the 

second regression model (r = .73); however, as will be described below, multicollinearity 

was evidenced elsewhere.  

VIFs and tolerance statistics were also checked to identify more subtle forms of 

multicollinearity. No regression model had VIFs greater than 10; however, both models 

had average VIFs greater than 1 (5.53 and 2.12, respectively), signifying the presence of 

bias in each model. Tolerance values ranged from .13 to .34 for the first regression model. 

Four values were below .2, evidencing more cause for concern of collinearity in the 

model. In the second regression model, tolerance values for both predictors were .47. As 

those values were greater than .2, they did not reflect a cause for concern of collinearity.  

Collinearity diagnostics were also checked for each hierarchical regression model. 

For the first multiple regression model, the largest difference between eigenvalues was 

6.82. This was a large difference and indicated that the solutions of the regression 

parameters may have been affected by small changes in the predictors or outcome. The 

condition indexes for the first model also varied greatly from 1 to 81.88, indicating that 

collinearity was a problem. Finally, eigenvalue variance proportions were checked. As 

can be seen in Table 42, collinearity was evident between two pairs of predictors in the 

first multiple regression model. The IR and CNS predictors had substantial variance 

proportions on eigenvalue 6, and the MC and PA predictors had substantial variance 

proportions on eigenvalue 5. These sets of predictors were also found to have strong 

correlations (r = .86 and r = .91, respectively), providing further support for collinearity. 

As can be seen in Table 43, evidence of strong collinearity was not present when 

eigenvalue variance proportions were examined for the second regression model.  
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Table 42  
Collinearity Diagnostics for Hierarchical Regression with WMT Subtests as Predictors 
 Variance Proportions 

Dimension (Constant) 
WMT  

IR 
WMT 
DR 

WMT 
CNS 

WMT 
MC 

WMT 
PA 

WMT 
FR 

1 .00 .00 .00 .00 .00 .00 .00 
2 .00 .00 .00 .00 .01 .01 .17 
3 .00 .00 .00 .00 .10 .12 .81 
4 .11 .07 .01 .08 .04 .15 .00 
5 .01 .02 .01 .02 .62 .72 .01 
6 .03 .82 .06 .63 .01 .00 .01 
7 .84 .09 .92 .27 .22 .00 .00 

 
Table 43 
Collinearity Diagnostics for Hierarchical Regression with  
WMT Composites as Predictors 
    Variance Proportions 

Dimension (Constant) 
WMT Memory 

Composite 
WMT PV 

Composite 
1 .00 .00 .00 
2 .05 .54 .01 
3 .94 .45 .99 

 

Assumption 4 states that predictors should not correlate with external variables 

that influence the outcome. This assumption was met for both of the regression models, 

as predictors were not significantly correlated with the potential covariates of sex, race, 

education, or age.  

The assumption of homoscedasticity was not met for either regression model. 

Examination of standardized residuals versus standardized predicted values plots 

revealed heteroscedasticity and non-linearity in both regression models. As previously 

noted, data remained untransformed, as transformations did not improve non-normality or 

heterogeneity of variance. Failure to meet the assumption of homoscedasticity means that 

the findings cannot be generalized beyond this sample.  
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The assumption of independent errors was met for both regression models. 

Durbin-Watson values were 1.80 for the first model and 1.81 for the second model, 

suggesting that each models’ respective residuals were uncorrelated.   

Histograms and normal P-P plots were next examined to check the normality of 

residuals for Assumption 7. For the first hierarchical regression model, the histogram 

distribution evidenced a few outliers but otherwise appeared fairly normal; however, 

evidence of non-normality was apparent on the normal P-P plot. The histogram 

distribution of the second hierarchical regression model also contained a few outliers but 

otherwise appeared normal; however, deviations from normality were present on the 

normal P-P plot.   

The assumption of independence was met for both regression models, as all 

values of each outcome variable came from a different patient. Finally, as noted above, 

the assumption of linearity was not met for either regression model. As such, the 

generalizability of findings from this regression is extremely limited. 

Assessing the regression models: Diagnostics. Outliers and influential cases were 

explored to see whether the models fit the observed data well. To detect outliers, 

standardized residuals were checked. Both regression models had one case with a 

standardized residual with an absolute value greater than 3.29: the first model had a case 

with a standardized residual of 4.32 and the second model had a case with a standardized 

residual of 6.02. As such, these cases were identified as outliers and added to the error 

level in each model. Additionally, the first regression model had 2.47% of its sample (2 

cases) with standardized residuals with absolute values greater than 2.58. Although this 

value was within 1 to 2% of what was expected, it provided additional evidence that the 
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model may have been an inaccurate representation of the sample data. Neither regression 

model had 5% of cases with standardized residuals with absolute values greater than 2. 

Overall, examination of standardized residuals identified error in both models, thereby 

suggesting that the models may not have accurately represented the data.  

Regression models were also checked for influential cases. Adjusted predicted 

values were compared to predicted values to ensure that cases did not have large 

influences over the models. Both models had the same case with a large difference 

between its adjusted predicted and predicted values, as well as a large Studentized deleted 

residuals. These values suggested that this case exerted a large influence over the 

parameters of the respective models.   

Cook’s distances were next examined. The same case as previously mentioned 

was again troublesome: its Cook’s distance was 22.81 in the first model and 23.84 in the 

second model. With Cook’s distances much larger than 1, this case was considered to 

have greatly influenced each model as a whole.  

Average leverage values were calculated for the regression models. The first 

model had one case that was greater than two times the average leverage and three cases 

that were greater than three times the average leverage. The second model had two cases 

that were greater than two times the average leverage and one case that was greater than 

three times the average leverage. These findings further supported previously described 

evidence of the presence of cases with excessive influence over both models.  

Mahalanobis distances were examined for high values. Mahalanobis distances 

ranged from .03 to 55.97 across models, indicating that both models had some cases that 

exerted undue influence on their respective models.  
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Standardized DFBeta values were investigated. The first regression model had 

three cases that had standardized DFBeta values with absolute values greater than 1. The 

second model had one case with a standardized DFBeta value above the cutoff. These 

values provide additional support that both regression models contained cases that 

substantially influenced model parameters.  

 Finally, CVRs were examined. The first regression model had five cases above 

and three cases below recommended cutoffs. The second regression model had two cases 

that fell below recommended cutoffs. These results suggested the presence of cases in 

both models that influenced the variance of the regression parameters.  

Overall, examination of these diagnostic values suggested that influential cases 

were present in both regression models. Therefore, the models may not have been 

accurate representations of the sample data.  

 Relationship between WMT subtests and GMIP score. Correlation and 

hierarchical regression analyses were conducted to examine how much each of the WMT 

subtest scores explained GMIP score. Descriptive statistics and correlations are shown in 

Table 44. As can be seen, there were significant negative correlations between each 

WMT subtest score and GMIP scores (all ps < .001). Patients with higher scores on any 

of the WMT subtests had lower GMIP scores. FR, PA, and MC scores accounted for 

substantial levels of variance in GMIP scores. As previously noted, since these (and 

other) predictors were highly correlated, it was difficult to assess their individual 

importance in the model.  
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Table 44 
Correlation Coefficients, Means, and Standard Deviations for WMT Subtest Scores and 
GMIP Scores  

      r  
Variables Y FR PA MC CNS DR IR r2 
Y 1.00 -.83***  -.91***  -.86***  -.47***  -.63***  -.39***  – 
FR -.83***  1.00 .80***  .78***  .56***  .72***  .48***  .69***  
PA -.91***  .80***  1.00 .91***  .62***  .81***  .54***  .83***  
MC -.86***  .78***  .91***  1.00 .65***  .86***  .59***  .74***  
CNS -.47***  .56***  .62***  .65***  1.00 .76***  .88***  .22***  
DR -.63***  .72***  .81***  .86***  .75***  1.00 .66***  .40***  
IR -.39***  .48***  .54***  .59***  .88** * .66***  1.00 .15***  
         
M 28.96 42.75 69.32 74.07 88.18 92.25 91.60  
SD 13.36 18.43 22.27 23.04 12.41 8.37 11.71  
Note. Y = GMIP scores; FR = Free Recall; PA = Paired Associates; MC = Multiple 
Choice; CNS = Consistency; DR = Delayed Recall; IR = Immediate Recall. *** p < .001. 
 

 Table 45 displays partial and semipartial correlation coefficients between the 

predictors and GMIP scores. As can be seen, there were significant relationships between 

all WMT subtest scores, except for CNS and IR, and GMIP scores after common 

variance with other predictors was removed from the predictor of interest and the 

outcome (all ps < .001). There were also significant relationships between all WMT 

subtests scores, except for CNS and IR, and GMIP scores after removing variance that 

each predictor of interest had in common with other predictors (all ps < .001). FR scores 

uniquely accounted for 40% of the variance in GMIP scores, sr2FR = .04, p < .001. PA 

scores uniquely accounted for 60% of the variance in GMIP scores, sr2PA = .06, p < .001. 

MC scores uniquely accounted for 40% of the variance in GMIP scores, sr2MC = .04, p 

< .001. DR scores uniquely accounted for 50% of the variance in GMIP scores, sr2DR 

= .05, p < .001. CNS and IR scores did not account for any of the variance in GMIP 

scores, sr2CNS = 0.00, p = ns and sr2IR = 0.00, p = ns.  
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Table 45 
Partial and Semipartial Correlation Coefficients for WMT  
Subtests and GMIP Scores 
Variables pri sri sr2i 
FR -.61***  -.19***  .04***  
PA -.70***  -.24***  .06***  
MC -.62***  -.19***  .04***  
CNS -.05 -.01 .00 
DR .69***  .23***  .05***  
IR .15 .04 .00 

Note. *** p < .001. 
 

 The overall regression model was statistically significant, F(6, 74) = 191.74, p 

< .001. As shown in Table 46, FR scores alone accounted for 69% of the variance in 

GMIP scores, F(1, 79) = 177.85, p < .001. PA scores explained an additional 16% of the 

variance in GMIP scores, Fchange(1, 78) = 85.86, p < .001. CNS scores explained an 

additional 3% of the variance in GMIP scores, Fchange(1, 76) = 17.69, p < .001. Finally, 

DR scores explained an additional 5% of the variance in GMIP scores, Fchange(1, 75) = 

65.79, p < .001. MC and IR scores did not add to the explanation of the variance in GMIP 

scores, Fchange(1, 77) = 1.75, p = ns and Fchange(1, 74) = 1.75, p = ns, respectively. Overall, 

a total of 94% of the variance in GMIP scores was explained by WMT subtest scores. 

More specifically, holding other predictors constant, as FR scores increased by one point, 

GMIP scores decreased by .24 points. Standardized beta values indicated that, holding 

other predictors constant, as FR scores increased by one standard deviation, GMIP scores 

decreased by .33 standard deviations. Holding other predictors constant, as PA scores 

increased by one point, GMIP scores decreased by .36 points. Standardized beta values 

indicated that, holding other predictors constant, as PA scores increased by one standard 

deviation, GMIP scores decreased by .61 standard deviations. Holding other predictors 

constant, as MC scores increased by one point, GMIP scores decreased by .32 points. 
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Standardized beta values indicated that, holding other predictors constant, as MC scores 

increased by one standard deviation, GMIP scores decreased by .54 standard deviations. 

Holding other predictors constant, the DR predictor had a significant positive weight (b 

opposite in sign from its correlation with GMIP scores), indicating that higher DR scores 

predicted higher GMIP scores (suppressor effect). Holding other predictors constant, as 

DR scores increased by one point, GMIP scores increased by .86 points. Standardized 

beta values indicated that, holding other predictors constant, as DR scores increased by 

one standard deviation, GMIP scores increased by .54 standard deviations. With the other 

predictors held constant, increases in CNS or IR scores did not cause GMIP scores to 

increase or decrease by significant amounts.  
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 Correlation and hierarchical regression analyses were then conducted to examine 

how much the WMT memory and PV composites explained total GMIP score. 

Descriptive statistics and correlations are shown in Table 47. As can be seen, there was a 

significant negative correlation between the WMT memory composite and GMIP scores, 

rMEM(79) = -.92, p < .001, indicating that patients with higher WMT memory composite 

scores had lower GMIP scores. The memory composite accounted for 85% of the 

variance in GMIP scores, r2
MEM = .85, p < .001. There was also a significant negative 

correlation between the WMT PV composite and GMIP scores, rPV(79) = -.52, p < .001, 

indicating that patients with higher PV scores had lower GMIP scores. However, the PV 

composite only accounted for 27% of the variance in GMIP scores, r2
PV = .27, p < .001.  

Table 47 
Correlation Coefficients, Means, and Standard Deviations for WMT Composites and 
GMIP Scores  

Note. *** p < .001. 
 

 Table 48 displays partial and semipartial correlation coefficients between the 

predictors and GMIP scores. As can be seen, there was a significant negative relationship 

between the WMT memory composite and GMIP scores after common variance with the 

PV composite was removed from both the memory composite and GMIP scores, 

prMEM(78) = -.93, p < .001. There was also a significant negative relationship between the 

memory composite and GMIP scores after removing variance that the memory composite 

                                                 r         
Variables GMIP Memory Composite PV Composite r2 
GMIP 1.00 -.92***  -.52***   
Memory Composite -.92***  1.00 .73***  .85***  
PV Composite -.52***  .73***  1.00 .27***  
    
M 28.96 62.05 90.68 
SD 13.36 20.05 10.03 
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had in common with the PV composite, srMEM (78) = -.79, p < .001. The memory 

composite uniquely accounted for 62% of the variance in GMIP scores.  

 There was a significant positive relationship between the WMT PV composite 

and GMIP scores after common variance with the memory composite was removed from 

both the PV composite and GMIP scores, prPV(78) = .56, p < .001. There was also a 

significant positive relationship between the PV composite and GMIP scores after 

removing variance that the PV composite had in common with the memory composite, 

srPV (78) = .22, p < .001. The PV composite uniquely accounted for 5% of the variance in 

GMIP scores.  

Table 48 
Partial and Semipartial Correlation Coefficients for WMT  
Composites and GMIP Scores 
Variables pri sri sr2i 
Memory Composite -.93***  -.79***  .62***  
PV Composite .56***  .22***  .05***  

Note. *** p < .001. 
 

 The overall regression model was statistically significant, F(2, 78) = 332.91, p 

< .001. As displayed in Table 49, the WMT memory composite alone accounted for 85% 

of the variance in GMIP scores, F(1, 79) = 441.99, p < .001, and the WMT PV composite 

explained an additional 5% of the variance, Fchange(1, 78) = 34.79, p < .001. Thus, a total 

of 90% of the variance in GMIP scores was explained by the WMT memory and PV 

composites. Holding the PV composite constant, as memory composite scores increased 

by one point, GMIP scores decreased by .77 points. Standardized beta values indicated 

that, holding the other predictor constant, as memory composite scores increased by one 

standard deviation, GMIP scores decreased by 1.15 standard deviations. Holding the 

memory composite constant, the PV composite had a significant positive weight (b 
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opposite in sign from its correlation with GMIP scores), indicating that higher PV 

composite scores predicted higher GMIP scores (a suppressor effect). Holding the 

memory composite constant, as PV composite scores increased by one point, GMIP 

scores increased by .42 points. Standardized beta values indicated that, holding the 

memory composite constant, as PV composite scores increased by one standard deviation, 

GMIP scores increased by .31 standard deviations. 

Table 49 
Summary of Hierarchical Regression Analysis Examining the Relationship between WMT 
Composites and GMIP Scores (N = 81) 
 
Variables 

Model 1 Model 2 
B SE B Beta    B SE B Beta 

Constant 67.03 1.90     
Memory Composite -.61 .03 -.92***     
       
Constant    38.49 5.09  
Memory Composite    -.77 .04 -1.15***  
PV Composite    .42 .07 .31***  
Note. Model 1: R2 = .85 (p < .001), adjusted R2 = .85; Model 2: R2 = .90 (p < .001), 
adjusted R2 = .89,ΔR2 = .05 (p < .001). *** p < .001. 
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CHAPTER V: DISCUSSION 

 The present study set forth to investigate the base rate of suboptimal performance 

on the WMT, the relationship between WMT performance and neuropsychological test 

scores, and the validity of the GMIP in patients with epilepsy. To the author’s knowledge, 

this is the first study to use WMT normative cut scores and GMIP analysis to classify 

patients into optimal, suboptimal, and GMIP groups, and subsequently examine how such 

groups performed across a variety of neuropsychological measures. This also appears to 

be the first study to explore the validity of the GMIP in patients with epilepsy, an 

essential undertaking if GMIP analysis is to be employed and interpreted with this 

population. Findings of this study shed light on previously explored (e.g., base rates of 

suboptimal performance on PVTs) and unexplored (e.g., validity of the GMIP) areas of 

PV assessment with the epilepsy population.  

Base Rates of Optimal, Suboptimal, and GMIP Performance on the WMT  

 Base rates of suboptimal performance on PVTs in patients with epilepsy have 

been reported to range from 4 (Hill et al., 2003) to 28% (Loring et al., 2005). This wide 

range of suboptimal performance on PVTs is unexpected because patients with epilepsy, 

especially pre-surgical candidates, are presumed to be motivated for neuropsychological 

evaluation with no apparent external incentives to underperform. Reasons for the 

variance in base rate of suboptimal performance on PVTs in this population remain 

unknown and largely unexplored; however, one possible explanation may be the 

significant cognitive impairment commonly associated with epilepsy (Bortz, 2003).  
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 Non-epileptic patient groups with significant cognitive impairment (e.g., 

moderate to severe TBI, mental retardation, developmental disorders) typically perform 

well on PVTs (Heilbronner et al., 2009; Sweet, 1999). However, certain PVTs (e.g., 

TOMM, FIT, DCT) have been found to have low levels of specificity (high false positive 

rates) when used with patients with severe cognitive impairment (e.g., dementia and 

mental retardation) (Boone et al., 2002; Goldberg & Miller, 1986; Philpott, 1992; 

Schretlen, Brandt, Krafft, & van Gorp, 1991; Spiegel, 2006; Teichner & Wagner, 2004). 

As patients with epilepsy may have significant cognitive impairment, it is reasonable to 

consider that such impairment may affect their ability to perform optimally on PVTs. In 

turn, base rate estimates of suboptimal performance on PVTs in this population may vary 

considerably because patients have been misclassified as performing suboptimally, when, 

in fact, they scored below failure cutoffs due to significant cognitive impairment. The 

present study attempted to investigate this possibility by utilizing the WMT, a highly 

sensitive and specific PVT. Through GMIP analysis, the WMT indicates whether scores 

below failure cutoff likely reflect suboptimal performance or significant cognitive 

impairment.  

 Using Green’s (2005) normative cutoffs, patients were categorized into one of 

three WMT performance groups: optimal, suboptimal, and GMIP. Results indicated that 

43% of the sample (n = 35: 21 pre-surgical, 14 non-surgical) fell into the optimal group; 

36% (n = 29: 22 pre-surgical, 7 non-surgical) into the suboptimal group; and 21% (n = 

17: 13 pre-surgical, 4 non-surgical) into the GMIP group. The base rate of suboptimal 

performance attained in this study is higher than previously reported base rates of 

suboptimal performance on PVTs in the epilepsy population (e.g., 22%; Cragar et al., 
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2006; 23%; Hoskins et al., 2010; 28%; Loring et al., 2005), and as discussed below, 

likely reflects how patients were sorted into WMT performance groups.  

 Unlike extant research that has employed the WMT in patients with epilepsy (e.g., 

Drane et al., 2006; Hoskins et al., 2010), this study utilized all WMT subtest scores to 

categorize patients into performance groups. There were two intentions behind using all 

subtest scores to sort patients into groups. The first intention was to be able to employ 

GMIP analysis, a computation that requires all WMT subtest scores, so that patients 

could be sorted into a GMIP group. The second intention was to be able to use MC and 

PA scores when determining how patients were categorized into groups. Sorting patients 

into three performance groups as opposed to the two (pass and fail) typically constructed 

in PVT studies meant that patients who scored in the caution range on IR, DR, or CNS 

subtests and those who scored in the warning range on MC and PA subtests were placed 

into a performance group along with patients who scored in the failure range on IR, DR, 

or CNS subtests but did not have a GMIP. This group was labeled the suboptimal 

performance group.  

 The utilization of all WMT subtest scores to facilitate this type of performance 

classification system has not yet been carried out in extant research. Instead, studies have 

sorted patients into pass or fail groups, and patients with WMT scores in the caution 

range have been placed into the pass group because their IR, DR, or CNS scores were 

above the 82.5% failure cutoff (Drane et al., 2006; Hoskins et al., 2010). In the present 

study, considering patients with scores in the caution range as passing the WMT seemed 

problematic, especially since a seemingly high score of 90% (caution range) on IR or DR 

is more than two standard deviations below the normal adult mean (Green, 2005).  
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 Additionally, unlike in the current study, previous PVT studies with patients with 

epilepsy have not included MC and PA scores in the interpretation of WMT performance. 

The most likely reason why these scores have not been included in interpretation is 

because they are considered to be memory subtests of the WMT (Green, 2005). However, 

MC scores ≤ 70% and PA scores ≤ 50% receive a warning rating and are considered 

suspicious of suboptimal performance when dementia or other profound cognitive 

impairments have been ruled out (Green, 2005). Moreover, MC scores of 75% and PA 

scores of 64%, both of which are above warning cutoffs, are three standard deviations 

below the normal adult mean (Green, 2005), providing further support for considering 

these scores in WMT interpretation. Therefore, using Green’s (2005) findings as 

justification, the current study used MC and PA scores when sorting patients into 

performance groups. Patients with MC and PA scores in the warning range who did not 

have GMIPs were placed into the suboptimal group. 

 Categorizing patients with WMT scores in the caution and warning ranges into 

the suboptimal instead of optimal group accounted for the high base rate of suboptimal 

performance achieved in the current study. Indeed, results indicated that, on average, 

scores in the caution rather than failure range characterized performance across PV 

subtests in the suboptimal group (IR: M = 90.78, SD = 11.61; DR: M = 92.33, SD = 3.53; 

CNS: M = 86.38, SD = 10.87). Interestingly, mean MC and PA scores in the suboptimal 

group were above warning cutoffs (MC: M = 72.41, SD = 14.12; PA: M = 65.69, SD = 

14.06), signifying that, on average, MC and PA scores were not the scores that drove 

most patients into this performance group. As the PV subtests are considered easy, and 

are usually passed by patients with various disorders (e.g., moderate to severe TBI; Green 
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& Allen, 1999; Green et al., 1999; Green, 2005; neurological disorders; Gorissen, Sanz 

de la Torre, & Schmand, 2003, cited in Green, 2005), it is likely that many patients in the 

suboptimal group did not perform to the best of their ability on the WMT.  

 For example, one patient obtained the following WMT scores: IR = 95, DR = 90, 

CNS = 90, MC = 90, PA = 70, and FR = 65. GMIP score was 17. The patient’s DTBM 

was in the average range. The PO domain score was in the high average range. VF, LM, 

AC, and MD domain scores were in the average range and the EF domain score was in 

the borderline range. The patient was pre-surgical, had been experiencing mainly 

complex partial seizures for four years, and was taking three AEDs at the time of the 

evaluation. He/she had 16 years of education, was working full-time, and was not 

receiving SSDI. As such, history, current level of functioning, and neuropsychological 

performance did not offer any explanations as to why the patient obtained suboptimal 

WMT DR and CNS scores. Therefore, it appears as though he/she likely underperformed 

on the WMT (that is, was a true positive for suboptimal performance on the WMT), and 

subsequently, likely underperformed on other neuropsychological measures during 

testing. However, as discussed in the next section, suboptimal WMT performance may 

not impact all cognitive domains equally.    

 It is also possible that some patients in the suboptimal group were false positives, 

that is, identified by the WMT as performing suboptimally, when, in fact, behavioral 

observations and performance on neuropsychological tests suggested that they performed 

to the best of their ability during the evaluation. However, upon examination of the data, 

case examples of potential WMT false positives were unable to be identified. This was 

due to the fact that patients in the suboptimal performance group averaged DTBM scores 
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in the average range (albeit in the low end of the average range), thus making it difficult 

to determine whether such scores were in fact reflective of actual ability level (which 

would indicate a false positive on the WMT for suboptimal performance) or instead 

lowered due to suboptimal performance (which would indicate a true positive on the 

WMT for suboptimal performance, similar to the case example previously described).  

 The case example above that described a likely true positive for suboptimal 

performance, as well as the inability to identify a case example demonstrating a clear 

potential false positive for suboptimal performance, both emphasize the importance of 

interpreting WMT scores within the context of clinical history and neuropsychological 

performance, and also encourage neuropsychologists to explore potential explanations for 

suboptimal WMT scores. The present study did not examine reasons for suboptimal 

performance; however, as 38% of the sample did not disclose SSDI status, it is possible 

that some patients may have been applying for disability during the time of the evaluation. 

Though possible, this scenario is unlikely given the mean seizure duration of 17 years 

and that patients with intractable epilepsy would likely qualify for disability due to 

seizure severity alone. Further, most pre-surgical epilepsy patients are considered 

motivated for surgery, and consequently, assumed motivated for neuropsychological 

testing. It is even more staggering, then, that when only considering pre-surgical patients, 

the base rate of suboptimal performance was 39%, with average IR and CNS scores in the 

caution range and all other WMT scores in the pass range. Thus, the overall high, and 

slightly higher pre-surgical, base rate of suboptimal performance in the current study is 

surprising and calls into question how important – or unimportant – it is to differentiate 

between optimal and suboptimal performance on the WMT in patients with epilepsy.  
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 The arguable importance and necessity of differentiating between optimal and 

suboptimal WMT performance in patients with epilepsy will be discussed in the next 

section; however, it is important to note that both groups scored significantly different on 

all WMT subtests. As hypothesized, large effect sizes were found between optimal and 

suboptimal groups on all WMT subtests. Cohen’s d values ranged from .94 to 2.31, 

indicating that patients in the optimal group scored a minimum of nearly one standard 

deviation higher on all subtests than patients in the suboptimal group. Also as 

hypothesized, large effect sizes were found across WMT subtests when comparing 

patients in the optimal and GMIP groups. Cohen’s d values ranged from 2.22 to 4.54, 

signifying that patients in the optimal group scored a minimum of slightly more than two 

standard deviations higher on subtests than patients in the GMIP group. Finally, again as 

anticipated, large effect sizes were also observed when comparing patients in the 

suboptimal and GMIP groups. Cohen’s d values ranged from 1.00 to 2.35, indicating that 

patients in the suboptimal group scored a minimum of one standard deviation higher 

across subtests than patients in the GMIP group. Overall, the presence of such large effect 

sizes between performance groups across all WMT subtests provided additional support 

for the categorization of patients into optimal, suboptimal, and GMIP groups. 

 Finally, results also showed that 21% of the sample was classified into the GMIP 

group, suggesting that these patients scored below failure cutoff not because of 

suboptimal performance but because of significant cognitive impairment. The attained 

base rate of GMIP performance was higher than the presumed 10% false-positive rate 

reported by Drane et al. (2006), although it should be noted that Drane et al. did not 

employ GMIP analysis. In the current study, WMT performance in the GMIP group was, 
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on average, characterized by scores below failure cutoff on all PV subtests (IR: M = 

78.68, SD = 12.53; DR: M = 79.12, SD = 7.12; CNS: M = 72.12, SD = 9.10) and warning 

scores on the memory subtests (MC: M = 39.71, SD = 14.52; PA: M = 38.82, SD = 10.83). 

The mean GMIP score in this group was 43.47 (SD = 5.78), which was substantially 

greater than the minimum 30-point normative GMIP inclusion criteria. Given that 52% of 

patients were diagnosed with TLE (28% left TLE; 24% right TLE), a seizure disorder 

associated with impairments in memory and various other areas of cognitive functioning 

(Grote, Smith, & Ruth, 2001; Hermann et al., 2006; Hermann, Seidenberg, Lee, Chan, & 

Rutecki, 2007; Keary, Frazier, Busch, Kubu, & Iampietro, 2007), significant cognitive 

impairment may have negatively impacted some patients’ abilities to perform above 

failure cutoff on the WMT. As will be discussed below, this would only hold true if 

patients in the GMIP group displayed significant cognitive impairment on 

neuropsychological measures, and if the GMIP was found to be a valid indicator of 

significant cognitive impairment in patients with epilepsy.  

WMT Performance and Neuropsychological Test Scores 

 PVT scores have been found to account for approximately 50% of the variance in 

overall neuropsychological performance in non-epileptic populations, with lower PVT 

scores typically associated with significantly lower test scores across most cognitive 

domains (e.g., Constantinou et al., 2005; Green et al., 2001; Green et al., 2002; Rohling et 

al., 2002). Within the epilepsy population, although the research is more limited, 

suboptimal PVT scores have also been associated with significantly lower performance 

across a variety of neuropsychological measures (Drane et al., 2006; Locke et al., 2006; 

Loring et al., 2005). The current study is the first of its kind to investigate differences in 
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neuropsychological test scores among WMT optimal, suboptimal, and GMIP 

performance groups.  

 Results of the present study are largely consistent with findings from related 

extant literature. Generally, support was found for WMT performance accounting for 

variance in overall neuropsychological performance, albeit not in as high a percentage as 

previously reported values (e.g., 49-54%; Green et al., 2001). Results suggested that PV 

does not affect cognitive domains equally, a finding that is consistent with and expands 

upon results from existing studies examining PV in the epilepsy population. Findings also 

indicated that patients in the suboptimal and GMIP performance groups performed 

significantly lower on most, but not all, neuropsychological measures than patients in the 

optimal group, adding further support to the notion that PVT scores impact 

neuropsychological performance.  

 First, results of the present study indicated that WMT performance and education 

level accounted for 35% of the variance in overall neuropsychological performance as 

measured by the DTBM, a composite of cognitive domain scores. Education level alone 

explained 6% of the variance in DTBM scores, which is relatively consistent with results 

from Green et al. (2001) indicating that education level explained 11% of the variance in 

OTBM scores, which represented average performance across a variety of 

neuropsychological measures. Current results revealed that WMT performance accounted 

for an additional 29% of the variance in DTBM scores. Although these findings support 

well-established notions that PV accounts for a certain percentage of the variance in 

neuropsychological test scores, the achieved rate was considerably lower than some of 

the higher rates reported in studies with litigant and compensation claimant populations 
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(e.g., 49-54%; Green et al., 2001; 49%; Green et al., 2002; 47%; Constantinou et al., 

2005; 36-45%; Rohling et al., 2002; 35%; Stevens et al., 2008). Instead, current findings 

more closely resemble results of Bowden, Shores, and Mathias (2006) and Rohling and 

Demakis (2010), which collectively demonstrated that PV explained 13-25% of the 

variance in neuropsychological performance in TBI litigants.  

 It remains unclear why the current study did not attain a rate as high as those 

found in previous studies (e.g., Constantinou et al., 2005; Green et al., 2001; Green et al., 

2002; Rohling et al., 2002; Stevens et al., 2008); however, differences in PV measures, 

study design, and patient populations might have contributed to varying results. For 

example, Green et al. (2001) constructed a PV composite from the three blocks of the 

CARB; WMT IR, DR, and CNS scores; and the CVLT Logit formula. Green et al. (2002) 

used the same PV composite as Green et al (2001). Constantinou et al. used TOMM Trial 

2 scores as their main PV measure. Stevens et al. used WMT IR, DR, and CNS scores, 

and MSVT IR and DR scores as their PV measures. Bowden et al. (2006) and Rohling 

and Demakis (2010) both used the WMT IR score as their main indicator of PV. As such, 

the PV measures employed in these studies might be considered “purer” measures of PV 

when compared to the measure that was utilized in this study – the entire WMT. As 

previously described, using all WMT subtests meant that both PV and memory subtest 

scores were used when classifying WMT performance. Current findings may therefore 

reflect that WMT scores used in analyses measured PV and memory, and indicate that 

overall, the WMT was not as “clean” a measure of PV as the PVTs used in other studies. 

 Differences in study design may have also impacted results. For example, Green 

et al. (2001), Green et al. (2002), and Rohling and Demakis (2010) examined the impact 
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of PV on the OTBM, a composite of average performance across a variety of 

neuropsychological measures. Other studies explored the impact of PV on summary 

indices or individual subtests of Wechsler IQ and memory tests (e.g., Bowden et al., 

2006; Constantinou et al., 2005; Stevens et al., 2008), the overall neuropsychological 

deficit score on the HRNB-A (Constantinou et al., 2005), or on stand-alone 

neuropsychological tests (e.g., TMT; Stevens et al., 2008). The present study used the 

DTBM and cognitive domain scores as outcome measures. Thus, the use of different 

outcome variables, which measure neuropsychological constructs in slightly different 

ways, may have accounted for some of the discrepancy found in the rates of variance in 

neuropsychological performance accounted for by PV.   

 Additionally, differences in patient population may have influenced results. As 

noted above, most studies that have examined the relationship between PVT and 

neuropsychological test scores have done so with litigant and claimant TBI patients. 

Though relatively unexplored, PV may impact neuropsychological performance 

differently in other patient populations that have seemingly little or no motivation to 

underperform. Although a small number of studies have explored the relationship 

between PVT scores and neuropsychological performance in patients with epilepsy (e.g., 

Drane et al., 2006; Locke et al., 2006; Loring et al., 2005), none did so utilizing a design 

similar to that of the current study. Thus, estimates of the amount of variance in overall 

neuropsychological performance attributable to PV have not been provided for the 

epilepsy population. As will be discussed below, Locke et al. came the closest to 

providing such estimates by reporting how much TOMM performance explained variance 

in individual cognitive domains, but did not construct an overall measure of 
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neuropsychological performance such as the DTBM or OTBM. It was therefore difficult 

to compare this study’s overall variance accounted for rate of 29% with findings from 

Locke et al. or studies conducted with other patient populations.    

 Another major, and arguably more intriguing, finding was that WMT performance 

did not affect each cognitive domain equally. Similar to previous findings (e.g., Green et 

al., 2001; Green et al., 2002), WMT performance had the most powerful effect on the LM 

domain, which represented scores on learning and memory tests. Specifically, WMT 

performance accounted for 40% of the variance in LM scores. This rate was much higher 

than that attained by Locke et al. (2006), who found that TOMM scores explained 7% of 

the variance in their Memory Functioning domain. However, the LM composite in the 

current study was comprised of 13 measures of verbal and visual memory, and Locke et 

al.’s Memory Functioning composite contained only the WMS-III Immediate Memory 

and General Memory indices. Thus, the LM composite likely represented a wider range 

of learning and memory functioning than the composite used by Locke et al., which may 

help explain the higher rate of LM variance accounted for by PV attained in this study. 

Additionally, it is of note that the LM domain in the current study consisted mostly of 

verbal memory tests, and that the WMT is a PVT that relies on verbal memory, 

particularly during its more challenging memory subtests. It is therefore reasonable to 

suggest that the WMT accounted for such a substantial proportion of the variance in LM 

scores because some of its subtests (e.g., MC, PA, FR) are also measures of verbal 

memory.  

 WMT performance was also found to have a significant, but less powerful, impact 

on the VF, AC, EF, PS, and PO domains. Holding education level constant, results 
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indicated that WMT performance explained 20% of the variance in the VF and AC 

domains, which represented scores on verbal functioning and attention and concentration 

tests, respectively. WMT performance accounted for 19% of the variance in the EF 

domain, which represented scores on executive functioning measures; however, these 

results must be interpreted with caution and are not generalizable, as the relationship 

between WMT performance and EF scores was not linear. Again holding education level 

constant, WMT performance accounted for 18% of the variance in the PS domain, which 

represented scores on processing speed tests, and 17% of the variance in the PO domain, 

which represented scores on tests of perceptual organization and reasoning. Contrary to 

previously reported findings (e.g., Green et al., 2001; Green et al., 2002; Locke et al., 

2006), WMT performance did not significantly impact motor functioning scores. 

Education level accounted for 5-9% of the variance in cognitive domain scores, which is 

relatively consistent with the 11% rate found by Green et al. (2001). Overall, these results 

revealed that WMT performance explained more variance in most cognitive domains 

than what has been previously reported in patients with epilepsy. Locke et al. is the only 

other study to report such rates in patients with epilepsy and found that TOMM 

performance accounted for 4 to 9% of the variance in various cognitive domains.  

 As demonstrated by the current findings and those of Locke et al. (2006), 

although PVT performance accounted for some of the variance in neuropsychological 

performance, the majority of this variance remained unexplained. Locke et al. explored 

more potential contributors than the present study and found that individually, medical 

variables (e.g., current number of AEDs, duration of seizure disorder), diagnosis (e.g., 

epilepsy vs. PNES), neuropathology, psychopathology, and PV explained relatively small 
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amounts of variance in several cognitive domains. For example, psychopathology 

explained 3% of the variance in memory scores. However, when considered together, the 

combination of predictors explained a significant percentage of variance in different 

cognitive domains. For example, the combination of predictors described above 

explained 32% of the variance in memory functioning. Similar to current results though, 

the majority of the variance in cognitive domain scores still remained unaccounted for in 

Locke et al.’s study.    

 The current study did not replicate Locke et al.’s (2006) design; that is, other 

possible explanatory variables related to seizures (e.g., recent seizure activity, seizure 

location) or other areas of functioning (e.g., psychopathology) were not included in 

current regression models. Such variables were not included because they were 

considered to fall outside of the main focus area of this study, which was exploring the 

relationship between WMT performance and neuropsychological test scores in an 

epilepsy population. Therefore, it remains unknown how incorporating such potential 

explanatory variables into regression models may have impacted results, and, similar to 

Locke et al.’s findings, the majority of the variance in cognitive domain scores remains 

unaccounted for. This unexplained variance should be further investigated in future 

studies that include a wide range of possible explanatory variables, such as those relating 

to seizure disorder, medical status, AEDs and other medications, neuropathology, 

psychopathology, PVT performance, disability status, and demographics. 

 Finally, perhaps the most noteworthy results of this section are related to 

differences observed in cognitive domain scores and overall neuropsychological 

performance among WMT performance groups. Results generally supported the 
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hypothesis that patients in the optimal performance group would have significantly 

higher neuropsychological test scores than patients in the suboptimal and GMIP groups. 

However, as will be discussed, this hypothesis was not supported in all cognitive domains, 

and an unanticipated subtlety emerged when examining DTBM scores.  

 First, holding constant education level when necessary, patients in the GMIP 

group averaged significantly lower scores on the DTBM and all cognitive domains except 

for the MD domain (the MD regression model was not statistically significant) than 

patients in the optimal group. At face value, this finding appears to add support to the 

validity of the GMIP in identifying patients who scored below WMT failure cutoff due to 

significant global cognitive impairment. Upon closer examination, it became apparent 

that although there were significant differences on various indicators of 

neuropsychological performance between GMIP and optimal groups, those differences 

were not consistently practically significant, i.e., clinically meaningful. For example, 

patients in the optimal group averaged VF, PO, EF, AC, and DTBM scores in the average 

range, whereas GMIP patients’ average scores were in the low average range. These 

results suggested that patients in the GMIP group were not markedly impaired on most 

neuropsychological tests, the significance of which will be discussed below. Significant 

and clinically meaningful differences were observed between the optimal and GMIP 

groups on LM and PS domain scores: on both of these measures, the optimal group 

averaged scores in the average range and the GMIP group averaged scores in the 

borderline range.  

These results provided initial support for the validity of the GMIP in identifying 

patients who scored below WMT failure cutoff due to significant impairment on tests of 
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learning and memory, as defined by LM scores in the borderline range. These results also 

provided additional support for previously discussed findings that indicated that PV does 

not impact cognitive domains equally, even in patients who demonstrate some level of 

impairment on testing.  

Rather unexpectedly, these results also indicated that GMIP patients did not 

demonstrate significant cognitive impairment across all neuropsychological measures. In 

fact, on average, patients in the GMIP group averaged DTBM scores in the low average 

range. As will be discussed below, this was surprising given that approximately half of 

the sample was diagnosed with TLE and 69% of patients were pre-surgical, both of 

which typically indicate the presence of significant cognitive impairment that likely 

impacts aspects of functioning.  

 It remains unclear why substantial clinically meaningful differences were not 

consistently found between patients in the optimal and GMIP groups on any cognitive 

domains except for LM and PS. The most likely explanation for the lack of consistent 

practically significant results may have to do with sample characteristics. Results 

suggested that, on average, participants did not demonstrate marked cognitive impairment 

in most areas of testing. In fact, mean overall neuropsychological performance was in the 

average range for optimal and suboptimal performance groups (DTBM M z-scores = -.37 

and -.68, respectively), and in the low average range for the GMIP group (DTBM M z-

score = -1.26).  

  The lack of a considerably cognitively impaired sample was surprising, given 

that approximately half the sample (52%) was diagnosed with TLE, which has been 

shown to be associated with impairments in all areas of cognitive functioning (e.g., 
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memory, attention, language, intelligence, executive functioning; Hermann et al., 2006; 

Hermann et al., 2007; Keary et al., 2007), as well as slow but continuous cognitive 

deterioration (Jokeit & Ebner, 1999). Further, 69% of the sample was pre-surgical, 

signifying that the majority of patients had intractable epilepsy that may have had a 

negative impact on various areas of functioning (e.g., cognitive, affective, behavioral, 

activities of daily living). However, since the sample was, on average, relatively young 

(M = 39.98, SD = 14.28) and, on average, had not been experiencing seizures for the 

majority of their lives (M = 16.96, SD = 1.75), it is likely that most patients were not yet 

displaying severe global impairment on testing.  

Findings from Jokeit and Ebner (1999) support such a possibility, as results of 

their study showed that patients with a longer duration of refractory TLE (30+ years) 

exhibited more severe cognitive impairment on the WAIS-R than patients who had had 

the disorder for shorter durations (<15 and 15-30 years). Additionally, a large percentage 

of the current sample (47%) was employed, offering further evidence that many patients 

did not demonstrate the type of marked cognitive impairment that would likely impede 

involvement in the workforce.  

 Moving on, examining differences in cognitive domain and DTBM scores 

between optimal and suboptimal performance groups revealed mixed results. Overall, 

results suggested that suboptimal performance on the WMT did not uniformly impact all 

cognitive domains or the DTBM. Specifically, significant differences were not found 

between these two groups on VF, PO, PS, and MD domain scores, indicating that such 

scores were relatively similar despite optimal or suboptimal WMT performance. 
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 Significant differences were found between optimal and suboptimal groups on EF, 

LM, and AC scores: patients in the suboptimal group averaged significantly lower scores 

than patients in the optimal group. More specifically, patients in the suboptimal group 

averaged scores in the low average range on these outcome variables, whereas patients in 

the optimal group averaged scores in the average range. The only exception to this trend 

was observed in DTBM scores: though scores between the two groups were significantly 

different, these differences were of little practical significance as both groups scored in 

the average range. Overall, in the absence of marked cognitive impairment on 

neuropsychological testing, results suggested that patients in the suboptimal performance 

group did not perform to the best of their ability on certain measures of 

neuropsychological functioning (e.g., measures of executive functioning, learning and 

memory, attention/concentration), and thus, that their scores in these domains 

underestimated actual ability levels.  

 These findings are consistent with those found in Loring et al. (2005) and Keary 

et al. (2013), the only studies to stratify patients with epilepsy into valid, questionable, 

and invalid PVT groups based on normative VSVT cut scores. Similar to current results, 

Loring et al. and Keary et al. found that patients in the questionable group scored 

significantly lower on a variety of WAIS-III and WMS-III indices than patients in the 

valid group. Also similar to current results, Loring et al. and Keary et al. found that 

patients in both groups almost always scored in different ranges. For example, in the 

Loring et al. study, patients in the valid group scored in the low average range on the 

FSIQ, VIQ, and PIQ indices, whereas patients in the questionable group scored in the 

borderline range. Keary et al. found that patients in the valid group scored in the average 
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range on three WMS-III indices whereas patients in the questionable group scored in the 

low average range, a finding consistent with current results. Overall, consistency between 

results of Loring et al., Keary et al., and the current study provides additional support for 

the way in which patients were categorized into WMT performance groups. Similarities 

between results of those studies and the current one also provide further support for the 

well-established notion that poor PVT scores are associated with significantly lower 

neuropsychological test scores across a range of cognitive domains.    .   

All things considered, two potential reasons emerged for the lack of consistent, 

practically significant differences in neuropsychological test scores among WMT 

performance groups in the current study. First, consistent with extant research, 

suboptimal WMT scores did not impact performance on all cognitive domains equally 

(e.g., suboptimal WMT scores were associated with significantly lower learning and 

memory scores but not with significantly lower verbal functioning scores). Further, the 

impact that suboptimal performance had on the cognitive domains it affected was 

arguably clinically negligible (e.g., lowered scores from the average range into the low 

average range), though knowing that such scores were lowered due to suboptimal PV 

would be useful when interpreting lower-than-expected test scores in those domains. 

Second, the lack of a significantly globally impaired sample likely limited the extent to 

which substantial, clinically meaningful differences in test scores could be found among 

groups. As such, further research replicating the present study’s design with a more 

clinically impaired sample of patients with epilepsy may help expand on current results.    

Validity of the GMIP  
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 Using GMIP analysis, the WMT has been found to have a high level of specificity 

(e.g., 98%; Green et al., 2011) in patients with severe memory impairment (e.g., 

dementia) (Green et al., 2003; Green et al., 2011). Similarly, the GMIP of the MSVT, a 

shorter version of the WMT, has been shown to have a high level of sensitivity (84%) in 

patients with dementia, indicating that the GMIP correctly classified patients with 

dementia as having dementia 84% of the time (Howe & Loring, 2009). These studies 

support the validity of the GMIP in accurately differentiating between WMT and MVST 

scores below failure cutoff due to significant cognitive impairment and those below 

failure cutoff due to suboptimal performance in patients with dementia; however it 

remains unknown if the GMIP can accurately do so in other patient populations that may 

have significant cognitive impairment. The current study was the first to explore the 

validity of the GMIP in patients with epilepsy by investigating the relationship between 

GMIP scores and scores on neuropsychological memory tests. The present study also 

examined how much each WMT subtest and constructed WMT memory and PV 

composites explained GMIP scores to further examine the validity of the GMIP. Overall, 

results largely provided support for the validity of the GMIP in patients with epilepsy, 

though a slight threat was identified. 

 Overall, results supported the hypotheses that GMIP scores would predict LM 

scores, and, more specifically, that patients with GMIPs would have significantly lower 

LM scores than patients without GMIPs. In the first regression model, GMIP scores were 

used in a simple linear regression analysis to predict LM scores. GMIP scores accounted 

for 55% of the variance in LM scores, indicating that GMIP scores were fairly strong 

predictors of LM scores. As anticipated, there was a strong negative relationship between 
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GMIP scores and LM scores (r = -.74, p < .001), signifying that patients with higher 

GMIP scores had lower LM scores. These results suggested that the higher the GMIP 

score, the more likely a patient scored below WMT failure cutoff because of significant 

memory impairment. This is what would be expected if the GMIP were a valid indicator 

of WMT scores below failure cutoff due to significant memory impairment.   

 Results of the first regression model also indicated that 45% of the variance in 

LM scores was not explained by GMIP scores. Such a high variance unaccounted for rate 

suggested that other potential contributory factors that were not included in the model 

(e.g., seizure data, neuropathology, psychopathology) might have explained nearly as 

much variance in LM scores as GMIP scores did. As previously noted, such potential 

explanatory variables were not included in regression models because they were 

considered to fall outside of the main focus of this study, which was exploring the 

relationship between WMT performance and neuropsychological test scores in patients 

with epilepsy. Future studies are encouraged to replicate the current design and include 

other potential contributory variables to allow for a more thorough investigation of the 

validity of the GMIP in the epilepsy population.  

 The second regression model explored differences in LM scores between GMIP 

performance groups. Based on normative cut scores, patients who did not meet GMIP 

criteria were categorized into the non-GMIP group and those who met GMIP criteria 

(failed at least one PV subtest and had GMIP scores ≥ 30) were categorized into the 

GMIP group. Results revealed that GMIP performance explained 30% of the variance in 

LM scores, signifying that 70% of the variance in LM scores remained unaccounted for. 

Again, it remains unknown what other factors might have contributed to the unexplained 
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variance in LM scores, as additional potential explanatory variables were not included in 

the model for reasons previously described. Patients in the GMIP group averaged 

significantly lower LM scores than patients in the non-GMIP group. Specifically, patients 

in the GMIP group averaged LM scores 1.16 points lower than patients in the non-GMIP 

group. This resulted in patients in the non-GMIP group averaging LM z-scores of -.48, 

which were in the average range, and patients in the GMIP group averaging LM z-scores 

of -1.64, which were in the borderline range. These findings were consistent with 

previously described regression results that found that GMIP patients averaged LM 

scores in the borderline range.   

 These findings provide support for the sensitivity of the GMIP to significant 

memory impairment (as defined by LM scores in the borderline range) in patients with 

epilepsy. More specifically, these results suggest that GMIP scores are able to validly 

distinguish between patients who score in the average and borderline ranges on LM 

measures. This differentiation is of practical significance in interpreting WMT 

performance because it provides a possible explanation for WMT scores below failure 

cutoff.   

 Although results provided initial support for the sensitivity of the GMIP to 

significant memory impairment, examination of the data also revealed the potential for 

GMIP true and false positives similar to those identified when discussing suboptimal 

scores. A GMIP true positive would indicate that the GMIP was an accurate reflection of 

WMT scores below failure cutoff due to significant memory impairment. On the other 

hand, a GMIP false positive would suggest that the GMIP was invalid because of 

suboptimal performance throughout the evaluation including during the WMT (so much 
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so that at least one PV subtest was failed and a ≥ 30-point difference between the mean of 

the easy and hard subtests was achieved). Two case examples illuminate these potential 

classification inaccuracies.  

In the first case example, a patient obtained the following WMT scores: IR = 58, 

DR = 73, CNS = 65, MC = 40, PA = 30, and FR = 10. GMIP score was 38. This patient’s 

DTBM was in the extremely low range. The majority of his/her cognitive domain scores 

were also in the extremely low range, though PO and MD domain scores were in the 

borderline range. The patient had been experiencing seizures for 29 years and was pre-

surgical. He/she was averaging 20 complex partial seizures per month and taking one 

AED during the time of the evaluation. He/she had 11 years of education, was unable to 

work because of his/her epilepsy, and was receiving SSDI during the time of the 

evaluation, thereby seemingly indicting a lack of an external financial incentive to 

underperform. Taking into consideration clinical history and overall neuropsychological 

performance, this patient’s GMIP score of 38 was likely an accurate indication of WMT 

scores below failure cutoff due to significant memory impairment as well as likely 

substantial global cognitive impairment.  

 A second case example emphasizes the need for interpreting GMIP scores within 

the context of overall neuropsychological profile and clinical history. The second patient 

was also pre-surgical and had been experiencing partial seizures for 36 years. Seizure 

frequency was not noted in the records, but the patient was taking one AED at the time of 

the evaluation. He/she had 12 years of education, was employed full-time, and did not 

disclose SSDI status. As SSDI status was unknown, it was possible that an external 

incentive to underperform on testing was present. The patient scored in the average range 
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on the DTBM and all cognitive domains except for LM and PS, where scores were in the 

low average range. WMT scores were as follows: IR = 80, DR = 75, CNS = 60, MC = 40, 

PA = 35, and FR = 23. GMIP score was 39. Only considering WMT scores, it appeared 

as though the patient may have scored below failure cutoffs due to cognitive impairment. 

However, the patient’s clinical history and largely average range performance on various 

measures of neuropsychological functioning suggested that his/her WMT performance 

could more accurately be described as suboptimal. Further, considering WMT scores 

within the context of his/her low average learning and memory scores provides additional 

evidence of suboptimal WMT performance, as someone with low average memory 

performance should be able to complete the WMT without difficulty. In this case, 

although greater than the ≥ 30 cutoff, the GMIP score of 39 was a false positive for a 

GMIP, and instead indicated a false negative for the WMT. That is, this patient was 

identified by the WMT as scoring below failure cutoff because of the possibility of 

significant cognitive impairment, whereas significant cognitive impairment was not 

evident on testing or in daily functioning. Therefore, the patient’s WMT performance was 

more accurately described as suboptimal and not reflective of significant cognitive 

impairment.  

 The two cases described above serve as reminders that although the specificity of 

the GMIP has been found to be quite high, i.e., in the 90s, in various patient populations 

(e.g., Green et al., 2011; Henry et al., 2009; Howe et al., 2007; Howe & Loring, 2009), 

the GMIP will not 100% accurately identify every patient who scores below WMT 

failure cutoff due to significant memory impairment. As such, it remains good clinical 

practice to interpret GMIP scores within the context of overall neuropsychological 
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performance and clinical history. This is especially true considering that, similar to 

results on any neuropsychological test, true and false positives for the GMIP are bound to 

emerge.  

 Moving on, results of the final two regression models largely provided support for 

the validity of the GMIP, though a slight threat was identified. It should be noted that 

these models violated many of the assumptions of multiple regression, including that of 

linearity, and contained influential cases. Therefore, the models may not have accurately 

represented the sample data and results are not generalizable.  

 Results of the first regression model revealed that 94% of the variance in GMIP 

score was explained by WMT subtest scores, and mostly supported the hypothesis that 

WMT memory subtest (MC, PA, FR) scores would account for a greater proportion of 

the variance in GMIP scores than would PV subtest (IR, DR, CNS) scores. More 

specifically, FR scores accounted for the majority (69%) of the variance in GMIP scores, 

with PA scores explaining an additional 16% of the variance. CNS and DR scores 

explained small proportions of the variance in GMIP scores (3 and 5%, respectively). IR 

and MC scores did not add to the explanation of GMIP score variance. Increases in FR, 

PA, and MC scores were associated with decreases in GMIP scores, indicating that 

higher performance on WMT memory subtests was associated with a lower possibility of 

scoring below WMT failure cutoffs due to significant memory impairment. Overall, since 

two of the three memory subtest scores (FR and PA) accounted for the majority of the 

variance in GMIP scores, preliminary support was provided for the sensitivity of the 

GMIP score to WMT memory subtest performance, and thus, to general memory ability. 

These results thus suggest that the GMIP score is likely a valid indicator of WMT scores 
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below failure cutoff due to significant memory impairment (as defined by 

neuropsychological test scores in the borderline range in this study). 

 Further support for, as well as a slight threat against, the validity of the GMIP 

score was obtained in a final regression that examined how much the WMT memory and 

PV composites explained GMIP score. As hypothesized, findings indicated that the 

WMT memory composite explained a greater proportion of the variance in GMIP scores 

than did the PV composite. The WMT memory composite accounted for 85% of the 

variance in GMIP scores, with the PV composite explaining an additional 5% of the 

variance. Increases in memory composite scores were associated with decreases in GMIP 

scores, demonstrating that better performance on the WMT memory subtests was 

associated with lower GMIP scores. This finding makes sense given that lower GMIP 

scores would be expected to be associated with higher memory scores, thereby 

suggesting that WMT performance was not impacted by significant memory impairment. 

Echoing conclusions drawn from the first regression model, these results provide 

additional support for the validity of the GMIP score as an indicator of WMT scores 

below failure cutoff due to poor performance on memory tests. 

 Finally, an unanticipated finding emerged when examining the correlation matrix 

of the final regression model that posed a slight threat to the validity of the GMIP. The 

correlation matrix indicated that the PV and memory composites were strongly correlated 

(r = .73, p < .001). Such a strong correlation suggested that they measured a similar 

construct and thus posed a slight threat to the validity of the GMIP score. The magnitude 

of this relationship was also not anticipated, as the PV composite is composed of subtests 

that are purported to be measures of PV and the memory composite is composed of 
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subtests that are supposed to be measures of memory (Green, 2005). However, this 

finding makes more sense when put into context; that is, some amount of memory 

functioning is required to score above failure cutoff on the PV subtests. As noted above, 

though, such an unexpected finding may have also reflected the model’s inaccurate 

representation of the sample data and, consequently, is not generalizable to other samples.  

 As exemplified by results discussed in this section, preliminary support was found 

for the validity of the GMIP in the current epilepsy sample. Depending on the regression 

model, GMIP performance explained from 30-55% of the variance in LM scores. Overall, 

GMIP group patients had significantly lower LM scores than non-GMIP group patients. 

On average, the GMIP group demonstrated LM scores in the borderline range, compared 

with LM scores in the average range for non-GMIP group patients. Thus, on average, 

GMIP scores signified the presence of borderline memory impairment on testing, 

providing initial support for the validity of the GMIP in this population. Despite these 

encouraging results, neuropsychologists are still urged to interpret GMIP scores within 

the context of clinical history, behavioral observations, and overall neuropsychological 

performance, as, like with any test, there is always some amount of error associated with 

classification accuracy.  

Limitations and Directions for Future Research 

 As with all research, methodology is an important factor to consider in the 

interpretation of current findings. The present study was the first of its kind to categorize 

patients into WMT performance groups, and to subsequently examine how such groups 

performed across a variety of neuropsychological measures. Although WMT 

classifications were based on normative cut scores (Green, 2005) and patients in each 
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group had significantly different scores across all WMT subtests, results of subsequent 

analyses may have differed had an alternate design been employed. For example, would 

more practically significant differences on certain neuropsychological outcomes (e.g., 

significantly different scores in different ranges on the DTBM in patients in the optimal 

and suboptimal groups) have emerged between groups if patients with IR, DR, and CNS 

scores in the caution range and patients with MC and PA scores in the warning range had 

been placed into the optimal instead of suboptimal group? Such a design would have left 

patients with WMT scores in the failure range (at least one IR, DR, or CNS score ≤ 

82.5% and GMIP scores < 30) in the suboptimal group. Patients with GMIPs would have 

remained in the GMIP group. As the current study did not employ such a design, it 

remains unknown if such proposed changes to group categorization would have 

drastically altered results, yet the possibility remains. Future studies are encouraged to 

employ this suggested modification in design and then re-examine the relationship 

between WMT performance and neuropsychological test scores in patients with epilepsy.  

 An additional potential limitation regarding design was that the LM domain was 

comprised of verbal and visual memory tests, therefore potentially framing LM as a 

unitary construct. Theoretically, LM is not believed to be a unitary construct, but rather 

an umbrella construct under which verbal and visual memory fall as unique yet related 

types of memory. In practice, neuropsychologists conceptualize and interpret 

performance on verbal and visual memory tests differently, particularly in patients with 

TLE (52% of the sample) who may display impairments on verbal and/or visual memory 

tests depending on seizure type, focus, and lateralization. The present study included both 

types of memory tests in the LM domain in an attempt to represent general memory 
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functioning, similar to the approach taken by Green et al. (2001), Green et al. (2002), and 

Rohling and Demakis (2010). However, upon examination of the composition of the 

current LM domain, it became apparent that the majority of the domain (69%) was 

comprised of verbal memory tests. Such a composition – verbal memory heavy – was 

quite similar to that of the LM domains constructed in studies that utilized similar designs 

(Green et al., 2001; Green et al., 2002; Rohling & Demakis, 2010), thereby providing 

preliminary justification for the composition of the current LM domain.  

 The LM domain in the current study was not deconstructed into two separate 

domains – verbal memory and visual memory – for a variety of reasons. First, reliability 

analysis results revealed that the LM domain possessed a strong level of reliability (α 

= .93), indicating that all tests that comprised the domain represented the overarching 

construct of memory. Next, one of the main goals of this study was to examine the 

relationship between WMT scores and overall neuropsychological performance as 

measured by the DTBM. The DTBM was created by computing the average of cognitive 

domain z- scores; therefore, having two memory domains instead of one would have had 

little impact on overall DTBM scores. Further, as previously mentioned, other studies 

that utilized a similar design (constructing cognitive domains and an OTBM or DTBM) 

did not separate verbal and visual memory tests into their own domains. Instead, Green et 

al. (2001), Green et al. (2002), and Rohling and Demakis (2010) included both verbal and 

visual memory tests in their LM domains, which represented general memory functioning.  

 For the sake of thoroughness, analyses in the current study were re-conducted to 

explore whether splitting the LM domain into separate verbal and visual cognitive 

domains would impact results. Results of the re-analyses were very similar to results of 
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the original analyses and did not result in patients in any WMT performance group 

scoring differently than they did on the LM domain or DTBM in initial analyses. Thus, 

exploratory re-analyses results revealed that constructing two LM domains failed to 

meaningfully impact results, thereby providing preliminary support for the inclusion of 

both verbal and visual memory tests in the LM domain. It remains unknown if results 

would have been different in both the initial analyses and re-analyses had the sample 

demonstrated significant cognitive impairment. Future studies are therefore encouraged 

to implement the modified design (separate verbal and visual memory domains) with 

markedly impaired patients with epilepsy to explore potential impacts on results. 

 Another limitation emerged during data analysis: on average, the current sample 

did not demonstrate significant cognitive impairment on testing; that is, other than the 

GMIP group averaging scores in the borderline range on LM and PS domains. This 

limitation was unexpected, as the majority of the patients were pre-surgical. Typically, 

epilepsy surgical candidates have poor to no seizure control, and, accordingly, may 

demonstrate significant cognitive impairment in activities of daily living and on 

neuropsychological testing (Bortz, 2003; Tavakoli et al., 2011). However, since the 

current sample was, on average, young (M = 39.98, SD = 14.28) and, on average, had 

been experiencing seizures for less than 20 years (M = 16.96, SD = 1.75), it is likely that 

most patients were not yet exhibiting signs of marked impairment on testing (Jokeit & 

Ebner, 1999). As such, the lack of a largely severely cognitively impaired sample may 

have impacted the regression models exploring the relationship between WMT 

performance and neuropsychological test scores. More specifically, the presence of a 

more markedly cognitively impaired sample may have led to the emergence of practically 
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significant differences on other neuropsychological measures in addition to the LM and 

PS domains among optimal and GMIP groups. Future research is therefore encouraged to 

replicate the current design with a sample of epilepsy patients who display more global 

impairment on neuropsychological testing. Additional research might also wish to 

replicate this study using a sample of patients with longer average durations of seizure 

disorder than patients in the current study, thereby increasing the chances of obtaining a 

sample with significant cognitive impairment.  

 Next, pre-surgical and non-surgical patients were both included in the current 

study. The majority of extant literature exploring PVT within the epilepsy population has 

not reported surgical status (e.g., Cragar et al., 2006; Drane et al., 2006; Hill et al., 2003; 

Hoskins et al., 2010). Instead, patients have been described as undergoing video-EEG 

monitoring to determine candidacy for resection surgery, and decisions regarding surgical 

candidacy status have not typically been reported. Therefore, non-surgical patients may 

have been included in previous studies, but this remains unknown because of how 

samples have been described. The present study reported surgical status and included 

both pre- and non-surgical patients in analyses. Including both pre- and non-surgical 

patients may have impacted findings, as, for example, non-surgical patients may not be as 

motivated to undergo neuropsychological evaluation as pre-surgical patients. Non-

surgical patients may be less motivated for testing because the results of their evaluation 

may be less critical to their medical care as potential surgical risks and outcomes are not 

being determined. However, current results indicated that a higher percentage of pre-

surgical patients fell into the suboptimal performance group than did non-surgical 

patients (39 versus 28%, respectively), indicating that the majority of non-surgical 
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patients in the current sample appeared motivated for testing. As patients in WMT 

performance groups were not further stratified into groups based on surgical status, the 

potential effect of surgical status on neuropsychological functioning and possible 

interaction effect of WMT performance and surgical status on neuropsychological 

functioning was not explored. Future research is therefore encouraged to more accurately 

describe sample characteristics including surgical status, and to explore the possible 

impact of surgical status on WMT performance and neuropsychological functioning in 

patients with epilepsy.  

 Similarly, the current sample did not include post-surgical patients with epilepsy. 

Post-surgical patients were not included because pre-surgical and post-surgical WMT and 

neuropsychological data were not available for the majority of patients. Therefore, it 

would have been difficult to control for the potential impact of surgery on WMT 

performance and also on neuropsychological measures when examining differences 

among WMT performance groups. It remains unknown how including post-surgical 

patients might have impacted findings, including whether there would have been 

differences in WMT performance between pre- and post-surgical patients. Future 

research should compare the WMT performance of pre- and post-surgical patients with 

epilepsy, as well as examine possible differences in neuropsychological functioning 

between patient groups in light of WMT performance, in order to further expand the 

epilepsy PVT research base.  

 Moving on, another potential limitation of the current study was that seizure data 

(e.g., seizure duration, age of onset, seizure type, seizure frequency, date of last seizure) 

were not included in analyses. These data were not included in regression models because 
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the main focus of the study was to explore the relationship between WMT performance 

and neuropsychological test scores in patients with epilepsy, and including seizure data 

would have changed the nature and broadened the scope of the study. However, 

incorporating seizure data might have impacted current findings. For example, research 

has found that patients who experienced seizure activity within 24 hours of, or during, 

neuropsychological testing may perform below their typical level of cognitive 

functioning on neuropsychological measures (Rennick, Perez-Boria, & Rodin, 1969; 

Aldenkamp & Arends, 2004a; Aldenkamp & Arends, 2004b). Therefore, including 

seizure data such as date of last seizure and seizure frequency might have explained 

unaccounted for variance in cognitive domain and DTBM scores. Further research 

investigating the relationship between PVT and neuropsychological scores within the 

epilepsy population should include seizure data as predictor or control variables in data 

analysis models to clarify and expand upon current findings.  

 Another limitation was the study’s small sample size (N = 81). Although power 

analyses indicated that the sample was large enough to detect large effects in all but one 

analysis, results may have differed and been more generalizable if the sample had been 

larger. For example, if a substantially greater amount of patients with epilepsy were 

included, a higher proportion of the sample may have demonstrated more significant 

levels of cognitive impairment. As such, more practically significant differences on 

neuropsychological measures among WMT performance groups might have emerged, or 

the GMIP might have been found to be, on average, associated with severe as opposed to 

borderline memory impairment. Additional studies are therefore encouraged to replicate 
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the current design with larger sample sizes in hopes of further validating and building 

upon current findings.  

 Lack of generalizability is the final limitation of the present study. As described in 

the Results chapter, data largely violated the assumption of normality. Transformations 

made to the data were not helpful, so data remained untransformed and, therefore, non-

normal. Although ANOVA and multiple regression are considered fairly robust tests, it is 

possible that the non-normal data had a negative impact on the ability of such tests to 

estimate reliable statistics and produce models representative of the sample data. Various 

assumptions of regression were also violated for some of the multiple regression models, 

indicating that results must be interpreted with caution and cannot be generalized to other 

samples of patients with epilepsy or to other patient populations. Replications and 

expansions of the current study with largely normal datasets that do not violate many of 

the assumptions of the statistics being employed are encouraged to provide further 

validation of current findings.  

Conclusion 

 Results of the present study indicated that previously reported base rates of 

suboptimal performance in the epilepsy population might vary considerably (e.g., from 4-

28%) because such rates likely included patients with significant memory impairment in 

their suboptimal PV groups. Seeking to clarify that variance in base rate, results of the 

current study revealed that 21% of the sample scored below WMT failure cutoff because 

of significant memory impairment (as defined by LM scores in the borderline range). 

This finding suggested that similar patients might have been misclassified as performing 

suboptimally in previous studies that did not employ WMT GMIP analysis.  
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 Interestingly, current results also revealed that a substantial percentage of patients 

(36%) performed suboptimally on the WMT. This finding likely indicates that a 

significant number of patients simply underperformed, for reasons unknown, on the 

WMT and various neuropsychological measures administered during testing. This finding 

may also reflect how patients were sorted into performance groups. Namely, patients with 

IR, DR, and CNS scores in the caution range were sorted into the suboptimal group, 

instead of the optimal group as has typically been done in prior studies, along with 

patients who scored below failure cutoffs and did not have a GMIP (i.e., “clear fail” 

performance). As discussed earlier in the discussion section, sorting patients with caution 

range scores into the suboptimal group likely increased the base rate of suboptimal 

performance attained in the current study. 

 Regarding the relationship between PVT scores and neuropsychological test 

scores, current results were largely consistent with extant research and indicated that 

WMT performance accounted for variance in overall neuropsychological performance, 

though not in as high a rate as previously reported values. In the current study, WMT 

performance accounted for 29% of the variance in overall neuropsychological 

performance, and from 17 to 40% of the variance in cognitive domain scores. Of note, 

PV did not impact all cognitive domains equally, a finding consistent with existing 

research that suggests that certain domains (e.g., learning and memory) may be more 

sensitive to the impact of suboptimal performance than others. Additionally, WMT 

performance groups scored significantly different across most, but not all, 

neuropsychological measures, with patients in the suboptimal and GMIP groups 

obtaining significantly lower scores on most measures than patients in the optimal group. 
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Notably, the sample was not as cognitively impaired as would be expected given a 

majority (70%) pre-surgical sample. The lack of a significantly cognitively impaired 

sample may have accounted for the lack of practically significant difference on some 

variables among performance groups.  

 Finally, preliminary support was found for the validity of the GMIP in identifying 

WMT scores below failure cutoff due to significant memory impairment. More 

specifically, patients in the GMIP performance group averaged LM scores in the 

borderline range – indicating the presence of significant impairment – compared to non-

GMIP group patients who averaged LM scores in the average range. Although a slight 

threat was identified regarding the validity of the GMIP in this sample, this threat should 

be interpreted with caution as the finding may have reflected the regression model’s 

inaccurate representation of the sample data.  

 Overall, results of this study encourage the use of the WMT and GMIP analysis in 

patients with epilepsy. It should be noted, though, that similar to extant PV research with 

various patient populations, the majority of variance in cognitive domains and overall 

neuropsychological profile remained unaccounted for. Other possible explanatory 

variables (e.g., seizure and medical data, AEDs, neuropathology, psychopathology, 

disability status) were not included in current regression models because they were 

considered to fall outside the focus area of this study. Thus, the unexplained variance in 

neuropsychological performance should be investigated in future studies that include a 

wide range of possible explanatory variables. Further, neuropsychologists should be 

aware that WMT scores do not likely explain the majority of variance in cognitive 

domain scores or overall neuropsychological performance in patients with epilepsy. 
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Therefore, neuropsychologists should continue to consider the impact of clinical history 

and medical status, current level of functioning (e.g., ability to live independently, 

perform basic activities of daily living, etc.), psychological status, behavioral 

observations, and demographic factors, along with PVT scores, on neuropsychological 

performance in patients with epilepsy.  
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