Corrigendum to "Taxonomies of Model-theoretically Defined Topological Properties"

Paul Bankston

Marquette University, paul.bankston@marquette.edu

CORRIGENDUM TO “TAXONOMIES OF MODEL-THEORETICALLY DEFINED TOPOLOGICAL PROPERTIES”

PAUL BANKSTON

Abstract. An error has been found in the cited paper; namely, Theorem 3.1 is false.

1. I would like to correct a simple, but serious, error in [1]; namely Theorem 3.1 therein is quite false: It can happen that there are compact Hausdorff spaces X and Y with $X \equiv Y$ (indeed $X \equiv Y$) but $X \not\equiv_{T} Y$. I am most grateful to Lutz Heindorf for communicating [3] the following straightforward example: Let X and Y be any two Boolean spaces with infinite dense sets of isolated points. Then $B(X)$ and $B(Y)$ are Wallman bases for X and Y respectively, are infinite atomic Boolean algebras, and hence, by the Tarski invariants theorem, are elementarily equivalent. Thus $X \equiv Y$. However, one can easily pick X and Y as above so that $X \not\equiv_{T} Y$; e.g., let X and Y be the ordinal spaces $\omega + 1$ and $\omega^2 + 1$ respectively. Then Y has a point of Cantor–Bendixson derivative 2, while X does not. This fact can be expressed in a sentence of Φ. The faulty inference in the proof of Theorem 3.1 of [1] occurs in the penultimate sentence: If W and Z are two Tichonov spaces with Wallman bases that are lattice-isomorphic, it does not generally follow that W and Z are homeomorphic. (We could make the inference if either W and Z were both compact or the Wallman bases contained all the singletons, but in our case W and Z are topological ultrapowers and neither condition holds.)

2. In Professor Heindorf’s communication [3], there were some further interesting facts that enrich the content of [1].

2.1. The 3-cell \mathcal{S}^3 is characterized by T_F in \{metrizable\} [2]. (This augments Theorem 1.2 in [1].)

2.2. There is a complete description of the spaces that are (finitely) characterized by certain taxonomies in \{metrizable Boolean\}. Let \mathcal{R} be the class of R. S. Pierce’s “compact 0-dimensional metric spaces of finite type” [7].

Theorem [5]. For any metrizable Boolean space X, the following are equivalent:
(i) $X \in \mathcal{R}$.

Received September 17, 1990.

1980 Mathematics Subject Classifications. (1985 Revision) Primary: 03C15, 03C20, 06D99, 54D30, 54F15, 54F25

©1991, Association for Symbolic Logic

This content downloaded from 134.48.158.181 on Mon, 23 Nov 2015 16:26:38 UTC
All use subject to JSTOR Terms and Conditions
(ii) \(X \) is finitely characterized by \(T_F \) in \{metrizable Boolean\}.

(iii) \(X \) is finitely characterized by \(T_r \) in \{metrizable Boolean\}.

(This result addresses issue (I2) in [1].)

2.3. **Theorem** [6]. There are \(c \) \(T_r \)-taxa (hence \(c \) \(T_F \)-taxa) in \{metrizable Boolean\}.

(This result addresses issue (I3) in [1], and answers a question raised in the penultimate paragraph on p. 592 therein. See also the paragraphs following the proof of Theorem 2.10.)

2.4. **Theorem** [4]. \{metrizable Boolean\} is dense in \{Boolean\}, relative to \(T_r \).

(This result addresses issue (I6) in [1].)

REFERENCES

