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10 Concept of Sub-Independence 

G.G. Hamedani 

Department of Mathematics, Statistics and Computer Science 

Mal"l\uette University, Milwaukee, Wl5:3201-1881 

Email: g.hamedani@mu.edu 

ABSTRACT: Limit theorems as well as other well-known results in probability and statistics are often 

based on the distributions of the sums of independent random variables. The concept of 

sub-independence, which is weaker than that of independence, is shown to be sufficient to 

yield the conclusions of these theorems and results. It also provides a measure of dissocia­

tion between two random variables which is stronger than uncorrelatedness. 

10.1 INTRODUCTION 

Limit theorems as well as other well-known results in probability and statistics are often 
based on the distributions of the sums of independent (and often identically distributed) 
random variables rather than the joint distribution of the summands. Therefore, the full 
force of independence of the summands will not be required. In other words, it is the con­
volution of the marginal distributions which is needed, rather than the joint distribution of 
the summands which, in the case of independence, is the product of the marginal distribu­
tions. This is precisely the reason for the statement: "why assume independence when you 
can get by with sub-independence". 

A comprehensive treatment of the concept of sub-independence from its beginning 1979 to 2011 will appear 
as an Expository Article elsewhere which will include the content of this article. 

185 



186 CONTEMPORARY TOPICS IN MATHEMATICS AND STATISTICS WITH APPLICATIONS 

The concept of sub-independence can help to provide solution for some modeling 
problems where the variable of interest is the sum of a few components. Examples include 
household income, the total profit of major firms in an industry, and a regression model 
Y = g (X)+ E where g (X) and E are uncorrelated, however, they may not be indepen­
dent. For example, in Bazargan et al. (2007), the return value of significant wave height 

(Y) is modeled by the sum of a cyclic function of random delay D, g (D), and a residual 

term e. They found that the two components are at least uncorrelated but not independent 
and used sub-independence to compute the distribution of the return value. For the detailed 
application of the concept of sub-independence in this direction we refer the reader to Ba­

zargan et al. (2007). 

For the sake of completeness we restate some well-known definitions. Let X and Y 
be two rv' s (random variables) with joint and marginal cdf' s (cumulative distribution 
functions) Fx,Y• Fx and Fy respectively. Then X and Yare said to be independent if and 

only if 

Fx,r(x,y) = Fx(x)Fy(y), for all (x,y) E JR2
, (10.1) 

or equivalently, if and only if 

<px,r(s,t) = <px(s) <py(t) for all (s,t) E JR?, (10.2) 

where <p x ,Y (s, t), <p x (s) and <py (t), respectively, are the corresponding joint and mar­
ginal cf' s (characteristic functions) . Note that (1 0.1) and (1 0.2) are also equivalent to 

P(X E A andY E B)= P(X E A) P(Y E B) , for all Borel sets A, B. (10.3) 

The concept of sub-independence, as far as we have gathered, was formally introduced 
by Durairajan ( 1979), stated as follows: The rv' s X and Y with cdf' s Fx and F rare s. i. 

(sub-independent) if the cdjof X+ Yis given by 

(10.4) 

or equivalently if and only if 

<pX+y(t) = <px,y(t,t) = <px(t) <py(t), for all t E R (1 0.5) 

The drawback of the concept of sub-independence in comparison with that of inde­
pendence has been that the former does not have an equivalent definition in the sense of 
(10.3), which some believe, to be the natural definition of independence. We believe to 
have found such a definition now, which is stated below. We shall give two separate defi­
nitions, one for the discrete case (Definition 10.1) and the other for the continuous case 

(Definition 1 0.2). 
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Let (X, Y) : Q ~ lR 
2 

be a discrete random vector with range 9t( X, Y) = 

{(xi,Y): i,j = 1,2, ... } (finitely or infinitely countable). Consider the events 

Ai = {CO E Q : X (CO) = xi} , B j = {co E Q : Y (co) = y j} 
and 

A
2 ={coEQ:X(co)+Y(co)=z}, zE9t(X+Y). 

DEFINITION 1 0.1 The discrete rv' s X and Yare s. i. if for every z E 9t (X+ Y) 

P(A
2

) = L L P(Ai) P(B). 
i,j, X;+yj=z (10.6) 

To see that (10.6) is equivalent to (10.5), suppose X and Yare s.i. via (10.5), then 

"" it(x.+y .) "" it(x.+y .) 
L£J 

1 1 f(xi,yj) = LLe 1 1 fx(xi)jy(y), 
i j i j 

where J,fx and fr are probability functions of (X, Y), X and Y respectively. Let z E 9t (X+ Y), 

then 

eitzL L f(xi,yj)=eitzL L fx(xi)Jdyj), 
i,j,xi+yj=z i,},x;+yj=z 

which implies (1 0.6). 

For the continuous case, we observe that the half-plane H = {(x,y): x+ y < o} can be 
written as a countable disjoint union of rectangles: 

H = u;=,1Ei xF;, 

where E and Fare intervals. Now, let (X, Y): Q ~ JR 2 be a continuous random vector and I I 

for c E JR, let 

Ac ={coEQ:X(co)+Y(co)<c} 

and 

A;(c) ={co E Q: X( co)-~ E Ei },B}c) ={co E Q: Y(co)-~ E F; }· 
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DEFINITION 1 0.2. The continuous rv' s X and Yare s. i. if for every c E lR 

P(AJ = f P(A;(e))P(B}e)). 
i=l 

To see that (10.7) is equivalent to (10.4), observe that (LHS of(10.7)) 

P(Ae) = P(X + Y <c)= P((X,Y) E He), 

where He= {(x,y): x+ y < c}. Now, if X and Yare s.i. then 

where P X' P Yare probability measures on JR defined by 

Px(B) = P(X E B) and Py (B)= P(Y E B), 

and P x x P Y is the product measure. 

We also observe that (RHS of(10.7)) 

~P(A;(e))P(B}e)) = ~p( X-~ E E; )p(y -~ E F;) 

= ~p( X E E; +~)p(y E F; +~) 

= ~Px xPy( E; +~)x(F; +~} 

(10.7) 

(10.8) 

(10.9) 

Now, (10.8) and (10.9) will be equal if He= u;:1 {( E; +~)x(F; +~)},which is 

c 
true since the points in He are obtained by shifting each point in Hover to the right by 2 

units and then up by ~ units. 
2 

REMARKS 1 0.1. 

(i) Note that H can be written as a union of squares and triangles. The triangles are con­
gruent to 0 :.:::: Y < x , 0:.:::: x < 1 which in turn can be written as a disjoint union of 

squares. For example, take [0, 1/2) x [0, 112) then [1/2, 3/4) x [0, 1/4) and so on. 

(ii) The discrete rv' s X, Yand Z are s.i. if (10.6) holds for any pair and 

P(As) = I I 
(10.10) 

For p variate case we need 2P- p -1 equations of the above form. 

CoNCEPT oF SI 

(iii) The reJ: 

(iv) For the 
variate 

We may 
relatedness" 
"sub-indepen 

than indepen• 
der usual ass1 
Limit Theore 
sequence of s 
dence in mar 
implies the l2 
joint distribu 
two random· 

and 

must satisfy 

andz ta1 

This lir 
smallest vah 
the other hat 

If X and 

real a*1 a: 

EXAMPLE 10 

where~ is 1 

X+ Yis nm 

X- Ydoes r 

The cm 
follows. 



ITH APPLICATIONS 

(10.7) 

(10.8) 

(10.9) 

-~)},which is 
the right by ~ 

2 

angles are con­
isjoint union of 
~)and so on. 

(10.10) 

CONCEPT OF SUB-INDEPENDENCE 189 

(iii) The representation (10.7) can be extended to the multivariate case as well. 

(iv) For the sake of simplicity of the computations, (1 0.5) and its extension to the multi­
variate case will be taken as definition of sub-independence. 

We may in some occasions have asked ourselves ifthere is a concept between "uncor­
relatedness" and "independence" of two random variables. It seems that the concept of 
"sub-independence" is the one: it is much stronger than uncorrelatedness and much weaker 
than independence. The notion of sub-independence seems important in the sense that un­
der usual assumptions, Khintchine's Law of Large Numbers and Lindeberg-Levy's Central 
Limit Theorem as well as other important theorems in probability and statistics hold for a 
sequence of s. i. random variables. While sub-independence can be substituted for indepen­
dence in many cases, it is difficult, in general, to find conditions under which the former 
implies the latter. Even in the case of two discrete identically distributed rv' s X and Y, the 
joint distribution can assume many forms consistent with sub-independence. In order for 
two random variables X and Y to be s. i., the probabilities 

P;=P(X =x;), i=1,2, ... ,n 

and 
qu = P(x = x;,Y = x1 ), i,j = 1,2, ... ,n, 

must satisfy the following conditions: 

1. L(qiJ- P;P;) = 0, wherethesumextendsforallvaluesofiandjforwhich X; +x1 = z 

and z takes all the values in the set {min( X; + x 1 ), ... , max( X; + x 1)}; 

2. P; = L~~tqiJ = L~~tqii ' i = 1,2, ... ,n · 

This linear system in n2 variables qij is considerably underdetermined for all but the 
smallest value of n specially if a large number of points (xi, x) lie on the line x + y = z. On 
the other hand, the only qij consistent with independence is qij = PPr 

If X and Yare s. i., then unlike independence, X and a.Y are not necessarily s. i. for any 
real a. "# 1 as the following simple example shows. 

ExAMPLE 1 0.1. Let X and Yhave the joint cf given by 

<p X,Y(t1 ,t2 ) = exp{-(t1
2 + ti) I 2}[1 + ~ t1t2 (t1 - t2 )

2 x exp{ (t~ + ti)/4}], (t1 ,t2 ) E JR2
, 

where ~ is an appropriate constant. Then X and Yare s. i. standard normal rv' s , and hence 
X+ Y is normal with mean 0 and variance 2, but X and - Y are not s. i. and consequently 
X- Y does not have a normal distribution. 

The concept of sub-independence defined earlier can be extended ton(> 2) rv' s as 
follows. 
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DEFINITION 10.3. The rv' s XI, x2, ... ,X. are s.i. if for each subset {xal ,Xa2 , ... ,Xar} of 
{X1,X2 , ... ,xn} 

<pX , ... ,X (t, ... ,t) = fl~=J<pX (t), fora!/ t E JR.. 
a 1 ar ai 

(10.11) 

To see how weak the concept of sub-independence is in comparison with that of in­
dependence, even in the case involving normal distribution, Hamedani (1983) gave the 
following example. 

EXAMPLE10.2. Given {(ak,bk):k=1,2, ... ,N} afinitesetin JR2
. Considerthejointcf 

<p x,Y(t1 ,t2 ) = exp {-(tf + t;) I 2} + t1t2 (tf- t;) 

x exp{ -~[c1 - c2 (tf + t;)} n~=l (bftf- ait;), (t1 ,t2 ) E 1R2
, 

where c
1 

and c
2 

are suitable constants. Then X and Yare standard normal rv' s, X and Y, as 
well as, X and -Yare s. i. and more 

<px,y(akt,bkt) = <px(akt) <py(bkt), for all t E JR, k = 1,2, ... ,N, 

i.e., akX and bkY, k = 1,2, ... ,N are s.i. and of course akX +bkY, k = 1,2, ... ,N are all 
normally distributed, but X and Y are not independent. 

REMARK 1 0.2. The set { ( ak, bd : k = 1, 2, ... , N} in Example 10.2 cannot be taken to be 
infinitely countable. Hamedani and Tata (1975) showed that two normally distributed rv' s 

X and Yare independent only if they are uncorrelated and akX and bkY, k = 1, 2, ... are s.i.; 
i.e., 

<p x,Y (akt,bkt) = <p x (akt)<p x (bkt), for all t E JR, k = 1, 2, ... , 

where, { ( ak, bk) : k = 1, 2, ... } is a distinct sequence in 1R2
. 

10.2 SOME APPLICATIONS OF THE CONCEPT OF SUB-INDEPENDENCE 

We mention below a few results in which the assumption of independence is replaced by 
that of sub-independence, starting with the s. i. version of Cramer's famous theorem (Theo­
rem 1, 1936) which appeared in Hamedani and Walter ( 1984b). 

THEOREM 1 0.1. (Cramer). If the sum X+ Y of the rv' s X and Y is normally distributed 
and these rv' s ares. i., then each of X and Y is normally distributed. 

PROPOSITION 1 0.1. (Chung). Let X and Ybe s.i.i.d. (sub-independent and identically dis­
tributed) rv' s with mean 0 and variance 1 such that 

(i) X and- Yare s.i., 

(ii) X+YandX-Yares.i .. 

Then, both X and Y have standard normal distributions. 
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PROPOSITION 1 0.2. (Chung). Let X and Y as well as X and-Y be s. i. normally distributed 
rv' s with the same variance. Then X+ Y and X- Yare s. i .. 

THEOREM 10.2. Let X and Ybe s.i.i.d. nondegenerate rv' s. If X 2 and .!..(x + y )2 are 
2 

i.d. chi-square with one degree of freedom, then the common distribution of X and Y is 

standard normal. 

-2 - 1 k 
THEOREM 10.3. LetX1,X2, ••• ,Xn bes.i.i.d. nondegenerate rv' s. Ifk Xk, Xk = k L;~J X;, 

is distributed as chi-square with one degree of freedom for two positive integers m
1 
and m

2
, 

then X/ s are normally distributed. 

A rv X (or its pdf fx) is called reciprocal if its cf is a multiple of a pdf It is called self­
reciprocal if there exist constants A and a such that Af x (at) is the cf of X. It is strictly 
self-reciprocal if (2n)112 fx (t) is the cf of X. Using the concepts of reciprocal, self-recip­
rocal, strictly self-reciprocal and sub-independence, Hamedani and Walter (1985) reported 
the following observations (Propositions 10.3, 10.4 and Theorem 10.7 below). 

PROPOSITION 10.3 Let X be the standard normal rv, Ybe any infinitely divisible rv s.i. of 
X. Then X+ Y is self-reciprocal if and only if Y is normally distributed. 

THEOREM 1 0.4. LetXbe the standard normal rv and Ybe strictly self-reciprocal and s.i. of 
X. Then X+ Y is self-reciprocal if and only if it is normally distributed. 

PROPOSITION 10.4. Let X be the standard normal rv, Ya symmetric (about 0) rv s.i. of X. 
Then Y is strictly self-reciprocal if and only if the cf <p of the rv X+ Y satisfies the func­
tional equation 

<p(t)= k JJRexp{(s+it)2 /2} <p(s)ds,foralltER 

THEOREM 10.5. LetXand Ybes.i.i.d rv's whose sumX+ Y, is symmetric. ThenXand 
Yare symmetric rv' s . 

THEOREM 10.6. Let X and Y be s.i. and X+ Y symmetric. If X is symmetric with cf 
<p x (t) "/:. 0 , for all t, then Y must be symmetric. 

THEOREM 10.7. (Raikov). If X and Yare non-negative integer-valued rv' s such X+ Yhas a 
Poisson distribution and X and Yare s. i., then each of X and Y has a Poisson distribution. 

As we mentioned before, the well-known Khintchine's Law of Large Numbers and 
Lindeberg-Levy's Central Limit Theorem as well as other important results can be stated 
in terms of s. i. rv' s . Hamedani and Walter ( 1984a) reported several version of the central 
limit theorems for s.i.i.d. rv' s to which we refer the reader for details. 



192 CONTEMPORARY TOPICS IN MATHEMATICS AND STATISTICS WITH APPLICATIONS 

10.3. A DIFFERENT BUT EQUIVALENT INTERPRETATION OF 
SUB-INDEPENDENCE AND RELATED RESULTS 

Ebrahimi et al. (20 10) look at the concept of sub-independence in different but equivalent 
definition which provides a better understanding of this concept. Here we copy a portion 
of their paper since it treats this notion in completely different direction than we have dealt 
with so far. They present models for the joint distribution ofuncorrelated variables that are 
not independent, but the distribution of their sum is given by the product of their marginal 
distributions. These models are referred to as the summable uncorrelated marginals distri­
butions. They are developed utilizing the assumption of sub-independence, which has been 
employed in the present work in various directions, for the derivation of the distribution of 
the sum of random variables. 

We shall now revisit the definition of sub-independence of the rv' s XI, X 2 , ... , 

X P. We use p in place of n to be consistent with its use by Ebrahimi et al. (20 10). Let 
X= (XI ,X2 , ... ,XP)' be a random vector with cdfF and cf \f'(t). Components of X are 
said to be s. i. if 

\f' (t) = nr~I 'JI; (t), Vt = (t,t, ... ,t)' E JR.P' (10.12) 

where 'Jf; (t) is cf of X;. We first consider the bivariate case p = 2 and let F be the cdf of 
X = (XI, X 2 ), and x* = ( xt, x;) denote the random vector with cdf F* (xi, x2 ) = F; ( x1) 
F2 ( x2 ), where F;, i = 1, 2 is the marginal cdf of x;. 

DEFINITION 1 0.4. F is said to be SUM (summable uncorrelated marginals) bivariate distri-
st 

bution if XI+ Xz = xt + x;' where~ denotes the stochastic equality. Random variables 
with a SUM joint distribution are referred to as SUM random variables. 

It is clear that the SUM and sub-independence are equivalent, so the two terminologies 
can be used interchangeably. It is also clear that the class of SUM rv' s are closed under 
scalar multiplication and addition under independence. That is, if X= (XI ,X2 ) is a SUM 
random vector, so is a X, and if Y = (J!, Y2 ) is another SUM random vector independent 
of X, then X+ Y is also SUM random vector. However, the SUM property is directional 
in that XI and X 2 being SUM rv' s does not imply that XI and aX2 are SUM. Definition 

st 

10.4 can be generalized to any specific direction by aiXI + a2X 2 =aiXt + a2 X;. 

We define a bivariate SUM copula to be a SUM distribution on the unit square [ 0, 1 ]
2 

with uniform marginals. We state the following lemma, due to Ebrahimi et al. (2010), 
which explains the construction of families of SUM models by linking the univariate pdf's 

J;(x),i=1,2. 
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LEMMA 1 0.1. Let J; (x), i = 1, 2 be pdf s and g (x
1

, x
2

) a measurable function. Set 

f~ (x1, x2 ) = ./1 (x1 )/2 (x2 ) + ~ g(x1 ,x2 ), (x1 ,x2 ) E JE?. (10.13) 

Then for some ~ E JE., fp(x1,x2 ) is a SUM pdf with marginal pdfs J;(x), i = 1, 2, 
provided that: 

(a) f~ (x1,x2 ) ~ 0 

(b) J~g(x1 ,x2 )dx1 = J~g(x1 ,x2 )dx2 =Oforall(x1,x2)EJE.2 

(c) J~g(c-t,t) dt = 0 for all c E R 

The next example illustrates Lemma 1 0.1. 

ExAMPLE 10.3. LetJ; (x), i = 1, 2 be two pdfs on [0, 1] and set 

/p(x1,x2 ) = .fl(x1) /2 (x2 )+~sin[27t(x2 -x1 )], (x1,x2 ) E [0,1f, (10.14) 

such that for some ~ E JE., fp (x1, x2 ) is a pdf on [0, 1 ]2. 

We mention here examples in which ( X 1 , X 2 ) has a SUM distribution and X
1 

and X
2 

are i.d. with symmetric pdfs other than N (0, 1 ). 

(i) Standard Cauchy: f(x) = 
1 

2 
, x E lE.; 

1t(l +X ) 

(ii) Laplace Double Exponential: f(x) = -
1
-e +-~licr, x E lE.; 

2cr 

(iii) Hyperbolic Secant: f(x) = 
1 

e -aJy2 +(x-~)2 , x E lE., where K
1 

is a modified 
2yK1(a:y) 

Bessel function of the second kind; 

(iv) LogisticorSech-Square(d):j(x)= e =-Sech x-~, ~=mean 
-(x-~)/s 1 ( ) 

s(l + e -(x-~)ls )2 4s 2s 

and s is proportion to standard deviation; 

1 [ ( 1t (X - ~) )] (v) RaisedCosine: f(x)= 
2

s l+cos. s , ~-s~x~~+s; 



194 CoNTEMPORARY TOPICS IN MATHEMATICS AND STATISTICS WITH APPLICATIONS 

(vi) Wigner Semicircle: f(x) = ~~r2 -x2 
, -r < x < r; 

1tr 

(vii) 

4(x-2sin(~)) 
f(x) = 3 ' X E JR. 

1tX 

Note that the cf's corresponding to pdf's (vii) are respectively 

1'-jtj 1 

q>(t) = {~-I t I if It I~ 1 
if It!~-

2 ' 
if It I> 1 

q>(t) = I 

' 1 -ltl+- 1 
-e 2 if It!>-
2 2 

{I-2jtj 1 
if It!~-

q>, (t) = ~ ; q>2(t) =I q>, (t) 12 ' t E JR . 
0 if 

' It I>-
2 

' 

The graphs of the first two pdf's in (vii) are bell-shaped and can be used to approxi­
mate normal pdf Hamedani et al. (20 11) have presented various examples of bivariate 
mixture SUM distributions based on the pdf's given in (vii). 

We can consider multivariate SUM random variables. Let F be the cdf of 
X=(X

1
,X2 , ••• ,XP)' and x* =(x;,x;, ... ,x;y denote the random vector with cdf 

F* = Df=1 F;, where F; is the cdfof X,. 

DEFINITION 10.5. F is said to be a SUMp (SUM distribution of order p) if 
st 

~p X=~p x·. 
,t,_. i=J I ,t,_. i=\ I 

The following example, due to Ebrahimi et al. (2010), shows a trivariate SUM 

distribution. 

EXAMPLE 10.4. Let X= (X1,X2 ,X3 )' and consider the distribution with pdf 

CoNCEPT OF 

where~= 

The c< 

where t = 1 

are SUM2 

univariate 

N(O,n),n 

The f< 
is s.i. but n 

EXAMPLE 1 

f~(x) =. 
I 

where 0< 

The Cj 

Then 
j = 2,3, ... , 



:CATIONS 

pproxi­
ivariate 

cdf of 
rith cdf 

. p) if 

e SUM 
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where ~ = s-l and 

I ' 
--XX 

(x1 -x2 )(x1 -x3)(x2 -x3)e 2 I::;; B. 

The corresponding cf is 

1 I 1 I 

--t t 1 --t t 
'P~(t)=e 2 -9n~i(t1 -t2 ){t1 -t3 ){t2 -t3 )e 4 , tEJR3, 

2 
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(10.15) 

where t = (t1,t2 ,t3)'. Clearly f~ (x) is SUM3. It can be shown that f~(xi,x) , i :;t j = 1,2,3 
are SUM2 for all ~ satisfying (10.15). So, f~ (x) is a trivariate SUM distribution. Thf 

univariate marginals are N(O, 1), so the distributions of a' X where "'
3 

ak = n::;; 3 an 
LJk~l 

N(O, n), n = 2,3, given by the independent trivariate normal model. 

The following example is quite interesting in the sense that any subset of size r < n 
is s.i. but not independent. 

EXAMPLE 10.5. Let (X1,X2 , ••• ,Xn) havepdjgiven by 

I ' 

~ ( 2 2 [ 2 2 2 ( 2 2) 2 2] 1 + n X2 - X1 ) 1 C - C X2 + x1 + X1 X2 X 

(2c)2+6 
1 e -z-x x 

J~Cx) = (21tr/2 

[ 

n ( )k-2 l ( I I) , 1+ L ~ n7~3(2c-xl) e- 4c-z XX 

k~3 4c 

where 0 < c < .!.. , ~ = B-1 and 
2 

~ (xi - xf) [ 12c
2 

- 2c (xi + xf) + xf xi J X 

(2c)2+6 

1 + L -2 n7=3 ( 2c- xl) e- 4c -2 X X 

[ 

n ( 1 )k-2 l ( I I) ' 
k~3 4c 

The cf for f~ is 

n n 

_I"' 12 -c"' 12 

::;;s. 

' X E JRn' 

- > ;c-J i=J /1 k 2 2LJJ LJJ ( ) 
'P~(tl,tz, ... ,tn)- e + ~e - x Lk=2ni=lti (tf -ti), (t1,t2 , ••• ,t,) E JR". 

Then X} s are s.i.i.d. N(O, l ). The same is also true for random vector (X1, X 2 .... ,X; 
j = 2,3, ... ,n-l. So, X 1,)(2 , .•• ,X, indeed form a sequence ofs.i.i.d rv's. 
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We conclude this section with a characterization of the multivariate SUM 
distribution. 

THEOREM 10.8 Let <~'1• j = 1, 2, ... , n be cfs and let 

where q(t), t E JR.n is non-negative definite, continuous at the origin and q(t,t, ... ,t) = 0 

for t E JR.. Then for some constant ~ , 'P ~ is cf of a SUM distribution if I 'P ~ ( t) I :s; 1 for 

alltelR.n. 

PROOF. 'P~ is non-negative definite, continuous at the origin and 'P~ (0) = 1. Then by 
Bochner's Theorem 'P~ is a cf 

10.4 EQUIVALENCE OF SUB-INDEPENDENCE AND INDEPENDENCE 
IN A SPECIAL CASE 

The interesting question is that under what conditions sub-independence implies indepen­
dence. It is possible to have an answer for this question if the underlying joint distribution 
has a specific form. The following result (Lemma 10.2), due to Ebrahimi et al. (2010), 
relates the SUM distributions to the well-known notions of POD (Positive Orthant Depen­
dence) and NOD (Negative Orthant Dependence) defined below. 

DEFINITION 1 0.6. A multivariate distribution F is said to be POD (NOD) if 

F(x,,x2 , ... ,xp) ~ (:s;) n;=, F;(x;), 

where F(x1,x2 , ... ,xP)=P(X1 >x1,X2 >x2 , ... ,XP >xp) and F;(x;)=P(X; >x;). 

It is known that under POD (NOD), if p(X;,X1) = 0 (correlation coefficient), then 
~ and~ are pairwise independent, without implying any higher order dependency among 
~· s. For details about POD (NOD) and other notions of dependence see Barlow and Pro­
schan (1981). 

LEMMA 10.2. Let X= (X1,X2 , ... ,XP)' be a nonnegative random vector with a POD 
(NOD) distribution F. Then F is a SUM distribution if and only if F(x) = llf= 1 F;(x;), 

where F; is cdf of~· 

10.5 DISSOCIATION AND SUB-INDEPENDENCE 

De Paula (2008), presented a bivariate distribution for which 

(10.16) 
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I 'I'~ ( t) I ~ 1 for 

0) = 1. Then by 
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i.e., xm and Y" are uncorrelated for all positive integers m and n, but X and Yare not inde­
pendent. De Paula's goal was to show a measure of dissociation between two dependent 
rv s X and Y beyond the concept of uncorrelatedness of X and Y. Hamedani and Volkmer 
(2009a, 2009b) showed that the rv s considered in De Paula (2008) are not s. i .. Then, they 

presented a bivariate distribution for which (10.16) holds, X and Yare s.i., but not inde­
pendent. This provides a stronger measure of dissociation between X and Y (see Hamedani 

and Volkmer (2009b). 
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