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Summary: The inherent complexity of the proteome often demands that it be 

studied as manageable subsets, termed subproteomes. A subproteome can be 

defined in a number of ways, although a pragmatic approach is to define it 

based on common features in an active site that lead to binding of a common 

small molecule ligand (ex. a cofactor or a cross-reactive drug lead). The 

subproteome, so defined, can be purified using that common ligand tethered 

to a resin, with affinity chromatography. Affinity purification of a subproteome 

is described in the next chapter. That subproteome can then be analyzed 

using a common ligand probe, such as a fluorescent common ligand that can 

be used to stain members of the subproteome in a native gel. Here, we 

describe such a fluorescent probe, based on a catechol rhodanine acetic acid 

(CRAA) ligand that binds to dehydrogenases. The CRAA ligand is fluorescent 

and binds to dehydrogenases at pH > 7, and hence can be used effectively to 

stain dehydrogenases in native gels to identify what subset of proteins in a 

mixture are dehydrogenases. Furthermore, if one is designing inhibitors to 

target one or more of these dehydrogenases, the CRAA staining can be 

performed in a competitive assay format, with or without inhibitor, to assess 

http://dx.doi.org/10.1007/978-1-61779-364-6_5
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the selectivity of the inhibitor for the targeted dehydrogenase. Finally, the 

CRAA probe is a privileged scaffold for dehydrogenases, and hence can easily 

be modified to increase affinity for a given dehydrogenase. 

Keywords: Dehydrogenase, oxidoreductase, catechol rhodanine, chemical 

proteomics, subproteome, staining 

1. Introduction 

Chemical proteomics is the study of families of proteins related 

by their active site pockets, typically by labeling the proteins in gels 

(1, 2). This requires a chemical probe that has a detectable group 

(e.g., a fluorescent label) tethered to an active site ligand (3, 4). The 

active site ligand might covalently react with a conserved active site 

residue (5), in which case the probe is called an activity-based probe 

(6). Such probes have been developed for serine hydrolases and 

cysteine proteases (7, 8). In contrast, affinity-based probes bind 

noncovalently, such as ATP tethered to a fluorophor to detect kinases 

(9, 10). One problematic design constraint for affinity-based probes is 

that the ligand must be tethered to a detectable group, and the 

addition of the linker/fluor pair can disrupt binding interactions (11). 

This is especially problematic since enzyme affinity for cofactors is 

typically not strong (Kd > 10 µM). An improved affinity-based probe 

would have a high affinity family-specific ligand that is itself 

fluorescent, so that a linker/fluor does not need to be added (12). 

There are few examples of such probes that can be used in 

displacement assays, in a native gel (13). The catechol rhodanine 

acetic acid (CRAA) probe presented herein binds in the NAD(P) 

cofactor site of dehydrogenases, and its ability to target 

dehydrogenases broadly has recently been demonstrated (14, 15). 

The catechol rhodanine scaffold was also used as a template in 

a focused combinatorial library, yielding potent (50–200 nM) biligand 

inhibitors for multiple dehydrogenases (14). Therefore, it serves the 

dual role of being a fluorescent probe, and a scaffold for a focused 

library targeting dehydrogenases. It can be used as a stain for 

dehydrogenases (15), either in its current form, or as modified in a 

focused library. The fluorescent CRAA probe was initially used to inhibit 

dihydrodipicolinate reductase (DHPR), an anti-infective drug target. It 

also shows in-gel binding to two lactate dehydrogenase (LDH) 
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isozymes and to 1-deoxy-d-xylulose-5-phosphate reductoisomerase 

(DXPR), making it a generally useful staining reagent for 

dehydrogenases. Because binding is noncovalent, it can also be used 

in a displacement assay performed in a native gel, by monitoring a 

decrease in fluorescent band intensity as the NAD(P) pocket is 

occupied by a competing ligand. Finally, the CRAA probe can be used 

as a stain for mixtures of proteins (ex. tissue extracts), to profile the 

mixture in terms of proteins that are likely to be dehydrogenases. 

2. Materials 

HP 8452A diode array spectrophotometer for UV-Vis 

measurements. All spectroscopic measurements were taken at 25°C in 

a 1 mL quartz cuvette.Kodak Image Station 2000MMT System for in-

gel fluorescence scanning (IGFS). 

Canon CanoScan (D1250 U2F) scanner for visible imaging of gel 

bands. 

2.1 Proteins and Staining Reagents 

1. E. coli DHPR expressed in E. coli (BL21) and purified following 

previously described methods (16). 

2. L-lactic acid dehydrogenase (LDH, Bovine heart). 

3. E. coli DOXPR expressed and purified from E. coli (provided as a 

generous gift by Triad Therapeutics). 

4. CRAA was prepared and purified as described in the next 

chapter. 

5. CRAA staining buffer: dissolve CRAA (2 mM) in 25 mM Tris-HCl, 

pH 8.5. 

2.2 Running the Native Gel 

1. Bio-Rad protein assay reagent. 

2. NuPage™ and Novex™ products for native gel and SDS-PAGE 

(Invitrogen®). 

3. Native stain: 15.5 ml of 1M Tris-HCl, pH6.8, and 2.5 ml of a 1% 

solution of Bromophenol blue, 7.0 ml of water, and 25 ml of 

glycerol. 

http://dx.doi.org/10.1007/978-1-61779-364-6_5
http://epublications.marquette.edu/
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4. Tris-Glycine running buffer: Dissolve 3.0 g of Tris base and 14.4 

g of glycine in water and adjust the volume to 1 liter. pH was 

adjusted to 8.3. 

2.3 In-Gel Staining of the Dehydrogenase Subproteome 

using CRAA 

1. Phosphate buffered saline (PBS): 8 g NaCl, 0.2 g KCl, 1.44 g 

Na2HPO40.24 g KH2PO4 in 1.0 L, pH 7.4. 

2. Blocking buffer: 2. 5% nonfat drug milk in PBS (17). 

3. CRAA staining solution: 2.0 mM CRAA in 25 mM Tris-HCl, pH 

8.5. 

4. Gel fixing solution: 50% methanol, 10% acetic acid and 40% 

deionized water. 

5. Coomassie blue staining solution: 0.1% Coomassie Brilliant Blue 

R-250 in 50% methanol and 10% glacial acetic acid. 

6. Destaining solution: 10% glacial acetic acid, 40% methanol and 

50% deionized water. 

3. Methods 

Catechol Rhodanine acetic acid (CRAA) is a privileged scaffold, 

in that it binds to many dehydrogenases. It is visibly colored and is 

also fluorescent under slightly basic conditions (pH > 7). It binds to 

dehydrogenases with its para-phenol and carboxylic acid in their 

deprotonated form (Fig. 1). Since the binding is noncovalent, it is 

reversible so that CRAA can be displaced by a higher affinity ligand like 

NADH. This makes CRAA a useful reagent for detecting 

dehydrogenases in native Gels using both direct binding (Fig. 2) and 

displacement assays (Fig. 3). 

http://dx.doi.org/10.1007/978-1-61779-364-6_5
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Fig. 1 Schematic description of the process whereby a native Gel of dehydrogenase 

proteins is run, then stained using the CRAA probe. 

 

 

Fig. 2 CRAA-staining of a dehydrogenase (DHPR), and fluorescence imaging. Two 

native (10% Tris–glycine) gels were run, and DHPR was stained using 2.0 mM CRAA. 

Lane 1, NativeMark protein standard. Lanes 2–8: E. coli DHPR (10 µL) at 

concentrations of 0.22, 0.43, 0.86, 1.29, 1.72, 2.59, and 3.45 µg/µL. (A) Staining with 

CRAA at pH 6.5 with fluorescence imaging (Excitation at 465 nm, detection at 535 

nm). (B) Same as in (A), but stained at pH 8.5. (C) Same as in (B), but imaged using 

a Canon CanoScan (D1250 U2F) scanner. Data modified from (15). 
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Fig. 3 In-gel displacement assay. Two native gels were loaded with the same 

concentrations of E. coli DHPR. Lane 1: NativeMark protein standard. Lanes 2–11: E. 

coli DHPR (10 µL) at concentrations of 0.0072, 0.014, 0.028, 0.072, 0.143, 0.29, 

0.72, 1.4, 2.2, and 4.3 µg/µL, respectively. All gels were scanned as in Fig. 2C. (A) 

Staining with 0.5 mM NADH and 2.0 mM CRAA (pH 7.8). The gel showed no bands for 

CRAA bound to DHPR, due to displacement by NADH. (B) Staining as in (A), but in the 

absence of NADH competitor. Lowest detectable concentration of DHPR was 0.14 

µg/µL. (C) The same gel stained with Coomassie blue. The lowest detectable 

concentration of a DHPR band was 0.072 µg/µL. Data modified from (15). 

3.1 Preparation of the CRAA Staining Reagent 

CRAA staining buffer was prepared immediately before use. For 

best staining results, it is better to use freshly prepared CRAA buffer, 

since CRAA can be oxidized during storage (see Note 1). 

3.2 Running the Native Gel 

1. Prepare 10 μL aliquots of different concentrations of proteins, 

using 2.5 μL of native stain. Protein samples are always stored 

in an ice bath before use (see Note 2). 

2. NativeMark™ molecular weight standards from Invitrogen were 

also used. 

3. The above protein samples were loaded onto a 10% Tris-Glycine 

native gel (Novex®), run using Tris-Glycine running buffer. The 

http://dx.doi.org/10.1007/978-1-61779-364-6_5
http://epublications.marquette.edu/
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gel was run at 125 V for ~2.0 h, or until the Bromphenol blue 

front approaches the bottom of the gel (see Note 3). 

4. The gel is cut from the gel fastening frame, to then be used in 

the staining procedure. 

3.3 In-Gel Staining of the Dehydrogenase Subproteome 

using CRAA 

1. The native Gel from the previous section was incubated with 

blocking buffer for 20 minutes, using gentle mixing on an orbital 

shaker (see Note 4). 

2. The Gel was then rinsed with PBS buffer for 20 minutes before 

staining. 

3. The Gel was stained with CRAA staining solution for 20 minutes 

(see Note 5). 

4. The Gel was rinsed for about one hour on an orbital shaker with 

25 mM Tris-HCl buffer, pH 8.5, until a clear band was seen due 

to binding of CRAA. The background of the Gel turns a pale 

yellowish color (Fig. 1). The CRAA bands can be imaged with 

either a fluorescence reader or simply by visible imaging using a 

document scanner. 

5. The Gel was then fixed with gel fixing solution, by incubating for 

15 minutes (see Note 6). This completes the staining procedure. 

6. For comparison, another Gel was stained with Coomassie blue 

staining solution. Gel was incubated on an orbital shaker for 1–3 

hours. 

7. The Gel was destained with a destaining solution over a period 

of 1 hour. 

8. The destained gels were washed with water; then soaked in 

10% glycerol for 15 minutes. 

9. Gels were then placed in cellophane, being careful to remove 

any air bubbles. A small amount of 10% glycerol was added to 

moisten the cellophane, which is held between plastic plates 

that were fixed with binder clips (see Note 7). 

15. The plate with gel (vertical) was placed on a shelf at room 

temperature, to dry overnight. 

16. Remove the gel from the holder. The gel can now be scanned. 

http://dx.doi.org/10.1007/978-1-61779-364-6_5
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3.4 In-Gel Staining in a Competition Study 

1. For the displacement assay, two native gels were run at the 

same time, and pretreated with blocking buffer (5% milk in pH 

7.4 PBS buffer). 

2. One Gel was incubated in a solution containing the competition 

buffer: 0.5 mM NADH and 2.0 mM CRAA in 25 mM pH 8.5 Tris 

buffer. 

3. The other Gel was stained with the 2.0 mM CRAA buffer but 

without NADH present. 

4. The Gels were rinsed for about 1 hour until the clear red CRAA-

bound bands were observed, compared to the pale yellow 

background (see Note 8). 

5. The Gel images were recorded. 

6. After staining with CRAA and recording those Gel images, Gels 

could be further stained using Coomassie blue to identify all 

proteins, and their positions relative to the molecular weight 

standards (which did not stain with CRAA). 

3.5 Imaging the Gel 

1. The Gel can be scanned with a document scanner; the visible 

red band from CRAA binding to dehydrogenases can be recorded 

using any common document scanning device. 

2. The Gel can also be fluorescently imaged; for example, using a 

Kodak Image Station 2000MM system. CRAA binding to 

dehydrogenases shows fluorescent bands.  

3. When the gel is recorded using Fluorescent imaging, the gels 

are irradiated at ~465 nm with detection at ~535 nm, using the 

filters on the Kodak Image Station. 

4. Coomassie blue stained Gels were recorded using a Canon 

document scanner. 

  

http://dx.doi.org/10.1007/978-1-61779-364-6_5
http://epublications.marquette.edu/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4121126/#FN8


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Methods in Molecular Biology, Vol. 803 (2012): pg. 55-64. DOI. This article is © Humana Press and permission has been 
granted for this version to appear in e-Publications@Marquette. Humana Press does not grant permission for this article 
to be further copied/distributed or hosted elsewhere without the express permission from Humana Press. 

9 

 

 

Fig. 4 CRAA staining of multiple dehydrogenases: competition +/− NADH. Lane 1: 

NativeMark protein standard. Lanes 2 and 3: LDH at concentrations of 5.4 and 10.8 

µg/µL. Lanes 4 and 5: E. coli DHPR at concentrations of 2.2 and 4.4 µg/µL. Lanes 6 

and 7: E. coli DOXPR at concentrations of 0.625 and 1.25 µg/µL. The gels were stained 

with 2.0 mM CRAA (pH 7.8) in the (A) presence of NADH (0.5 mM) or (B) absence of 

NADH. (C) The same gel was also stained with Coomassie blue. Data modified from 

(15). 
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Footnotes 

1CRAA has low solubility in water, but it can be dissolved to ~4 mM at pH 7.8. 

CRAA can be oxidized when in solution. For this reason, it is best to 

prepare CRAA staining buffer fresh, as needed. 2 mM CRAA was 

chosen to stain dehydrogenases in native Gels, to lessen the CRAA 

yellowish background on the Gel. 

2Only native loading buffer (i.e. no SDS) can be used to prepare protein 

samples. If SDS-PAGE gel loading buffer is erroneously used, protein 

could be denatured and will therefore not bind to CRAA when staining. 

3The 10% Tris-Glycine Novex® native gel does not have easily visualized wells 

when the comb is removed. It is helpful to label each well with a 

marker, for correct loading of protein samples in the right position. 

4Gels were soaked in 5% milk in pH 7.4 PBS buffer for 20 minutes to prevent 

nonspecific binding of CRAA to the Gel itself. If Gels were stained with 

http://dx.doi.org/10.1007/978-1-61779-364-6_5
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CRAA buffer directly, it usually showed a reddish background and 

takes much longer to rinse the CRAA background away. But, too long 

of a washing time could also wash away stained dehydrogenases as 

well. 

5After staining with CRAA for about 20 minutes, the Gel needs to be washed 

with 25 mM Tris buffer for about 1 hour to achieve the best contrast. If 

CRAA staining was too long, it will take a longer time to wash away the 

background CRAA on the Gel. 

6The native Gels should be fixed first before staining to avoid any loss of 

protein from the native Gel. 

7When drying the Gel with Gel drying cellophane film, make sure there are no 

air bubbles between the Gel and films, or else the Gel will be distorted 

when dried. 

8If CRAA is used in the competition binding with NADH or other NADH-

competitive inhibitors, NADH (or the inhibitor of interest) needs to be 

present in both the staining and washing process, because CRAA can 

competitively bind to the dehydrogenases on the native gel at any 

stage of the process (ex. CRAA washing out of the background, can 

then bind to dehydrogenases in the Gel). 

9The CRAA probe has been shown, using affinity chromatography of proteome 

samples (human liver and M. tuberculosis extracts) followed by 

tandem mass spectrometry, to bind cross reactively with various 

dehydrogenases, and yet have some selectivity for the dehydrogenase 

family (18). 
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