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ABSTRACT 
FACTOR BASED STATISTICAL ARBITRAGE IN THE  

U.S. EQUITY MARKET WITH A MODEL  
BREAKDOWN DETECTION  

PROCESS 
 
 
 

Seoungbyung Park 
 
 

Marquette University, 2017 
 
 
 

Many researchers have studied different strategies of statistical arbitrage to 
provide a steady stream of returns that are unrelated to the market condition. Among 
different strategies, factor-based mean reverting strategies have been popular and covered 
by many. This thesis aims to add value by evaluating the generalized pairs trading 
strategy and suggest enhancements to improve out-of-sample performance. The enhanced 
strategy generated the daily Sharpe ratio of 6.07% in the out-of-sample period from 
January 2013 through October 2016 with the correlation of -.03 versus S&P 500. During 
the same period, S&P 500 generated the Sharpe ratio of 6.03%. 

 
This thesis is differentiated from the previous relevant studies in the following 

three ways. First, the factor selection process in previous statistical arbitrage studies has 
been often unclear or rather subjective. Second, most literature focus on in-sample 
results, rather than out-of-sample results of the strategies, which is what the practitioners 
are mainly interested in. Third, by implementing hidden Markov model, it aims to detect 
regime change to improve the timing the trade.  
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I. Introduction 

Since Wall Street Quant Nunzio Tartaglia led his quantitative group with 

physicists, computer scientists, and mathematicians, at Morgan Stanley to search for 

arbitrage opportunities in the market in 1980s, many different statistical arbitrage 

strategies have been studied (Gatev et al, 2006). Commonly, statistical arbitrage refers to 

taking advantage of assets that are “statistically mispriced” and believed to revert to back 

to their equilibrium values. Many different combinations of assets have been observed to 

exhibit mean-reverting nature, such as foreign exchange rates (Engel 1994) or equities 

(Bock, 2008). Among many statistical arbitrage strategies, the pairs trading strategy is 

simple but one of the most well-known strategies. It generates profits off mean-reversion 

of spreads between two stocks by buying the relative losers and selling the relative 

winners. Gatev at al. (2006) presented a pairs trading strategy that yielded annualized 

excess returns of 11%, while showing that simple mean reversion of individual stocks is 

not the main driver of the performance.  

Although many strategies present successful results, there seems to be three areas 

that can be further improved. First, many factor-based statistical arbitrage strategies seem 

to be unclear about the factor selection process. For example, Avellaneda and Lee (2010) 

explains that PCA factors that explain 55% of variance were used in their statistical 

arbitrage model because it performed better than other models. Avellaneda and Lee 

(2010) discuss how difficult it is to interpret equity return PCA factors, unlike how 

interest rate curves can be explained with three PCA components of level, spread, and 

curvature. Second, most literatures might suffer from data-snooping bias as most of them 

present in-sample performance results. Third, by implementing hidden Markov model, it 
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aims to detect regime changes to improve the timing the trade. This paper aims to add 

value by addressing these three issues.  
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II. Statistical Arbitrage 

Many researchers have studied different strategies of statistical arbitrage to 

provide a steady stream of returns that are unrelated to the market condition. Statistical 

arbitrage refers to the umbrella term that include many different forms of pairs trading 

strategies, such as distance strategy, cointegration strategy, or stochastic control approach 

(Krauss, 2015). Gatev et al. (2006) applied the distance strategy to U.S. stocks from 1962 

to 2002. In this method, at each trading period, one year cumulative returns for each stock 

are collected. Then the sum of Euclidean squared distance for all possible pairs is 

calculated. When the distance between pairs becomes larger than the estimated threshold, 

a trade is opened. When the distance closes, the trade gets closed. This simple strategy 

generated annualized excess returns of 11%. Hong and Susmel (2003) applied 

cointegration approach to 64 different American Depository Receipt shares of Asian 

equity markets and showed annualized profits over 33%. Lo and MacKinlay (1990) 

applied a simple contrarian approach. In this approach, among individual U.S. equities 

returns, at each rebalancing interval, they will purchase securities that have performed 

relatively worse compared to others and short-sell securities that have performed 

relatively better – expecting them to fall. Due to positive cross-autocovariances among 

securities, the strategy performed well. Even if the returns of each securities cannot be 

correctly forecasted, an investor can still generate profits if relative performance can be 

correctly forecasted by cross-relationships. Khandani and Lo (2007) offered two possible 

explanations on why this strategy worked. First, the market often overreacts. Second, this 

strategy provides liquidity to the market. 
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This thesis extends a generalized version of pairs trading strategy, trading clusters 

of stocks versus another cluster of stocks. Several generalizations have been described. A 

generalized version of the pair trading strategy that we will build on was proposed by 

Avellaneda and Lee (2010). Avellaneda and Lee (2010) first decompose stock returns 

into returns that are explained by systematic exposures and returns that are idiosyncratic. 

These idiosyncratic portions of the returns are summed up cumulatively. By fitting the 

cumulative idiosyncratic portions of the returns into Orstein-Ulhembeck process, the 

mean reverting speeds and the standard deviations are estimated. Trading signals are 

generated based on how far the cumulative residuals have deviated compared to their 

corresponding standard deviations. With this strategy, Avellaneda and Lee (2010) 

demonstrated an annualized Sharpe ratio, risk adjusted performance measure that can be 

calculated by dividing the return by the standard deviation, of 1.44 from 1997 to 2007.  

Liew and Roberts (2013) extended Avellaneda and Lee (2010) methodology by 

applying Black and Litterman framework. Liew and Roberts (2013) employ exchange 

traded funds as observable systematic factors in the market. In setting trading rules, Liew 

and Roberts applied the Black Litterman framework while estimating an Orstein and 

Ulhembeck process to determine the parameters of the mean-reversion process. Liew and 

Roberts (2013) suggest that a mean-reversion strategy might be profitable because of 

premiums received by providing liquidity in the market by selling when others are buying 

and buying when others are selling. Masindi (2014) applied the model by Avellaneda and 

Lee (2010) to South African equity market from 2001 to 2013.  
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III. Generalized Pairs Trading Model 

This study extends the generalized pairs trading model by Avellaneda and Lee 

(2010) as noted above. Let 𝒙𝒙1,𝒙𝒙2, … ,𝒙𝒙𝑛𝑛 be the returns of the stocks that are in our 

investable universe with a length of t time periods and 𝑿𝑿𝑡𝑡×𝑛𝑛 be a matrix of returns. 

𝒙𝒙1,𝒙𝒙2, … ,𝒙𝒙𝑛𝑛 are standardized by their sample means and standard deviation so that each 

column of 𝑿𝑿𝑡𝑡×𝑛𝑛 has a mean of zero and a standard deviation of one. If we let 𝑭𝑭𝑡𝑡×𝑟𝑟 be a 

matrix of 𝑟𝑟 factors that indicate systematic movements in the equity market, 𝑿𝑿𝑡𝑡×𝑛𝑛  can be 

expressed in the following way. 

 

𝑋𝑋 =  𝐹𝐹 × β +  𝜀𝜀    

 

where β is a 𝑘𝑘 by 𝑛𝑛 matrix that indicates stocks sensitivities to factors and  𝜀𝜀 is a 𝑡𝑡 by 𝑛𝑛 

matrix that includes components of stock returns that are not explained by the factors.  

Arbitrage Pricing Theory by Ross (1980) suggests that the expected returns of 

equity returns are determined by systematic factor exposures only and idiosyncratic parts 

of the returns are expected to be zero. Ross relies on three assumptions. First, factors that 

can explain systematic returns exist, such as exposures to the job market. Second, if 

investors build a large enough portfolio, idiosyncratic risks can be diversified away. 

Third, market participants are likely to take advantages of any mispriced assets, therefore 

making them hard to persist. In such market, any non-zero idiosyncratic returns are not 

sustainable. Since Ross (1980), many studies have attempted to apply different 

observable systematic factors. Benaković and Posedel (2010) emphasize industrial 

production, interest rates, and oil prices to decompose stock returns. Chen, Roll and Ross 
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(1986) use bonds spread, interest term structure, industrial production growth, inflation, 

and NYSE stock market returns to decompose returns of a portfolio. Although observable 

factors offer insights, many tend to suffer from multicollinearity issues and subjectivities 

in factor selection process as the arbitrage pricing theory does not need any particular 

variable to be used (Azeez, 2006).  

 The generalized pairs trading strategy by Avellaneda and Lee (2010) relies on the 

idea that no non-zero idiosyncratic returns are sustainable in the long run and was tested 

with both observable factors and statistical latent factors. It is implemented as follows. 

First, U.S. equities that exceed 1 billion dollars in market capitalization were selected. 

Second, exchange trade funds were selected as observable factors and Principal 

Component Analysis was performed to extract latent factors. Third, systematic returns 

were removed from each stock returns to extract idiosyncratic returns. By regressing the 

original dataset with either observable factors or a selected number of extracted PCA 

factors, residuals, which indicate the portion of the returns not explained by the 

systematic factors, are extracted from the original dataset. The cumulative series of these 

idiosyncratic returns are believed to fluctuate over time but have unconditional mean of 

zero. Trading signals are generated if cumulative residuals go above or below pre-

determined threshold. For example, high cumulative residuals indicate that their stock 

returns that were not explained by systematic exposures have been consistently high and 

are likely to decrease going forward. The strategy with PCA factors generated an average 

annual Sharpe Ratio, calculated by dividing the return by the standard deviation, of 1.44 

from 1997 to 2007 and the strategy with factors based on existing exchange traded funds 

generated an average annual Sharpe Ratio of 1.1 from 1997 to 2007. 
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 This paper implements a similar trading algorithm to U.S. equities. Instead of 

testing both observable factors and PCA factors, this study focuses on PCA factors. The 

daily stock returns of the constituents of S&P 500 index from 2004 January through 2016 

October were used in the analysis. The data was imported through Pandas, a Python data 

analysis toolkit. The prices were transformed into returns by taking the log difference. 

After excluding stocks without full samples, 420 securities were included in the analysis. 

The actual estimation of the model was conducted by using the data from 2004 January 

through 2012 December and the data from 2013 January through 2016 October were used 

to conduct an out-of-sample analysis. The returns were standardized prior to the 

estimation. Principal component analysis was conducted to extract systematic factors 

from the data. After determining the appropriate number of factors to be used, 

idiosyncratic returns were extracted by removing systematic returns from each security. 

Whenever the cumulative residuals are above or below determined threshold, trades are 

executed. Whenever a warning signal is generated from the failure detection algorithm, a 

security is removed from the investment universe. 
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IV. Factor Analysis 

Factor analysis is the most important part of this trading strategy as it plays a 

direct role in the creation of mean-reverting variable. To remove systematic returns based 

on factor exposures from the individual equity returns, we first need factors. In this study, 

Principal Component Analysis factors were generated from the original dataset. Principal 

Component Analysis has been a popular method to reduce dimensions of the asset returns 

(Avellaneda and Lee, 2010). PCA factors can be generated as follows. First, the empirical 

correlation or covariance matrix is calculated. Next, through singular value 

decomposition, it can be decomposed into eigenvectors and eigenvalues. Eigenvalues are 

then ranked in a decreasing order. Then the original data matrix X can be expressed in the 

following way. 

 

𝐹𝐹 =  𝑋𝑋 × W    

 

where 𝐹𝐹 denotes the matrix of principal component score vectors and W denotes the 

matrix of vectors of factor loadings. Then the 𝑖𝑖th component can be found by multiplying 

the original data by the 𝑖𝑖th estimated loadings. 

 

𝐹𝐹𝑖𝑖 =  𝑋𝑋 ×  𝑊𝑊𝑖𝑖   

 

The following scree plot [Figure 4.1]   illustrates the largest 30 eigenvalues in the 

data. After the first factor, which is likely to illustrate the general market movement, we 

see a gradual decrease in the variance. 
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Figure 4.1: % of Variance Explained by The First 30 Factors 

 
 
 

 After eigenvalues are then ranked in decreasing order, depending on how much 

variance in the data needs to be explained, a certain number of factors can be chosen 

chronologically. In stock market universe, it is well known that the first factor, the 

component with the highest eigenvalue, is associated with the general market 

movements. There are two main advantages of using PCA factors over macroeconomic 

factors in finding systematic factors. First, this approach does not require to rely on a 

subjective exogenous factor selection process. Second, the factors are guaranteed to be 

independent with each other.  From the correlation matrix, eigen-decomposition 
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algorithms draw eigenvectors one by one that are orthogonal to each other. This results in 

factors that are uncorrelated with each other. This prevents any issues that can arise from 

multicollinearity.  

PCA factors do come with some disadvantages as well. One of the main 

disadvantages is that it can be unclear how many factors should be chosen. Often, either a 

fixed number of factors are selected or the number of factors that explains a pre-

determined amount of variance. Avellaneda and Lee (2010) selected the number of 

factors that explained 55% of the total variance of the correlation matrix and suggested 

that it provided the superior performance compared to selecting a fixed number of 

factors, such as 15 factors, or different numbers of factors that explain different amount 

of total variance, such as 75% of the total variance. Josse and Husson (2011) note that if 

the number of factors are too small, not enough information would be analyzed and if the 

number of factors are too large, too much noise will be included in the analysis. 
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V. Selecting the right number of factors 

Avellaneda and Lee (2010) suggested that the performance of the strategy was 

superior when PCA factors explained 55% of the total variance. In this study, a 

standardized method of determining an appropriate number of factors by Bai and Ng 

(2002) was implemented. There are several advantages of applying the approach taken by 

Bai and Ng (2002) to the generalized pairs trading strategy. First, the approach does not 

require homoscedasticity across time or cross-section. As many stock returns often 

demonstrate heteroscedasticity, this is quite necessary. Second, it does not require 

sequential limits. For example, the approach by Connor and Korajczyk (1993) assumes 

that the number of cross-section converges to infinity with a fixed number of observation 

period, then the number of observation period converges to infinity.  

  Bai and Ng (2002) approaches the problem as a model selection problem and 

point out that Akaike information criterion (AIC) and Bayesian information criterion 

(BIC), typically used for model selection problems, do not yield robust results in 

selecting the appropriate number of factors when the data are large in dimensions in time 

and cross-section. The problem with estimating the appropriate number of factor arises 

from the fact that the theory established for classical models do not hold well when both 

time dimension and cross-section dimension approaches infinity. For example, the 

previous matrix form of return dataset can be written in the following way for the 𝑖𝑖 th 

asset.  

 

𝑋𝑋 =  𝐹𝐹 × β +  𝜀𝜀 

𝑥𝑥𝑖𝑖 =   𝜇𝜇𝑖𝑖 + β𝑖𝑖1 ×  𝑓𝑓1   + β𝑖𝑖2 ×  𝑓𝑓2   + … +  β𝑖𝑖𝑖𝑖 ×  𝑓𝑓𝑟𝑟      +   𝜀𝜀𝑖𝑖 
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𝜇𝜇𝑖𝑖  is the mean return on the security i. β𝑖𝑖 is the sensitivity of the security i to 

factors. 𝜀𝜀𝑖𝑖 is the idiosyncratic portion of the returns. In theory, the appropriate number of 

factors can be found by comparing eigenvalues of the covariance matrix of the data 

because if the data are truly represented by 𝑟𝑟 number of factors, only the first 𝑟𝑟 number of 

largest eigenvalues should diverge as the cross-sectional dimension size increases to 

infinity (Bai and Ng, 2002). However, this is not a realistic solution as the estimation of 

the covariance matrix is often an ill-posed problem, which does not necessarily result in 

only 𝑟𝑟 eigenvalues to diverge. Bai and Ng (2002) suggest a penalty function that is a 

function of the size of the cross section, the number of the observations, and the number 

of selected factors to penalize for overfitting. Bai and Ng (2002) proposes estimating 𝑟𝑟 by 

solving the following optimization function. 

 

PC(k) = V(𝑘𝑘,𝐹𝐹𝑘𝑘) + 𝑘𝑘𝑘𝑘(𝑁𝑁,𝑇𝑇) 

V(𝑘𝑘,𝐹𝐹𝑘𝑘) = 𝑚𝑚𝑚𝑚𝑚𝑚
1
𝑁𝑁𝑁𝑁

��(𝑋𝑋𝑖𝑖𝑖𝑖 − λ𝑖𝑖𝑘𝑘
′
F𝑖𝑖𝑘𝑘)2

𝑇𝑇

𝑡𝑡=1

𝑁𝑁

𝑖𝑖=1

 

 

k indicates the number of factors that are being estimated. V(𝑘𝑘,𝐹𝐹𝑘𝑘)indicates the 

sum of squared residuals.  𝑘𝑘𝑘𝑘(𝑁𝑁,𝑇𝑇) indicates the penalty function. The authors suggest 

two crucial conditions that the penalty function needs to meet as 𝑙𝑙𝑙𝑙𝑙𝑙𝑁𝑁,𝑇𝑇→∞. (i) 𝑔𝑔(𝑁𝑁,𝑇𝑇) →

0. (ii)  𝐶𝐶𝑁𝑁𝑁𝑁2  × 𝑔𝑔(𝑁𝑁,𝑇𝑇) → ∞, where 𝐶𝐶𝑁𝑁𝑁𝑁2 = min {√𝑁𝑁,√𝑇𝑇}. The penalty functions that meet 

these two conditions will ensure that any under-parameterized or over-parameterized 

models will not be selected. The authors suggest six functional forms of loss functions 

that meet these two conditions. The first three are named as PC criteria. 
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P𝐶𝐶𝑝𝑝1(𝑘𝑘) = V(𝑘𝑘,𝐹𝐹𝑘𝑘) + 𝑘𝑘σ�2 �
𝑁𝑁 + 𝑇𝑇
𝑁𝑁𝑁𝑁

� 𝑙𝑙𝑙𝑙 �
𝑁𝑁𝑁𝑁
𝑁𝑁 + 𝑇𝑇

�   

P𝐶𝐶𝑝𝑝2(𝑘𝑘) = V(𝑘𝑘,𝐹𝐹𝑘𝑘) + 𝑘𝑘σ�2 �
𝑁𝑁 + 𝑇𝑇
𝑁𝑁𝑁𝑁

� 𝑙𝑙𝑙𝑙(𝐶𝐶𝑁𝑁𝑁𝑁2  )   

P𝐶𝐶𝑝𝑝3(𝑘𝑘) = V(𝑘𝑘,𝐹𝐹𝑘𝑘) + 𝑘𝑘σ�2𝑙𝑙𝑙𝑙 �
ln (𝐶𝐶𝑁𝑁𝑁𝑁2 )
𝐶𝐶𝑁𝑁𝑁𝑁2

�   

 

These criteria generalize the idea from Mallow’s 𝐶𝐶𝑝𝑝, shown below.  

 

𝐶𝐶𝑝𝑝 =  
𝑆𝑆𝑆𝑆𝑆𝑆𝑝𝑝
𝑆𝑆2

− 𝑁𝑁 + 2𝑃𝑃 

 

where 𝑆𝑆𝑆𝑆𝑆𝑆𝑝𝑝 is the error sum of squares for the model with P number of regressors, N is 

the sample size, 𝑆𝑆2 is the residual mean square with the complete set of regressors, and P 

is the number of regressors. Bai and Ng (2002) applies the same idea by multiplying the 

penalty function by σ�2 to scale. The three criteria will likely to be asymptotically 

equivalent but will have different properties in finite samples. Of the three different PC 

methods, PC3 method is likely to be less robust when N or T is small. The next three 

criteria extend the idea of Akaike information criterion (AIC) and Bayesian information 

criterion (BIC), which are penalized log-likelihood measure to select the appropriate 

number of parameters.  AIC and BIC are of the following forms, where L is the 

likelihood, n is the number of data points, and k is the number of parameters estimated. 

 

AIC = 2k − 2ln (L) 
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BIC = ln (n)k− 2ln (L) 

 

By extending the ideas from these two information criteria, Bai and Ng (2002) suggest 

the next three criteria. 

 

I𝐶𝐶𝑝𝑝1(𝑘𝑘) = ln (V(𝑘𝑘,𝐹𝐹𝑘𝑘)) + 𝑘𝑘 �
𝑁𝑁 + 𝑇𝑇
𝑁𝑁𝑁𝑁

� 𝑙𝑙𝑙𝑙 �
𝑁𝑁𝑁𝑁
𝑁𝑁 + 𝑇𝑇

�   

I𝐶𝐶𝑝𝑝2(𝑘𝑘) = ln (V(𝑘𝑘,𝐹𝐹𝑘𝑘)) + 𝑘𝑘 �
𝑁𝑁 + 𝑇𝑇
𝑁𝑁𝑁𝑁

� 𝑙𝑙𝑙𝑙(𝐶𝐶𝑁𝑁𝑁𝑁2  )   

I𝐶𝐶𝑝𝑝3(𝑘𝑘) = ln (V(𝑘𝑘,𝐹𝐹𝑘𝑘)) + 𝑘𝑘𝑘𝑘𝑘𝑘 �
ln (𝐶𝐶𝑁𝑁𝑁𝑁2 )
𝐶𝐶𝑁𝑁𝑁𝑁2

�   

 

 The main advantage of these three panel information criteria (𝐼𝐼𝐼𝐼𝑝𝑝) is that scaling 

by multiplying by variance is not necessary. In PC criteria, a maximum allowable number   

of k needs to be determined to properly scale the penalty term. In IC, the scaling is 

implicitly performed by the logarithmic transformation of V. Robustness test through 

simulations by Bai and Ng (2002) suggests that PC and IC methods suggested the number 

of factors that were close to the true number of factors, whereas the traditional AIC and 

BIC tend to suggest the number of factors that are too often bigger than the true number 

of factors. In this study, all three PC criteria and IC criteria were tested to determine the 

appropriate number of factors to be used. 

 

 



15 

 

 

VI. Empirical Analysis 

S&P 500 daily stock returns from the estimation period of 2004 January to 2012 

December were standardized and analyzed. The dataset includes 430 stock returns with 

3230 estimation periods. Three IC criteria, three PC criteria, and one BIC, noted as BIC 

3, and one AIC, noted as AIC3, are computed to compare.  

 

AI𝐶𝐶3(𝑘𝑘) = V(𝑘𝑘,𝐹𝐹𝑘𝑘) + 𝑘𝑘σ�2 �
2(𝑁𝑁 + 𝑇𝑇 − 𝑘𝑘)

𝑁𝑁𝑁𝑁
� 

BI𝐶𝐶3(𝑘𝑘) = V(𝑘𝑘,𝐹𝐹𝑘𝑘) + 𝑘𝑘σ�2 �
(𝑁𝑁 + 𝑇𝑇 − 𝑘𝑘)ln (𝑁𝑁𝑁𝑁)

𝑁𝑁𝑁𝑁
� 

 

The sample periods include two different periods. January 2004 through 

December 2012 includes the entire sample period. January 2009 through December 2012 

was also tested to test for robustness of the estimation. The maximum number of factors 

to be tested is set at 50.  
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Table 6.1: The Suggested Number of Factors 

 
 
 

 Although three IC and three PC criteria yield different conclusions across 

different sample sizes, they are generally consistent. As Bai and Ng (2002) suggested, the 

criteria PC3 is likely to yield less robust results compared to the other two when N or T is 

small, as shown above. This results suggest that this set of data might require somewhere 

between seven to twelve factors. Since the market and economy evolves over time, it is 

hard to conclude if the estimated results from the longer sample is necessarily more 

correct than the estimated results from the more recent but shorter sample. Based on this 

estimation, twelve factors were selected, which explained 57% of the variance in the 

sample. This is consistent with 55% of Avellaneda and Lee (2010).  

 

 

N = 430 Jan 2004 - Dec 2012 Jan 2009 - Dec 2012

IC1 7 7

IC2 7 7

IC3 9 10

PC1 11 11

PC2 10 11

PC3 12 20

AIC3 50 50

BIC3 5 5

The Suggested Number of Factors
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VII. Extracting Idiosyncratic Returns and Creating Trading Signals 

After the appropriate number of factors r was estimated to be 12, the first twelve 

PCA factors were regressed on each stock returns to estimate individual sensitivities to 

each systematic factors. The residuals 𝜀𝜀𝑖𝑖 from each Ordinary Least Square regression 

were collected to form a residual matrix 𝐸𝐸. Cumulative impacts of idiosyncratic 

components were gathered by taking the cumulative summation of the residual matrix, 

noted as 𝐶𝐶. 

 

𝑥𝑥𝑖𝑖 =   𝜇𝜇𝑖𝑖 + β𝑖𝑖1 ×  𝑓𝑓1   + β𝑖𝑖2 ×  𝑓𝑓2   + … +  β𝑖𝑖𝑖𝑖 ×  𝑓𝑓𝑟𝑟      +   𝜀𝜀𝑖𝑖    

𝐸𝐸 =   [𝜀𝜀1, 𝜀𝜀2 , 𝜀𝜀3, … 𝜀𝜀𝑛𝑛]    

𝐶𝐶𝑡𝑡𝑡𝑡 =  �𝜀𝜀𝑡𝑡𝑡𝑡

𝑡𝑡

𝑡𝑡=1

  

 
 
 

 

Figure 7.1: Plot of Cumulative Idiosyncratic Components of Returns 
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For each cumulative residual set, the empirical standard deviation is estimated to 

set up a trading rule. Simply, if the cumulative residual is lower than -1 standard 

deviation, we hold a positive position. If the cumulative residual is higher than 1 standard 

deviation, we hold a negative position, which can be achieved by short-selling the 

security.  

 

𝑍𝑍𝑖𝑖 =  �
1

𝑁𝑁 − 1
�(𝑐𝑐𝑖𝑖𝑖𝑖− 𝜇𝜇𝑖𝑖)2
𝑁𝑁

𝑡𝑡=1

  

 

𝑆𝑆𝑖𝑖𝑖𝑖 =  0 𝑎𝑎𝑎𝑎𝑎𝑎 𝐵𝐵𝑖𝑖𝑖𝑖 =  0 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 

𝑆𝑆𝑖𝑖𝑖𝑖 =  −1 𝑖𝑖𝑖𝑖 𝑐𝑐𝑖𝑖𝑖𝑖 >  𝑍𝑍𝑖𝑖 

𝐵𝐵𝑖𝑖𝑖𝑖 =  1 𝑖𝑖𝑖𝑖 𝑐𝑐𝑖𝑖𝑖𝑖 <  −𝑍𝑍𝑖𝑖 

 

 𝑍𝑍𝑖𝑖 is the standard deviation for the ith cumulative residuals, 𝑐𝑐𝑖𝑖. N is the size of the 

sample. 𝜇𝜇𝑖𝑖 denotes the mean of the ith cumulative residual. 𝑆𝑆𝑖𝑖𝑖𝑖 and 𝐵𝐵𝑖𝑖𝑖𝑖 indicate the 

trading signals of the ith asset at time t. 1 indicates that we choose to hold the security 

and -1 indicates that we choose to short-sell the security to benefit from the decrease in 

the price. The returns for the portfolio can then be calculated as following 

 

𝑃𝑃𝑡𝑡 =  1
2∑ |𝑆𝑆𝑖𝑖,𝑡𝑡−1|𝑛𝑛

𝑖𝑖=1
∑ 𝑆𝑆𝑖𝑖,𝑡𝑡−1𝑛𝑛
𝑖𝑖=1 × 𝒙𝒙𝑖𝑖𝑖𝑖 + 1

2∑ |𝐵𝐵𝑖𝑖,𝑡𝑡−1|𝑛𝑛
𝑖𝑖=1

∑ 𝐵𝐵𝑖𝑖,𝑡𝑡−1𝑛𝑛
𝑖𝑖=1 × 𝑥𝑥𝑖𝑖𝑖𝑖 
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where  𝒙𝒙𝑖𝑖𝑖𝑖 is the return of 𝑖𝑖th asset at time 𝑡𝑡, 𝑛𝑛 is the total number of securities, 𝑃𝑃𝑡𝑡 is the 

realized return of the portfolio at time 𝑡𝑡.  

 The first part of the return above indicates the returns generated by short positions 

and the second part indicates the returns generated by the long positions. There exists a 

time lag between the position and realized returns to avoid looking-ahead bias. The 

portfolio return at time 𝑡𝑡 is based on the information up to the previous period. Each short 

and long position are weighted so that the portfolio is staying market neutral, instead of 

taking excessive positions in long, short, or both. The one of the main goal of statistical 

arbitrage strategy is to generate stable stream of profits that are uncorrelated to the 

market. This can be tested by measuring correlations of returns to the market portfolio 

(S&P 500) and sensitivities. Sensitivities are calculated by regressing each time series 

with S&P 500 returns. 

 
 
 

Correlations Comparison 
Portfolio 

(Short Portion) 

Portfolio 

(Long 

Portion) 

Portfolio S&P 500 

Portfolio (Short Portion) 1.00        

Portfolio (Long Portion) (0.96) 1.00      

Portfolio 0.21  0.08  1.00    

S&P 500 (0.95) 0.96  (0.04) 1.00  

Table 7.2: Portfolio Correlation In-Sample 
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Sensitivity Comparison 
Beta 

Coefficient 
𝑅𝑅2 

Standard 

Deviation 

Sharpe 

Ratio 

Portfolio (0.23) 0.00  0.22% 35.37% 

Portfolio (Short 

Portion) 
(1.67) 0.91  0.76% 3.26% 

Portfolio (Long 

Portion) 
1.72  0.93  0.75% 7.24% 

S&P 500 1.00  1.00  1.33% 1.42% 

Table 7.3: Portfolio Statistics In-Sample 

 
 
 

 The first table [Table 7.2] is the correlation table and the second [Table 7.3] is the 

results of regressing each series to S&P 500 returns. As expected, short position return is 

negatively correlated to S&P 500 whereas long position return is positively correlated to 

S&P 500. Portfolio and S&P 500 is not correlated as desired, shown by the correlation of 

-.04 and 𝑅𝑅2 of 0. Short position beta of -1.67 and long position beta of 1.72 suggest that 

our short and long components might be more sensitive to the market than the market 

portfolio, although the entire portfolio is market-neutral. The below plot [Figure 7.4] 

shows the cumulative log returns of in-sample performance and the benchmark (S&P 

500). The statistical arbitrage strategy yielded a lot higher returns than the S&P 500 

index. The Sharpe ratio, calculated by dividing the mean return by standard deviation, of 

the strategy was 35.37% versus 1.42% of S&P 500. 
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Figure 7.4: Portfolio Performance In-Sample 
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VIII. Out of Sample Forecast and Performance Analysis 

 Although the in-sample results look impressive, often practitioners are mainly 

interested in strategy that can perform robust results out-of-sample. One of the biggest 

challenge of a strategy that is based on the cumulative residuals of regressions is a lack of 

signal at the beginning of the out-of-sample period. 

 
 
 

 

Figure 8.1: Number of Buy and Sell Signals at Each Observation Period 

 
 
 
 The above chart [Figure 8.1] shows the number of buy and sell signals in the 

estimation period. At the end of the estimation period, cumulative residuals for all 

securities will be at zero, by the nature of the linear regression, which prevents us to 

make any investment decision for the out-of-sample period. Therefore, we need a process 
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to generate factors, extract idiosyncratic returns, and cumulate idiosyncratic returns, 

without any looking-forward bias. This can be achieved in the following way at each out-

of-sample period.  

 

Step 1. Generate factors  

𝐹𝐹𝑡𝑡+1,𝑖𝑖 =  𝑋𝑋𝑡𝑡+1 ×  𝑊𝑊𝑖𝑖    

where 𝐹𝐹𝑖𝑖,𝑡𝑡+1 is the ith factor in t + 1 period, which is the beginning of the forecasting 

period. 𝑋𝑋𝑡𝑡+1 is the returns observation, transformed by subtracting by the estimation 

period mean and dividing by the estimation period standard deviation to duplicate the 

standardization procedure that took place in the estimation procedure.  𝑊𝑊𝑖𝑖 is the factor 

loadings for the ith component. The length of estimation period is denoted as t, and the 

t + 1 denotes the first period of the out-of-sample period. The first 12 components are 

generated to form 1 by 12 matrix 𝐹𝐹𝑡𝑡+1. 

 

Step 2. Extract idiosyncratic returns by subtracting systematic portions of the returns. 

𝜀𝜀𝑡𝑡+1,𝑖𝑖 =  𝑋𝑋𝑡𝑡+1,𝑖𝑖  −  𝐹𝐹𝑡𝑡+1 ×  𝛽𝛽𝑖𝑖      

where 𝜀𝜀𝑡𝑡+1,𝑖𝑖 is the idiosyncratic return for the ith asset at the period t + 1, 𝛽𝛽𝑖𝑖 is the 

previously estimated sensitivities to systematic factors for the ith asset. 

 

Step 3. Cumulate idiosyncratic returns at each step and follow the same trading rules 

discussed previously. 

The below chart [Figure.8.2] shows the cumulated idiosyncratic returns over the out-of-

sample period. 
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Figure 8.2: Out-of-Sample Cumulative Idiosyncratic Returns 

 
 
 

The chart below [Figure 8.3] shows the performance of the strategy and the 

performance of the benchmark over the out-of-sample period. The portfolio performed 

significantly worse compared to the benchmark. Cumulative log return over the period 

for the benchmark was 47.56% while the strategy generated 3.45% only. On the risk-

adjusted measure, the portfolio Sharpe ratio decreased from 35.37% in the in-sample 

period to 1.84% in the out-of-sample period. What did go wrong?  
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Figure 8.3: Out-of-Sample Performance 

 
 
 

First, we need to check if the return data and the factors from the out-of-sample 

period are significantly different from the ones from the in-sample period. If out-of-

sample factors were no longer stationary, were not centered at zero, or had different 

standard deviations, extraction of systematic returns might not have been calculated 

appropriately. The table below [Table 8.4] shows the mean and the standard deviation of 

the factors from each period. Stationary of the data were also checked to see if the out-of-

sample factors were not stationary anymore. If out-of-sample factors were non-stationary, 

it could have a detrimental impact on the trading strategy as idiosyncratic residuals might 

become trend-stationary, instead of being centered at zero. The Augmented Dickey-Fuller 
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test was conducted to test for the null hypothesis of a presence of a unit root to test for 

stationarity. 

 
 
 

 

Table 8.4: Out-of-Sample Factor 

 
 
 
The null hypothesis of a presence of a unit root was rejected for all 12 factors in 

both periods, suggesting that stationary is maintained in the out-of-sample period. Out-of-

sample factors exhibit means that are slightly different from 0 and standard deviations 

that are generally smaller than the standard deviations from the in-sample period. This 

can suggest that either the estimated factor loadings were not robust or the short-term 

market condition for the out-of-sample might be different from the long-term market 

condition of the estimation period. To test that, a further analysis on the first factor, 

Factor

Number

In-

Sample

Out-of-

Sample

In-

Sample

Out-of-

Sample

In-

Sample

Out-of-

Sample

In-

Sample

Out-of-

Sample

1 0.0000 0.1535 13.5146 8.1029 TRUE TRUE 0.001 0.001

2 0.0000 -0.0907 3.8392 2.3240 TRUE TRUE 0.001 0.001

3 0.0000 -0.2034 3.2998 3.1833 TRUE TRUE 0.001 0.001

4 0.0000 0.0076 2.9769 2.0501 TRUE TRUE 0.001 0.001

5 0.0000 0.1351 2.2948 2.0975 TRUE TRUE 0.001 0.001

6 0.0000 0.0783 2.0529 1.3555 TRUE TRUE 0.001 0.001

7 0.0000 -0.1206 1.9483 1.5516 TRUE TRUE 0.001 0.001

8 0.0000 -0.0330 1.7899 1.1707 TRUE TRUE 0.001 0.001

9 0.0000 0.0133 1.7629 1.5203 TRUE TRUE 0.001 0.001

10 0.0000 -0.0688 1.5699 1.0748 TRUE TRUE 0.001 0.001

11 0.0000 -0.0906 1.5087 1.0498 TRUE TRUE 0.001 0.001

12 0.0000 0.0254 1.4284 0.9899 TRUE TRUE 0.001 0.001

Mean Standard Deviation Stationary P value
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which explains 42% of the total variance and 75% of variance explained by the first 12 

factors, was conducted by regressing it against the market, represented by the benchmark 

S&P 500 index returns.  

 

𝐹𝐹1 = 𝛼𝛼 +  𝛽𝛽 × 𝑀𝑀 

 

where  𝐹𝐹1 is the first factor and 𝑀𝑀 is the standardized benchmark (S&P 500 returns). 

 
 
  

In-Sample Out-of-Sample 

Intercept (𝛼𝛼) 0.0000 0.0113 

Beta (𝛽𝛽) 0.0724 0.0744 

𝑅𝑅2 0.9570 0.9640 

Mean of 𝑀𝑀 0.0000 0.0228 

Standard Deviation of 𝑀𝑀 1.0000 0.614 

Table 8.5: In-Sample and Out-of-Sample Comparison 

 
 
 

To be consistent with the portfolio strategy, benchmark returns were standardized 

first. Both in-sample period returns and out-of-sample period returns were standardized 

by the in-sample estimated mean and standard deviations. The consistency in 𝑅𝑅2 and the 

beta coefficient in both periods suggest that the first factor appears to be robust in terms 

of reflecting the general movements in the market. The mean of 𝑀𝑀 in the out-of-sample 
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period is higher than the mean from the in-sample period. The standard deviation of 𝑀𝑀 in 

the out-of-sample period is lower than the standard deviation from the in-sample period. 

These suggest that the general market movements in the out-of-sample period have been 

characterized by higher average returns with lower volatility compared to the estimation 

period. This can be analyzed further by comparing the performance of the long portion of 

the portfolio, which benefits when the selected securities increase in prices, and the short 

portion of the portfolio, which benefits when the selected securities decrease in prices. 

 
 
 

Correlations Comparison Portfolio 

Portfolio 

(Short 

Portion) 

Portfolio 

(Long 

Portion) 

S&P 500 

Portfolio 1.00        

Portfolio (Short Portion) 0.33  1.00      

Portfolio (Long Portion) 0.10  (0.91) 1.00  0.93  

S&P 500 (0.17) (0.95) 0.93  1.00  

Table 8.6: Out-of-Sample Correlation 

 
 
 

Sensitivity Comparison 
Beta 

Coefficient 
 𝑅𝑅2 

Standard 

Deviation 

Sharpe 

Ratio 

Portfolio (0.72) 0.03  0.19% 1.84% 

Portfolio (Short Portion) (1.69) 0.91  0.46% -4.32% 
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Portfolio (Long Portion) 1.73  0.86  0.44% 5.37% 

S&P 500 1.00  1.00  0.82% 6.03% 

Table 8.7: Out-of-Sample Performance Analysis 

 
 
 
 The correlation between the long portion of the portfolio and S&P 500 is .93 and 

the correlation of the short portion of the portfolio and S&P 500 is -.95. This shows that 

the relationship between our long and short positions to the market movement has not 

changed compared to the estimation period. However, the correlation between the 

portfolio strategy and S&P 500 is -.17, which is lower than the estimation period 

correlation of -.04 between them. This change in correlation is likely to be the result of 

the underperformance of the portfolio, rather than the portfolio becoming more 

negatively correlated with the market in the forecasting period as the sensitivities of our 

short and long components to the market, measured by beta, and correlation structure 

have not changed.  Our portfolio appears to remain uncorrelated to the market as desired. 

The low 𝑅𝑅2 value of .03 from the regressing the out-of-sample portfolio results with S&P 

500 reinforces this conclusion. Analysis can be further decomposed into long side of the 

positions and short side of the positions to locate where the losses might be coming from. 

During the out-of-sample period, the total cumulative log return from the long 

positions was 22.69% with a Sharpe ratio of 5.37%. The total cumulative log return from 

the short positions was -19.24% with a Sharpe ratio of -4.32%. These two components 

add up to the total cumulative return of 3.45% for the portfolio. Clearly, most 

underperformance came from the short positions. This illustrates a typical case of a 

mean-reversion failure due to a prolonged directional movement in the market. As the 
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market moved upward for an unusually long period, the sell strategy greatly suffered. In 

the next section, we will first discuss how to ensure that our strategy maintain 

profitability even in directional markets without sacrificing returns excessively. Then we 

will also discuss if any other enhancements can be made to further improve out-of-

sample performance. 
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IX. Failure Detection and Strategy Improvement Techniques 

 There are some previous studies on how to improve statistical arbitrage strategies 

or detect potential big losses. Some try seek the optimal threshold to enter and exit with 

respect to transaction cost to enter and exit. Leung and Li (2015) derive the optimal entry 

and exit prices with respect to transaction cost by maximizing the expected difference 

between the maximum expected profit and the distance between the current price and the 

transaction cost. Leung and Li (2015) extends the model by incorporating a stop-loss 

constraint to ensure that each position does not lose more than a certain amount. This 

paper approaches the problem from a slightly different perspective. Rather than finding 

an optimal threshold with respect to a given transaction cost, this paper aims to focus on 

improving and testing the fundamental forecasting ability of the strategy. 

Yeo and Papanicolaou (2016) points out that how few literature covers the risk of 

relying on the mean reverting assumptions of the idiosyncratic returns in statistical 

arbitrage literatures. Yeo and Papanicolaou (2016) suggest to control the risk of the 

statistical arbitrage strategies by selecting securities that show high mean-reversion 

speeds and selecting securities that showed a high goodness-of-fit. By testing the strategy 

with the daily returns of 378 stocks in S&P 500 constituents from 2000 through 2014, 

Yeo and Papanicolaou (2016) showed that the suggested strategy provided higher Sharpe 

ratio. Mean-reversion speeds were estimated by fitting the mean-reverting cumulative 

residuals into an Ornstein-Uhlenbeck process. Goodness-of-fit was measured by 

comparing 𝑅𝑅2 values of the Ornstein-Uhlenbeck process. Based on out-of-sample test 

results, Yeo and Papanicolaou (2016) suggest that both mean-reversion speed control and 

𝑅𝑅2 control boosted the performance.  
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To improve the out-of-sample performance of the statistical arbitrage strategy 

implemented in this study, we can start by searching for any patterns in successful 

positions and unsuccessful positions. Furthermore, instead of looking at the aggregate 

performance, each security performance is analyzed. The aggregate performance can be 

decomposed into the following way, where 𝐵𝐵𝑖𝑖,𝑡𝑡 indicates return generated by ith security 

in time t by taking a long position in the ith security. S indicates returns generated by 

taking short positions. 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = ��𝐵𝐵𝑖𝑖,𝑡𝑡 + ��𝑆𝑆𝑖𝑖,𝑡𝑡

𝑇𝑇

𝑡𝑡=1

𝑛𝑛

𝑖𝑖=1

𝑇𝑇

𝑡𝑡=1

𝑛𝑛

𝑖𝑖=1

 

 The out-of-sample portfolio returns can be sorted by their performance in the 

following way. The below chart [Figure 9.1] illustrates aggregate cumulative 

performance over the out-of-sample period per security. 
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Figure 9.1: Out-of-Sample Returns Per Securities 

 
 
 
 First, we can check if assets that fitted better in the estimation period tend to 

perform better in the out-of-sample period. Two different goodness-of-fit can be 

compared. First, 𝑅𝑅2 from the systematic exposure measuring step can be compared. 

Higher 𝑅𝑅2 means that a larger part of returns was explained by systematic factors. The 

out of sample performances were regressed in the following way.  𝑍𝑍 indicates a 430 by 1 

vector in which each element indicates the cumulative out-of-sample performance for 

each security. 𝑍𝑍𝑙𝑙 indicates cumulative returns generated by the long positions and 𝑍𝑍𝑠𝑠 

indicates cumulative returns generated by the short positions. R indicates a 430 by 1 

vector that includes individual 𝑅𝑅2 from the estimation of the systematic exposures. The 

figure [Figure 9.2] below illustrates a scatterplot of returns and 𝑅𝑅2. Each regression 
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yielded 𝑅𝑅2 values of .006 and .048, suggesting that securities that were fitted well with 

systematic factors did not necessarily performed better out-of-sample. 

𝑍𝑍𝑙𝑙 = 𝛼𝛼𝑙𝑙 + 𝛽𝛽𝑙𝑙 × R +  𝜀𝜀𝑙𝑙 

𝑍𝑍𝑠𝑠 = 𝛼𝛼𝑠𝑠 + 𝛽𝛽𝑠𝑠× R +  𝜀𝜀𝑠𝑠 

 
 
 

 

Figure 9.2: Out-of-Sample Returns Versus Goodness of Fit 

 
 
 

Next, 𝑅𝑅2 and mean reversion speed from fitting OU process in the cumulative 

idiosyncratic process can be compared as Yeo and Papanicolaou (2016) suggested. 

Ornstein-Uhlenbeck process is a stochastic process that is similar to an auto-regressive 

process in the discrete time series realm. It illustrates a time series that follow Brownian 
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motion but shows a mean reverting tendency in the long run (Masindi, 2014). By fitting 

the cumulative idiosyncratic returns into Ornstein-Uhlenbeck process, we can measure 

standard deviations and mean reverting speeds. Yeo and Papanicolaou (2016) suggested 

that cumulative idiosyncratic returns with faster mean-reversion speeds and higher 

goodness-of-fit are likely to generate superior performances. Faster mean-reversion 

speeds suggest that mean reversion will take place quickly and higher goodness-of-fit 

suggests that the time series is more likely to follow the Ornstein-Uhlenbeck process 

instead of the geometric Brownian motion with a unit root. The Ornstein-Uhlenbeck 

process can be expressed in the following way where Ci is the cumulative idiosyncratic 

returns for the ith asset, 𝑚𝑚𝑖𝑖 is the mean reversion level for the ith asset, 𝜅𝜅𝑖𝑖  is the mean 

reversion parameter for the ith asset, and σ𝑖𝑖 is the standard deviation for the ith asset, and 

W𝑖𝑖 is the Brownian motion (Wiener) process.  

 

𝑑𝑑Ci(t) = 𝜅𝜅𝑖𝑖  �𝑚𝑚𝑖𝑖  −  Ci(t)�𝑑𝑑t + σ𝑖𝑖𝑑𝑑W𝑖𝑖(t),     𝜅𝜅𝑖𝑖 > 0 

 

 The parameters for the Ornstein-Uhlenbeck process can be estimated as a discrete 

autoregressive process with lag one. Estimated mean reversion speeds and goodness-of-

fit were regressed with the out of sample performance in the same way as the equation 

above. The below table [Table 8.10] shows the result. Mean reversion speed was 

measured as  1
𝜅𝜅𝑖𝑖 

. As low 𝑅𝑅2 for four different regressions illustrate, mean reversion speed 

and goodness-of-fit of Ornstein-Uhlenbeck process do not seem to be correlated with out-

of-sample performance, unlike as Yeo and Papanicolaou (2016) suggested.  
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𝑍𝑍𝑙𝑙 = 𝛼𝛼𝑙𝑙 + 𝛽𝛽𝑙𝑙 × R +  𝜀𝜀𝑙𝑙 

𝑍𝑍𝑠𝑠 = 𝛼𝛼𝑠𝑠 + 𝛽𝛽𝑠𝑠× R +  𝜀𝜀𝑠𝑠 

 
 
 
 

𝑅𝑅2 of the Regression Result 
 

Short Positions 

Returns 

Long Positions 

Returns 

R  =  Goodness of Fit of OU Process 0.0016 0.0148 

R  =  Mean Reversion Speed 0.0010 0.0186 

Table 9.3: OU Process and Out-of-Sample Returns 

 
 
 
 There might be several reasons why screening method by Yeo and Papanicolaou 

(2016) did not seem consistent in this dataset. First, estimation window and the selected 

individual stocks are different. Second, instead of screening with parameters based on the 

entire sample period, Yeo and Papanicolaou (2016) estimated the parameters with 

different estimation windows and made stock selections at each time step. Yeo and 

Papanicolaou (2016) explain that the mean-reversion speed is normalized by the 

estimation window since the estimated mean-reversion parameter usually depends on the 

length of the estimation window.  

 The strategy tends to perform worse out-of-sample when cumulative idiosyncratic 

returns do not oscillate as they did in-sample and no longer show mean-reverting nature. 

Checking for stationarity can inform us whether the time series is likely to be stationary 
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or not. Augmented Dickey-Fuller test was conducted to test for this. The Augmented 

Dickey-Fuller test on the cumulative idiosyncratic returns in-sample yielded the 

following results. Out of 430 securities, the null hypothesis of a unit root was rejected in 

195 securities, suggesting that these time series are stationary. The rest 235 securities 

failed to reject the null hypothesis of a unit root. The average achieved returns per 

securities that were stationary were compared with the average achieved returns per 

securities that were not stationary. The cumulative returns per security were divided by 

the number of time periods to compare in-sample and out-of-sample performance fairly. 

As shown below, returns generated by the securities that were stationary outperformed. 

This is not surprising as the strategy relies on buy-low and sell-high concept.  

 
 
 

      Stationary 
Not 

Stationary 

In-Sample 

Number of Securities 195 235 

Average Returns Per 

Security Per Time-Period 

Short Positions 0.01429% 0.00347% 

Long Positions 0.02894% 0.01789% 

Out-Of-

Sample 

Number of Securities 24  406  

Average Returns Per 

Security Per Time-Period 

Short Positions -0.00017% -0.00704% 

Long Positions 0.00600% 0.00769% 

Table 9.4: Out-of-Sample Returns and Stationarity 
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However, out-of-sample analysis yielded an interesting result. Only 24 out of 430 

cumulative idiosyncratic returns of the securities were considered as stationary. 

Furthermore, returns underperformed compared to in-sample returns across both 

stationary and non-stationary time series. Whether taking positions only when the time 

series is believed to be stationary can add value was further tested by testing a modified 

version of the strategy. The strategy is performed as followed. At each time step, 

stationary test for the individual cumulative idiosyncratic returns is conducted. If it is 

considered as stationary, the same one standard deviation trading rule is followed. If the 

time series is not considered as stationary, no trading decision takes place. Out of 966 

time-periods in the out-of-sample period, this strategy was implemented starting with 16th 

time-period to ensure that there are enough observations to conduct the ADF test. 

 

𝑆𝑆𝑖𝑖𝑖𝑖 =  0 𝑎𝑎𝑎𝑎𝑎𝑎 𝐵𝐵𝑖𝑖𝑖𝑖 =  0 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 

𝑆𝑆𝑖𝑖𝑖𝑖 =  −1 𝑖𝑖𝑖𝑖 𝑐𝑐𝑖𝑖𝑖𝑖 >  𝑍𝑍𝑖𝑖 and  𝒙𝒙𝑖𝑖,1:𝑡𝑡 𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

𝐵𝐵𝑖𝑖𝑖𝑖 =  1 𝑖𝑖𝑖𝑖 𝑐𝑐𝑖𝑖𝑖𝑖 <  −𝑍𝑍𝑖𝑖 and  𝒙𝒙𝑖𝑖,1:𝑡𝑡 𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

𝑃𝑃𝑡𝑡 =  1
2∑ |𝑆𝑆𝑖𝑖,𝑡𝑡−1|𝑛𝑛

𝑖𝑖=1
∑ 𝑆𝑆𝑖𝑖,𝑡𝑡−1𝑛𝑛
𝑖𝑖=1 × 𝒙𝒙𝑖𝑖𝑖𝑖 + 1

2∑ |𝐵𝐵𝑖𝑖,𝑡𝑡−1|𝑛𝑛
𝑖𝑖=1

∑ 𝐵𝐵𝑖𝑖,𝑡𝑡−1𝑛𝑛
𝑖𝑖=1 × 𝑥𝑥𝑖𝑖𝑖𝑖 

 

 The performance result suggests that this is not likely to be a superior strategy. 

The average returns per security per time-period for the short positions was -.1700% and 

0.0797% for the long positions. Although the long positions returns were better, the short 

positions returns were significantly worse, which caused the total cumulative return of 

the strategy to wind up at -94.18%. Although the stationarity is necessary for the strategy 

to perform well, the actual implementation of it is not easy without looking-back bias. If 
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the times series to be invested can be selected by the stationarity of the full-length time 

series, it can enhance the performance, as shown in the above table. However, at each 

time step, without looking forward in the future, the best information about the 

stationarity of the time series can be only estimated by the time series up to that point, 

which might not reflect if the time series will stay stationary throughout the trading 

period. 

 Markov regime switching model was tested to improve the strategy as well. Many 

pairs trading strategies often assume that spreads between two cointegrated stocks can 

oscillate around a mean of the spread. However, fundamental change in the company or 

the market structure might cause the spread to no longer revert to the historical mean or 

revert to a different equilibrium level. Bock and Mestel (2008) applied Markov regime 

switching model with switching mean and variance to improve pairs trading strategy. 

Markov chains were originally developed as a part of extension of the law of large 

numbers to dependent events (Merrill, 2010). Markov chain introduce the concept that, 

instead of a sequence of random observations generated by one state, there might be 

multiple states that generates random variables and the determination of current states 

might depend on what the previous states were.  

In finance, hidden Markov Models are more often used as most of states are 

unobservable. We can assume that the current observations are generated by an 

unobservable state 𝑆𝑆𝑡𝑡. 𝑆𝑆𝑡𝑡 emits observations based on its distribution. At each time step, 

based on transition probabilities, the state might change and the probability distribution 

will also change accordingly. Often, the transition from one state to another state is 

simplified and assumed to be dependent on only the previous state. Instead of assuming 
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that the transition of states are deterministic, HHM assumes that there must have been 

predictable stochastic process that causes states to shift from one to another (Hamilton, 

2005). Although we cannot directly observe states, we can estimate the states based on 

observed emissions. Consider the following process where  𝐾𝐾𝑡𝑡 = 1,2 and 𝜀𝜀𝑡𝑡 follows a 

normal distribution with zero mean and variance given by 𝜎𝜎K2. 

 

   𝑋𝑋𝑡𝑡 =   𝜇𝜇𝐾𝐾𝑡𝑡  + 𝜀𝜀𝑡𝑡  

𝜀𝜀𝑡𝑡 ~ 𝑁𝑁(0,𝜎𝜎𝐾𝐾𝑡𝑡
2 ) 

 

This is a simple case of how normally distributed variable can behave across 

different latent regimes (Perlin, 2015). This process can be estimated by Bayesian 

inference or maximum likelihood. In this study, maximum likelihood estimation method 

of Perlin (2015) was implemented. The log likelihood function can be estimated as 

follows. 

 

ln 𝐿𝐿 = � ln�(𝑓𝑓(
2

𝑗𝑗=1

𝑇𝑇

𝑡𝑡=1

𝑋𝑋𝑡𝑡 | 𝐾𝐾𝑡𝑡 = 𝑗𝑗,𝛩𝛩)Pr ( 𝐾𝐾𝑡𝑡 = 𝑗𝑗)) 

 

 𝛩𝛩 indicates the set of parameters. Likelihood function in each state are weighted 

averaged by the probabilities of each states. Although it is possible to estimate the model 

with many regimes, estimating parameters accurately becomes difficult as the number of 

regimes increase. Therefore, most HHM applications assume two or three different 

regimes (Hamilton, 2010). In this study, HHM is implemented to check if it can improve 
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the trading strategy. States and parameters were estimated for each idiosyncratic return. 

Then, the adjusted trading rule was applied to check if knowing the current state of the 

idiosyncratic returns can improve the performance. The states and trading rules are as 

follows. 

 

𝑋𝑋𝑖𝑖,𝑡𝑡 =   𝜇𝜇𝐾𝐾𝑖𝑖,𝑡𝑡  + 𝜀𝜀𝑖𝑖,𝑡𝑡  

𝜀𝜀𝑖𝑖,𝑡𝑡 ~ 𝑁𝑁(0,𝜎𝜎𝐾𝐾𝑖𝑖,𝑡𝑡
2 ) 

𝑆𝑆𝑖𝑖𝑖𝑖 =  0 𝑎𝑎𝑎𝑎𝑎𝑎 𝐵𝐵𝑖𝑖𝑖𝑖 =  0 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 

𝑆𝑆𝑖𝑖𝑖𝑖 =  −1 𝑖𝑖𝑖𝑖 𝑐𝑐𝑖𝑖𝑖𝑖 >  𝑍𝑍𝑖𝑖 and 𝜇𝜇𝐾𝐾𝑖𝑖,𝑡𝑡 < 0 

𝐵𝐵𝑖𝑖𝑖𝑖 =  1 𝑖𝑖𝑖𝑖 𝑐𝑐𝑖𝑖𝑖𝑖 <  −𝑍𝑍𝑖𝑖 and 𝜇𝜇𝐾𝐾𝑖𝑖,𝑡𝑡 > 0 

𝑃𝑃𝑡𝑡 =  1
2∑ |𝑆𝑆𝑖𝑖,𝑡𝑡−1|𝑛𝑛

𝑖𝑖=1
∑ 𝑆𝑆𝑖𝑖,𝑡𝑡−1𝑛𝑛
𝑖𝑖=1 × 𝒙𝒙𝑖𝑖𝑖𝑖 + 1

2∑ |𝐵𝐵𝑖𝑖,𝑡𝑡−1|𝑛𝑛
𝑖𝑖=1

∑ 𝐵𝐵𝑖𝑖,𝑡𝑡−1𝑛𝑛
𝑖𝑖=1 × 𝑥𝑥𝑖𝑖𝑖𝑖 

 

where 𝑋𝑋 indicates idiosyncratic return, 𝜇𝜇𝐾𝐾𝑖𝑖,𝑡𝑡 indicates expected idiosyncratic return for ith 

asset at time t in state K.  

 This is based on assumption that there might be two different states that 

idiosyncratic returns are generated from and we can benefit from factoring that into the 

trading strategy. The strategy goes as follows. In the original strategy, if cumulative 

residual of ith asset at time t reaches the level that is higher than the Z score, the sell 

signal was generated. In this Markov enhanced version, sell signal is only generated if the 

expected value of the idiosyncratic returns is less than zero. The rationale behind this is 

that, even if the cumulative idiosyncratic returns might be higher than the threshold and 

we expect it to come down, the idiosyncratic returns might be in the state where 
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cumulative idiosyncratic returns are expected to continue to rise. This can be viewed 

consistent with the “momentum” trading strategies. The same logic applies to buy 

signals.  

The signal generation procedure was conducted in the following way. 430 Each 

stock’s in-sample period idiosyncratic returns and out-of-sample period idiosyncratic 

returns were combined and the hidden Markov model was fitted. After gathering filtered 

state probabilities and expected idiosyncratic return parameters, the trading signals were 

generated at each time step. The performance of the new strategy is shown below.  

 
 
 

 

Figure 9.5: Enhanced Out-of-Sample Returns 
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 The enhanced strategy returned 19.49% cumulative returns among the period 

compared to the benchmark performance of 47.56%. The Sharpe ratio was 6.07% 

compared to the Sharpe ratio of 6.03% for the benchmark. The correlation between two 

returns was -.03. Low correlation and the satisfactory Sharpe ratio suggest that this 

strategy can add value. Although the absolute performance is low, if the stream of returns 

is not correlated to the market and has a high Sharpe ratio, the leverage can be often used 

to enhance the magnitude of the performance. Both long position returns and short 

position returns appeared acceptable as shown below. 

 
 
 

Correlations Comparison Portfolio 

Portfolio 

(Short 

Portion) 

Portfolio 

(Long 

Portion) 

S&P 500 

Portfolio 1.00        

Portfolio (Short Portion) 0.18  1.00      

Portfolio (Long Portion) 0.46  (0.79) 1.00    

S&P 500 (0.03) (0.93) 0.82  1.00  

Table 9.6: Enhanced Out-of-Sample Returns Correlations 

 
 
 

Sensitivity Comparison 
Beta 

Coefficient 
 𝑅𝑅2 

Standard 

Deviation 

Sharpe 

Ratio 
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Portfolio (0.08) 0.00  0.33% 6.07% 

Portfolio (Short Portion) (1.57) 0.87  0.49% -2.05% 

Portfolio (Long Portion) 1.25  0.68  0.54% 5.60% 

S&P 500 1 1 0.82% 6.03% 

Table 9.7: Enhanced Out-of-Sample Returns Statistics 

 
 
 

 A few things need to be noted. First, short position returns have improved but it 

still yields negative returns. However, as the goal of the strategy is to provide a positive 

return net of short and long positions, this is not as big of a concern. Second, both betas 

of short and long position returns are over 1 in absolute values, suggesting that the each 

components of the strategy might be riskier than the benchmark. Third, most importantly, 

this might suffer from a forward looking bias. The filtered probability of the states and 

the expected value parameter 𝜇𝜇𝐾𝐾𝑖𝑖,𝑡𝑡 for the Hidden Markov Models for each stock were 

estimated with the idiosyncratic returns from both in-sample and out-of-sample periods. 

To truly test this strategy in out-of-sample period, the estimation of filtered probability 

and the expected values has to take place at each time step for each stocks. However, this 

was computationally too expensive for the scope of this study. Each estimation took 

roughly 30 seconds, which took a total of 215 minutes (30*430/60) for 430 securities. To 

repeat this at each 966 time periods in the out-of-sample period would have taken 3461 

hours without any parallel computing.  
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X. Conclusion 

The purpose of this thesis was to evaluate a statistical arbitrage strategy and 

suggest enhancements to improve out-of-sample performance by extending the 

generalized pairs trading model by Avellaneda and Lee (2010). By removing systematic 

returns from stock returns, we extracted idiosyncratic returns. Based on previous 

empirical findings and theoretical support (Arbitrage Pricing Theory), we constructed a 

trading strategy that assumes the mean reversion of cumulative idiosyncratic returns of 

stocks. 

Implementation of the strategy to U.S. equities from 2004 January through 2012 

December yielded a daily Sharpe ratio, calculated by dividing daily returns by daily 

standard deviation, of 35.37% versus 1.42% of the benchmark S&P 500. As desired, 

implementation of long and short positions resulted in an uncorrelated strategy, as shown 

by the correlation of -.04 during the period.  

However, the out-of-sample performance result did not appear impressive. From 

January 2013 through October 2016, the portfolio Sharpe ratio decreased from 35.37% in 

the in-sample period to 1.84% in the out-of-sample period while the Sharpe ratio of S&P 

was 6.03%. Stationarity of factors, stationarity of cumulative idiosyncratic returns, 

goodness of estimations, mean reverting speeds of Ornstein-Uhlenbeck process, and 

Hidden Markov regimes were analyzed to enhance the original strategy. Hidden Markov 

regime switching model was the only enhancement that improved the result. The 

enhanced strategy generated the Sharpe ratio of 6.07% while still uncorrelated to the 

market. However, it should be noted that it might have suffered from a forward looking 

bias. 



46 

 

 

 

 There are several areas of this study that can be further improved. For example, it 

will be valuable to test if any specific sectors yield better results. Some sectors are known 

to be more cyclical and some are known to be less cyclical. Factors can be further studies 

as well. Unlike interest rates factor models, equity PCA factors are more difficult to tie 

with economic theories. The first factor is likely to represent the general market 

movement. It might be valuable to test if any pattern can be found between factors and 

stocks. For example, one can test if stocks with high leverage have positive correlation 

with any of the factors. Lastly, testing different estimation windows can yield interesting 

insights on the ideal length of data to capture both long enough and relevant enough data.  
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