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Abstract 

Purpose: To develop a linear matrix representation of correlation between 

complex-valued (CV) time-series in the temporal Fourier frequency domain, 

and demonstrate its increased sensitivity over correlation between 

magnitude-only (MO) time-series in functional MRI (fMRI) analysis. 

Materials and methods: The standard in fMRI is to discard the phase before 

the statistical analysis of the data, despite evidence of task related change in 

the phase time-series. With a real-valued isomorphism representation of 

Fourier reconstruction, correlation is computed in the temporal frequency 

domain with CV time-series data, rather than with the standard of MO data. A 

MATLAB simulation compares the Fisher-z transform of MO and CV 

correlations for varying degrees of task related magnitude and phase 

http://dx.doi.org/10.1016/j.mri.2016.03.011
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amplitude change in the time-series. The increased sensitivity of the complex-

valued Fourier representation of correlation is also demonstrated with 

experimental human data. Since the correlation description in the temporal 

frequency domain is represented as a summation of second order temporal 

frequencies, the correlation is easily divided into experimentally relevant 

frequency bands for each voxel's temporal frequency spectrum. The MO and 

CV correlations for the experimental human data are analyzed for four voxels 

of interest (VOIs) to show the framework with high and low contrast-to-noise 

ratios in the motor cortex and the supplementary motor cortex. 

Results: The simulation demonstrates the increased strength of CV 

correlations over MO correlations for low magnitude contrast-to-noise time-

series. In the experimental human data, the MO correlation maps are noisier 

than the CV maps, and it is more difficult to distinguish the motor cortex in 

the MO correlation maps after spatial processing. 

Conclusions: Including both magnitude and phase in the spatial correlation 

computations more accurately defines the correlated left and right motor 

cortices. Sensitivity in correlation analysis is important to preserve the signal 

of interest in fMRI data sets with high noise variance, and avoid excessive 

processing induced correlation. 

Keywords: Magnetic resonance imaging; Functional magnetic resonance 

imaging; Frequency correlation; Complex correlation 

1. Introduction 

In fMRI, the measured blood oxygen level dependent (BOLD) 

signal to detect neural activity is spatially Fourier encoded [1] and [2]. 

The BOLD fluctuations are measured as a complex-valued fMRI signal 

over time in the spatial frequency domain, then the k-space readout is 

reconstructed with the inverse Fourier transform (IFT). Before the 

statistical analysis of the fMRI data, the phase portion of the data is 

generally discarded, despite physiologically useful information 

contained in the phase [3]. Previous research suggests that phase-

only change arises from large draining vessels [4], or proposes 

methods to filter phase signal contributions from large vessels 

[4] and [5]. Although, other models support the notion that randomly 

oriented vasculature yield phase change in fMRI studies [6] and [7]. It 

has been previously demonstrated that modeling an fMRI time-series 

with both magnitude and phase increases the power of the activation 

statistics [8], [9], [10] and [11] over those from MO models. This 

manuscript outlines a method to describe correlation between two 

time-series with both magnitude and phase (equivalently real and 

imaginary), through exploiting the linear relationship between the 

image domain and spatial frequency domain. Traditionally both MO 
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and CV models require analysis in the image domain, however, 

analysis within the frequency domain is also valuable. It has previously 

been shown how complex-valued temporal frequencies contribute to 

the correlations between voxels in the cerebral cortex for magnitude-

only non-task data [12]. Similarly, in this manuscript the spatial 

correlation between complex-valued time series is described as a 

linear combination of second order voxel temporal frequencies. The 

present study advances the frequency correlation description into a 

linear matrix framework with an application to a complex-valued 

simulation demonstrating the strength of the model at low magnitude 

and phase contrast-to-noise ratio (CNR) values, as well demonstrating 

its utility in experimental complex-valued fMRI data. 

During signal acquisition, unwanted image acquisition artifacts 

and physiological noise obscure the true underlying signal of interest. 

To improve the signal-to-noise ratio (SNR), various preprocessing 

operations, i.e. temporal frequency filtering or magnitude image 

smoothing, are incorporated in the processing and reconstruction 

pipeline, and physiologic noise sources are commonly regressed out 

from the signal [13], [14], [15] and [16]. It is well documented that 

the application of these operations induces local spatial and temporal 

correlations into neural regions that were previously uncorrelated [17], 

[18] and [19]. The linear framework developed in this manuscript also 

describes how signal processing alters the structure of the spatial 

covariance matrix, such that induced correlation is a result of 

increased overlapping frequency content between voxels after 

processing. Signal processing will alter the activated voxel's temporal 

frequency spectrums, by spreading voxel task activated peaks 

temporally and spatially. Correlation will be induced between voxels as 

a result of increased overlapping frequency content between the two 

voxel's Fourier frequency spectrums. This notation for spatial 

correlation is advantageous since various physiological signals are also 

confined to specific frequency ranges. Respiratory and cardiac cycle 

fluctuations are characterized around 0.2–0.3 Hz and 1 Hz in a voxel's 

temporal frequency spectrum, although they are often aliased to low 

frequencies in fMRI signal acquisition [13], [20] and [21]. The 

summation notation of spatial correlation that is described here, allows 

relative contributions to the correlation to be quantified by segregating 

the natural partitions in a voxel's temporal frequency spectrum. 

Compared to magnitude-only correlations, applying this framework 
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with complex-valued data more accurately identifies regions of spatial 

correlation, and reduces the false positives in correlation maps. This 

result is most significant in low magnitude CNR data sets since 

including the phase in the complex-valued correlation results in 

increased sensitivity of identifying correlated regions. 

2. Theory 

A prow × pcol complex-valued k-space readout is reconstructed to 

a single image with the discrete inverse Fourier transform (IFT). With 

a real-valued isomorphism representation [22] of the Fourier 

reconstruction operator, Ω, and the k-space readout in vector form, st, 

an image vector, yt, for a single image time point, t, is reconstructed 

as 

yt = ΩSt
 

equation(1) 

Equivalently, with the forward Fourier Transform Ω− 1 =Ω̅, the k-

space readout is written as 

St = Ω̅yt, 
equation(2) 

In Eqs. (1) and (2), the signal and image vectors are 2p × 1, 

where p = prowpcol is the number of voxels, and the real parts are 

stacked over the imaginary parts, so st = (sR’,sI’)’ and yt = (yR’,yI’)’. 

The real parts in each vector are organized as sR = (sR1,…,sRp)’ and 

yR = (yR1,…,yRp)’, and the imaginary parts in each vector are organized 

as sI = (sI1,…,sIp)’ and yI = (yI1,…,yIp)’. To build up the real-valued 

matrix framework, consider the representation of the inverse Fourier 

reconstruction. 

𝛺 = [
𝛺𝑅 −𝛺𝐼

𝛺𝐼 𝛺𝑅
] 

 

where ΩR and ΩI are constructed with the Kronecker product, 

ΩR = [(ΩyR ⊗ ΩxR) − (ΩyI ⊗ ΩxI)] 

http://dx.doi.org/10.1016/j.mri.2016.03.011
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and ΩI = [(ΩyR ⊗ ΩxI) + (ΩyI ⊗ ΩxR)]. The jkth element of the 

pcol × pcol Fourier matrix Ωx is (Ωx)jk = w (
pcol

2
+ j) (

pcol

2
+ k) where j and 

k have indexing values from 0 to pcol − 1 with w = 
1

𝑁
𝑒

𝑖2𝜋
𝑃𝑐𝑜𝑙⁄  for the IFT 

and w = e–i2π/p
col for the forward Fourier transform (FT), [22]. 

To reconstruct images over n time repetitions (TRs), the 

complex-valued spatial frequencies are represented in the real-valued 

2pn × 1 vector s, with each successive TR concatenated to the vector. 

An analogous explanation describes the organization of the real-valued 

image 2pn × 1 vector, y, which is reconstructed with the Kronecker 

product, 

y = (In⨂Ω)s 

equation(3) 

A 2pn × 2pn permutation matrix, P, reorders the elements of 

vector y so the real-valued time-series 2pn × 1 vector v = Py is now 

ordered by voxel rather than ordered by image. The voxel ordered 

time-series is Fourier transformed into the temporal frequency domain, 

with the 2n × 2n   temporal forward Fourier transform (FT) matrix, 𝛺𝑇, 

as opposed to the 2p × 2p spatial Fourier operations. The real-valued 

2pn × 1 vector f consists of the temporal frequencies of each voxel 

stacked upon the corresponding imaginary temporal frequencies is 

represented, 

𝑓 = (Ip⨂Ω̅Τ)Py 

equation(4) 

For voxel α, the 2n × 1 real-valued voxel time-series is denoted 

vα, with real parts stacked over imaginary parts vα = (vαR’,vαI’)’ so the 

real and imaginary parts in each vector are organized as 

vαR = (vαR1,…,vαRn)’ and vαI = (vαI1,…,vαIn)', with a mean and covariance 

structure of μRα and μIα., σ2
RαIn and σ2

IαIn.The corresponding temporal 

frequencies for voxel α are denoted in the 2n × 1 vector fα, where 

vα = ΩTfα and fα = ΩTvα, are organized similarly to the time-series 

equivalent. With an analogous description of another voxel β, the 

spatial covariance between the two voxels is simply written, cov(vα, 

vβ) = (vα − μα)T(vβ – μβ)/(2n). 

http://dx.doi.org/10.1016/j.mri.2016.03.011
http://epublications.marquette.edu/
http://www.sciencedirect.com/science/article/pii/S0730725X16000333#bb0110


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Magnetic Resonance Imaging, Vol. 34, No. 6 (July 2016): pg. 765-770. DOI. This article is © Elsevier and permission has 
been granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission for this article 
to be further copied/distributed or hosted elsewhere without the express permission from Elsevier. 

6 

 

Assuming the time-series is demeaned, then the covariance 

between two voxels in terms of temporal frequencies is represented 

as, 

cov(vα, vβ) = (vα
Τvβ) (2n)⁄ =  (Ω̅Τ𝑓

α
)

Τ
(Ω̅Τ𝑓

β
) = (𝑓

α
Τ𝑓

β
) ⁄ 4 

equation(5) 

The spatial covariance in Eq. (5) is expanded to a p × p spatial 

covariance matrix, Σ, such that the entry (α, β) in Σ represents the 

spatial covariance between the two demeaned real-valued voxel time-

series of voxel α and voxel β. By defining D as the diagonal matrix 

consisting of the diagonal elements of Σ, a p × p spatial correlation 

matrix is written as, 

R = D−½∑D−½ 

equation(6) 

By aggregating the second order temporal frequencies into 

biologically meaningful or experimentally relevant bands, the influence 

preprocessing steps have on each voxel temporal frequency spectrum 

can be quantitatively measured. In an fMRI study, the frequency 

corresponding to the activation is considered when dividing the 

spectrum into bands. To understand the contribution each temporal 

frequency band yields to spatial correlation, the correlation is 

expressed as, the spatial covariance matrix can be written as a 

summation of covariance of each band and b is the total number of 

bands, 

𝛴 = 𝛴1 + ⋯ + 𝛴𝑏 , 

and the Eq. (7) spatial correlation matrix can be written as a 

summation of correlation of bands 

R = D − ½(Σ1 + ⋯ + Σb)D − ½ = R1 + ⋯ + Rb 
equation(7) 

Input of processing operations in the context of the Fourier framework 

is described in Appendix A. 

http://dx.doi.org/10.1016/j.mri.2016.03.011
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3. Methods 

3.1. Theoretical illustration 

To demonstrate the improved strength of correlation between 

CV time-series over correlation between MO time series in functional 

MRI studies, a MATLAB simulation is run with a varying degree of 

magnitude contrast-to-noise ratio (CNRρ) and the phase contrast-to-

noise ratio (CNRϕ). The SNR is defined as the baseline magnitude 

signal over the standard deviation of the noise in the time-series, 

SNR = ρ/σ. For the CNR, the amplitude is defined as the difference 

between the baseline signal and the task related change in the signal 

for the magnitude and phase components of the time-series, Aρ and 

Aϕ, so CNRρ = Aρ/σ and CNRϕ = Aϕ/(σ/ρ). Assuming normal noise in the 

real and imaginary channels, the standard deviation of a phase-only 

time-series is σ/ρ, and the CNRϕ is proportional to the SNR. Typically 

in fMRI studies, the task related signal change in the magnitude Aρ 

corresponds to approximately a 1–2% signal change, and the task 

related change in the phase Aϕ has been found to be approximately 

π/36 [4]. To compare MO and CV correlations, two 96 × 96 surfaces 

are generated with 720 time-points and standard normal random noise 

added to the real and imaginary channels. As visualized in Fig. 1, each 

voxel has a ρ between 0 and 50, and a task generated to represent a 

magnitude amplitude Aρ between 0 and 1, and a phase amplitude Aϕ 

between 0 and π/36. The MO and CV correlations are computed 

between the two time-series in each surface with equivalent parameter 

settings, so there is a 96 × 96 corresponding matrix for MO and CV. To 

compare the correlations between the two models, the Fisher-z 

transform, z, is computed and plotted for each time-series correlation, 

r, as 

𝑧 = ½ ln (
1 + 𝑟

1 − 𝑟
) 

 

http://dx.doi.org/10.1016/j.mri.2016.03.011
http://epublications.marquette.edu/
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Fig. 1. Surfaces representing the (a) ρ, (b) Aρ, and (c) Aϕ parameters used to 

generate the simulated time-series. 

3.2. Experimental illustration 

An experimental fMRI human data set is acquired with bilateral 

finger tapping, performed for sixteen 22-s periods, a block design 

experiment was acquired for a series of 720 TRs with a 3.0 T 

Discovery MR750 MRI scanner (General Electric, Milwaukee, WI) using 

a GE single channel quadrature head coil. The data set was acquired 

with ten interleaved 4 mm thick axial slices that are 96 × 96 in 

dimension for a 24.0 cm FOV, with a TR/TE of 1000/39 ms, a flip angle 

of 25°, and an acquisition bandwidth of 111 kHz. To observe the 

potential impact of data processing on the temporal frequencies and 

demonstrate the utility of the framework, voxel temporal spectrums 

are analyzed before and after applying a spatial smoothing operator 

with a Gaussian kernel with a full-width-half-max of 3 voxels, followed 

by an ideal high-pass band filter (< 0.009 Hz) and low-pass band filter 

(> 0.08 Hz). The spatial correlation is decomposed into three 

correlation bands, R1, R2, R3, such that sum of the bands equals the 

total correlation. The correlation bands that are selected correspond to 

the frequency band ranges 0.0009–0.024 Hz, 0.026–0.037 Hz, 0.038–

0.08 Hz, with the task-activated frequency peak is observed in R2. The 

complex activation for the data was computed [9], and four voxels 

were chosen based on their complex activation locations: two in the 

motor cortex and two in the supplementary motor cortex. The two 

voxels in each location are chosen so that one voxel has a high CNRρ 

and CNRϕ, and the other has a low CNRρ and CNRϕ. 

  

http://dx.doi.org/10.1016/j.mri.2016.03.011
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4. Results 

4.1. Simulated data 

In Fig. 2, the Fisher-z transform statistics for the MO and CV 

correlations are computed for the surfaces generated with the 

parameters described in Fig. 1. Including the phase half of the data in 

the CV correlation calculation yields an increased sensitivity of the 

correlation value, as illustrated by comparing the top left corner of the 

Fisher-z map in Fig. 2a to the one in Fig. 2b, with a difference map of 

CV–MO in Fig. 2c. The additional information of the phase time-series 

improves the strength of correlation detected at lower magnitude CNR 

values. 

 
Fig. 2. The Fisher-z transform of the (a) MO and (b) CV correlation, and the (c) 
difference (CV–MO) between the correlations. 

4.2. Experimental data 

Fig. 3 and Fig. 4 contain the four seed voxel CV and MO spatial 

correlation maps for the experimental fMRI data in the motor cortex 

and supplementary motor cortex. In Fig. 3b, the MO and CV 

correlation maps are identical since computing the MO and CV 

correlations are equivalent for a MO data set. In Fig. 4b, the MO and 

CV correlation maps are noticeably distinguishable since computing the 

MO and CV correlations are not equivalent for a CV data set. As 

described in Eq. (7), the spatial correlations are computed with the 

temporal frequencies, which are aggregated into bands as seen in Figs. 

3a and 4a. The MO correlation maps appear to contain more 
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correlations outside the expected task-activated region compared to 

the CV maps. Particularly in the low CNR seed voxels, the less defined 

motor cortex in the MO correlation maps corroborates the results 

observed in the simulation in Section 4.1. The CV correlations have a 

higher sensitivity than the MO correlations in both regions with 

activation. All voxels are located in the motor cortex or supplementary 

motor cortex, and exhibit task-activated correlation in R2, where the 

task frequency peak is located, as in Figs. 3a and 4a. In Fig. 3b, the 

general location of the apparent false positive MO correlation is around 

the edge of the brain as is characteristic of a motion artifact. Since the 

data has been minimally processed, motion artifacts are present in the 

data and have not been corrected. 

 
Fig. 3. Experimental MO fMRI spatial correlation maps for each seed voxel (a) by the 
correlation bands, R1, R2, R3 corresponding to the frequency band ranges 0.0009–
0.024 Hz, 0.026–0.037 Hz, 0.038–0.08 Hz, and (b) the total correlation map CV and 
MO for high and low CNR in motor cortex and supplementary motor cortex. 
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Fig. 4. Experimental CV fMRI spatial correlation maps for each seed voxel (a) by the 
correlation bands, R1, R2, R3 corresponding to the frequency band ranges 0.0009–
0.024 Hz, 0.026–0.037 Hz, 0.038–0.08 Hz, and (b) the total correlation map CV and 
MO for high and low CNR in motor cortex and supplementary motor cortex. 

5. Conclusions 

A linear matrix representation of correlation between complex-

valued time-series in the temporal Fourier frequency domain for 

functional MRI (fMRI) data analysis was developed. In a simulation 

comparing decreasing CNR magnitude and phase values, it was 

illustrated that the Fisher-z transform of CV correlations was higher 

than for MO correlations for low CNR fMRI time-series. In the 

experimental human data, a comparison of R2 in Figs. 3a and 4a shows 

increased sensitivity of estimating correlations with including the phase 

time-series. These results agree with previous studies investigating the 

statistical power of using CV data over MO data in fMRI studies. In 

comparison to the MO correlations, the CV correlations have reduced 

error, and more distinctive regions of activation in the motor cortex 

and the supplementary motor cortex for voxels with lower magnitude 

and phase CNR. While the framework is demonstrated for task fMRI 

data, a natural application of this framework is to non-task fMRI, 
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where the spatial correlation is measured to detect long-range 

connectivity. 

The temporal Fourier frequency description in this study is also 

advantageous to locate the temporal frequency range where 

correlations are induced. Common processing and reconstruction 

methods have been shown to induce correlation of no biological origin 

[18], [23] and [24]. In this study a framework is presented where 

signal processing operations and parallel image reconstruction 

procedures, applied to the complex-valued k-space signal, can be 

represented as real-valued matrix operators. The second order 

temporal frequency spatial covariance representation describes spatial 

correlation as a function of increased overlapping frequency content. 

Consider a scenario where initially voxel a and b are correlated, b and 

c are correlated, but a and c are not correlated. If the reconstructed 

images are smoothed, which have been previously shown to induce 

correlation, spatial correlation between a and b arises from 

overlapping frequency content between temporal frequency spectrums 

of a and c. Similar reasoning can be used to discuss the correlation 

between b and c, and the lack of correlation between a and c. As 

shown in Appendix A, the matrix multiplication of the linear operators 

with the spatial covariance matrix, quantitatively describes the 

compounding impact of spatial and temporal operators to the second 

order temporal frequencies. Combining this matrix multiplication 

framework with biologically or experimentally relevant frequency 

bands pertaining to fMRI data, provides insight into the impact of 

signal processing on statistical analysis and clinical interpretations 

from the data. The application of the theory to complex-valued data 

validates the increased statistical strength of using complex-valued 

models, specifically in minimally processed data sets or data sets with 

high noise variability. Including the phase in the analysis increases the 

sensitivity of the correlation in low magnitude contrast-to-noise ratio 

functional MRI data. 

Acknowledgements 

This work was supported by NIH NS087450. 

  

http://dx.doi.org/10.1016/j.mri.2016.03.011
http://epublications.marquette.edu/
http://www.sciencedirect.com/science/article/pii/S0730725X16000333#bb0090
http://www.sciencedirect.com/science/article/pii/S0730725X16000333#bb0115
http://www.sciencedirect.com/science/article/pii/S0730725X16000333#bb0120
http://www.sciencedirect.com/science/article/pii/S0730725X16000333#s0050


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Magnetic Resonance Imaging, Vol. 34, No. 6 (July 2016): pg. 765-770. DOI. This article is © Elsevier and permission has 
been granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission for this article 
to be further copied/distributed or hosted elsewhere without the express permission from Elsevier. 

13 

 

Appendix A.  

A linear matrix representation of the spatial covariance and 

correlation, allows one to measure the effect of the temporal and 

spatial processing operators. Define a p × p spatial smoothing 

operator, Sm, which filters the real and imaginary components 

separately with a Gaussian kernel. Continuing the notation used in Eq. 

(3) with a demeaned time-series notation, the smoothed 2pn × 1 

temporal frequency vector is constructed with the multiplication 

vs = (Ip ⊗ Τ)P(I2n ⊗ Sm)y. 

The series of operations applied to the temporal frequencies is defined 

with 2pn × 2pn operator, 

O = (I2n ⊗ Sm)P(Ip ⊗ T) such that the 2pn × 1 unprocessed and 

processed time-series vectors ordered by voxel are represented as in 

Eqn. (3), y = (Ip ⊗ T)v and ys = Ov. The 2pn × 2pn spatiotemporal 

covariance matrix for the 2pn × 1 real-valued image time-series, y, in 

terms of temporal frequency spectrum, is defined as 

cov[y] = Γ, 
equation(A.1) 

and the covariance matrix with processing operators is defined 

cov[ys] = ΟΓΟ´. 
equation(A.2) 

Eqs. (A.1) and (A.2) are described in terms of temporal 

frequencies as shown in Section 2.1. The spatial component of Eq. 

(A.1) is equivalent to Σ described in Eq. (5), through a process of 

summing real and imaginary diagonal values to achieve a sp × p 

magnitude-squared spatial correlation matrix such that the temporal 

component is held constant. Magnitude-squared correlation is 

asymptotically equivalent to MO correlation [13] and [25]. 
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