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Abstract 

 

π-Conjugated organic oligomers/polymers hold great promise as long-range 

charge-transfer materials for modern photovoltaic applications. However, a 

set of criteria for the rational design of functional materials is not yet 

available, in part because of a lack of understanding of charge distribution in 

extended π-conjugated systems of different topologies, and concomitant 

effects on redox and optical properties. Herein we demonstrate the role of 

cyclic versus linear topology in controlling the redox/optical properties and 

hole distribution in poly-p-phenylenes (PPs) with the aid of experiment, 

computation, and our recently developed multistate parabolic model (MPM). It 

is unequivocally shown that the hole distribution in both cyclic and linear poly-

p-phenylene (n ≥ 7) cation radicals is limited to seven p-phenylene units, 

despite the very different topologies. However, the effect of topology is 

evidenced in the very different trends in oxidation potentials of cyclic versus 

linear PPs, which are shown to originate largely from the geometrical 

distortion of individual p-phenylene units in cyclic PPs. The presence of 

additional pairwise electronic coupling element in cyclic PPs, absent in linear 

PPs, plays a significant role only in smaller cyclic PP5 and PP6. This study 

provides a detailed conceptual description of cyclic and linear poly-p-

phenylene cation radicals and demonstrates the versatility and predictive 

power of MPM, an important new tool for the design and synthesis of novel 

and efficient charge-transfer materials for molecular electronics and 

photovoltaic applications, an area of widespread interest. 

Introduction 

A variety of new π-conjugated organic polymers with different 

topologies (e.g., linearly connected poly-p-phenylenes, dendritic and 
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cyclic structures) have been synthesized with the promise of enhanced 

electronic and optoelectronic properties for potential applications in the 

emerging areas of molecular electronics and photovoltaics.(1-3) 

Unfortunately, a set of well-defined guiding principles has not yet 

emerged, which could provide a priori knowledge of the dynamics of 

charge transfer in the polymers of different topologies in order to 

guide the design and synthesis of efficient long-range charge-transfer 

materials. In this regard, it is of particular interest to carefully explore 

both experimentally and computationally the charge distribution in π-

conjugated polymers of different topologies and its effect on their 

redox and optical properties. 

 

We recently performed a detailed analysis of the electronic 

structures of various linear poly-p-phenylene cation radicals (CRs) 
RPPn

•+, using a combined computational/experimental approach,(4) 

and showed that a positive charge (hole) in RPPn
•+ is distributed only 

over seven monomer units (Figure 1). This confinement of the hole in 

long poly-p-phenylene chains (i.e., n > 7) originates from the interplay 

between the energetic gain from charge delocalization and 

concomitant energetic penalty from the structural reorganization (i.e., 

bond contractions/elongations, angular deformations, and dihedral 

angles between p-phenylenes) as well as the solvent reorganization. 

We also noted that in the presence of end-capping groups (e.g., alkyl- 

or alkoxy-groups) in poly-p-phenylene (RPPn
•+) chains the hole 

gravitates from the central position to the end of the chain (Figure 1). 

 

Recently, a series of cyclic poly-p-phenylenes (CPPn) have been 

synthesized,(5-11) where the cyclic topology dictates that all of the p-

phenylene units are identical.(12) This raises the question of whether 

a hole should be fully delocalized, unlike the linear poly-p-phenylenes 

where the end p-phenylene groups are electronically different from the 

internal phenylene units (Figure 1).(4) This curious notion is further 

enforced by the reported experimental redox properties of CPPn which 

were starkly different from those of their linear analogues (RPPn) 

(Figure S1 and Tables S1–S4 in the Supporting Information for the 

compilation of optoelectronic data for CPPn/CPPn
•+ and 

RPPn/RPPn
•+).(5-11, 13-25) 
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This difference in the redox and optoelectronic properties of 

linear and cyclic poly-p-phenylenes (e.g., the oxidation potentials 

[Eox1] of linear RPPn decrease with increasing number of phenylene 

units n, while Eox1 of CPPn increase with increasing n) has its origin in 

part due to the geometry distortion in neutral CPPn and the resulting 

cation radicals. However, it is not clear what role the cyclic topology 

will play in controlling the extent of the hole distribution in larger cyclic 

poly-p-phenylenes. This is the question we address here, making use 

of carefully benchmarked DFT calculations and our recently developed 

multistate parabolic model (MPM)(4) to ascertain the role of topology 

on the redox and optical properties of linear versus cyclic poly-p-

phenylenes. To this end, we have extended the MPM to polar 

coordinates, which allowed an accurate description not only of the hole 

distribution in CPPn
•+ but also of the evolution of redox and optical 

properties. 

 

 
Figure 1. Per-unit hole distribution (represented as bar plots) in the uncapped 
(HPP11

•+), alkyl-capped (iAPP11
•+), and alkoxy-capped (ROPP11

•+) poly-p-phenylene 
cation radicals,4 and a representative structure of the cyclic poly-p-phenylene. 

Results and Discussion 

DFT Calculations 
 

Reliable evaluation of the charge/hole delocalization in π-

conjugated cation radicals (CRs) is challenging for DFT methods due to 
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the self-interaction error;(26-28) however, this problem can be 

overcome by incorporation of the proper level of Hartree–Fock (HF) 

exchange.(4, 27, 29-36) Thus, calibration of the one-parameter 

density functional B1LYP(37) for the RPPn
•+ series(4, 13) (R = isoalkyl, 

iA; alkoxy, RO groups) resulted in the modified B1LYP-40 functional 

with 40% admixture of the HF term [i.e., B1LYP-40/6-

31G(d)+PCM(CH2Cl2), see the Supporting Information for 

computational details]. To ensure the applicability of the B1LYP-40 

functional for the CPPn
•+ series, we optimized geometries of 

CPPn/CPPn
•+ for n = 5–13, and obtained the oxidation energies (Eel’s) 

of CPPn. The calculated trend of Eel with increasing number of p-

phenylene units agrees well with the experimentally observed trends 

both for cyclic and linear poly-p-phenylenes (Figure 2A,A′).(38) 

 

As a further check of our method, we calculated the energy of 

the D0 → D1 electronic transition in the poly-p-phenylene cation 

radicals (i.e., excitation energies of CPPn
•+) using the TD-DFT 

formalism. The observed trends in the computed excitation energies of 
CPPn

•+ were also in good agreement with the experimental trend 

(Figure 2B,B′). Moreover, a comparison of the evolution of the 

experimental and computed trends for linear RPPn
•+ and cyclic CPPn

•+ 

in Figure 2B,B′ showed that both series saturate at n = 8, and the 

excitation energy converges at the value of νmax ∼ 5000 cm–1 indicating 

that the cyclic topology of long CPPn
•+ plays little role in controlling 

their optical properties. 

 

 
Figure 2. Top: Experimental first oxidation potentials Eox1 of CPPn and iAPPn (A), and 
excitation energies of the corresponding cation radicals (B) vs 1/n, where n is the 
number of p-phenylene units.39 Bottom: Calculated (TD-)DFT energies of oxidation of 
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various RPPn (A′), and vertical (D0 → D1) excitation energies of the RPPn
•+ (B′) vs 1/n 

[B1LYP-40/6-31G(d)+PCM(CH2Cl2)]. Also, see Tables S1–S4 in the Supporting 
Information for the compilation of the redox/optical properties of CPPn.5-11,13-25 Note 
that complete experimental data are not yet available for HPPn. 

Analysis of the electronic structure of various (neutral) poly-p-

phenylenes showed that the HOMO is fully delocalized in cyclic CPPn 

while in linear RPPn it gravitates toward the center of the molecule 

(Figure 3A, see also Figure S4 in the Supporting Information). Thus, it 

can be expected from the uniform HOMO distribution in CPPn that 

spin/charge in the corresponding CPPn
•+ should also be distributed 

uniformly (see bar plots in Figure 3A). However, this expectation is 

met only for smaller CPP5
•+ and CPP6

•+, while starting with CPP7
•+, the 

hole gravitates toward one side of the cycle (Figure 3B). Indeed, in 

larger CPPn
•+ (n ≥ 7), the hole distribution (Figure 3B) is clearly 

confined to no more than seven units, which is uncannily similar to the 

observed hole distribution over seven units in linear RPPn
•+. The 

corresponding spin/charge distribution in the excited (D1) state of 

various CPPn
•+/RPPn

•+ (Figure 3C) again shows a remarkable similarity 

between the larger (n > 6) cyclic and linear poly-p-phenylenes. Note 

that the hole is redistributed in the excited state in such a way that it 

spreads away from the center leaving the central unit/s virtually 

unoccupied (Figure 3C) which resembles the probability distribution in 

a simple quantum harmonic oscillator model (Figure S7 in the 

Supporting Information). Thus, in both CPPn
•+ and RPPn

•+, the hole in 

the excited state expands from seven (in the ground state) to eight 

phenylene units, which also agrees well with the observed saturation 

of νmax energies of CPPn
•+/RPPn

•+ at n = 8 (i.e., Figure 2B′). 

 

 
Figure 3. (A) Representative HOMOs (0.03 au) for the cyclic CPPn and linear 
HPPn/iAPPn for n = 6 and 10 and the corresponding HOMO densities [calculated as qm 
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= Σncmn
2 where cmn is a coefficient of atomic orbital χmn in HOMO (φHOMO = Σkckχk), m 

is the index of a p-phenylene unit, and n is an index of atomic orbital in unit m] are 
shown as the bar plots. (B, C) Spin density distribution plots (0.001 au) in the (B) 
ground and (C) excited electronic states of CPPn

•+ and HPPn
•+ [B1LYP-40/6-

31G(d)+PCM(CH2Cl2)], which resemble the probability densities of the ground and first 
state of the quantum harmonic oscillator model. Also, see Figures S6 and S7 in the 
Supporting Information. 

Multistate Model 
 

To understand the origin of the overall similarity of the hole 

distribution in the ground (D0) and excited (D1) states of cyclic versus 

linear PPn
•+, which contrast the observed opposite trends in evolution 

of their oxidation energies (Figure 2A,A′), we make use of the 

reconfigured multistate parabolic model (MPM). The original MPM, 

described in detail in a recent article by Rathore and co-workers,(4) 

uses a quadratic function to represent diabatic free energies of each p-

phenylene unit. These are treated as identical in the case of parent 
HPPn

•+ while in the case of end-capped linear RPPn
•+ the terminal units 

were of lower energies as compared to the internal units. The 

interactions between the p-phenylene units (Figure 4A) are modeled 

using the effective tight-binding Hamiltonian with a constant coupling 

parameter Hab (eq 1) 

 

(1a) 

 

(1b) 

 

where x is the combined solvent/geometry reorganization coordinate 

(i.e., the position of the hole), xi = the position of ith monomer unit, Hi 

= diabatic energy of ith monomer (i.e., energy of the noninteracting 

monomer unit), Hab = the coupling strength between the neighboring 

units, and λ = the reorganization energy. 
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Figure 4. Graphical representation of the multistate parabolic models of (A) HPPn

•+, 
(B) iAPPn

•+, and (C) CPPn
•+. 

The eigenvalue and eigenvector matrices of the Hamiltonian 

matrix in eq 1 can be interpreted as free energies and composition of 

the ground and excited states of RPPn
•+, respectively. Thus, 

diagonalization of the matrix H(x) for systematically varied x produces 

a free energy profile of RPPn
•+ with respect to the combined 

geometry/solvent reorganization coordinate. Position of the global 

minimum on this profile could be used for analysis of the redox and 

optical properties of various RPPn
•+ with regard to such factors as the 

oligomer length or the nature of the end-capping substituent (which 

can be simulated by lowering of the corner terms H1 and Hn by a 

constant factor ε/λ, Figure 4B). Using MPM with the value of Hab/λ 

combined with ε/λ = 0 and 3.7 for R = H and iA, respectively, 

reproduced evolution of optoelectronic properties of RPPn
+• in close 

agreement with the DFT results and experimental (electrochemistry 

and absorption spectra) observations.(4) 

 

As “a circle has no beginning or end”, employment of the 

multistate parabolic model, developed for linear poly-p-phenylenes, to 

cyclic CPPn
•+ required the following modifications. First, the corner 

elements of the Hamiltonian in eq 1 (H1,n and Hn,1) were set to Hab/λ to 

enable the interaction between the first and last monomer units, which 

is absent in linear RPPn
•+. Next, the diabatic energies Hi were modified 

to account for the hole delocalization along the circular path of the 
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CPPn
•+ nanohoop. As the nanohoop radius (R) is constant within a 

given CPPn
•+, the hole position can be solely determined by the polar 

angle ax (Figure 4C). The energy of a p-phenylene unit Hi in the 

circular path for a given CPPn
•+ can be again represented by a 

quadratic function 

 

(2a) 

(2b) 

(2c,d) 

 

where ax is the polar angle corresponding to the combined 

solvent/geometry reorganization (i.e., the position of the hole) and ai 

= position of ith monomer unit. As the hole delocalizes over no more 

than seven units in both cyclic CPPn
•+ and linear RPPn

•+ series (Figure 

3B), the value of Hab/λ = 9.0, used for various RPPn
•+, was also 

employed for cyclic CPPn
•+ (see also Table S5 and its discussion in the 

Supporting Information). 

 

The models presented in eqs 1 and 2 assume that Hi and Hab/λ 

are independent of the oligomer length of both linear and cyclic poly-

p-phenylenes (i.e., number of p-phenylene units). However, the cyclic 

topology of CPPn
•+ introduces both bending and quinoidal distortion in 

each p-phenylene unit,(17, 19, 34, 36, 40, 41) the extent of which is 

dependent on the size of CPPn
•+. Interestingly, the experimentally 

observed(19, 40, 41) quinoidal geometrical distortion in CPPn bears a 

striking resemblance to the X-ray crystallographically characterized 

quinoidal distortion of a p-phenylene unit in oxidized RPPn
•+.(13, 42) 

For this reason, oxidation of a p-phenylene unit in CPPn should endure 

significantly reduced (geometrical) reorganization penalty, and 

therefore, the oxidation energies are expected to lower considerably 

when compared to the corresponding linear RPPn (Figure 5). Thus, the 

quinoidal distortion of p-phenylene units in smaller CPPn
•+ should 

decrease the value of Hi(CPPn
•+), and therefore, an oligomer size-
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dependent correction factor Dn needs to be incorporated into the 

Hamiltonian from eq 2, i.e. 

 

(3) 

 

where Hi(CPP∞
•+) is identical to Hi in eq 2b in which the deformation of 

p-phenylene units due to the cyclic topology in CPPn
•+ was neglected, 

and is also identical to the Hi term for the undistorted linear RPPn
•+ in 

eq 1. 

 

 
Figure 5. Energetic diagram of the structural changes associated with 1e– oxidation of 
a single p-phenylene unit in linear RPPn

•+ and cyclic CPPn
•+ series, and the effect of 

the enforced geometrical distortions in CPPn due to the cyclic topology. 

The distortion factor Dn is constant for each p-phenylene unit 

because all p-phenylene units are identical in a given cyclic poly-p-

phenylene, and therefore the model Hamiltonian of CPPn
•+ can be 

rewritten as 

 

(4) 

 

where I is the n × n identity matrix, and H(ax) is the Hamiltonian from 

eq 2a. 

 

Diagonalization of the model Hamiltonian matrices Hext (eq 4) or 

H (eq 2a) results in identical eigenvectors (i.e., distribution of hole) 
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http://epublications.marquette.edu/
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while the eigenvalues (i.e., free energies) differ by a constant 

distortion factor Dn (see Supporting Information for additional details). 

Expectedly, the distortion factor Dn adds to the free energies of 

oxidation but has no impact on the hole distribution. Also, the 

excitation energies of CPPn
•+ are not impacted by Dn because it cancels 

out in the G2 – G1 term. Accordingly, the hole distribution and the 

excitation energies of CPPn
•+ can be directly obtained using a simplified 

Hamiltonian in eq 2, which does not contain the Dn term. 

 

Using the MPM (eq 2), the per-unit hole distribution was 

calculated for various CPPn
•+ and compared with the corresponding 

hole distributions from the DFT calculations, shown in Figure 6A in the 

form of bar plots. It is clearly seen that the hole delocalization for n ≥ 

7 is in remarkable agreement with the DFT results. 

 

The MPM also reproduced the hole distribution in the excited 

state of CPPn
•+ for n ≥ 7. For smaller CPP5

•+ and CPP6
•+, however, the 

MPM fails to reproduce the even hole distribution predicted by the DFT 

predictions. This limitation of the MPM in cases of CPP5
•+ and CPP6

•+ is 

not surprising owing to the fact that in smaller CPPn the p-phenylene 

rings are highly distorted (quinoid-like), and the dihedral angles 

between neighboring p-phenylene units are relatively small; therefore, 

the reorganization term accompanying one-electron oxidation is nearly 

zero (Figure 5).(43) Indeed, one could reproduce a DFT-like uniform 

distribution of charge in CPP5
•+ and CPP6

•+ with MPM by making use of 

a value of λ = 0. Moreover, the validity of the application of MPM to 

poly-p-phenylenes is further supported by the fact that it correctly 

predicts the evolution of the D0 → D1 excitation energies in either 

linear RPPn
•+ or cyclic CPPn

•+ (Figure 6B vs 2B/B′). 
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Figure 6. (A) Comparison of the per-unit hole distribution of CPPn

•+ obtained from the 
DFT calculations (dark/bright green bar plots for the ground/excited states) and 
multistate parabolic model (dark/bright yellow bar plots for the ground/excited states). 
The DFT hole distribution was obtained as the per-phenylene natural population 
analysis charges calculated at the B1LYP-40/6-31G(d)+PCM(CH2Cl2) level, see Figure 

S8 in the Supporting Information for additional details. See also Figure S9 in the 
Supporting Information for a similar plot for various linear RPPn

•+.(4) (B) Vertical 
excitation energies of cyclic CPPn

•+ and linear RPPn
•+, obtained using MPM, vs 1/n 

(compare with Figure 2B,B′). 

Both MPM and DFT predict remarkably similar hole distribution 

in cyclic and linear poly-p-phenylene cation radicals beyond seven p-

phenylene units, and the convergence of their D0 → D1 excitation 

energies, observed both experimentally and computationally, beyond 

seven p-phenylene units, clearly suggests that there is little difference 

between cyclic and linear topologies as far as hole 

delocalization/distribution is concerned.(44) 

 

The transformation of a linear poly-p-phenylene into its cyclic 

analogue (i.e., CPPn) involves a significant quinoidal distortion of each 

p-phenylene ring and an adjustment of dihedral angles between p-

phenylene units, and the extent of this distortion/structural 

reorganization decreases with increasing ring size. The consequence of 

ring size-dependent structural distortion/reorganization is a lowering of 

the redox potentials of CPPn in comparison to the linear poly-p-

phenylenes. However, one may wonder the following: What is the 

contribution of the cyclic topology? We can estimate the contribution of 

cyclic topology in the stabilization of the hole in the CPPn
•+ series by 
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http://pubs.acs.org/doi/suppl/10.1021/jacs.5b09596/suppl_file/ja5b09596_si_001.pdf
javascript:void(0);
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discounting the geometrical distortion term Dn within the multistate 

parabolic model, i.e., using the simplified Hamiltonian in eq 2. The 

oxidation energies of CPPn, evaluated using the modified MPM for cyclic 

topologies (i.e., eq 2), are plotted in Figure 7 together with the 

oxidation energies of linear RPPn obtained using the original multistate 

parabolic model (i.e., eq 1). This comparison of the oxidation energies 

of cyclic and linear poly-p-phenylenes in the absence of the distortion 

term Dn showed that the oxidation energies of both cyclic CPPn and 

linear RPPn are the same for n > 7, which is consistent with the 

observation of similar hole distribution over seven units in all poly-p-

phenylenes. 

 

 
Figure 7. Hole stabilization energies (i.e., oxidation energies) in various PPn

•+ 
obtained by MPM (solid lines with symbols). The corresponding dashed lines without 
symbols show the evolutions of the oxidation energies of various linear and cyclic poly-

p-phenylenes obtained by DFT calculations. Also note the dramatic difference in the 
evolution of oxidation energies of CPPn with and without the distortion factor Dn. 

Interestingly, the smaller CPPn (n = 5–7) have somewhat lower 

oxidation potentials as compared to the corresponding linear 

analogues (Figure 7). The origin of this lowering of the oxidation 

potentials in smaller CPPn lies in the fact that cyclic topology 

introduces an additional pairwise electronic coupling element in the 

Hamiltonian matrix (eq 2) which is absent in linear RPPn (eq 1). Thus, 

the contribution of the additional coupling on the stabilization of the 

hole (i.e., lowering of the redox potentials) is pertinent only in cases of 

smaller CPPn
•+ because in these ring systems the hole is delocalized 
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http://pubs.acs.org/doi/10.1021/jacs.5b09596#eq2a
http://pubs.acs.org/doi/10.1021/jacs.5b09596#eq2a
http://pubs.acs.org/doi/10.1021/jacs.5b09596#eq2a
http://pubs.acs.org/doi/10.1021/jacs.5b09596#eq2a
http://pubs.acs.org/doi/10.1021/jacs.5b09596#fig7
http://pubs.acs.org/doi/10.1021/jacs.5b09596#fig7
http://pubs.acs.org/doi/10.1021/jacs.5b09596#eq1a
http://pubs.acs.org/doi/10.1021/jacs.5b09596#eq1a
http://pubs.acs.org/doi/10.1021/jacs.5b09596#fig7
http://pubs.acs.org/doi/10.1021/jacs.5b09596#fig7
http://pubs.acs.org/doi/10.1021/jacs.5b09596#eq2a
http://pubs.acs.org/doi/10.1021/jacs.5b09596#eq2a
http://pubs.acs.org/doi/10.1021/jacs.5b09596#eq1a
http://pubs.acs.org/doi/10.1021/jacs.5b09596#eq1a


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Journal of the American Chemical Society, Vol 137, No. 47 (December 2015): pg. 14999-15006. DOI. This article is © 
American Chemical Society and permission has been granted for this version to appear in e-Publications@Marquette. 
American Chemical Society does not grant permission for this article to be further copied/distributed or hosted 
elsewhere without the express permission from American Chemical Society. 

14 

 

over all p-phenylene units. In large CPPn
•+, the hole distributions are 

limited to seven p-phenylene rings akin to those in linear RPPn
•+, and 

therefore, an additional coupling element is expected to have no 

impact on their oxidation energies (Figure 7). 

 

This finding suggests that cyclic topology by virtue of 

introducing the additional pairwise coupling element plays an 

important role in stabilizing the cation radicals of smaller CPPn (n < 7) 

while the accompanying quinoidal distortion/reorganization contributes 

to the stabilization of all CPPn cation radicals, the degree of which 

decreases with an increase of the size of CPPn. Accordingly, one would 

expect that removal of one p-phenylene ring from a larger CPPn 

without altering the remaining structure (i.e., a simple removal of 

cyclic topology) should not impact its oxidation potential, i.e.

 
 

To further verify this finding from MPM analysis and separate 

the contributions from cyclic topology and accompanying quinoidal 

distortion/reorganization toward the stabilization of CPPn
•+, we 

performed DFT calculations of these truncated CPPn/CPPn
•+, referred to 

hereafter as curved HPPn/HPPn
•+.(21, 45) The calculated [B1LYP-40/6-

31G(d)+PCM(CH2Cl2)] oxidation energies of curved HPPn (see the 

Supporting Information for details) were compared with the 

corresponding cyclic CPPn (Figure 8A). 

 

Comparison of the oxidation energies of CPPn and the 

corresponding curved HPPn shows identical oxidation potentials for n > 

7, thus suggesting that cyclic topology (i.e., accompanying additional 

coupling element) does not impact the oxidation energies. However, in 
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the case of smaller CPPn, the effect of cyclic topology is clearly 

apparent as their oxidation potentials are lower compared to the 

corresponding curved HPPn (Figure 8A). We also estimated the impact 

of the quinoidal distortion/reorganization of the p-phenylene rings on 

their oxidation energies using DFT calculations (Figure 8B) which 

showed that a distorted p-phenylene ring from CPP5 has a 400 meV 

lower oxidation energy as compared to that for a distorted p-

phenylene ring from CPP13.(46) Moreover, the oxidation energy of the 

distorted p-phenylene ring in CPP5 is ∼500 meV lower than that of the 

undistorted benzene. 

 

 
Figure 8. (A) Calculated [B1LYP-40/6-31G(d)+PCM(CH2Cl2)] oxidation energies of 
CPPn (red ●) and their truncated analogues (black ▲) in which one p-phenylene unit 

was removed without altering the remaining structure (missing connections were 
replaced by the C–H bonds, see structures on the left), vs 1/n. (B) Calculated 
oxidation energies of benzene fragment with the distorted geometries as found in 
various CPPn, vs 1/n. Oxidation energy of the undistorted benzene is also included in 
the plot. 

Conclusions 

In this study, we have carefully examined the strikingly different 

trend with increasing n of experimental Eox1 of cyclic (CPPn) and linear 

(RPPn) poly-p-phenylenes and the D0 → D1 transition (νmax) in their 

cation radicals using DFT calculations and our reconfigured multistate 

parabolic model (MPM). Calculations using a modified DFT functional 

[B1LYP-40/6-31G(d)+PCM(CH2Cl2)] accurately reproduce the evolution 
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of Eox1 of cyclic/linear PPn as well as the evolution of νmax in their 

cation radicals (Figure 2). In contrast to linear RPPn, where the HOMO 

gravitates toward the center of oligomer chain, in CPPn it is fully 

delocalized due to the cyclic topology (Figure 3A). The hole (i.e., 

spin/charge) distribution in smaller CPPn
•+ (n < 7) is also fully 

delocalized, but gravitates toward one side of the ring in larger CPPn
•+ 

(n ≥ 7) similar to the corresponding linear RPPn
•+. Importantly, in both 

series, the hole distribution is limited to only seven p-phenylene units 

(Figure 3B). The similarity of the hole distribution in larger cyclic/linear 

PPn
•+, both in the ground (D0) and excited (D1) states, is consistent 

with the observed convergence of their experimental/calculated 

νmax(D0 → D1) energies at n > 7 (Figure 2B,B′). 

 

We have modified our recently developed multistate parabolic 

model, which fully reconciles the experimental/DFT observables (Eox1, 

νmax) for linear RPPn/RPPn
•+, by introducing a polar coordinate system 

to accommodate the cyclic topology of CPPn/CPPn
•+ (Figure 4). The 

modified MPM performed extremely well for larger CPPn
•+, n ≥ 7; 

however, for smaller CPP5
•+ and CPP6

•+ it produced a hole distribution 

which was not evenly delocalized (Figure 6A). This discrepancy arises 

largely due to the (severe) pre-existing quinoidal distortion (structural 

reorganization) of p-phenylene units in neutral CPP5 and CPP6 (Figure 

5). Despite this limitation, the modified MPM accurately reproduced 

observed convergence of the νmax(D0 → D1) energies for both cyclic 
CPPn

•+ or linear RPPn
•+. 

 

Our study reconciles the strikingly different trend observed in 

oxidation potential Eox1, with increasing n, which increases for cyclic 
CPPn but decreases for linear RPPn, and leads to Eox1 values for a given 

n that are considerably lower for cyclic CPPn (Table S3 in the 

Supporting Information). We show that these trends originate, in part, 

due to the cyclic topology which (a) imparts severe distortions and 

lowers the dihedral angles between p-phenylene units, and (b) 

introduces an additional pairwise electronic coupling element (eq 2) 

which is absent in linear RPPn. While both points a and b are important 

for smaller CPPn (n < 7), only point a plays a role in lowering the redox 

potentials of larger CPPn in comparison with those of the linear 

analogues. 
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Most importantly, our combined experimental and DFT/MPM 

study clearly demonstrates that hole distribution in both linear and 

cyclic poly-p-phenylene cation radicals is strikingly similar in larger 

PPn
•+ (n ≥ 7) and is limited to only seven p-phenylene units. 

Confinement of the hole is shown to arise from the interplay between 

the energetic gain from electronic coupling/charge delocalization and 

concomitant energetic penalty from the structural/solvent 

reorganization, often referred to simply as reorganization energy. In 

view of its demonstrated versatility and ready applicability, the MPM is 

shown to be an important new tool for designing novel long-range 

charge-transport materials for molecular electronics and photovoltaic 

applications. 
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