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Abstract: Hypoplastic left heart syndrome (HLHS) is a clinically and 

anatomically severe form of congenital heart disease (CHD). Although prior 

studies suggest that HLHS has a complex genetic inheritance, its etiology 

remains largely unknown. The goal of this study was to characterize a risk 

gene in HLHS and its effect on HLHS etiology and outcome. We performed 

next-generation sequencing on a multigenerational family with a high 

prevalence of CHD/HLHS, identifying a rare variant in the α-myosin heavy 

chain (MYH6) gene. A case-control study of 190 unrelated HLHS subjects was 

then performed and compared with the 1000 Genomes Project. Damaging 

MYH6 variants, including novel, missense, in-frame deletion, premature stop, 

de novo, and compound heterozygous variants, were significantly enriched in 

HLHS cases (P < 1 × 10−5). Clinical outcomes analysis showed reduced 

transplant-free survival in HLHS subjects with damaging MYH6 variants (P < 1 

× 10−2). Transcriptome and protein expression analyses with cardiac tissue 

revealed differential expression of cardiac contractility genes, notably 

upregulation of the β-myosin heavy chain (MYH7) gene in subjects with MYH6 

variants (P < 1 × 10−3). We subsequently used patient-specific induced 

pluripotent stem cells (iPSCs) to model HLHS in vitro. Early stages of in vitro 

cardiomyogenesis in iPSCs derived from two unrelated HLHS families 

mimicked the increased expression of MYH7 observed in vivo (P < 1 × 10−2), 

while revealing defective cardiomyogenic differentiation. Rare, damaging 

variants in MYH6 are enriched in HLHS, affect molecular expression of 

contractility genes, and are predictive of poor outcome. These findings 

indicate that the etiology of MYH6-associated HLHS can be informed using 
iPSCs and suggest utility in future clinical applications. 

Hypoplastic Left Heart Syndrome (HLHS) is a clinically and 

anatomically severe form of congenital heart disease (CHD). HLHS, 

characterized by hypoplasia of the ascending aorta and left ventricle, was first 

described by Noonan and Nadas.32 HLHS accounts for as much as 4% of 

subjects with CHD but is responsible for 15–25% of CHD-related mortality.3 

The cause of HLHS is unknown in most cases. 

https://dx.doi.org/10.1152/physiolgenomics.00091.2016
http://epublications.marquette.edu/
http://physiolgenomics.physiology.org/content/48/12/912.full#ref-32
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Evidence supporting a genetic basis for HLHS includes observations of 

familial clustering and high heritability16 and concurrence with specific 

chromosomal disorders such as Turner and Jacobsen syndrome. Variants in 

genes such as GJA1,7 NKX2.5,10 NOTCH1,11 and most recently, myosin heavy 

chain 6 (MYH6)38 as well as observations of syndromic or rare copy number 

variants in cardiogenic genes13,14,39,41 have been associated with HLHS. 

Increased frequency of left-ventricular outflow tract obstructions (LVOTO) 

such as bicuspid aortic valve (BAV) and coarctation of the aorta (CoA) have 

been noted in relatives of HLHS subjects.16,17,23,24,29 Although these studies 

indicate an underlying genetic basis, known risk factors currently explain 

<5% of HLHS etiology.16,17 

In this study, next-generation sequencing of a multigenerational 

CHD/HLHS family revealed a novel variant in the MYH6 gene. Although MYH6 

variants have been previously associated with cardiac phenotypes,1,4,6,12,33,38 

to better understand their role in HLHS we have employed a multifaceted 

approach including a case-control association study, transcriptome analysis of 

patient cardiac tissue, clinical outcomes, and the use of patient-specific 

induced pluripotent stem cells (iPSCs) to model HLHS disease in vitro. Results 

reveal that a significant percentage of HLHS patients have rare and damaging 

MYH6 variants that impact the expression of other sarcomere genes and are 

predictive of poor clinical outcomes. Moreover, experiments using patient-

derived cardiomyocytes indicate that HLHS may have a cardiomyocyte-

autonomous etiology that can be investigated via in vitro modeling with 
iPSCs. 

Methods 

Study Participants 

HLHS was strictly defined by atresia or stenosis of the aortic and 

mitral valves and hypoplasia of the left ventricle and ascending aorta, 

with intact ventricular septum.36 Subjects with complex cardiovascular 

malformations combined with left ventricle hypoplasia (such as 

unbalanced atrioventricular septal defects or double-outlet right 

ventricle) were excluded. Subjects with known genetic syndromes 

(Trisomy 18, 21, or Turner syndrome) or with extracardiac 

malformations suggestive of a genetic syndrome were also excluded. 

See supplementary methods: phenotyping cardiac malformations for 

additional details.1 This study is in accordance with the principles 

outlined in the Declaration of Helsinki and institutionally approved 

research (IRB) protocols by the Children's Hospital of Wisconsin (CHW, 

Milwaukee, WI). Subjects were consented through the CHD Tissue 

Bank (IRB #CHW 06/229, GC 300) and the Wisconsin Pediatric Cardiac 

https://dx.doi.org/10.1152/physiolgenomics.00091.2016
http://epublications.marquette.edu/
http://physiolgenomics.physiology.org/content/48/12/912.full#ref-16
http://physiolgenomics.physiology.org/content/48/12/912.full#ref-7
http://physiolgenomics.physiology.org/content/48/12/912.full#ref-10
http://physiolgenomics.physiology.org/content/48/12/912.full#ref-11
http://physiolgenomics.physiology.org/content/48/12/912.full#ref-37
http://physiolgenomics.physiology.org/content/48/12/912.full#ref-13
http://physiolgenomics.physiology.org/content/48/12/912.full#ref-14
http://physiolgenomics.physiology.org/content/48/12/912.full#ref-38
http://physiolgenomics.physiology.org/content/48/12/912.full#ref-40
http://physiolgenomics.physiology.org/content/48/12/912.full#ref-16
http://physiolgenomics.physiology.org/content/48/12/912.full#ref-17
http://physiolgenomics.physiology.org/content/48/12/912.full#ref-23
http://physiolgenomics.physiology.org/content/48/12/912.full#ref-24
http://physiolgenomics.physiology.org/content/48/12/912.full#ref-29
http://physiolgenomics.physiology.org/content/48/12/912.full#ref-16
http://physiolgenomics.physiology.org/content/48/12/912.full#ref-17
http://physiolgenomics.physiology.org/content/48/12/912.full#ref-1
http://physiolgenomics.physiology.org/content/48/12/912.full#ref-4
http://physiolgenomics.physiology.org/content/48/12/912.full#ref-6
http://physiolgenomics.physiology.org/content/48/12/912.full#ref-12
http://physiolgenomics.physiology.org/content/48/12/912.full#ref-33
http://physiolgenomics.physiology.org/content/48/12/912.full#ref-37
http://physiolgenomics.physiology.org/content/48/12/912.full#ref-36
http://physiolgenomics.physiology.org/content/48/12/912.full#fn-2
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Registry (IRB #CHW 09/91, GC 889), IRB-approved research 

databases housed at CHW prior to inclusion in the study.15,39 Both 

biorepositories provided all DNA samples, as well as cardiac tissue, 

from patients and family members, with associated clinical outcome 

variables. 

Multistage Approach to Investigate HLHS 

Figure 1 depicts the multistage approach used in this study to 

investigate the role of MYH6 in HLHS, as follows. 

 
Fig. 1. Five-stage study design. Stage 1 analyzed the pedigree of family F MYH6-
R443P. Stage 2 was a case-control association study assessing rare α-myosin heavy 
chain gene (MYH6) variants in 190 unrelated hypoplastic left heart syndrome (HLHS) 
subjects. Stage 3 assessed the clinical outcome of MYH6 variant carriers compared 
with non-MYH6 variant carriers. Stage 4 utilized transcriptome sequencing and 
Western blotting to compare gene expression in HLHS subjects with and without MYH6 
variants. Stage 5 employed induced pluripotent stem cells (iPSCs) to model HLHS 

disease in 2 unrelated families with MYH6 variants. 

Stage 1: Multigenerational HLHS family. 

We used next-generation sequencing to evaluate a 

multigenerational family (F MYH6-R443P) identified by a proband with 

HLHS through the CHD Tissue Bank. Other family members had CHDs 

affecting left-sided heart structures, including a second case of HLHS 

as shown in the pedigree (Fig. 2). Whole genome sequencing (WGS) 

was performed on the proband, affected sibling, father, and mother 

(IV:3, IV:1, III:1, and III:2). Whole exome sequencing (WES) was 

https://dx.doi.org/10.1152/physiolgenomics.00091.2016
http://epublications.marquette.edu/
http://physiolgenomics.physiology.org/content/48/12/912.full#ref-15
http://physiolgenomics.physiology.org/content/48/12/912.full#ref-38
http://physiolgenomics.physiology.org/content/48/12/912.full#F1
http://physiolgenomics.physiology.org/content/48/12/912.full#F2
http://physiolgenomics.physiology.org/content/physiolgenomics/48/12/912/F1.large.jpg?width=800&height=600&carousel=1
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performed on the paternal great aunt (II:4). For technical processing 

and variant filtering see supplemental methods: next generation 

sequencing and supplemental methods: additional stage 1 analysis. 

 
Fig. 2. Pedigree of family MYH6: R443P, variant filtering scheme and MYH6 variants in 

a case-control study. A: black squares and circles denote patients with left ventricular 
outflow tract obstructions (LVOTO; III:1, III:9, IV:1, IV:3). Striping denotes 
ventricular septal defect, unrelated heart defect to HLHS. Gray-shaded symbols denote 
subjects with uncertain or no diagnosis of congenital heart disease (CHD). White 
squares/circles denote patients without CHD. Genotypes denoted R443P indicate 

heterozygous carriers of an MYH6 variant. WT, wild type; symbols without a genotype 
are of unknown genotype. Squares, male; circles, female; triangles, fetal demise. B: 
identification and filtering variants in affected siblings and a distant relative followed 
by subtracting variants in the unaffected mother identified 20 candidate genes. Among 
them, MYH6 was the only candidate highly expressed in the heart. C: loci of 19 distinct 
rare MYH6 variants discovered in 190 HLHS subjects. Left to right: loci of variants in 
the MYH6 gene encoding the head, neck, and coiled-coil (tail) regions of α-MHC 

protein. Dots denote variants in HLHS subjects. 

Stage 2: case-control association study. 

DNA samples were obtained from 190 unrelated HLHS probands. 

Control genomes were from the 1000 Genomes project (1,063 

unrelated individuals of African, Amerindian, Asian, or European 

descent).40 Rare, damaging variants (see supplemental methods: next 

https://dx.doi.org/10.1152/physiolgenomics.00091.2016
http://epublications.marquette.edu/
http://physiolgenomics.physiology.org/content/48/12/912.full#ref-39
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generation sequencing) identified in candidate genes from Stage 1 

were individually tested comparing carriers vs. noncarriers in HLHS 

cases vs. controls (Fisher's exact test). 

Stage 3: transplant-free survival analysis. 

We defined clinical outcomes by comparing transplant-free 

survival data of HLHS subjects with and without rare, damaging MYH6 

variants. Poor outcome was defined as death or cardiac transplant. 

Survival was assessed in subjects aged 6 yr or older using Kaplan-

Meier curves; a Breslow (generalized Wilcoxon) statistic was used to 

evaluate significance. 

Stage 4: mRNA expression/protein expression. 

Cardiac tissue discards from HLHS subjects undergoing surgery 

were snap-frozen in liquid nitrogen and stored at −80°C until RNA or 

protein isolation. Transcriptome sequencing and Western blot analysis 

were performed as described in the supplementary appendix. Pairwise 

analysis was performed, comparing subjects with and without rare, 

damaging MYH6 variants matched by age, tissue type, and when 

possible, by sex and cardiac anatomy (mitral and aortic valve) 

(Supplemental Table S2). The same matched tissue pairings were also 

analyzed by Western blot analysis. 

Stage 5: HLHS modeling with iPSCs. 

iPSC lines were generated from dermal fibroblasts donated by 

two unrelated HLHS probands and their parents (two family trios), 

denoted as families F MYH6-R443P and F MYH6-D588A, to the CHD 

Tissue Bank. Fibroblasts were reprogrammed to pluripotent stem cells 

using Sendai reprogramming (ReGen Theranostics, Rochester, MN), 

after which they were returned to CHW (Milwaukee, WI) for 

experimentation. iPSCs cultured under hypoxic conditions on matrigel 

in mTeSR1 medium were judged pluripotent from morphological 

appearance (Supplemental Fig. S3), percentages of cells exhibiting 

positive Oct4 immunostaining (99–100%), being karyotypically normal 

(Supplemental Fig. S3), and the ability to differentiate into multiple 

lineages (definitive endoderm and cardiomyogenic mesoderm).21 

Experimenters were blinded as to the identity of family members from 

https://dx.doi.org/10.1152/physiolgenomics.00091.2016
http://epublications.marquette.edu/
http://physiolgenomics.physiology.org/content/48/12/912.full#ref-21


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Physiological Genomics, Vol 48, No. 12 (December 1, 2016): pg. 912-921. DOI. This article is © American Physiological 
Society and permission has been granted for this version to appear in e-Publications@Marquette. American Physiological 
Society does not grant permission for this article to be further copied/distributed or hosted elsewhere without the 
express permission from American Physiological Society. 

8 

 

whom each line was generated. Details are described in supplementary 

materials: ipsc cardiomyocyte differentiation and in ipsc analysis. 

Results 

A five-stage approach was employed to elucidate the role of 

MYH6 variants in HLHS. In stage 1, members of family F MYH6-R443P 

were analyzed with next-generation sequencing identifying a rare 

variant in the MYH6 gene. In stage 2, a case-control analysis 

confirmed that rare, damaging MYH6 variants were highly enriched 

among 190 unrelated HLHS subjects. Stage 3 determined the clinical 

outcome of HLHS subjects with and without rare, damaging MYH6 

variants. Stage 4 utilized transcriptome sequencing and Western blot 

analysis to compare gene expression in HLHS subjects with and 

without rare, damaging MYH6 variants. Stage 5 employed iPSCs to 

model HLHS disease in two unrelated families with different rare, 

damaging MYH6 variants. 

Stage 1: Pedigree Analysis of Family F MYH6-R443P 

In family F MYH6-R443P (Fig. 2A) four members with LVOTO were 

identified. The father (III.1) had CoA, and two children with LVOTO, 

one of whom is an HLHS proband (IV.3) and the other (IV.1), had 

double outlet right ventricle with unbalanced atrioventricular canal and 

hypoplastic left ventricle. A deceased distant relative had a history of 

HLHS (II:4). One relative had an unrelated heart defect, 

perimembranous ventricular septal defect (IV:4). Identification and 

filtering of variants in affected siblings (IV:1 and IV:3) and great aunt 

(II:4), followed by subtracting variants identified in the unaffected 

mother (III.2), identified 20 candidate genes (See supplemental 

methods, next-generation sequencing, and Supplemental Table S1). 

Among these, MYH6 was the only gene with a known cardiac 

association that is highly expressed in the heart (Supplemental Table 

S1). This established MYH6 as a candidate gene for this family. A novel 

R443P mutation in the head/motor domain of MYH6 was revealed. 

  

https://dx.doi.org/10.1152/physiolgenomics.00091.2016
http://epublications.marquette.edu/
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Stage 2: Case-control Association Testing for Rare, Damaging 

MYH6 Variants in HLHS 

To determine MYH6 association with HLHS, a case-control analysis 

for rare, damaging MYH6 variants was performed using a cohort of 

190 unrelated HLHS subjects, all of whom had undergone either WES 

or WGS, with the Thousand Genomes Phase1v3 database serving as a 

control cohort (See supplemental methods, next-generation 

sequencing). This revealed the presence of 21 (19 distinct) MYH6 

variants (Table 1, Fig. 2B) in 20 (10.5%) HLHS subjects, compared 

with the presence of rare, damaging MYH6 variants in only 2.9% of 

control subjects (n = 1,063 unrelated individuals). The null hypothesis 

that the observed >360% enrichment was due to chance was rejected 

(Fisher's exact test for difference in proportions P < 1 × 10−5, 

Supplemental Table S1). We further validated this finding by 

performing the same test using a larger database, the Exome Variant 

Server, National Heart, Lung, and Blood Institute (NHLBI) Gene 

Ontology Exome Sequencing Project (ESP), Seattle, WA (URL: 

http://evs.gs.washington.edu/EVS/, date accessed February, 2016) 

wherein MYH6 was enriched (P < 5 × 10−3) (supplemental methods, 

Supplemental Table S1). 

Table 1. List of MYH6 variants 

Coordinate 
(b37) 

R/A Domain Exon 
(of 
39) 

Variant 
Name 

Subject PP2 SIFT Inherit Pop 
Freq 

23874837 A/T head 4 Y115N R0016 0.999 0 de 
novo 

novel 

23872623 C/A head 10 Q277H R0735 0.132 0 Mat 0.03% 

23870180 C/T head 13 D383N 07_155 0.986 0 NonPat novel 

23870173 G/A head 13 S385L 10_121 0.157 0.04 Mat novel 

23870021 T/C head 13 M436V 10_121 0.996 0.12 NonMat novel 

23869999 C/G head 13 R443P 07_067 1 0 Pat novel 

23868064 T/G head 15 D588A 11_099 1 0.26 Mat 0.17% 

23865538 G/A neck 20 R795W R0023 0.998 0 Mat 0.01% 

23863413 CTT/- tail 21 K850- 07_074 NA NA NA novel 

23862995 G/A tail 22 A936V R0121 0.796 0.1 Pat 0.02% 

23862912 C/A tail 22 A964S 10_249 0.997 0.07 NA 0.22% 

23862912 C/A tail 22 A964S 09_299 0.997 0.07 NA 0.22% 

23859545 C/T tail 26 R1151Q 07_082 0.937 0.04 NA novel 

23858686 G/A tail 28 A1298V 09_103 0.65 0.11 NA 0.01% 

23858106 G/A tail 29 T1379M 09_152 0.995 0.06 NA 0.06% 

https://dx.doi.org/10.1152/physiolgenomics.00091.2016
http://epublications.marquette.edu/
http://physiolgenomics.physiology.org/content/48/12/912.full#T1
http://physiolgenomics.physiology.org/content/48/12/912.full#F2
http://evs.gs.washington.edu/EVS/
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Coordinate 

(b37) 

R/A Domain Exon 

(of 
39) 

Variant 

Name 

Subject PP2 SIFT Inherit Pop 

Freq 

23858106 G/A tail 29 T1379M 12_093 0.992 0.06 NA 0.06% 

23857394 G/T tail 30 A1443D 11_003 0.885 0.03 NA novel 

23856983 T/A tail 31 E1503V 12_234 1 0.03 Mat novel 

23855732 C/T tail 33 E1584K 09_204 0.889 0 Mat novel 

23854153 C/A tail 35 E1754X 07_026 NA NA NA 0.01% 

23853696 T/C tail 36 K1840R R0300 0.999 0.11 NA 0.02% 

Coordinate, start position GRCh37; R, reference allele; A, alternative allele, Subject, 
identification number; PP2, PolyPhen score; NA, not available; Inherit, inheritance 
pattern; Mat, maternal; NonMat, nonmaternal; Pat, paternal; NonPat, nonpaternal; 
Pop Freq, population frequency from ESP 6500 (URL: 
http://evs.gs.washington.edu/EVS/, accessed November 2015). 

 

All MYH6 variants in HLHS subjects were confirmed by PCR and 

Sanger sequencing, or by RNA-Seq analysis, using a different tissue 

source from the same individual. Among the 19 distinct MYH6 variants, 

10 were novel, one was a three-base pair in-frame deletion, and one 

was a nonsense mutation. One subject demonstrated paternal 

inheritance (F MYH6-R443P) wherein the father was also affected with 

CHD, and six subjects demonstrated maternal inheritance patterns 

(wherein one mother had BAV and five mothers were asymptomatic, 

although cardiac anatomy was unconfirmed). In addition, one subject 

exhibited a de novo variant and another demonstrated compound 

heterozygous inheritance wherein one variant was clearly inherited 

from the mother (paternal DNA unavailable). Nearly all (19/20) of the 

HLHS subjects were heterozygous carriers, supporting a previous 

study suggesting a dominant but incompletely penetrant pattern of 

inherited atrial septal defects.33 These data confirmed the association27 

of rare, damaging MYH6 variants with HLHS. Odds ratio was calculated 

as 4.1 (95% confidence interval 2.3 to 7.4; P < 1 × 10−4). 

Stage 3: Transplant-free Survival Analysis 

Follow-up data from 72 HLHS subjects (≥6 yr of age) showed 

that MYH6 variant carriers (n = 10) had significantly lower cardiac 

transplant-free survival than wild-type subjects (n = 62) (P < 1 × 

10−2) (Fig. 3). These data indicate that MYH6 variants demonstrate a 

long-term consequence in HLHS pathogenicity (27). 
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Fig. 3. Transplant-free survival analysis. Kaplan-Meier survival curve constructed from 
72 HLHS subjects. Among these, 10 subjects had a rare MYH6 variant (MUT), 
compared with 62 WT subjects. The Breslow (generalized Wilcoxon) statistic evaluated 
significance, resulting in rejection of the null hypothesis that these curves are 
equivalent (P = 6 × 10−3). 

Stage 4: Increased MYH7 Expression in HLHS Tissues with MYH6 

Variants 

RNA-Seq assessed whether MYH6 variants affected gene 

expression in cardiac tissue from HLHS subjects. Transcriptomes were 

compared in discarded atrial septal tissue from 10 HLHS subjects, half 

of whom had an MYH6 variant, as well as from discarded right 

ventricular tissue of six HLHS subjects, half of whom also had an MYH6 

variant. Tissues were matched pair-wise according to age, and when 

possible, as well as to sex and aortic and mitral valve anatomy (Fig. 

4A, Supplemental Table S2). Although no significant change in MYH6 

transcript levels was detected in HLHS tissues containing MYH6 

variants, 22 other genes were differentially expressed (Supplemental 

Fig. S1, Supplemental Table S3). Among these cardiac troponin T2 

(TNNT2), myosin heavy chain 7 (MYH7), skeletal muscle alpha actin 1 

(ACTA1), and myosin light chain 2 (MYL2) (all which are components 

of the contractile apparatus), were significantly upregulated (>3- to 

12-fold, P ≤ 5 × 10−3). MYH7, the major myosin in human ventricle 
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and the closest paralog of MYH6, was increased by almost 350% 

relative to tissues in HLHS subjects containing wild-type MYH6 (Fig. 

4A, Supplemental Table S3; P < 1 × 10−3). Upregulation of MYH7 

expression from the five pairs of atrial samples was confirmed by 

quantitative RT-PCR (supplemental methods, myh7 quantitative rt-

pcr). To assess whether increased MYH7 expression extended to the 

protein level, levels of β-MHC protein in the same pair-matched atrial 

septal and right ventricular discards were compared by Western 

blotting; this revealed that β-MHC was substantially increased in HLHS 

subjects with MYH6 variants (generalized linear model/ANOVA, +62%, 

± 0.15 SE, P < 1 × 10−3) (Fig. 4B, Supplemental Table S4). 

 
Fig. 4. Pairwise analysis of gene expression of MYH7 in HLHS patients with and 
without MYH6 variants. A: gray-shaded and black bars denote HLHS patients with and 
without MYH6 variants, respectively. The annotation within each gray bar indicates the 

amino acid change resultant from each MYH6 mutation. Paired bars on the left and 
right side of the figure, respectively, indicate ventricular and atrial septal samples. 
Subject information is available in Supplemental Table S2. Sample number, sex status 
(male or female), and age (m, month; d, day; y, year) are denoted in the x-axis label. 
MYH7 expression is significantly increased (346%) in HLHS patients with an MYH6 
mutation (P < 1 × 10−3, Supplemental Table S3). TPM, transcripts per million. B: 

Western blot showing increased β-MHC protein in the right ventricle and atrial septum 
of HLHS patients with an MYH6 variant. B, top: representative Western blot selected 
from 5 technical replicates of 4 pairs of patient samples; pairings are denoted on the 
x-axis. The entire immunoblot is shown in Supplemental Fig. S2. B, bottom: 
densitometric analysis of β-MHC levels normalized to GAPDH, reflecting the average of 

5 replicate determinations performed on the 4 tissue pairs shown in B, top. Statistical 
analysis of the aggregate data representing the 4 pairs was statistically significant P < 

1 × 10−3, generalized linear model/ANOVA, 62%, ± 0.15 SE. 
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Stage 5: Increased MYH7 Expression and Defective 

Differentiation in iPSC-derived Cardiomyocytes from HLHS 

Subjects with MYH6 Variants 

To determine whether increased MYH7 expression is 

phenocopied in cardiomyocytes derived from iPSCs, iPSC lines were 

generated from dermal fibroblasts of family F MYH6-R443P. Following 

cellular expansion and verification of pluripotency, iPSCs representing 

the proband and an unaffected parent were induced to undergo 

cardiomyogenic differentiation as recently described21 (depicted in Fig. 

5A), during which cultures of cardiomyogenic cells were removed for 

RNA-Seq determinations on the differentiation days shown in Fig. 5D. 

As anticipated,21 MYH7 transcription was first detected on 

differentiation day 5, at which stage similar levels of MYH7 transcripts 

were seen in cardiomyocytes representing the proband and its 

unaffected parent. On day 8, although substantial increases in MYH7 

expression were seen in cardiomyocytes from both individuals, the 

level of expression in proband cardiomyocytes was ∼2.5-fold greater 

than that observed in myocytes from the unaffected parent. Increased 

MYH7 expression in proband cardiomyocytes was confirmed by 

quantitative PCR performed on two independent iPSC lines from each 

subject (Fig. 5E, left). In addition, the efficiency of cardiomyogenic 

differentiation was significantly reduced in the HLHS proband's 

cardiomyocytes, as determined by α-MHC immunostaining (Fig. 5B) 

and flow cytometry assessments of percent cTnT-positive cells (Fig. 

5C). All of these findings were recapitulated in iPSC-derived 

cardiomyocytes from an unrelated HLHS family that contained a 

different MYH6 mutation, which was identified in the CHD Tissue Bank 

(F MYH6-D588A: Fig. 5E, right, and Supplemental Fig. S4). Finally, we 

evaluated sarcomere structure in iPSC-derived cardiomyocytes at later 

stages of differentiation (days 62–68), observing that, compared with 

the unaffected parent, sarcomeres were substantially disorganized in 

both the affected parent and the proband of family F MYH6-R443P 

(Fig. 6). 
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Fig. 5. Increased MYH7 expression in iPSC-derived cardiomyocytes from probands in 2 
HLHS families. A: scheme for differentiating cardiomyocytes with small molecule Gsk3 

inhibitor (CHIR99021) and wnt inhibitor (IWP). B: immunostaining of α-MHC at day 10 
showing defective cardiomyogenesis in iPSCs from the HLHS proband and affected 

parent (carrier father) of family F MYH6-R443P. C: flow cytometry of cells cultured in 
parallel with those in B, showing decreased percentages of cardiac troponin T (cTnT)-
positive cells at day 10. Data were compiled from 3 iPSC lines derived from each 
individual. The P values were calculated by Student's t-test (2-tailed, equal variance); 
vertical lines = ± SE. D: RNA-Seq showing MYH7 expression in iPSC-derived 

cardiomyocytes (CMs) from family F MYH6-R443P at differentiation day 8. Proband 
bars represent the average of 2 cell lines; vertical lines = range. Unaffected parent 
bars represent values from single cell line. E, left: quantitative PCR showing increased 
MYH7 expression in the HLHS proband of family F MYH6-R443P. E, right: a similar 
result from iPSC-derived cardiomyocytes of a separate HLHS family (F MYH6-D588A). 
Bars represent the average of triplicate cultures evaluated in 2 independent iPSC lines 
(n = 6). The P values were calculated by Student's t-test (2-tailed, equal variance); 

vertical lines = ± SE. Additional iPSC analysis from family F MYH6-D588A is shown in 
Supplemental Fig. S4. 

Discussion 

Among hypotheses explaining left ventricle hypoplasia in HLHS 

are that 1) reduced blood flow due to valvular atresia/stenosis alters 

ventricular preload with consequent dysmorphology16 and that 2) 
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defective expansion and/or differentiation of cardiomyocytes results in 

dysmorphology and dysfunction.8 While the results reported here can 

be reconciled with both hypotheses, our observations that iPSC-

derived cardiomyocytes from the affected parent and proband of 

families that carry selected MYH6 variants undergo poor 

cardiomyocyte differentiation followed by poor sarcomere organization 

suggest that HLHS etiology is cardiomyocyte autonomous (Fig. 6). In 

either event, the data demonstrate that rare MYH6 variants, which are 

present in 10.5% of HLHS cases, have pathogenic consequences. 

 
Fig. 6. Dysmorphic sarcomeres in CMs derived from iPSCs reprogrammed from the 
HLHS proband and its affected parent. A: α-actinin immunostaining of mass cultured 

CMs at differentiation day 65. B: comparative sarcomere organization in individual CMs 
isolated from the cultures shown in A and subcultured at low density. A minimum of 

100 isolated CMs representing each individual were judged to contain dysmorphic 
sarcomere organization if most of the myocyte area displayed blurred staining in which 
sarcomeric ladders contained punctate or truncated deposits of α-actinin ladders, 
rather than the relatively crisp and elongated ladders with relatively wide Z-bands that 
characterize MYH6+/+ cells. C: data were compiled from quadruplicate dishes 

representing each iPSC line (1 line from each parent; 2 lines from the proband) 
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evaluated during a single determination. The P values were calculated by Student's t-

test (2-tailed, equal variance); vertical lines = ± SE. 

We unexpectedly found that expression of a subset of cardiac 

contractility genes was increased in the presence of MYH6 variants. 

This possibly represents an adaptive mechanism, similar but not 

identical to that which occurs in the failing heart muscle.35 Most 

remarkably, the presence of MYH6 variants is accompanied by strongly 

increased expression of MYH7, in both atrial and ventricular tissues of 

HLHS subjects (Fig. 4). In addition to confirming the increased 

expression of MYH7 in HLHS tissues containing MYH6 variants (Fig. 4, 

A and B), the findings in Fig. 5, D and E, that increased MYH7 

expression is phenocopied in cardiomyocytes from iPSCs in two 

separate families, indicate that HLHS etiology can be investigated at 

the earliest stages of cardiomyogenesis using this in vitro disease 

model. 

Altered contractility has been proposed as an etiologic 

mechanism in CHD.18 The increase in MYH7, which is considered as the 

“slow twitch isoform,” may adaptively reduce energy requirements in 

the hypoplastic myocardium because β-MHC (MYH7) has relatively low 

ATPase activity.31 It follows that maximal shortening velocity and peak 

power would be altered, resulting in hypocontractility. Because MYH6 

is the predominant atrial isoform, it is plausible that atrial 

hypocontractility due to mutated MYH6 impedes the flow of fetal blood 

from the right atrium to the left atrium and through the mitral valve, 

resulting in limited filling of the left ventricle. This scenario, which is 

consistent with both the cardiomyocyte-autonomous and flow 

hypotheses, may explain underdevelopment of the mitral valve, left 

ventricle, and aortic arch, all of which are hallmarks of HLHS. Indeed, 

previous studies have shown that mutation of myh6 in zebrafish and 

the subsequent disruption of atrial function have a profound effect on 

ventricular morphogenesis and atrioventricular valve formation.2,19 

Although examination of the effect of MYH6 variants on 

contractile power was beyond the scope of this study, it is noteworthy 

that variants were observed across all functional domains of α-MHC. In 

particular, seven mutations were noted in the head/motor domain, 

including four within an exon 13 “hotspot” that includes R443P (Fig. 

3). Alterations in the α-MHC head/motor region have been shown to 
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impact stiffness that results in diastolic dysfunction.20 Also, because 

the head/motor domain contains binding sites for ATP and actin, 

variants may induce conformational changes that compromise actin-

myosin association. Although only one mutation was found in the neck 

region, 11 were noted in the coiled-coil/tail region, among which half 

were located in the domain that interfaces with myosin light chain; in 

this regard it may be relevant that MYL2, which is required for 

cardiomyocyte differentiation in the murine heart,5 like MYH7, also 

exhibits increased expression in HLHS patients who carry MYH6 

variants (Fig. 4 and Supplemental Table S3). It is also plausible that 

alterations in the α-MHC tail cause reduced power, as mutations in the 

tail of homolog β-MHC reportedly distort helicity of the coiled-coil 

region.42 

Previous studies have found that failing hearts, such as those 

from cardiomyopathy patients, exhibit decreased levels of MYH6 

mRNA,25,26,30 with concomitantly increased expression of MYH7.34 It is 

well known that treatment of cardiomyopathy with β-blockers 

improves myocardial function and increases survival, an effect that 

likely results from decreased adrenergic stimulation.9 However, β-

blockers also distort the expression of myocardial genes, most 

remarkably depressing levels of β-MHC concomitant with the 

restoration of fast-contracting α-MHC fibers,22 resulting in improved 

cardiac function.25 While acknowledging the complexity of drug-gene 

interactions, these findings, when superimposed on the results 

reported here, invite speculation that β-blocker therapy, with or 

without recently developed cardiac myosin activation therapies,28 may 

be useful for treating HLHS subjects who carry pathogenic MYH6 

variants. Ongoing work using iPSC-derived cardiomyocytes will 

determine the responsiveness of myocytes containing pathogenic 

MYH6 variants to pharmaceutical agents including β-blockers and 

myosin activation drugs. 

Limitations 

In case-control association analyses, it is desirable to select 

appropriate control cohorts including those that share ethnic, sex, and 

age composition. In this study, the publicly available Thousand 

Genomes Phase 1v3 database was used as a control cohort against 
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whole exomes and genomes of HLHS patients. The controls often had 

low read-depth and were not imputed; therefore, rare variants may be 

underrepresented. However, if missed variants exist uniformly across 

the control genomes, the corresponding decrease in signal-to-noise 

would not impact our finding that MYH6 was among the most 

overrepresented of the 20 candidate genes identified through pedigree 

analysis. We mitigate genome-wide false positives by only 

investigating the 20 candidate genes from the pedigree analysis and 

by replicating enrichment against the larger exome database, NHLBI's 

ESP. 
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