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ABSTRACT

HYBRID COMPUTATIONAL TOXICOLOGY MODELS FOR REGULATORY RISK

ASSESSMENT

Prachi Pradeep

Marquette University, 2015

Computational toxicology is the development of quantitative structure activity relationship
(QSAR) models that relate a quantitative measure of chemical structure to a biological effect. In
silico QSAR tools are widely accepted as a faster alternative to time-consuming clinical and
animal testing methods for regulatory risk assessment of xenobiotics used in consumer products.
However, different QSAR tools often make contrasting predictions for a new xenobiotic and may
also vary in their predictive ability for different class of xenobiotics. This makes their use
challenging, especially in regulatory applications, where transparency and interpretation of
predictions play a crucial role in the development of safety assessment decisions. Recent efforts in
computational toxicology involve the use of in vitro data, which enables better insight into the
mode of action of xenobiotics and identification of potential mechanism(s) of toxicity. To ensure
that in silico models are robust and reliable before they can be used for regulatory applications, the
registration, evaluation, authorization and restriction of chemicals (REACH) initiative and the
organization for economic co-operation and development (OECD) have established legislative
guidelines for their validation.

This dissertation addresses the limitations in the use of current QSAR tools for regulatory
risk assessment within REACH/OECD guidelines. The first contribution is an ensemble model that
combines the predictions from four QSAR tools for improving the quality of predictions. The
model presents a novel mechanism to select a desired trade-off between false positive and false
negative predictions. The second contribution is the introduction of quantitative biological activity
relationship (QBAR) models that use mechanistically relevant in vitro data as biological
descriptors for development of computational toxicology models. Two novel applications are
presented that demonstrate that QBAR models can sufficiently predict carcinogenicity when
QSAR model predictions may fail. The third contribution is the development of two novel methods
which explore the synergistic use of structural and biological similarity data for carcinogenicity
prediction. Two applications are presented that demonstrate the feasibility of proposed methods
within REACH/OECD guidelines. These contributions lay the foundation for development of
novel mechanism based in silico tools for mechanistically complex toxic endpoints to successfully
advance the field of computational toxicology.
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CHAPTER 1

INTRODUCTION

Chemical Risk Assessment or evaluation of the extent of toxic effects associated with

xenobiotic exposure is necessary for protection of human or environmental health. Toxicology

is the science that is concerned with the study of adverse effects of chemicals. Conventional

methods of toxicity testing include animal models, which are expensive and time consuming.

This chapter discusses the emergence of computational toxicology models as an alternative to

animal testing. The challenges in the acceptance of computational toxicology models within a

regulatory framework and the major legislative guidelines for their validation are also

introduced.

1.1 Introduction to Toxicology

Xenobiotics are foreign chemicals that are either not found normally in the human body or

not produced naturally. Common xenobiotics include pharmaceutical drugs, environmental

pollutants and pesticides. Every day, we are exposed to a wide variety of xenobiotics that are used

in consumer products, ranging from pharmaceuticals and food additives to agricultural products

and cosmetics. Even though these products are useful, they may be associated with undesirable

side effects in humans as a response to xenobiotic exposure. For example, aspirin (chemical

acetylsalicylic acid) is a relatively safe over-the-counter analgesic that is taken by people all over

the world. However, chronic use of aspirin can cause serious side effects on the gastric mucosa,

and it is fatal at a dose of about 0.2 to 0.5 g/kg [1]. Another example is kohl (black eyeliner), a

commonly used eye cosmetic, that is often contaminated with lead. Absorption of lead or lead

poisoning is considered to be the most important environmental disease and is known to cause

juvenile delinquency, behavioral problems and renal problems [2].

The word “toxicity” describes the extent to which a xenobiotic can cause adverse side

effects. Toxicology is the branch of science that is concerned with the study of adverse or toxic

effects of chemical, physical or biological agents on living organisms and the ecosystem, including
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the prevention and amelioration of such adverse effects [3]. A toxic endpoint is a specific toxic

response to a toxic agent, e.g. skin sensitivity. Toxicity is the leading cause of failure of new

medical devices and pharmaceutical drugs [4, 5]. The success of a medicinal product,

pharmaceutical drug or a medical device depends not only on its efficacy but also on its chemical

composition. Xenobiotic exposure through pharmaceutical drugs happens directly by oral

consumption. Medical devices, on the other hand, cause indirect exposure because of leaching and

migration of chemicals from the device material to the human body. Pharmaceutical drugs and

medical devices, therefore, need to undergo a rigorous regulatory risk assessment procedure before

they obtain marketing approval [6]. Chemical risk assessment or evaluation of the extent of toxic

effects associated with xenobiotic exposure is, therefore, necessary for protection of human and

environmental health.

The extent of risk exerted by a xenobiotic is determined by its absorption, distribution,

metabolism, elimination and toxicological properties, commonly referred to as the ADMET

profile. Absorption is the process of transfer of drug from the site of administration into the

systemic circulation. Distribution is the process of reversible transfer of drug from blood to

different parts of the body and its transportation to the site of action. Xenobiotic distribution is

dependent on several factors like physicochemical properties of the xenobiotic (e.g. solubility),

physiological factors (e.g. permeability of tissue membranes) and xenobiotic interactions in the

blood and tissues (e.g. binding to carrier proteins). Metabolism, also referred to as

biotransformation, is the process of transformation of the xenobiotic inside the body into an easily

excrete-able form. Sometimes it may also involve biochemical transformation of an inactive

xenobiotic into an active metabolite. The process of metabolism usually takes place in the liver.

Elimination is the process of irreversible removal of the xenobiotic and the metabolites from the

body. Elimination can happen by metabolism and excretion [7, 8, 9]. The knowledge of ADME

parameters is useful in predicting xenobiotic concentration in the body at any point of time and its

potential side-effects. It is a fine optimization of a chemical’s potency and its ADMET properties

that ultimately leads to the selection and clinical development of chemical components of a

potential medicinal product. Chemical risk assessment early in the pharmaceutical or device

development is, therefore, important in understanding human biological response to a xenobiotic.
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1.1.1 Sub-disciplines of Toxicology

Toxicology can be broadly categorized into three major sub-disciplines as shown in

Figure 1.1. Each of the sub-disciplines contribute to chemical risk assessment [10, 11].

Figure 1.1: Sub-disciplines of Toxicology.

(1). Mechanistic Toxicology is concerned with understanding how toxic chemicals exert their

adverse effects and how biological systems protect themselves against those adverse effects.

Mechanistic toxicology is based on the principles of cellular and molecular biology for

understanding the underlying biochemical mechanisms behind toxicity. It is a

knowledge-based science in which experimental data are analyzed in answering one or more

of the following questions:

(i). How are xenobiotics absorbed, distributed and metabolized in a biological system?

(ii). How do xenobiotics interact with the cellular system and what are the molecular

mechanisms involved in toxic effects? and
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(iii). How does the biological system respond to a toxic effect?

Thus, mechanistic toxicology deals with the entire ADMET life cycle after xenobiotic

exposure. Mechanistic toxicology is helpful in better understanding of mechanism(s) of

toxicity and in risk assessment of chemicals for human safety.

(2). Descriptive Toxicology is concerned with methods of toxicity testing. Toxicity testing

includes in vivo animal models and in vitro (i.e., bacteria or cultured animal cells ) assays. In

vivo methods span years and involve detection of health effects like functional growth, tumor

development and reproductive disorders. In vitro assays usually span a few hours/days and are

useful in the detection of potential genetic mutations and cellular interactions. Recently,

descriptive toxicology has focused on development of in silico models for predictive

toxicology. In silico models use historical experimental data from in vitro and in vivo

experiments to make predictions of potential toxicity for new and un-tested chemicals. In

silico tools are important for toxicity assessment in the absence of in vitro and in vivo data.

Descriptive toxicology methods can be used to assess the ADMET properties of a xenobiotic.

Descriptive toxicology data is helpful in:

(i). estimating safe levels of chemicals that would not result in a toxic response,

(ii). the issuance of regulatory guidelines concerning allowable levels of xenobiotics in

consumer products,

(iii). understanding mechanisms of toxicity, and

(iv). for the development of mechanistic toxicology.

(3). Regulatory Toxicology is concerned with determination of risk associated with the use of

xenobiotics in consumer products. Such decisions are primarily dependent on mechanistic and

descriptive toxicology data. With this information, safe or allowable levels of xenobiotic

exposure are determined. Regulatory toxicology involves careful analysis of descriptive and

mechanistic toxicology data to arrive at scientific conclusions for regulatory risk assessment.

Regulatory toxicology is practiced by toxicologists serving regulatory agencies such as the US

Food and Drug Administration (FDA) and the US Environmental Protection Agency (EPA).
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These agencies are involved in the laws for regulation and marketing approval of consumer

products.

1.2 Regulatory Risk Assessment

Regulatory risk assessment is the process that ensures marketing of safe and effective

pharmaceutical drugs, medical devices and other consumer products [12]. The main

responsibilities of a regulatory agency are:

(1). Risk assessment and characterization of chemicals for use in consumer products, and

(2). Development of risk management strategies.

Risk assessment of chemicals is based on the results of mechanistic, descriptive and

regulatory toxicology data (Figure 1.2). In simple terms, these responsibilities translate into

answering questions like:

(1). What responses can be defined as “adverse”?

(2). To what extent are consumers exposed to xenobiotics that can cause adverse effects?

(3). How to quantify risk with appropriate consideration of benefits and the criticality of the

adverse outcomes?

Insight from mechanistic, descriptive and regulatory toxicology are used to make

recommendations about safe levels of xenobiotics in consumer products. In addition, several other

factors are also considered in determining risk which include health benefits, availability of

alternatives and the extent of public use. For instance, if a food color is falsely predicted

non-cancer causing it may pass regulatory approval for use in food industry, but will expose the

public to the risk of cancer. Likewise, a pharmaceutical drug that is known to cure depression can

be approved if it causes skin sensitization but not if causes cancer. Thus, risk assessment decisions

are based on the merits of the efficacy and usefulness of products versus the criticality of the side

effects due to xenobiotic exposure.
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Figure 1.2: Risk assessment is based on inputs from all the sub-disciplines of toxicology: mecha-
nistic toxicology, descriptive toxicology and regulatory toxicology.

Regulatory agencies are faced with the challenge of too many existing and new chemicals

to regulate. There are hurdles in the decision making process for risk assessment of new chemicals

since many chemicals do not have mechanistic and descriptive toxicology data. For example, the

incident of crude 4-methylcyclohexanemethanol (MCHM) spill in the Elk river in West Virginia on

January 9, 2014. Elk river is the source of drinking water in nine West Virginia counties. MCMH

is a chemical foam used for washing in coal processing and very little is known about its effects on

human health. The government response, which is based on regulatory recommendations, was

“continue to refrain from using the water for drinking, cooking, cleaning, bathing and washing”

within the spill’s affected areas. Thus, lack of toxicity data for MCMH led to a government

declared state of emergency [13, 14] and restricted water usage. In such unknown situations, when

immediate and critical measures are needed, conventional methods of toxicity assessment

(expensive and time-consuming in vitro/in vivo models) further delay the regulatory process and

cause public alarm.
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1.3 Computational Toxicology

To circumvent the hurdles outlined in regulatory risk assessment and the need for early

optimization of xenobiotics for use in consumer products, toxicology research focus has shifted

from conventional methods to the development of in silico methods (computational toxicology) for

risk assessment. Conventional methods of toxicity testing, in vivo studies and clinical trials are

performed only after product development and are expensive and time-consuming. Although in

vivo tests are the most accurate methods for identifying the side effects induced by a xenobiotic,

the time and cost associated with them renders them ineffective in reducing the attrition rate

associated with new chemicals and their regulation. It is, also, well known that animal models may

not be the most accurate method to extrapolate the biological response to humans due to evident

physiological differences. Besides, there are also ethical objections in the use of animal models for

toxicity prediction.

Computational toxicology is the computational or in silico prediction of adverse or toxic

effects of chemicals on living organisms. In silico approaches to predictive toxicology focus on

building quantitative structure activity relationship (QSAR) models that can mimic the results of

experimental techniques. In silico methods are appealing because they provide a faster alternative

to otherwise time-consuming laboratory and clinical testing methods [15, 16]. Currently, several

commercial and proprietary in silico QSAR tools are available that can predict toxic effects of a

chemical based on its chemical structure. These tools employ mathematical models and historical

databases of experimental animal data for predicting the toxicity profile of a new

chemical [17, 18]. In silico QSAR tools for toxicology are rapidly evolving and gaining prevalence

for initial estimation of toxic potential for pharmaceutical drugs or chemicals that may be leached

from medical devices.

1.4 Regulatory Applications, Concerns and Guidelines

QSAR models are widely used in the development of new pharmaceutical drugs in the

pharmaceutical industry. They are mainly used for identification or isolation of chemicals that have

a desired biological effect (drug leads) or for early prediction of potential toxic effects. This
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information helps manufacturers in re-engineering the drug leads for achieving the desired

therapeutic effect, ultimately leading to lower chances of product failure due to toxicity and an

increase in the number of safe marketable products. In contrast to industrial use, regulatory

expectations and use of QSAR models are very different. Regulatory agencies foresee greater use

of QSARs in the regulation of existing and new chemicals. Regulatory decisions are primarily

dependent on the short and long term toxicological and clinical effects of xenobiotics. In a

regulatory setting, QSARs can be used to:

(1). Supplement experimental data.

(2). Support prioritization in the absence of experimental data.

(3). Substitute or replace experimental animal testing methods [19, 20].

Regulatory application of QSARs is, therefore, quite opposite in nature as compared to

industrial uses since the chemical in use is known and its biological action is to be predicted to

understand if it may cause any undesired side effects to human or environmental health.

Several QSAR models have been used and validated by US regulatory agencies and are

rapidly gaining impetus in the European Union. Table 1.1 summarizes the different regulatory

bodies and their initiatives and guidelines towards use of in silico predictive tools. To initiate the

regulatory applications of QSARs for drugs, the US Food and Drug Administration (FDA) has

been the actively involved in the development and identification of appropriate in silico QSAR

tools. The FDA Center for Drug Evaluation and Research (CDER) has been using QSAR methods

as a support tool for making regulatory decisions in the absence of experimental toxicology data.

US FDA Critical Path Initiative is particularly aimed at promotion and development of databases

and in silico tools for prediction of toxicity early in the development process to avoid as much risk

to human health. Several in silico tools have been tested by the US FDA Center for Devices and

Radiological Health (CDRH) and CDER under this initiative [21]. The US Environmental

Protection Agency (EPA) is also involved in the testing and development of QSAR models [22].

Estimation Program Interface (EPI) Suite [23] and Toxicity Estimation Software Tool (TEST) [24]

are two freely available in silico tools that have been developed by the EPA.
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Regulatory Agencies Objectives and Guidelines

(European Union)

Consortium of 34 countries OECD -
Organization for Economic Co-operation
and Development

(Established 1961)

QSAR Principles (2004)
- A defined endpoint
- An unambiguous algorithm
- A defined domain of applicability
- Appropriate measures of goodness-of-
fit, robustness and predictivity
- A mechanistic interpretation, if possible

REACH - Registration, Evaluation, Au-
thorization and Restriction of Chemicals
initiative of European Union

Driven by the requirements for safety
assessment and characterization of old
and new chemicals

(Established 2007)

REACH Principles
- Adequate and appropriate documenta-
tion
- The model is scientifically valid
- The chemical of interest falls under the
applicability domain of the model
- The predictions are relevant for risk
regulatory risk assessment

Emphasis on optimization of QSAR
models for false negatives

Danish Environmental Protection Agency
(EPA)

(Database established in 2004)

Danish QSAR database houses
∼160,000 chemicals

(United States)

US Food and Drug Administration (FDA)

(Established 1906)

Critical Path Initiative (2004)
- Development of toxicological databases
- Promotion of use of in silico tools

US Environmental Protection Agency
(EPA)
Regulation of new industrial chemicals

(Established 1970)

- Estimation Program Interface (EPI)
Suite
- Toxicity Estimation Software Tool
(TEST)

Table 1.1: Regulatory and Legislative Agencies in the European Union and the United States and
their guidelines.
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In the European Union (EU), risk assessment of chemical substances has been mandated

by legislative rulings. The directives include substantial directions on the use of QSARs for

chemical toxicity prediction. The EU REACH (Registration, Evaluation, Authorization and

Restriction of Chemicals) initiative mandates risk assessment of not only new chemicals but also

chemicals which are already in the market [25]. The REACH requirements includes the following

guidelines for the validation of QSAR models to ensure effective regulatory assessment of

chemicals:

(1). the model is scientifically valid,

(2). the chemical of interest falls under the applicability domain of the model,

(3). the predictions are relevant for regulatory risk assessment, and

(4). adequate and appropriate documentation on the model is available [26, 27].

The REACH regulation promotes innovation and development of alternative in silico

testing methods not only for cost benefits but also with ethical considerations in reduction and

eventual replacement of animal models. The Organization for Economic Co-operation and

Development (OECD) which spans 34 countries across the world is a regulatory organization

involved in the assessment of alternative testing methods. Similar to REACH, the OECD also has a

set of following validation principles for the appropriate use of QSAR models for regulatory

applications:

(1). a defined toxic endpoint,

(2). an unambiguous algorithm,

(3). a defined domain of applicability,

(4). appropriate measures of goodness-of-fit, robustness and predictivity, and

(5). a mechanistic interpretation, if possible [28].

The OECD principles are agreed upon internationally for regulatory acceptance of QSAR

models [29].
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REACH Regulations OECD
Principles

Statistical
Validation

- An unambiguous algorithm
- Appropriate measures of
goodness-of-fit, robustness
and predictivity

- Adequate and appropriate
documentation on the model
is available

Scientific
Explanation

- A defined endpoint
- A defined domain of applica-
bility
- A mechanistic interpreta-
tion, if possible

- The model is scientifically
valid
- The chemical of interest
falls under the applicability
domain of the model
- The predictions are rele-
vant for regulatory risk as-
sessment

Table 1.2: Basic principles for the development of QSAR models.

The emphasis on animal welfare and cost-effectiveness make the use of conventional risk

assessment approaches difficult to use. Thus, in the absence of known experimental data and

dependence on time consuming conventional toxicity testing methods regulators are now more

inclined towards using in silico tools to study toxic endpoints for new chemicals [30]. In silico

QSAR tools are the most promising alternative to animal testing approaches towards regulatory

use. However, different QSAR tools often make contrasting predictions for a given chemical and

also vary in their predictive ability for different class of chemicals. The predictive ability of QSAR

tools for different toxic endpoints is an important factor in their use in decision making processes.

QSARs need to be especially optimized for false positives and false negatives for regulatory use as

discussed in Section 1.2. The correct combination of predictive ability for a toxic endpoint,

transparency of predictions, and overall cost and health benefits are important for an in silico tool

to be useful for regulatory risk assessment. Since reliability in predictions is one of the major

concerns in the use of QSARs from a regulatory perspective, the regulatory agencies need to make

sure that a QSAR model is well validated before being used for risk assessment. The OECD

principles and REACH regulations can be sub-categorized to reflect two main considerations in

computational toxicology modeling as shown in Table 1.2. Thus, a robust and reliable in silico

model should be statistically valid and supported by a scientific explanation. The legislative
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guidelines enforced by various regulatory organizations, therefore, ensure that the QSAR models

are robust and reliable before they can be used for regulatory applications.

1.5 Dissertation Contributions

This dissertation seeks to address the concerns outlined in Section 1.4 with the use of

currently available in silico QSAR tools for regulatory risk assessment. The main contributions of

this dissertation are:

(1). An ensemble model that combines predictions from four in silico QSAR tools for improving

the quality of predictions. The model presents a mechanism to select a desired trade-off

between false positive and false negative predictions as desired in regulatory applications.

(2). A novel computational modeling technique Quantitative Biological Activity Relationship

(QBAR) which uses mechanistically relevant in vitro data for development of computational

toxicology models. Two case studies are presented that demonstrate that in vitro data can be

used to develop QBAR models to sufficiently predict carcinogenicity when QSAR tools may

fail.

(3). Two novel methods that explore the synergistic use of structural and biological similarity for

carcinogenicity prediction to develop hybrid QSAR-QBAR models. Two case studies are

presented that demonstrate the feasibility of proposed methods within REACH/OECD

guidelines.

The remainder of this dissertation is organized in four chapters. Chapter 2 reviews the

basic concepts of Quantitative Structure-Activity Relationship (QSAR) models. A regulatory

insight is presented towards the challenges in consideration of in silico QSAR tools as an

alternative to animal testing. The major principles for QSAR validation are briefly discussed

within regulatory guidelines. Chapter 3 discusses the current status of research in the development

of methods to overcome the disadvantages of QSAR models outlined in this introductory chapter.

The chapter presents the details of the method developed in contribution 1. The results and

advantages of the method are discussed within a regulatory framework. Chapter 4 presents a novel
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approach for integrating mechanism based information for the development of QBAR models. The

chapter presents the details of the method developed in contribution 2. Two case studies are

presented to demonstrate the advantages of using in vitro data for the development of QBAR

models for carcinogenicity prediction. The results and advantages of the method are discussed

within a regulatory framework. Chapter 5 discusses the future advances in the field of

computational toxicology within regulatory guidelines. The chapter presents two new methods for

combining QSAR and QBAR modeling techniques for development of hybrid QSAR-QBAR

models developed in contribution 3. The advantages of the proposed methods over existing

methods are demonstrated by two case studies for carcinogenicity prediction. The results and

advantages of the methods are discussed within a regulatory framework. Finally, Chapter 5

presents a summary of the results and the contributions of this dissertation towards the field of

computational toxicology and its significance within a regulatory framework.
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CHAPTER 2

BACKGROUND

Computational toxicology models relating chemical structure to qualitative biological activity

are widely used for the prediction of toxicity of chemicals in the absence of experimental data.

This chapter reviews the principles of chemical structure based computational toxicology

models and the basic concepts of Quantitative Structure Activity Relationships (QSARs). The

current status and use of QSAR tools within regulatory framework and their limitations in

prediction of complex toxicities like mutagenesis and carcinogenesis are discussed. Emerging

methods that make use of mechanistic data for development of computational models are

introduced. Potential benefits of using in vitro data for the prediction of complex toxic

endpoints are discussed.

2.1 Principles of Quantitative Structure Activity Relationships

The backbone of structural similarity based computational toxicology is that the biological

activity of a chemical can be attributed to its structural or chemical properties. Structure activity

relationships can be used to form a hypothesis as to which features of a chemical are required for a

particular biological activity. Hence, similarities between chemicals can be used to predict their

biological activities. A structure activity relationship (SAR) is a qualitative association between a

chemical substructure and the biological effect that a chemical containing the sub-structure may

have. Quantitative structure activity relationship (QSAR) are theoretical models that relate a

quantitative measure of chemical structure (e.g. a physicochemical property) to a physical property

or to a biological effect (e.g. a toxic endpoint). Collectively, SARs and QSARs are referred to as

QSARs [31, 32, 33]. This QSAR based approach can be used to predict biological activities for

untested chemicals as shown in Table 2.1.
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Chemical
1

Chemical
2

Chemical
3

Chemical
4

Chemical
5

Substructure X
(E.g. Benzene ring)

7 3 3 7 3

Activity A 7 3 ? 7 3

Property Y
(E.g. Molecular weight)

400 Da 380 Da 420 Da 370 Da 350 Da

Activity B 3 7 3 ? 7

Table 2.1: Basic principle behind QSAR modeling.

In Table 2.1, presence of substructure X can be qualitatively related to activity A to form a

SAR relationship. It can be observed that the presence of substructure X is an indication of activity

A. Based on this hypothesis, chemical 3 can be predicted to be be classified as positive (3) for

activity A. Similarly, property Y can be quantitatively related to activity B to develop a QSAR

relationship. It can be observed that chemicals with molecular weight > 400Da are associated

with positive Activity B. Based on this hypothesis, chemical 4 can be classified as negative (7) for

activity A. Thus, such structure activity relationship models can be used to develop predictive

models for chemical toxicity.

Based on the modeling technique, in silico QSAR tools for toxicity prediction can broadly

be classified as:

(1). Expert knowledge based models (SARs), and

(2). Statistical method based models (QSARs)

Expert knowledge based models use rules (structural alerts (SAs)) derived by toxicology

experts who study and interpret the actual structure-toxicological relationships based on datasets of

available toxicological data. These models are reliable since they are based on a true knowledge

base. However, they tend to be more conservative (low sensitivity) in their predictions for new

chemicals when the historical data is limited in size. Expert knowledge based models also suffer

from infrequent updates because of limitations in manual data collection, curation and analysis.

Statistical method based models, on the other hand, use physicochemical features or chemical

similarity methods which can be quantified for toxicity prediction. They require a training data set
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with experimental biological/toxicological data for training the models. Mathematical models are

trained on this data using various machine learning techniques. These models lack expert

knowledge or mechanistic understanding. However, they have the advantage of data mining for

selection of appropriate features and training techniques in addition to error optimization [34, 35].

Table 2.2 presents a summary of the different kinds of in silico QSAR methods, their basic

principle, suitable applications and examples of some tools developed using these methods.

Rule based
expert systems

(SARs)

Statistical model
based systems

(QSARs)
Hybrid systems

Underlying
Algorithm

- Structural Alerts (SAs)
- Expert Judgment

- Mathematical models
- Data Mining
- Machine Learning

- Rule-based
- Statistical modeling

Application

- Less training (chemi-
cal) data
- Toxic endpoints with
known mechanism of
action.
E.g. Liver toxicity

- Significant training
(chemical) data
- Toxic endpoints with
little or no knowledge
of mechanism of action
E.g. Carcinogenicity

Combines the best fea-
tures of rule-based and
statistical methods
- Mechanistic interpre-
tation
- High accuracy

Example

Freely available
- Toxtree
Proprietary
- LHASA Derek

Freely available
- EPA T.E.S.T
- OECD ToolBox
Proprietary
- MultiCASE

Freely available
- VEGA
- Lazar

Table 2.2: Different types of computational toxicology models.

2.2 General Form of QSAR Models

QSAR models can be used to make quantitative predictions of the biological effects of

chemicals. They can also help in understanding how changes in molecular structure can cause
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change in biological properties. QSAR models are mathematical expressions as shown by

Equation 2.1.

Ai = f(D1, D2, D3, ....Dn), (2.1)

where Ai are the biological activities expressed as a function of chemical or structural properties

(descriptors) D1, D2, D3, ...Dn [36]. Classical QSAR models used simple linear relationships and

are the pioneer work of Corwin Hansch [37, 33, 38]. In general, QSAR models may be developed

based on three different types of features that can be used as descriptors:

(i) Substructures: A chemical molecule can be represented in terms of known substructures

(fragments). It has been hypothesized that different substructures are independently

responsible for different biological properties. Substructure based QSAR models assume that

these substructures contribute to same biological effect by different chemicals. Given a

chemical compound it can be inspected for the presence of substructures with known

biological activities for predictive modeling.

(ii) Physical Properties: Hydrophobic and electronic properties of chemicals have a profound

effect on its biological properties. Physical properties based QSAR models employ changes

in hydrophobicity and electronic properties to model changes in biological activity. These

properties are measured by solvent-partition coefficients (logP ) and changes in pKa and

redox potential, respectively. LogP is an important descriptor in many QSAR models.

(iii) 3D Properties: Structure-based drug design relies on knowledge of the 3D structure of a

biological target. 3D properties based QSAR models employ molecular properties calculated

from 3D structures for modeling biological activity. Alignment scores is one example of a 3D

property. Alignment scores are obtained by superimposing of new chemical structures on

chemicals with known biological activities.

2.2.1 QSARs for Carcinogenicity

Carcinogenicity is the ability of a chemical to cause or enhance tumor development.

Mutagenicity is the ability of a chemical to cause DNA alterations leading to mutations.
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Mutagenicity is often a precursor to carcinogenicity and, therefore, an important indication of

potential carcinogenicity. Identification of carcinogenic chemicals has been slow and challenging

because of the expensive and time-consuming animal methods.

SAR analysis for carcinogenicity dates back to early 1940s. Polycyclic aromatic

hydrocarbons (PAHs) and aromatic amines are important classes of industrial and environmental

chemicals that are known to be carcinogens and mutagens [39, 40]. The early QSAR studies for

skin carcinogenicity caused by PAHs have shown a correlation between the electron density in the

bay region of the chemicals to their carcinogenic potential ( Figure 2.1). The QSAR equation that

represents this relationship is given by Equation 2.2 [41].

log Iball = 0.55(±0.09) logP − 1.17(±0.14) log(β · 10logP + 1) + 0.39(±0.11)LK

+ 0.47(±0.26)εHOMO + 1.93(±2.4). (2.2)

The carcinogenic potential of the PAHs is defined in terms of the Iball index. εHOMO is

the energy of the highest occupied molecular orbital. LK is an indicator of substituents at

positions L or K in the PAHs. Presence of substituents (which blocks oxidation) at either of these

positions increases the carcinogenic potential of the chemical.

Figure 2.1: General structure of a polycyclic aromatic hydrocarbon (PAH). Activation to carcino-
genic form happens at the Bay region.
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Similar SAR studies for aromatic amines has shown that they are usually oxidized to a

form that leads to DNA modification. The QSAR equation that represents the relationship is given

by Equation 2.3 [41].

log TA98 = 0.65(±0.16) logP + 2.90(±0.59) log(β · 10logP + 1)− 1.38(±0.25)εLUMO

+ 1.88(±0.39)I1 − 2.89(±0.81)Ia − 4.15(±0.58). (2.3)

TA98 is the number of revertants (mutations that revert to the normal state) per nmol of the

aromatic amine and is the measure of mutagenic potential of the chemical. εLUMO is the energy of

the lowest unoccupied molecular orbital. εLUMO suggests that the more readily the chemical can

accept electrons, the higher the value of TA98 or mutagenic potential is. Both the QSARs indicate

how electronic effect is associated with mutagenic/carcinogenic potential of the two class of

chemicals. Similar QSAR relations have also been derived for other classes of carcinogenic

chemicals.

2.3 Development of QSAR models

QSAR model development is a 3-step process. The first step is to generate molecular

descriptors from the chemical structure. Chemicals are represented in terms of their molecular

structure. Several tools are available to calculate molecular descriptors using the structure

representation. The second step is the selection of relevant molecular descriptors. Not all

molecular descriptors play an important role in determining a given biological endpoint. Hence, it

is important to select a group of descriptors that correlate with the structural and physicochemical

properties that are associated with the given biological activity. Once a biological activity and its

associated descriptors are identified, the final step is to obtain a correlation function that can map

the descriptor values to the activity. The ratio of number of descriptors to the size of the training

dataset is an important consideration to avoid over-fitting of the models. Modeling methods like

correlation and pattern recognition are usually employed in the development of quantitative

structure-activity relationships [42, 43].
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2.3.1 Molecular Descriptors

Molecular descriptors are a quantification of the various molecular properties of a

chemical compound. They help in the transformation of some chemical information encoded

within a molecule into a useful number for mathematical purposes. In general there are two kinds

of descriptors (a). 2D descriptors, which are usually physicochemical descriptors and (b). 3D

descriptors, which are usually derived from spatial structures of molecules. Some examples of 2D

descriptors are:

(i) Constitutional Descriptors: They represent properties related to molecular structure, e.g.

molecular weight, total number of atoms in the molecule, number of aromatic rings, etc.

(ii) Electrostatic and Quantum-Chemical Descriptors: They represent properties related to the

electronic nature of the compound, e.g. atomic net and partial charges, solvent accessible

surface area, etc.

(iii) Topological Descriptors: They represent properties which can be inferred by treating the

structure of the compound as a graph, with atoms as vertices and covalent bonds as edges,

e.g. total number of bonds in shortest paths between all pairs of non-hydrogen atoms.

(iv) Geometrical Descriptors: They represent properties related to spatial arrangement of atoms

constituting the compound, e.g. Vander Waals Area.

(v) Fragment based Descriptors: They represent properties related to sub-structural motifs, e.g.

MDL Keys and Molecular Fingerprints.

QSAR relationships can be used to develop in silico tools for the prediction of chemical

toxicity. The ultimate aim is to accurately determine the structural variations that may introduce a

given toxic effect and to be able to suggest compound re-engineering methods to improve overall

potency. An ideal QSAR tool should be able to predict a wide range of toxic endpoints with

sufficient statistical validation. QSAR tools can help in the virtual filtering of chemicals that may

be predicted in having potential toxic effects. QSAR tools are of particular interest in regulatory

settings for toxicity profiling of potential pharmaceutical drugs or chemicals that may be released

from medical devices [30, 19]. A successful predictive QSAR tool can lead to reduction in animal
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testing, clinical trials, and eventual reduction in cost of product development [32, 44, 45]. The

challenge, however, is the development of reliable QSAR tools [46, 47].

2.4 In Silico QSAR Tools for Toxicity Prediction

A number of free and proprietary in silico QSAR tools are available that can predict the

toxicity of a given chemical based on its chemical structure. These tools can be classified as either

expert knowledge-based (SAs), statistical method (QSARs) or a hybrid of the two. Some of the

commonly used in silico tools are OECD QSAR Toolbox [48], Lhasa DEREK [49], EPA

T.E.S.T [24], VEGA [50], Lazar [51], and Toxtree [52]. A brief description of these tools is

presented below:

• OECD QSAR ToolBox is an expert knowledge-based standalone software application. The

new target chemical is profiled into a chemical category based on similarities (e.g. mode of

action or structural similarity) and chosen profiling category. This is used to build the

training data set. The missing toxicological data points are then estimated by

read-across/trend analysis/local QSARs (using local categorized data sets). QSAR toolbox

allows users to use custom databases. It implements the Benigni-Bossa rulebase and OASIS

DNA binding profiler [48].

• LHASA Derek for Windows is an expert knowledge-based system (SAR-based) developed

by Lhasa Ltd. Predictions are based on available data and empirically derived rules from

available toxicological data. The rules cover many biological endpoints, but its main

strengths are prediction of skin sensitization, mutagenicity and carcinogenicity. The training

dataset is obtained from FDA ICSAS/CDER group and FDA CFSAN group. However,

DEREK allows the users to use a custom database, in Derby database format, and alerts.

DEREK makes a prediction only in case of positives and gives no information otherwise.

Once a positive prediction is made, it provides a brief justification of the prediction and cites

the literature references, which provided the structural alerts. Absence of an alert or no

prediction does not necessarily mean that it is a negative prediction; it just means that no

identified alerts were found [53, 49].
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• EPA Toxicity Estimation Software Tool (T.E.S.T) is an open-source application developed

by the US Environmental Protection Agency (EPA). Prediction is based on five different

QSAR models employing genetic algorithm and regression models. Final output is a

consensus result of the predictions from all the 5 models. The models use the entire database

of training data for making the predictions. It uses the Arena et al. dataset of 293

compounds, which come from FDA/TERIS (Teratogen Information System) [24].

• VEGA is a relatively new effort aimed at providing toxicity predictions to specifically meet

the current EU REACH regulatory demands. VEGA implements the CAESAR and SARpy

models for mutagenicity prediction. It also includes a read across mechanism combined with

QSAR predictions to optimize the confidence [50].

• Lazar (lazy structure-activity relationships) is a statistical-based open-source software

that makes toxicity predictions for various biological endpoints. It is based on identification

of structural fragments (alerts) and also implements statistical machine learning algorithms

for classification. Lazar uses the k-nearest-neighbor approach, while also incorporating

chemical similarities relative to the chosen biological activity [54, 18]. Lazar allows a user

to select the model to be implemented and then creates local QSAR models for the test

chemical. This model uses a different training dataset for different endpoints. Lazar is freely

accessible through an easy to access web implementation and as a standalone application for

Linux [51].

• Toxtree is a hybrid QSAR and knowledge-based open-source software tool which

implements the Benigni-Bossa rulebase and ToxMic rulebase for mutagenicity and

carcinogenicity prediction. Toxtree uses a decision tree framework. Toxtree also allows a

user to implement new rules in the decision tree [52].

• Danish QSAR is a database that houses predictions from different QSAR models for over

166,072 chemicals and can generate specific results due to its Boolean capabilities. The

Danish Environmental Protection Agency (Danish EPA) primarily develops the QSAR

models used and the Joint Research Centre (JRC) in Europe maintains the database [55].

This database uses both in vitro and in vivo models for the predictions. The results are
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derived using the MULTICASE software, which includes eight MULTICASE FDA cancer

models and rodent carcinogenic potency [18].

2.5 Limitations of QSAR Tools

QSAR tools can be used in regulation to supplement experimental data, support

prioritization in the absence of experimental data and as a substitute or replacement for

experimental animal testing methods. In view of these possible uses, regulators often use the

results of more than one QSAR tool. However, different QSAR tools often make contrasting

predictions for a given chemical (e.g.Table 2.3) and also vary in their predictive ability for different

class of chemicals. Often, the validation of a particular QSAR tool and sufficient confidence that it

can be used reliably for a given chemical is not available, which makes handling conflicting

predictions and determining the best prediction difficult [56]. In case of an unknown test chemical

such conflicting predictions are hard to interpret because it is not clear which prediction is the

correct one. These issues make the use of in silico QSAR tools difficult in regulatory risk

assessment since transparency and interpretation of predictions play a crucial role in development

of safety assessment decisions and reports.

Chemical Toxtree Lazar OECD
Toolbox

Danish
QSAR

Biphenyl
(Carcinogen)

7 7 7 7

1,3-Butadiene
(Carcinogen)

7 3 7 3

Crotonaldehyde
(Carcinogen)

7 7 3 3

Chlorodifluoromethane
(Non-carcinogen)

3 7 3 3

1-Phenyl-2-thiourea
(Non-carcinogen)

3 7 3 7

Table 2.3: Misleading carcinogenicity predictions by QSAR tools. The 3 represents carcinogenic
and 7 represent non-carcinogenic predictions, respectively.
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The discrepancy in predictions between different in silico QSAR tools is due to different

molecular descriptors and machine learning algorithms employed for the development of

predictive models. From a regulatory perspective, it is challenging to interpret these results

because: (1). the training datasets are not evident for most QSAR tools, which makes it difficult to

determine if the chemical of interest is adequately represented (structurally) in the training dataset,

and (2). the molecular descriptors are not known, which makes it difficult to provide a mechanistic

explanation for the prediction. Proper structural representation in training datasets and validation

of resultant models are, therefore, important factors in the development of reliable QSAR models

for regulatory applications and characterization of those chemicals for which a reliable prediction

can be made [17, 57, 18].

Mechanistic interpretation of toxicity is a complex phenomenon and it is difficult to

capture all the aspects from a structural similarity perspective. Any in silico QSAR model is a

system that is developed upon known historic data and could be a simplified representation of a

complex phenomenon. QSARs, therefore, have a fair chance to fail in the case of a new untested

chemical. Given the regulatory guidelines for the use of in silico methods, the challenge remains to

better the risk assessment by development of robust in silico models as defined in Chapter 1

Section 1.4. Development of robust in silico methods to overcome the limitations of existing in

silico methods can be achieved in two ways:

1. Development of consensus models that can integrate predictions from multiple tools. Each

tool has its strengths and weaknesses and by leveraging various underlying QSAR models

and training datasets, the resulting consensus prediction should yield more reliable

predictive ability.

2. Development of methods to derive mechanistic information from short term in vitro assay

data for development of computational toxicology models. Most QSAR models suffer from

inherent limitations due to lack of mechanism based selection of molecular descriptors.

Development of new mechanism based methods can overcome the intrinsic deficiencies in

QSAR models.

Both these strategies directly address the statistical validation and scientific validation aspect

of the definition of robust models.
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2.6 Use of In vitro Data in Computational Toxicology

Recent advances in the field of “omics” technologies (proteomics, metabolomics,

toxicogenomics etc.) offer intriguing avenues for assessing chemical response in in vitro systems.

High-throughput screening methods facilitate the screening of large number of chemicals against a

variety of assays generating substantial in vitro data [58, 59]. The US Environmental Protection

Agency’s (EPA) ToxCast project [60] and the Tox21 consortium of the U.S. EPA , National

Toxicology Program (NTP), National Institutes of Health Chemical Genomics Center (NCGC),

and U.S. Food and Drug Administration (FDA) [61, 62] are two sources of high-throughput in

vitro activity data for thousands of chemicals across several biochemical assays. Innovative

methods can be developed for systematic investigation and integration of these rich and diverse

datasets for advancing the field of computational toxicology.

In vitro methods provide mechanistic insight into cellular response to chemical action. In

vitro data can be utilized in several ways to assist in computational modeling approaches to predict

toxicity as outlined below:

1. In vitro data can offer insight into how different chemicals can alter or perturb certain

biochemical pathways that may result in toxic responses.

2. In vitro data can help in the identification of biological response patterns (biomarkers)

associated with different toxicological endpoints.

3. In vitro data can help in elucidating the mechanism of action involved with various

toxicological endpoints.

Use of in vitro data helps in identifying the underlying cellular and molecular events that

lead from initial exposure to the xenobiotic to the ultimate biological responses. Deeper

understanding of such mechanisms is helpful in extrapolating the data better to humans and

to improve risk assessment of potentially toxic chemicals for human safety.

Based on the benefits outlined above, in vitro data can be used to develop biological

similarity based computational models for toxicity prediction. The underlying concept is based on

the assumption that mechanistically related toxic chemicals will display similar patterns of
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biological activity in various in vitro assays [63, 64]. In vitro data can be used to derive biological

activity relationships between chemicals to develop QSAR like approach as described in

Section 2.1. A collaborative effort between regulators, industry and researchers can lead to the

development of novel mechanism based reliable computational toxicology models suitable for

regulatory risk assessment applications.
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CHAPTER 3

AN ENSEMBLE MODEL OF IN SILICO QSAR TOOLS FOR IMPROVING TOXICITY

PREDICTION

This chapter presents a novel ensemble QSAR model based on a decision tree framework

using Bayesian classification. The model allows for setting a cut-off parameter to select a

desirable trade-off between sensitivity and specificity. The predictive performance of the

ensemble model is compared with four in silico tools (Toxtree, Lazar, OECD Toolbox and

Danish QSAR) for carcinogenicity prediction for a dataset of air toxins (332 chemicals),

medical device leachables (84 chemicals) and a subset of the gold carcinogenic potency

database (480 chemicals). Leave-one-out cross validation results show that after varying the

cut-off, the ensemble model achieves the best trade-off between sensitivity and specificity

(sensitivity: 70.0%, 85.7%, 84.5% and specificity: 91.2%, 91.4%, 77.0%) and highest

inter-rater agreement (kappa(κ): 0.63, 0.76 and 0.62) for the three datasets. The ROC curves

demonstrate the flexible nature of the predictive ability of the ensemble model. This feature

provides an additional control to the regulators in grading a chemical based on the severity of

the toxic endpoint under study.

3.1 Motivation

In silico QSAR tools are gaining wide acceptance as a faster alternative to otherwise

time-consuming clinical and animal testing methods. However, as discussed in Chapter 2, different

in silico tools often make contrasting predictions for a given chemical and may also vary in their

predictive performance across various chemical datasets. In a regulatory context, conflicting

predictions raise interpretation, validation and adequacy concerns. To address these concerns,

ensemble learning techniques in the machine learning paradigm can be used to integrate

predictions from multiple tools. By leveraging various underlying QSAR algorithms and training

datasets, the resulting consensus prediction should yield better overall predictive ability.
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There have been several attempts to investigate methods for combining predictions from

more than one in silico tool to gain better predictive performance. The underlying idea is that each

model brings a different perspective of the complexity of the biological system being modeled and

combining them can amplify their individual capabilities. Zhao et al. developed a hybrid model for

bioconcentration factor (BCF) prediction. They developed and compared different clustering

algorithms (multiple linear regression, radial basis function neural network and support vector

machines) and used those to create hybrid models [65]. Gissi et al. used predictions from two BCF

models implemented in VEGA to arrive at a consensus prediction. They used cut-off rules to arrive

at the most reliable and conservative prediction [66]. In similar efforts for mutagenicity prediction

three different groups (Benignia et al., Ames et al., and Hillebrecht et al.) have evaluated the

predictive performance of four in silico tools (Derek, Leadscope, Multicase and Toxtree) and

compare them with the standard Ames assay. They developed pairwise hybrid models using the

AND (accepting positive results when both tools predict a positive) and OR combinations

(accepting positive results when either one of the tool predicts a positive) [67, 68, 69]. A similar

AND/OR approach has been implemented by Contrera, et al. for the validation and construction of

a hydrid QSAR model using Multicase and MDL-QSAR tools for carcinogenicity prediction in

rodents [70]. The authors extended the work using more tools (Multicase, MDL-QSAR,

BioEpisteme, Leadscope PDM, and Derek). They compared the predictive performance and

constructed hybrid models using majority consensus predictions based on positive predictions from

all four/three/two tools in addition to the AND/OR combinations [71]. The results of all these

studies showed improved overall predictive performance of the hybrid model in comparison to

individual tools.

These efforts indicate that looking at consensus-positive predictions from more than one in

silico QSAR tool had progressively increased the identification of true positives. The studies also

demonstrate that no single QSAR tool performs significantly better than others, and that they also

differ in their predictive ability based upon the toxic endpoint and the chemical datasets under

investigation. However, consensus-positive methods are prone to introducing a conservative nature

in discarding potentially carcinogenic chemicals based on false positive prediction as discussed in

Section 5.1. Therefore, there is a need for a more advanced method of combining predictions from

multiple in silico tools that can address the drawbacks of consensus-positive prediction techniques.
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3.2 Ensemble Machine Learning

The ensemble learning presents a new approach for combining expert QSAR systems. An

ensemble model (classifier) is a unit or a group of multiple independent base classifiers that work

in unison. They are algorithms that can classify unknown data by combining the classification

results of several classifiers in a weighted manner. The strength of an ensemble model depends on

the diversity and predictive ability of the base models. An ensemble model is typically superior in

performance when compared to the base models, which are, therefore, referred to as the weak

models. The reason for the success of ensemble models is that they are built upon a set of diverse

classifiers and implement sophisticated mathematical and statistical machine learning methods to

train the ensembles [72, 73].

Hybrid QSAR models using ensemble approaches have already been developed for

various biological endpoints like cancer classification and prediction of ADMET

properties [74, 75, 76]. However, ensemble learning has not been used for the prediction of

toxicological endpoints. In this study, the Bayes ensemble approach, described in Section 3.3.3, is

investigated for the development of an ensemble model for improving the overall predictive ability

of available in silico tools with special significance in regulatory applications.

3.3 Methods

3.3.1 Datasets

This work uses three datasets for training and validation that consists of both carcinogenic

and non-carcinogenic chemicals. Selection of chemicals in each dataset was based on the

availability of experimental carcinogenicity data and in silico predictions from the tools.

1. Air toxins: A set of 332 chemicals potentially emitted in the industrial environment was

obtained from the Western Australia Department of Health. These chemicals have been

classified into Cramer chemical classes using Toxtree, a software tool released by the

European Chemical Bureau, with the purpose of determining if Cramer class could be used

to assign exposure limits [77]. For this study the Cramer class was not considered, and
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therefore all of the listed chemicals were considered in this analysis. This dataset had a

carcinogen to non-carcinogen ratio of 114:218.

2. Medical device leachables: A set of 84 compounds was obtained from the Center of

Devices and Radiological Health (CDRH) at the US FDA. These chemicals are reported to

be released from medical devices. This dataset had a carcinogen to non-carcinogen ratio of

49:35.

3. Gold carcinogenic potency database (CPDB): The CPDB is a widely accepted reference

containing results from chronic, long-term animal cancer tests on a variety of

chemicals [78]. For this study the database was screened for all compounds with positive or

negative carcinogenic data in mice and/or rats. A positive carcinogenic value was

determined if either species had TD50 data. A non-carcinogenic value was determined if

there was no TD50 value available for that chemical and a negative carcinogenic

experimental result was present. Both male and female results were extracted, where a

positive result of one gender would override a negative of the other. The resultant dataset

consisted of 480 chemicals with a carcinogen to non-carcinogen ratio of 258:222.

The final selection of the datasets was made such that each chemical had experimental data

and predictions from the four in silico QSAR tools. Therefore, identical datasets were used to

analyze the performance of the method.

3.3.2 In Silico QSAR Tools

The true experimental data for these chemicals is obtained from Carcinogenic Potency

Database and Chemical Carcinogenesis Research Information System (CCRIS [79]). Four

open-source in silico tools discussed in Chapter 2 were used to make carcinogenic predictions for

the datasets. The chemicals are searched using unique identifiers CASRN (Chemical Abstracts

Service Registry Number) and structure notation SMILES (simplified molecular-input line-entry

system). If the CAS and/or SMILES code was not given in the dataset, Chemspider or TOXNET

was used to retrieve that data [80, 81]. Any positive mutagenic result was recorded as a positive

prediction for carcinogenicity for the test chemical.
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1. OECD ToolBox: All chemical identities based on the CAS number of the test chemical

were searched for this analysis. The chemicals were screened for two mutagenic and two

carcinogenic profiling alerts: in vitro mutagenicity alerts by ISS (Ames mutagenicity), in

vivo mutagenicity alerts by ISS (Micronucleus assay), carcinogenic (genotoxic and

non-genotoxic) alerts by ISS, and oncology primary classifications. A positive result in a

profiling category for any chemical identity was considered a positive result for the target

chemical. If the CAS number was not found in the OECD input search or if profiling

resulted in no predictions (all results were not applicable) then the chemical was removed

from the final training dataset.

2. Danish QSAR: Chemicals were searched in the database using the CAS number for

mutagenicity, mutagenicity in vivo, and carcinogenicity. The Ames sub tests under

mutagenicity were only recorded if the Ames test (salmonella) was positive, as

recommended by the database. One positive or equivalent prediction in any category was

recorded as a positive prediction for the test chemical.

3. Lazar (lazy structure-activity relationships): Chemicals were queried in the tool using the

simplified molecular-input line-entry system (SMILES) using the web interface established

in 2010. The DSSTox carcinogenic potency DBS multicellcall endpoint was used to

represent the carcinogenic predictions for the target compounds. In addition, the two

available mutagenic endpoints were also analyzed: DSSTox carcinogenic potency DBS

mutagenicity and Kazius-Bursi Salmonella mutagenicity. A positive result for either

category was recorded as a positive prediction for the test chemical.

4. Toxtree: Chemicals were queried in the Toxtree 2.5.0. using the SMILES code using the

Benigni/Bossa Rulebase (for mutagenicity and carcinogenicity). If a potential carcinogenic

alert based on QSAR models or if any structural alert for genotoxic and non-genotoxic

carcinogenicity were reported then the prediction was recorded as a positive prediction for

the test chemical.
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3.3.3 Bayes Ensemble Model

The Bayes ensemble model is based on prior probabilities and is statistically

robust [82, 83]. The model uses training data for classification by estimating uncertain quantities

using the Bayes theorem. Bayes theorem uses the training data as evidence (E) for a seen outcome

(O) to construct a probability for predicting the outcome when the evidence is seen in the

future [84]. The probability of seeing the outcome in the past (training dataset) is termed as the

prior probability (P (E|O)) and the probability of predicting the outcome occuring in the future is

termed as the posterior probability (P (O|E)). The Bayes theorem calculates the posterior

probability by Equation 3.1.

P (O|E) =
P (E|O)P (O)

P (E)
, (3.1)

where P (O) is the probability of the outcome and P (E) is the probability of the evidence. In a

binary classification problem, the final predicted outcome is the one with a higher value of

P (O|E) as determined by Equation 3.2.

ω = arg max
kε{1,2}

P (Ok|E). (3.2)

In case of ensemble modeling for classifying new chemicals, the training data consist of

predictions from n in silico tools and true experimental class about the nature of the chemical

(toxic/non-toxic). Each tool can predict the class, ω, as 1 or 0 representing toxic and non-toxic,

respectively. Since there are n in silico tools, the total number of prediction combinations possible

is k = 2n. The vector sk represents each unique prediction combination from the in silico tools.

For example, if a chemical is analyzed by four tools and the predictions are 0 (Tool 1), 1 (Tool 2), 0

(Tool 3), 0 (Tool 4) then the prediction combination vector sk = {0, 1, 0, 0}. From a Bayesian

perspective, prediction combination from each tool is the evidence and class is the outcome. The

Bayes theorem computes the posterior probability of a chemical being toxic (ω = 1) or non-toxic
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(ω = 0) associated with each combination of predictions from the tools, P (ω|s = sk) using

Equation 3.3.

P (ω|s = sk)k =
P (sk|ω)P (ω)

P (sk)
, (3.3)

where, sk is the combination of prediction by the tools for the test chemical, P (sk|ω) is the prior

probability of observing a prediction combination sk given that a chemical is toxic or non-toxic,

P (ω) is the probability of a chemical being toxic or non-toxic and P (sk) is the probability of a

particular prediction combination from the in silico tools. For each prediction combination sk there

is an associated posterior probability. Since the toxicity prediction problem is binary in nature, i.e.

the classification is either toxic (ω = 1) or non-toxic (ω = 0) the final estimate of the prediction,

ω′, given by the Bayes ensemble model is the one with the greater value of P (ω|s = sk). This

means that a new test chemical is classified as toxic or non-toxic based on all tested chemicals that

resulted in sk. The decision is, therefore, based on available information of previously tested

chemicals, which makes it different from a consensus rule.

3.3.4 Algorithm

The Bayes ensemble model as described in Section 3.3.3 was implemented within a

decision tree framework. A decision tree is a support tool that uses a top down tree like approach

for arriving at a decision. Each node in the tree represents a decision and each branch represents

the outcome leading to the final decision. A path from root to leaf represent a classification

rule [82]. In our approach, each decision tree path translated into a combination of prediction by

the different tools. The decision leaf represented the posterior probability of being carcinogenic as

associated with each combination as shown in the decision tree. The estimate for final

classification (ω′) was done in two steps.

• Step 1: Four tools were used to predict the carcinogenic ability of the chemicals for all the

three datasets leading to k = 16 prediction combinations. The predictions were recorded as

1 and 0, (representing carcinogenic and non-carcinogenic, respectively) and used to

construct a decision table as shown in Table 3.1 for each data set.
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Combination
Number

Tool 1 Tool 2 Tool 3 Tool 4 Posterior
Probability

s1 0 0 0 0 P (ω|s = s1)

s2 0 0 0 1 P (ω|s = s2)

s3 0 0 1 0 P (ω|s = s3)

s4 0 0 1 1 P (ω|s = s4)

s5 0 1 0 0 P (ω|s = s5)

s6 0 1 0 1 P (ω|s = s6)

s7 0 1 1 0 P (ω|s = s7)

s8 0 1 0 1 P (ω|s = s8)

s9 0 1 1 1 P (ω|s = s9)

s10 1 0 0 0 P (ω|s = s10)

s11 1 0 0 1 P (ω|s = s11)

s12 1 0 1 0 P (ω|s = s12)

s13 1 0 1 1 P (ω|s = s13)

s14 1 1 0 0 P (ω|s = s14)

s15 1 1 0 1 P (ω|s = s15)

s16 1 1 1 1 P (ω|s = s16)

Table 3.1: Prediction combination table with posterior probability for each combination number.
Each combination number represents a prediction combination from each of the four QSAR tools.

The posterior probability of a test chemical being toxic for each prediction combination was

calculated from Equation 3.2 as:

P (ω = 1|s = sk) =
P (sk|ω = 1)P (ω = 1)

P (sk)
, (3.4)
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where

P (sk|ω = 1) =
N(ω=1,sk)

Nω=1
, (3.5)

P (ω = 1) =
N(ω=1)

N
, and (3.6)

P (sk) =
Nsk

N
. (3.7)

So

P (ω = 1|s = sk) =
(
N(ω=1,sk)

N(ω=1)
)(
N(ω=1)

N )

(
Nsk
N )

(3.8)

=
N(ω=1,sk)

Nsk

, (3.9)

where Nsk was the number of chemicals with a prediction combination sk in the training

dataset, N(ω=1) was the total number of carcinogens in the training dataset, N(ω=1,sk) was

the number of carcinogens with prediction combination sk, and N was the total number of

chemicals in the training dataset.

• Step 2: The tools were used to make a prediction for the test chemical, which were then used

to determine the test chemical’s prediction combination vector sk. The combination sk was

then used to look up the posterior probability P (ω = 1|s = sk) or Pk associated with it from

the decision table. The final prediction (ω′) for a new chemical was estimated based on the

value of Pk, which was compared to a variable cut-off and a decision was made using the

framework outlined in Figure 3.1. In a classic binary classification problem, the value of the

cut-off is fixed to 0.5, as explained in Section 3.3.3. However, the choice of 0.5 as a cut-off

may not be the best to address the concerns with the use of QSAR tools for a regulatory

application, as explained in Section 3.1. There needs to be more flexibility in arriving at a

consensus decision and, hence, also in the selection of the cut-off.

In the Bayes ensemble model, the value of the cut-off can be varied leading to different

decision points for the final classification. Since it is a probability measure, the cut-off can range

from 0 to 1. The Bayes ensemble model is very powerful in giving the user the option of varying
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Figure 3.1: Decision tree based Bayesian classifier ensemble for determining carcinogenicity. The
posterior probability, Pk, as determined from Table 3.1 is compared with a variable cut-off which
can be varied between 0 and 1.

the cut-off to reach the desired level of sensitivity and specificity as demonstrated in Section 3.4.3.

The flexibility in changing the cut-off also makes the model endpoint independent and can be used

for the prediction of any toxic endpoint of interest.

3.3.5 Model Validation

One of the major concerns with the use of QSAR tools for a regulatory applications is the

reliability in their predictions. QSARs need to be assessed for their scientific validity so that

regulatory organizations have a sound scientific basis for decision making. As mentioned in

Section 3.1, the OECD member countries agreed upon a set of principles as guidelines for

scientifically validating a QSAR model. These principles require that a model (i). has a defined

endpoint, (ii). has an unambiguous algorithm, (iii). has a defined domain of applicability, (iv). has

appropriate measures of goodness-of-fit, robustness and predictability, and (v). has a mechanistic

interpretation, if possible. The fourth principle ensures that a QSAR model is robust and can make

reliable predictions for a well-defined endpoint.

In accordance with these guidelines, external model validation was performed and a range

of model statistics were calculated for a comprehensive performance analysis. Leave one out cross
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validation (LOOCV) technique was used for external validation where N models were developed

each with (N − 1) chemicals as training set and 1 chemical as the test set. The following standard

metrics were then calculated to assess performance assessment of the models:

Sensitivity =
TP

TP + FN
, (3.10)

Specificity =
TN

TN + FP
, (3.11)

Accuracy =
TP + TN

TP + FN + TN + FP
, (3.12)

PPV =
TP

TP + FP
, and (3.13)

NPV =
TN

TN + FN
, (3.14)

where TP is the number of true positives, TN is the number true negatives, FP is the number of

false positives, and FN is the number of false negatives reported in the tests. Accuracy or

concordance is a measure of correctness of overall predictions. Sensitivity is a measure of

correctness in prediction of positives or toxic chemicals and specificity is a measure of correctness

in prediction of negatives or non-toxic chemicals. Positive predictive value (PPV) is the proportion

of positives or toxic chemicals that are correctly predicted and negative predictive value (NPV) is

the proportion of negatives or non-toxic chemicals that are correctly predicted. High sensitivity or

low false negatives is especially important under REACH requirements as discussed in Section 5.1.

PPV and NPV are crucial in understanding the predictive power of the models based on the

representation of toxic and non-toxic chemicals in the training datasets.

The OECD guidelines also emphasize on appropriate measures of goodness-of-fit,

robustness and predictivity of QSAR models. Several reports discuss the potential techniques for

internal and external measure of model validation [85, 86, 87]. Therefore, in addition to the

standard metrics following two conceptually simpler statistical parameters are suggested, which

are indicative of overall concordance and performance of each model as compared to chance and

each other:

1. Cohen’s Kappa (κ): The Kappa coefficient is a measure of pairwise inter-rater agreement or

specific agreement compared to a chance agreement. Thus, it can be used as a measure of
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agreement between the test results and the true results, and also for comparing the

performance of different tools with respect to one another. It is calculated as below:

κ =
(TP + TN)− ( (TP+FN)(TP+FP )+(FP+TN)(FN+TN)

N )

1− ( (TP+FN)(TP+FP )+(FP+TN)(FN+TN)
N )

. (3.15)

In this study, the Kappa coefficient is used to compare how well the predictions from various

tools agree with the experimental or true values. Values of κ=0, 0.41 < κ < 0.60,

0.61 < κ < 0.80 and κ=1 represent no, moderate, substantial and perfect agreement,

respectively [88, 89].

2. Receiver Operating Characteristics (ROC) Curve: A ROC curve is a plot of true positive

rate (sensitivity) and the false positive rate (1 - specificity). ROC curve demonstrates how

the performance of a binary classifier changes as the threshold parameters are varied [90].

Area under the ROC curve can be used to compare the classification tools; higher area

implies a better the classification. As seen in Figure 3.2, an ideal predictor is one which

minimizes false positives and maximizes true positives. In this application, ROC curves can

be used to select the optimal cut-off in by selecting a trade-off between desired sensitivity

and specificity as demonstrated in Section 3.4.3.

3.4 Results and Discussion

3.4.1 Accuracy, Sensitivity and Specificity

Statistical performance of the ensemble model in comparison to the various in silico tools

is summarized in Tables 3.2, 3.3 and 3.4. The statistics for the Bayes ensemble model are

presented for three different cut-offs, which demonstrate the utility of the cut-off feature. As

shown, the accuracy of the Bayes ensemble model was the highest and always greater than 80%.

REACH legislatives emphasize on the reduction of false negatives and improvement in specificity

by the ensemble model is indicative of that. The specificity was highly improved as compared to
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Figure 3.2: Reciever Operating Characteristic (ROC) plot. The top left point on the curve denotes
an ideal predictor and the red dotted line denotes a random predictor.

the in silico tools and was as high as 91.43% for the medical devices dataset. PPV and NPV values

were also significantly improved and were higher than 80% for all the three datasets.

Model Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

PPV (%) NPV (%)

Toxtree 75.56 68.18 79.51 64.10 82.32

Lazar 75.24 74.55 75.61 62.12 84.70

Danish
QSAR

74.29 80.91 70.73 59.73 87.35

OECD
Toolbox

76.19 69.09 80.00 64.96 82.83

Bayes Ensemble
(Cut-Off=0.4)

83.81 70.00 91.22 81.05 85.00

Bayes Ensemble
(Cut-Off=0.5)

83.81 70.00 91.22 81.05 85.00

Bayes Ensemble
(Cut-Off=0.6)

82.22 65.45 91.22 80.00 83.11

Table 3.2: Performance metrics for air toxins dataset. The highest value for each metric is high-
lighted in red.
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Varying the cut-off leads to a minor change in accuracy but helps in achieving a balance

between sensitivity and specificity. It can be noted that for the air toxins dataset, Lazar had the best

predictions amongst the in silico tools. However, the Bayes ensemble model improved the overall

accuracy, PPV, NPV and also boosted the specificity while maintaining similar sensitivity. The

statistics also demonstrated the inability of any particular in silico tool of consistent predictions

across different chemical datasets. The ensemble model demonstrated consistency in the nature of

predictions across all the three datasets. This performance can be attributed to the sophisticated

nature of the machine learning algorithm for training the models.

Model Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

PPV (%) NPV (%)

Toxtree 61.91 57.14 68.57 71.80 53.33

Lazar 85.71 85.71 85.71 89.36 81.08

Danish
QSAR

71.73 83.67 54.29 71.93 70.37

OECD
Toolbox

60.71 57.14 65.71 70.00 52.27

Bayes Ensemble
(Cut-Off=0.4)

88.10 85.71 91.43 93.33 82.05

Bayes Ensemble
(Cut-Off=0.5)

88.10 85.71 91.43 93.33 82.05

Bayes Ensemble
(Cut-Off=0.6)

88.10 85.71 91.43 93.33 82.05

Table 3.3: Performance metrics for medical device leachables dataset. The highest value for each
metric is highlighted in red.

3.4.2 Cohen’s Kappa coefficient

Cohen’s Kappa coefficient (κ) values for all the in silico tools and the Bayes Combiner

model are presented in Table 3.5. For all the three datasets, the Bayes ensemble model has the best

Kappa coefficient which means that the Bayes ensemble predictions concur with the experimental

data the best. Toxtree, Danish QSAR and OECD Toolbox demostrate less than moderate
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Model Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

PPV (%) NPV (%)

Toxtree 66.04 84.50 44.59 63.93 71.22

Lazar 80.63 86.05 74.32 79.57 82.09

Danish
QSAR

65.00 91.09 34.68 61.84 77.00

OECD
Toolbox

64.79 84.50 41.89 62.82 69.93

Bayes Ensemble
(Cut-Off=0.4)

81.04 83.33 75.23 80.14 82.27

Bayes Ensemble
(Cut-Off=0.5)

80.21 84.50 75.23 79.85 80.68

Bayes Ensemble
(Cut-Off=0.6)

80.42 84.50 77.03 80.83 79.91

Table 3.4: Performance metrics for the CPDB dataset. The highest value for each metric is high-
lighted in red.

agreement with the experimental values for all the datasets. Lazar has better but variable

agreement and depends on the chemical dataset under study. Interestingly, the Bayes ensemble

model with a cut-off of 0.4 has a κ > 0.62 in all the three datasets. It is an indication of stronger

and more substantial agreement with the experimental values as compared to the other tools.

3.4.3 ROC Curve

Figure 3.3 shows the receiver operating characteristics plot for all the in silico tools and

the Bayes ensemble model. An ideal binary predictor would have zero false predictions and so the

desired point on the ROC curve is top left corner where sensitivity is one and (1-specificity) is

zero. The black line corresponds to the performance of a random classifier which does not have

any preferences in a binary outcomes. The higher the area under the ROC curve, the greater is the

predictive ability of the model.

The tools give a binary prediction, therefore, they are represented as a point on the ROC

plot. In case of Bayes ensemble model, a curve can be traced for each sensitivity-specificity
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Model Air Toxins Device
Leachables CPDB

Toxtree 0.47 0.25 0.30

Lazar 0.48 0.71 0.61

Danish QSAR 0.48 0.39 0.27

OECD Toolbox 0.48 0.22 0.27

Bayes Ensemble
(Cut-Off=0.4)

0.63 0.76 0.62

Bayes Ensemble
(Cut-Off=0.5)

0.63 0.76 0.60

Bayes Ensemble
(Cut-Off=0.6)

0.59 0.76 0.61

Table 3.5: Cohen’s kappa coefficient (κ). The highest value for each dataset are highlighted in red.

combination obtained after changing the value of the cut-off as explained in Section3.3.4. In this

study, the cut-off is varied between 0 and 1 with a step size of 0.1 allowing for 11 decision points

for model validation. Hence, the ROC plot consists of data points corresponding to each value of

cut-off which can be traced to obtain a ROC curve. The ROC curve for the Bayes ensemble model

is higher than all the other tools implying better quality of predictions.

The variable cut-off in the ROC curve can be adjusted to select a trade-off between

sensitivity and specificity. This feature provides an additional control to the regulating agencies in

grading a chemical based on the severity of the toxic endpoint under study. It exhibits user-control

and flexibility in the predictive ability of the ensemble model. For example, as seen in Table 3.6

the final predictions for the chemicals in Chapter 2, Table 2.3 can be adjusted by selection of the

cut-off in the Bayes ensemble model: (i). Carcinogen bi-phenyl (CAS 92-52-4) which is a widely

used fungicide and pesticide is predicted as non-carcinogenic by all the four tools (Toxtree, Lazar,

OECD Toolbox and Danish QSAR). However, a cut-off = 0 in the Bayes ensemble model

classifies it as carcinogenic, (ii). Carcinogen 1,3-butadiene (CAS 106-99-0) is often found as a

contaminant in cosmetics. It is predicted carcinogenic by two tools (Toxtree and OECD Toolbox)

and non-carcinogenic by two tools (Lazar and Danish QSAR). However, a cut-off ≤ 0.6 in the

Bayes ensemble model classifies it as carcinogenic, (iii). Carcinogen crotonaldehyde (CAS
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(a) Air Toxin Dataset

(b) Medical Device Leachables Dataset
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(c) CPDB Dataset

Figure 3.3: Receiver operator characteristics (ROC) curve of Bayes ensemble model as compared
to other QSAR tools. The Bayes classification at different cut-off’s is depicted by green points. The
black line depicts a random classifier.

123-73-9) is predicted as carcinogenic by two tools (OECD Toolbox and Danish QSAR) and

non-carcinogenic by two tools (Toxtree and Lazar). However, a cut-off ≤ 0.6 in the Bayes

ensemble model classifies it as carcinogenic, (iv). Non-carcinogen chlorodifluoromethane (CAS

75-45-6) is predicted as carcinogenic by three tools (Toxtree, Danish QSAR and OECD toolbox).

However, a cut-off ≥ 0.4 in the Bayes ensemble model classifies it as non-carcinogenic, and (iv).

Non-carcinogen 1-phenyl-2-thiourea (CAS 103-85-5) is predicted carcinogenic by two tools

(Toxtree and OECD Toolbox) and non-carcinogenic by two tools (Lazar and Danish QSAR).

However, a cut-off ≥ 0.3 in the Bayes ensemble model classifies it as non-carcinogenic.

Overall, the results show that the Bayes ensemble model is better and more consistent with

respect to different in silico tools, which makes it compatible with regulatory usage. The model

combines predictions from various in silico tools in a transparent and reproducible manner. It can
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Chemical Toxtree Lazar OECD
Toolbox

Danish
QSAR

Bayes Ensemble
(Cut-off)

Biphenyl
(Carcinogen)

7 7 7 7 3 (= 0)
7 (≥ 0.1)

1,3-Butadiene
(Carcinogen)

7 3 7 3 3 (≤ 0.6)
7 (≥ 0.7)

Crotonaldehyde
(Carcinogen)

7 7 3 3 3 (≤ 0.2)
7 (≥ 0.3)

Chlorodifluoromethane
(Non-carcinogen)

3 7 3 3 3 (≤ 0.3)
7 (≥ 0.4)

1-Phenyl-2-thiourea
(Non-carcinogen)

3 7 3 7 3 (≤ 0.2)
7 (≥ 0.3)

Table 3.6: Final Bayes ensemble predictions by varying the cut-off for each chemical. The 3

represents carcinogenic and 7 represent non-carcinogenic predictions, respectively.

also be optimized to reduce the number of false predictions while maintaining flexibility in

addressing other considerations in making these predictions.

3.5 Conclusion

The results of this study demonstrate that different in silico tools vary in the quality of

predictions depending on the underlying QSAR model and chemical datasets used. The Bayes

ensemble model presented here is consistent in its performance across all the three datasets. The

results specifically show improved (i). accuracy of predictions, (ii). specificity and positive

predictive value, which are an indication of reduction in false positives, and (iii). Kappa

coefficient, across all datasets. The statistics demonstrate how ensemble machine learning methods

can be used to increase the capability of consensus QSAR models for toxicity prediction.

Additionally, as seen, the ensemble model offers flexibility in making the predictions as needed.

The Bayes ensemble model shows how in silico QSAR tools with different complexity and

accuracy can be used together for development of more reliable predictors. The results suggest that

ensemble modeling techniques are a good strategy for refining hybrid models and to tailor their use

based on the severity and concerns associated with the toxic endpoint under study. An example

application was presented with Toxtree, Lazar, OECD Toolbox, and Danish QSAR, and three
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different classes of chemical datasets for carcinogenicity prediction. However, this approach can

be extended to different tools and different kinds and sizes of chemical datasets for different

toxicological endpoints as well.

3.6 Acknowledgment

This project was supported in part by an appointment to the Research Participation

Program at the Center for Devices and Radiological Health administered by the Oak Ridge

Institute for Science and Education through an interagency agreement between the U.S.

Department of Energy and the U.S. Food and Drug Administration.



47

CHAPTER 4

USE OF IN VITRO DATA TO DEVELOP QUANTITATIVE BIOLOGICAL ACTIVITY

RELATIONSHIP (QBAR) MODELS FOR CARCINOGENICITY PREDICTION

Several studies have demonstrated that the predictive power of in vitro data based

computational models does not significantly differ from that of the chemical descriptors based

Quantitative Structure Activity Relationship (QSAR) models. This chapter proposes the use of

mechanistically relevant in vitro assay data in identification of relevant biological descriptors

and development of QBAR models for carcinogenicity prediction. The chapter demonstrates

how mechanistically relevant in vitro data can be used to develop QBAR models for in vivo

carcinogenicity prediction via two case studies, supported by theory and application. The

results demonstrate the similarities between QBAR and QSAR modeling in: (i). the selection

of relevant descriptors to be used in different machine learning algorithm, and (ii). the

development of a computational model that maps chemical/biological descriptors to a toxic

endpoint. Both case studies show increased sensitivity or lower rates of false negatives, which

is desirable in regulatory applications. Such mechanism based models may be used to develop

and advance computational strategies for regulatory risk assessment.

4.1 Introduction

Chemical Risk Assessment or evaluation of the extent of toxic effects associated with

chemical exposure is necessary for protection of human or environmental health. Computational

toxicology is the in silico prediction of adverse or toxic effects of chemicals on living organisms.

In silico models provide a less expensive, faster and more efficient alternative to otherwise

time-consuming conventional animal and clinical testing methods. Quantitative Structure Activity

Relationship (QSAR) models are the most widely used alternative to conventional animal and

laboratory testing. They are theoretical models that relate a quantitative measure of chemical

structure to a physical property or a biological effect. QSAR model development is a 3-step
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process: (i). generation of molecular descriptors, (ii). selection of relevant molecular descriptors,

and (iii). statistical mapping of the descriptors to the toxic endpoint under consideration [45, 32].

QSAR models have been continuously improving with new machine learning algorithms,

molecular descriptors and training databases [43, 91, 92]. However, several studies show that they

are still not very predictive for mechanistically complex endpoints like carcinogenicity [17, 18].

These limitations are primarily due to multiple mechanisms of action associated with more

complex toxicological endpoints. Furthermore, the OECD principles for QSAR model

development emphasize on mechanistic interpretation of results (if possible) in addition to

appropriate measures of goodness-of-fit, robustness and predictability [28, 25, 26]. Mechanistic

interpretation of toxicity is complex and it is difficult to capture all the aspects of toxicity from a

structural perspective. Development of new mechanism based methods and a paradigm shift

towards a systems biology based approach towards toxicology is, therefore, a necessity in the

future development of computational toxicology.

4.2 Quantitative Biological Activity Relationships

Recent trends in high-throughput screening methods facilitate the screening of large

number of chemicals against a variety of in vitro assays. The availability of in vitro datasets

enables better insight into the mode of action of chemicals and better identification of potential

mechanism(s) of toxicity. Thus, in vitro datasets provide intriguing avenues for using biological

similarity in computational modeling for toxicity prediction. Quantitative Biological Activity

Relationships (QBAR) can, thus, be defined as theoretical models that relate a quantitative measure

of biological similarity to a toxicological effect. The underlying principle behind QBAR models is

that chemicals with similar biological responses are likely to have similar toxicological effects.

Several studies have demonstrated the use of in vitro data in the development of predictive

QBAR models for in vivo toxicology [93, 94, 95, 96, 97]. The results of these studies for

carcinogenicity prediction show that all high-throughput assays do not contribute equally as

predictors of in vivo carcinogenicity. The report on carcinogenicity prediction trials by the U.S.

National Toxicology Program (NTP) states that carcinogenicity is generally a poorly predicted

endpoint and makes a guideline that best models tend to be those that integrate biological
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mechanism-based data [98]. This recommendation aligns with the OECD principles for use of

QSAR models in regulation, which includes a mechanistic interpretation (if possible) among other

criteria for model validation [28, 25]. Based on these reports, the use of specific in vitro assay data

is suggested in identification of relevant biological descriptors and development of QBAR models

for carcinogenicity prediction. It is demonstrated how in vitro data can be used independently to

develop predictive models for in vivo carcinogenicity via two case studies. The case study in

section 4.3.1 demonstrates how to select relevant in vitro assays as biological descriptors for

development of QBAR models (analogous to selection of relevant chemical descriptors for QSAR

modeling). The case study in section 4.3.2 demonstrates how different in vitro assays for selected

endpoints can be used together as biological descriptors for development of a QBAR model

(analogous to statistical mapping of chemical descriptors to a toxic endpoint in QSAR modeling).

4.3 Case Studies

4.3.1 Identification of a Novel Biological Descriptor Based on Xenobiotic Induced

Cytochrome P450 Transcription for Carcinogenicity Prediction

4.3.1.1 Cytochrome P450 Enzyme System

Cytochrome P450 (CYP) enzymes are the most important enzymes in the metabolism

process in mammals and are primarily responsible for the metabolism (degradation and

elimination) of xenobiotics [99]. CYP enzymes are subdivided into various families based on the

percentage of amino acid sequence identity. The major families are CYP1, CYP2 (with five

subfamilies CYP2A-E), and CYP3. There are about 57 identified CYP enzymes that are found to

be involved in metabolism reactions. Approximately 75% of the drugs are metabolized by P450s.

Out of those, five major isoforms viz., CYP2D6, CYP3A4, CYP2C9, CYP2C19 and CYP1A2 are

involved in about 75− 90% metabolic reactions. CYP2D6 alone is involved in the metabolism of

about 70% of marketed drugs [99, 100, 101].

Xenobiotic metabolizing enzymes can help in detoxification by elimination of potential

carcinogens or facilitate toxicity by conversion of primary non-carcinogens (procarcinogens) into

secondary carcinogenic metabolites. Procarcinogens usually require transformation into a more
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electrophilic from to cause DNA damage and cancer. Thus, they can be classified into two

categories. The first class includes enzymes that are more involved in drug metabolism, such as

CYP2A6, CYP2B6, CYP2C9, CYP2C19 and CYP2D6. The second class includes CYP1A1,

CYP1A2, CYP2E1 and CYP3A4, which are found to be involved in the metabolism of

procarcinogens. Significant effort has been spent in characterization of the mechanism of

activation of procarcinogens and toxicants by P450 enzymes [102, 103].

4.3.1.2 Cytochrome P450 Induction and Carcinogenicity

Cytochrome P450 enzymes are either expressed constitutively in fixed amounts or induced

by certain substrates. Induction is usually a protective mechanism and helps in detoxification, but

can also lead to an increase in production of carcinogenic, mutagenic and/or cytotoxic

metabolites [104]. Several clinical studies have shown significantly increased or decreased levels

of certain P450s in tumor tissue versus normal tissue suggesting a relationship between CYP

induction and tumor development.

Polycyclic aromatic hydrocarbons (PAHs) are known carcinogens, which are distributed

everywhere in the environment [105]. PAHs are usually metabolized by CYP1A1 and CYP1B1

enzymes. Many studies have demonstrated that CYP1As are highly inducible by carcinogenic

(PAHs) [106]. Such feedback cycle enables the PAHs to induce their own metabolism into

carcinogenic forms. CYP1B1 has been found to be expressed at abnormally high levels (122 out of

127) tumors under investigation. It is the most expressed form of CYP1 family in breast cancer

tissue. CYP1B1 is hypothesized to be involved in tumor growth and progression [107, 108].

CYP1B1 bears ∼ 40% homology with both CYP1A1 and CYP1A2 enzymes. CYP3A enzymes

play an important role in catalysing the metabolism of different drugs, carcinogens and

endogenous substances.

Variation in expression of different P450 enzymes leads to significant changes in

carcinogenic response. Notable agreement has been seen between the Ames test for genotoxicity

and ENACT enzyme induction assay; and they seem to align with the potential carcinogenicity of

test chemicals. Induction of CYP enzymes has been hypothesized to be associated with potential

toxicity and tumor occurrences at certain sites [109, 110]. The observation of such prominent

induction of P450 enzymes by the PAHs and their increased expression in tumor tissue raises
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concerns for the safety of humans and animals in general. The impact of these studies led to

profound influence on the drug development, cancer research, and toxicology. Pharmaceutical

companies employ a general policy in the drug development process to discontinue drug

development if the drug shows CYP1 inducibility, for fear of possible toxic or carcinogenic

effects [111].

P450 enzymes that are involved in procarcinogen activation and metabolism are

reasonably well conserved in their expression among different species. Therefore, P450 enzyme

induction can serve as a system for analyzing the interrelations between induction of drug

metabolism and chemical toxicity in general. In this chapter, the role of simultaneous induction of

three P450 enzymes is investigated for the identification of carcinogens.

4.3.1.3 Methods

• In vitro Assay Data

Cellzdirect enzyme induction data for CYP1A1, CYP1A2 and CYP3A4 were obtained from

the phase I of U.S. EPA’s ToxCast database [60, 112]. CellzDirect assay reports fold-change

in expression (above basal levels) of the enzymes in an in vitro test after exposure to

chemicals for 6, 24, and 48 hrs. The data set consists of 320 chemicals across the three

enzymes. Chemicals that had fold-change data for all three enzymes for 6hr (dataset 1) and

24hr (dataset 2) time points and experimental carcinogenicity data were selected for this

study. This filtering reduced the number of chemicals to 17 in dataset 1 and 16 in dataset 2.

• Carcinogenicity Data

The experimental in vivo carcinogenicity data for test chemicals was obtained from

publically available carcinogenic potency database (CPDB) [78] and chemical

carcinogenesis research information system (CCRIS) [79]. The distribution of carcinogens

to non-carcinogens is 4:13 for dataset 1 and 8:8 for dataset 2.

• Chemical Diversity

Diversity of the chemical dataset is an important measure for model validation and

robustness. Diversity of chemicals in the two datasets was evaluated by the AP Tanimoto
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coefficient. Tanimoto coefficient ranges between 0 and 1, where 0 indicates completely

dissimilar and 1 indicates completely similar. Chemicals with a Tanimoto coefficient of 0.7

and greater are considered biologically similar molecules [113]. Figure 4.1 shows a

distribution of chemicals with respect to each other. The chemicals in both the datasets are

structurally diverse as seen in the heatmap.

• Machine Learning Algorithm: Support Vector Machines (SVM)

SVM is a supervised machine learning algorithm used in classification and regression

analysis. It is a binary classifier that calculates an optimal hyper plane for categorizing data,

which consist of pairs of values (xi, yi) : i = 1, .., n, where xi is the data point with k

features (fj : j = 1, .., k) and yi is the corresponding class label. A linear hyper plane

separates all data points of one class from those of the other class and is used to classify any

new data points [82, 114]. SVM models are especially suited for this problem because they

were originally designed for training data with small size and binary classifiers.

Svmtrain [115], a Matlab SVM implementation was used for this analysis. The svmtrain

function was used with default parameters and the linear kernel function. Fold-change in

expression of CYP450 enzymes is used as features in model classification and the actual

experimental value is used as the class label. A new chemical with enzyme induction data

can be classified using the svmclassify function based on the hyper plane generated using the

training data set as explained in Section 4.3.1.4.

• Model Validation

External model validation using leave one out cross validation (LOOCV) was performed. N

SVM models were developed each with (N − 1) chemicals as the training set and 1

chemical as the test set. The following standard metrics were then calculated for the

performance assessment of the model:
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(a) Dataset 1 (n=17)

(b) Dataset 2 (n=16)

Figure 4.1: HeatMap representation of the chemical diversity of the two datasets measured in terms
of Tanimoto distance. The annotations in each cell correspond to the distance between the two
chemicals (numbers). The colorbar on the right shows mapping of the distance (range: 0-1) to a
gray colorscale.

Sensitivity =
TP

TP + FN
, (4.1)

Specificity =
TN

TN + FP
, and (4.2)

Accuracy =
TP + TN

TP + FN + TN + FP
, (4.3)
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where TP is the number of true positives, TN is the number of true negatives, FP is the

number of false positives and FN is the number of false negatives reported in the tests.

Accuracy or concordance is a measure of correctness of overall predictions. Sensitivity is a

measure of correctness in prediction of positives or carcinogenic chemicals and specificity is

a measure of correctness in prediction of negatives or non-carcinogenic chemicals.

Receiver Operating Characteristics (ROC) which is a plot of true positive rate (sensitivity)

versus false positive rate (1 - specificity) was also developed. The ROC plot demonstrates

how the performance of a binary classifier changes as the threshold parameters are

varied [90].

• Performance Comparison with In-Silico Tools

The performance of the SVM classifier is compared with three standard in silico QSAR tools

viz., Toxtree (expert knowledge-based) [52], OECD Toolbox (statistical) [48] and Vega

(hybrid) [50]. The tools make a binary prediction about carcinogenic potential of the test

chemicals.

4.3.1.4 Results

The SVM separates the two classes (carcinogens and non-carcinogens) by generating a

hyper plane for each training dataset in the LOOCV analysis. Figure 4.2 is an example

representation of how the SVM separates the two classes (carcinogens and non-carcinogens) by a

hyperplane. A new test chemical is evaluated based on the fold-change in the expression of

CYP1A1, CYP1A2 and CYP3A4 and classified as carcinogenic or non-carcinogenic depending

upon its distance from the separating hyperplane.

Statistical performance of the SVM classifier in comparison to the various in silico tools is

summarized in Table 4.1. As shown, the accuracy was greater than 80% for both the datasets.

Sensitivity and specificity were also improved as compared to the in silico tools. The results are

more relevant for dataset 2, which is more balanced with an equal distribution of carcinogens and

non-carcinogens.



55

(a) Dataset 1 (n=17)

(b) Dataset 2 (n=16)

Figure 4.2: Support vector classification: visualization of the classification hyperplane.
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Model Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

Dataset 1 (n=17)

Toxtree 64.7 100.0 53.9

Vega 82.4 50.0 92.3

OECD Toolbox 52.9 100.0 38.5

SVM Classifier 88.2 75.0 92.3

Dataset 2 (n=16)

Toxtree 56.3 50.0 62.5

Vega 43.8 12.5 75.0

OECD Toolbox 62.5 62.5 50.0

SVM Classifier 81.3 87.5 75.0

Table 4.1: Performance metrics for SVM classification as compared to in silico tools. The highest
value for each metric is highlighted in red.

Figure 4.3 shows the receiver operating characteristics of the SVM classifier with

reference to the QSAR tools. An ideal binary predictor would have zero false predictions and so

the desired point on the ROC plot is top left corner where sensitivity is one and (1-specificity) is

zero. The black line corresponds to the performance of a random classifier which does not have

any preferences in a binary outcomes. Since the predictions were binary in nature, each classifier

was represented as a point on the ROC plot. The closer the prediction is to the ideal point, the

greater is the predictive ability of the classifier. As seen, SVM classifier offers better trade-off

between sensitivity and specificity and out performs the QSAR tools for both the datasets.

4.3.1.5 Discussion

The SVM classification QBAR model suggests a relationship between carcinogenic

potential and the ability of test chemicals to simultaneously induce transcription of CYP1A1,

CYP1A2 and CYP3A4 enzymes. The ROC curve demonstrated a better trade-off between

sensitivity and specificity in SVM classification versus in silico tools used. SVM classification also
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(a) Dataset 1 (n=17)

(b) Dataset 2 (n=16)

Figure 4.3: ROC plot of SVM classification, Toxtree, Vega and OECD Toolbox based on leave one
out cross-validation. The black line depicts a random classifier.

had better performance metrics than in silico QSAR tools demonstrating the advantage of using

biological data as descriptors for predictive modeling.

Figure 4.1 shows how structurally diverse the chemical datasets are with reference to

Tanimoto similarity index. It is interesting to observe that even with such a diverse dataset there is



58

an apparent correlation between chemical carcinogenicity and the ability to simultaneously induce

the three enzymes. This demonstrates that even without structural similarity toxicological response

can be predicted based on biological similarity. This observation validates the concept behind

QBAR modeling. The findings illustrate that xenobiotic induced cytochrome P450 expression (in

vitro data) can be successfully used as a descriptor in QBAR modeling for carcinogenicity

prediction.

4.3.2 QBAR Model of In vitro Genotoxicity Assays for Carcinogenicity Prediction

4.3.2.1 Carcinogenicity, Mutagenicity and In vitro Genotoxicity Assays

Carcinogenic chemicals can be broadly categorized as genotoxic and non-genotoxic

carcinogens based on their mechanism of action. Genotoxic carcinogens exert their carcinogenic

ability by direct damage or alteration of the DNA. Mutagenic toxicity is the ability of a physical or

chemical agent to cause mutations by damage to the DNA [116, 117]. Owing to the correlations

between mutagenicity and carcinogenicity, mutagenic toxicity is widely used as an indicator of

possible carcinogenicity. Short term in vitro mutagenicity tests are, therefore, widely used to assess

genotoxic carcinogenicity [118].

Experimentally, mutagenicity is routinely assessed by the Ames test, which is an in vitro

bacterial reverse mutation assay to test genotoxicity [68]. The Ames test is a benchmark method

for mutagenicity testing by virtue of its well established standard protocol and acceptance within

the regulatory agencies. Over the past decades, several other bacterial mutagenicity tests have been

developed that are now being used worldwide because of their concordance with the Ames test. In

vitro genotoxicity assays are gaining importance because they: (i) present themselves as a short

term and an effective alternative to long term in vivo rodent cancer studies, (ii). offer an insight

into the mechanism behind genotoxic mode of action of chemicals, and (iii). can be used in the

quantification of risk associated with genotoxic chemicals [119, 120].

Unlike genotoxic carcinogens, there is no clear understanding of the mechanism of action

of non-genotoxic carcinogens. Carcinogenesis by non-genotoxic carcinogens can occur due to

chronic cell injury, immunosuppression, increased secretion of trophic hormones, receptor

activation, or CYP450 induction [116, 121]. Given the complex nature of non-genotoxic
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carcinogenicity, the results of in vitro genotoxicity assays are not sufficient and could well be

over-conservative and mechanistically unjustifiable. For instance, negative result in the Ames test

cannot necessarily be translated into a negative result for carcinogenicity, which leads to increased

false negative predictions. The National Toxicology Programme (NTP) conducted a study on the

ability of the Ames test to predict carcinogenicity and reported good accuracy but low sensitivity

(∼ 45%). The Ames test is also reported to have ∼ 85% reproducibility rate and ∼ 70%

concordance with structural alerts for carcinogenicity [67].

In general, in vitro genotoxicity assays are reported to have low sensitivity for prediction

of carcinogenicity. The use of genotoxicity testing strategy for carcinogenicity prediction, thus,

comes with a caveat of misleading false positive and false negative predictions. The latter case of

false negatives is especially important under REACH regulations for regulatory acceptance of

computational toxicology models [26]. It is clear that the performance of different assays varies

quite widely and, therefore, no single test should be considered as a gold standard for

carcinogenicity prediction. A stepwise approach using a battery of in vitro genotoxicity assays

should be performed to overcome the weaknesses of a single test [122, 123, 124]. It is proposed

that this protocol be adjusted to mathematically combine the results of different genotoxicity

assays to arrive at a final prediction. Such a combination is expected to improve the sensitivity and

overall concordance while still preserving the mechanistic insight from each of the in vitro assays.

In this chapter, in vitro genotoxicity assay data were used as biological descriptors for

carcinogenicity prediction as a proof-of-concept for development of proposed QBAR models.

4.3.2.2 Methods

• In vitro Genotoxicity Assay Data

The European Centre for the Validation of Alternative Methods (ECVAM), released a list of

22 genotoxic and 42 non-genotoxic chemicals for the evaluation of the ability of various in

vitro tests to predict rodent carcinogenicity. The results of 9 high-throughput in vitro

genotoxicity assays (Ames, micronucleus, H2AXISV, Vitotox, Radarscreen, RAD51,

Cystatin, p53, Nrf2 [125, 126, 127]) were collected from open literature for the ECVAM set

to develop a QBAR model for carcinogenicity prediction.
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• Carcinogenicity Data

The experimental in vivo carcinogenicity data for test chemicals was obtained from publicly

available carcinogenic potency database (CPDB) [78] and chemical carcinogenesis research

information system (CCRIS [79]). Chemicals with both chemical in vivo carcinogenicity

and in vitro assay data were finally selected for classification analysis. This filtering led to a

total of 56 chemicals in the dataset. The distribution of carcinogens to non-carcinogens in

the dataset is 31:25.

• Machine Learning Algorithm: Random Forests (RF)

Random Forest classification is a machine-learning algorithm that produces an ensemble of

unpruned decision trees for classification [128]. Each tree is developed by (i). selecting a

bootstrap sample from the training data with replacement, (ii). randomly selecting the best

descriptor variables at each node and growing the tree, and then (iii). estimating the

classification error by testing the tree on the remaining data. The new data is classified based

on the majority prediction of all the trees in the ensemble. The implementation is relatively

simple since only two parameters need to be specified: the number of trees in the forest and

the number of predictor variables at each node. The number of trees is generally

proportional to the number of predictor variables, so that each predictor is likely enough to

be selected. The number of predictor variables is generally defaulted to the square root of the

total number of variables [129, 130, 131].

The RF algorithm is especially suited for this problem because: (i). the algorithm can assess

the importance of different predictor variables (in vitro assays) and selects them accordingly

at different decision nodes incorporating multiple modes of action, (ii). it does an internal

performance assessment on the left out training data, thus, strengthening the analysis, and

(iii). it is robust against over-fitting. In general, the error rate (strength) of a RF depends

upon the correlation between the trees and the strength of the trees. Higher correlation leads

to increased error rates and higher strength of the each tree leads to decreased error

rates [132, 133].

Treebagger [134], the RF implementation in Matlab, was used in this analysis. The

Treebagger algorithm uses bagging to develop an ensemble of decision trees for
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classification. There is no recommended threshold for the number of trees and usually the

number is varied to observe any performance changes. Based on different articles on using

RFs, the number of trees was varied between 5 and 500 and default values for other

parameters were used.

4.3.2.3 Results

External model validation using leave one out cross validation (LOOCV) technique was

performed and the metrics defined in section 4.3.1.3 were evaluated. Table 4.2 summarizes the

correlation analysis of in vitro genotoxicity assays to rodent carcinogenicity tests. The benchmark

Ames assay had a sensitivity of about 49% whereas the H2AXIS assay had the highest overall

accuracy or concordance of about 70%. In general, all the genotoxicity assays had high specificity

but low sensitivity (< 52%) for the given ECVAM dataset.

The corresponding statistics for RF classification results are summarized in table 4.3.

Similar to reports in a study [135] that increasing the number of trees did not lead to improved

prediction accuracy. The best classification metrics were obtained at generating only 5 trees. RF

classification with 5 trees improved the sensitivity to about 61%.

In vitro Assay Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

Ames 67.86 45.16 96.00

MN 64.29 41.94 92.00

H2AXISV 69.94 51.61 92.00

Vitotox 64.29 41.94 92.00

Radarscreen 62.50 45.16 84.00

RAD51 60.71 35.48 92.00

Cystatin A 66.07 41.94 96.00

P53 66.07 48.39 88.00

Nrf2 62.50 54.84 72.00

Table 4.2: Performance metrics of genotoxicity assays. The highest value for each metric is high-
lighted in red.
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Number of
Trees

5 10 20 30 40 50

Accuracy(%) 67.86 62.50 62.50 58.93 58.93 64.29

Sensitivity(%) 61.29 51.62 58.06 54.84 54.84 58.06

Specificity(%) 76.00 76.00 68.00 64.00 64.00 72.00

Number of
Trees

100 110 120 130 140 150

Accuracy(%) 58.93 58.93 62.50 58.93 62.50 62.50

Sensitivity(%) 54.84 54.84 58.07 54.84 54.84 54.84

Specificity(%) 64.00 64.00 68.00 64.00 72.00 72.00

Number of
Trees

200 300 400 500 600 700

Accuracy(%) 62.50 58.93 60.71 62.50 64.29 64.29

Sensitivity(%) 54.84 51.61 54.84 54.84 58.07 58.07

Specificity(%) 72.00 68.00 68.00 72.00 72.00 72.00

Table 4.3: Performance metrics of the in vitro data based RF classifier (QBAR model) with varying
number of trees. The highest value for each metric is highlighted in red which is obtained for a
Random Forest with 5 trees.

Figure 4.4 shows the receiver operating characteristics of the RF classifiers with reference

to the in vitro assays. The red line corresponds to the performance of a random classifier that does

not have any preferences in a binary outcomes. As seen, RF classifiers had higher sensitivity as

compared to the genotoxicity assays and showed improved rate of false negatives.

4.3.2.4 Discussion

The results of the example case study demonstrate that RF classification addresses the

issue of low sensitivity of in vitro genotoxicity assays as discussed in Section 5.4.2. High

sensitivity is especially important under REACH requirements for regulatory applications i.e., to

protect environment and human health. Gain in sensitivity happens at the expense of specificity or

higher rate of false positives which also affects the overall accuracy. It is important for a classifier
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Figure 4.4: ROC plot of RF classification and in vitro genotoxicity assays based on leave one out
cross-validation. The black line depicts a random classifier.

to have high sensitivity in order to reduce the number of false negatives. RF classification does not

result in any improvement in overall accuracy but it still maintains the accuracy of the best in vitro

assay with the additional benefit of lower number of false positives. In terms of genotoxicity

assays, false negatives most likely include non-genotoxic carcinogens [118]. Thus, improved

sensitivity is probably an indication of higher rate of identification of non-genotoxic carcinogens

using genotoxicity assays.

The results of the RF classification also illustrate that: (i). the threshold parameter in the

model (number of trees in the random forest) can be changed to adjust the desired trade-off

between false positives and false negatives. However, if any in vitro assay were to be used

independently, there is no reference or protocol to change the threshold for each new chemical, and

(ii). the choice of number of trees in RF implementation creates only minor variation in the

classifier performance which demonstrates the robustness and consistency in performance of RF

algorithm for development of classification models. The results demonstrate how RF classification

results based on combination of in vitro genotoxicity assays can improve the identification of true

carcinogens. Further analysis can also be done to identify the most important assays to assist in the

design and selection of an in vitro battery of genotoxicity tests for improved carcinogenicity

prediction.
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4.4 Conclusion

The availability of high-throughput in vitro assay data offers a unique opportunity of

deriving knowledge about a chemical’s mechanism of toxic action. Mechanistically relevant in

vitro assays can be used as a powerful tool for identification of biomarkers of chemical toxicity and

uncover novel biochemical pathways underlying complex toxicological endpoints.

This chapter proposed the use of specific in vitro assays data in identification of relevant

biological descriptors and development of QBAR models for carcinogenicity prediction. The main

objective of the approach is to demonstrate a strategy for development of quantitative biological

activity relationship models with carcinogenicity as an example endpoint. Two case studies

supported by theory are presented to highlight similarities between QBAR and QSAR modeling

techniques. Case study in section 4.3.1 and 4.3.2 demonstrate an analogy between QSAR and

QBAR modeling in: (i). the selection of relevant descriptors to be used in different machine

learning algorithm, and (ii). the development of a computational model which maps

chemical/biological descriptors to a toxic endpoint, respectively. Both the case studies show

increased sensitivity or lower rates of false negatives, which is desirable in regulatory applications

and are suppoted with theory to address the OECD/REACH regulations for scientific validation as

well.

The results show that in vitro data can be sufficiently used to develop QBAR models for

carcinogenicity prediction. Such mechanism based models can be used along with QSAR models

for mechanistically complex toxicological endpoints to successfully advance the development of

toxicology and risk assessment studies.
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CHAPTER 5

HYBRID QSAR-QBAR MODELS FOR TOXICITY PREDICTION

Chemical structure based computational models (QSARs) have limitations in prediction of

complex toxic endpoints. Biological similarity based computational models (QBARs) have

limitations in extrapolation of in vitro responses to in vivo responses. Combination of

structural and biological features for development of predictive models for in vivo toxicity has

practical applications under REACH and OECD requirements for regulatory risk assessment.

This chapter proposes two novel techniques for the development of hybrid QSAR-QBAR

models. The methods satisfy the requirement for adequate and mechanistically reliable

interpretation of predictions as they are developed using both structural and biological

similarity. Two case studies are included which demonstrate the utility and the advantage of

the proposed methods over existing QSAR and QBAR methods.

5.1 Introduction

The primary responsibility of regulatory toxicologists is the estimation of safe levels of

chemical concentrations in marketable consumer products for protection of human and

environmental health. This risk assessment process is largely based on mechanistic and descriptive

toxicology data for the test chemical. However, the is challenge is regulation of too many

chemicals especially with an increasing surge of chemicals that are being used in various consumer

products and/or are released into the environment. Presently, up to 80,000 chemicals already exist

in the market and notifications for about 2000 new pre-manufacture chemicals happen every year.

Driven by the requirements for safety assessment and characterization of old and new chemicals

the REACH initiative of the European Union (EU) foresees increased use of alternative (in silico)

methods for reduction in time, cost and number of animals associated with conventional animal

testing methods [20, 27, 136, 137]. Alternative testing strategies are particularly useful in

regulatory applications because that information can be used to: (i). supplement experimental data,

(ii). support prioritization in the absence of experimental data, (ii). speed up the regulatory
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decision making process, and (iv). eventually substitute or replace experimental animal testing

methods [15, 16, 34].

In silico techniques for predictive toxicology primarily involve development of

quantitative structure activity relationship (QSAR) models, which are theoretical models that relate

a quantitative measure of chemical structure to a physical property, or a biological effect.

Traditional QSAR models employ chemical structure data as numerical descriptors, representing

inherent chemical properties, in a machine learning algorithm for toxicological classification of

chemicals. QSAR models have been used to develop in silico tools, which are widely used in the

pharmaceutical industry and regulatory agencies for drug discovery, risk assessment, toxicity

prediction and regulatory decisions [45, 32, 43]. However, as discussed in Chapter 3 and 4, QSAR

models often have limitations in their predictive ability due to: (i). lack of proper chemical

coverage in the training datasets, (ii). conflicting predictions by different QSAR models, and (iii).

the inability to capture the complex mechanisms associated with certain toxic endpoints.

More recently, a paradigm shift is seen in the ideology behind computational modeling for

toxicity prediction. There has been increased emphasis on the design and development of targeted

in vitro assays for screening and characterization of chemicals [56, 138]. The availability of

high-throughput screening methods has allowed for rapid generation of chemical response data

across a number of in vitro assays. Chapter 4 discusses novel applications of selected in vitro assay

data in identification of relevant biological descriptors and development of quantitative biological

activity relationship (QBAR) models for toxicity prediction. In vitro data has also been used as

biological descriptors in conjunction with chemical structural descriptors for development of

hybrid QSAR-QBAR models for predictive toxicology [94, 95, 97, 139], as discussed in Chapter 4.

Incorporation of in vitro data and development of QBAR models addresses some of the limitations

of QSAR models by virtue of their inherent mechanism based approach to predictive toxicology.

However, there are challenges in the use of in vitro data for predictive toxicology due to: (i).

experimental variability leading to poor quality data, (ii). questionable extrapolation of in vitro

responses to human effects, and (iii). the identification of relevant assays for a particular toxic

endpoint to unravel novel mechanistic networks.
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5.2 Hybrid QSAR-QBAR models

QSAR models are especially suited for development of predictive models for

mechanistically simple toxic endpoints when significant training (chemical) data is available.

QBAR models, on the other hand, are especially suited for development of predictive models for

more complex toxic endpoints even with smaller training (chemical) data. Integration of both

modeling techniques to develop hybrid QSAR-QBAR models not only benefits from their

complementary predictive insights but also alleviates the limitations associated with both of

them [93, 59, 96].

Hybrid QSAR-QBAR models can be realized based on two standard strategies for

integration techniques as shown in Figure 5.1. Type 1 models are developed as consensus models

that combine responses from multiple models. The simplest approach for type 1 models is the

majority voting technique where the class with the maximum number of votes is the preferred

class. Type 2 models are developed using a pool of mixed physico-chemical and biological

descriptors. Type 2 models can be more sophisticated in nature since they allow the

implementation of novel techniques in selection of relevant descriptors and a wide range of

machine learning algorithms for model development. Most of the studies reporting hybrid

QSAR-QBAR models implement standard machine learning algorithms using a combination of

physico-chemical and biological descriptors in a brute force manner [94, 95, 97, 139]. Such

approaches are not very progressive since they are limited by the lack of : (i). a well defined

approach for the selection of relevant descriptors, and (ii) transparency in the relative weightage

and contribution of the two modeling techniques. Newer strategies that utilize the idea of chemical

similarity in addition to mixed structural and biological descriptors for hybrid QSAR-QBAR

model development have been reported in two recent studies [140, 141].

This chapter proposes novel strategies for development type 1 and type 2 hybrid

QSAR-QBAR models. Two case studies are presented for each type which demonstrate their

application in the development of predictive models for in vivo carcinogenicity. Case study in

section 5.3.2 demonstrates how chemical response data from relevant in vitro assays and

predictions from multiple QSAR models can be combined together using weighted average



68

(a) Type 1 (b) Type 2

Figure 5.1: Hybrid QSAR-QBAR models.

ensemble learning method to develop a type 1 QSAR-QBAR model. Case study in section 5.4.2

demonstrates how structural similarity measured in terms of Tanimoto coefficient can be combined

with in vitro genotoxicity assay data to develop a type2 QSAR-QBAR model.

5.3 A Novel Strategy for Development of a Type 1 Hybrid

QSAR-QBAR Model

5.3.1 Weighted Averaging Ensemble Algorithm

Ensemble learning algorithms are techniques for development of consensus models.

Ensemble modeling techniques are based on the principle that integration of several diverse

classifiers enhances the performance of the final classifier. Furthermore, the method retains the

valuable information provided by all the classifiers. Herein, a novel application of the weighted

averaging ensemble classifier technique is presented for combining the results of multiple QSAR

and QBAR based models. Weighted averaging is similar to simple averaging, except that each

classifier is assigned a weight (significance) based on its individual predictive accuracy. The

weight assigned to each classifier is calculated as follows:
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Wi =
Ai

1−Ai
, (5.1)

where Ai is the predictive accuracy and Wi is the weight of the ith classifier and is calculated as:

Ai =
TPi + TNi

TPi + FNi + TNi + FPi
, (5.2)

where TPi is true positives, TNi is true negatives, FPi is false positives and FNi is false

negatives reported by the ith classifier. The final weighted classification of the model, Classfinal,

is then calculated as:

Classfinal =

∑
Ci ∗Wi∑
Wi

, (5.3)

where Ci is the class (0 or 1 i.e., non-toxic or toxic, respectively) predicted by the ith classifier.

Classfinal takes a value between 0 and 1, and is assigned a class based on the boundary cut-off.

5.3.2 Case Study: Using Weighted Averaging Algorithm for Combining in silico

QSAR Tools and in vitro Assay Data to Develop a Hybrid QSAR-QBAR

Model for in vivo Carcinogenicity Prediction

• Dataset

The European Centre for the Validation of Alternative Methods (ECVAM), released a list of

22 genotoxic and 42 non-genotoxic chemicals for the evaluation of the ability of various in

vitro tests to predict rodent carcinogenicity. The results of two high-throughput in vitro

genotoxicity assays, viz., Ames and micronucleus, were collected from open literature for

this dataset [125, 126, 127]. Two in silico QSAR tools, Toxtree and Lazar, were used to

predict carcinogenicity for this dataset. The corresponding in vivo rodent carcinogenicity

information was obtained from publicly available carcinogenic potency database
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(CPDB) [78] and chemical carcinogenesis research information system (CCRIS [79]). The

final dataset consists of a total of 56 chemicals with the ratio of carcinogens to

non-carcinogens of 31:25. Thus, four methods were used to make predictions about the

carcinogenic potential of the ECVAM dataset and were used as the individual classifiers in

the weighted majority model.

• Results

Leave one out cross validation was used to make a weighted prediction for each chemical in

the dataset. Table 5.1 shows the performance metrics of the in silico (QSAR) tools and the in

vitro (QBAR) assays. Table 5.2 shows the performance metrics of the weighted majority

model with varying cut-off values.

Toxtree Lazar Ames MN

Accuracy(%) 69.23 76.92 61.54 57.69

Sensitivity(%) 78.57 64.29 35.71 28.57

Specificity(%) 58.33 91.67 91.67 91.67

Table 5.1: Performance metrics for in silico tools (QSAR) and in vitro assays (QBAR). The highest
value for each metric is highlighted in red.

Hybrid QSAR-QBAR Weighted Average Model

(Cut-off) (0.0) (0.1),
(0.2)

(0.3) (0.4) (0.5),
(0.6)

(0.7),
(0.8)

(0.9),
(1.0)

Accuracy(%) 53.85 76.92 76.92 69.23 69.23 61.54 57.69

Sensitivity(%) 100.00 92.86 71.43 57.14 50.00 35.71 21.43

Specificity(%) 0.00 58.33 83.33 83.33 91.67 91.67 100.00

Table 5.2: Performance metrics for hybrid QSAR-QBAR model with varying cut-off. The highest
value for each metric is highlighted in red.
Note: Cut-off values of 0.1 and 0.2, 0.5 and 0.6, 0.7 and 0.8, and 0.9 and 1.0 yield the same result.
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Figure 5.2: Receiver Operating Characteristic plot comparing the performance of the Random For-
est classification with the in vitro genotoxicity assays. Blue line depicts a random classifier.

Figure 5.2 shows ROC plot which demonstrates the the relative performance of the

individual classifiers and the weighted majority model with regards to sensitivity and

specificity. The value of the cut-off can be varied between 0 and 1 to achieve a desired level

of trade-off between sensitivity and specificity. The best performance is obtained at a cut-off

of 0.1 and 0.2 which boosts the sensitivity to 92.86%. However, a more balanced

performance is obtained at a cut-off of 0.3 as seen in the ROC plot.

• Discussion

The main feature of the weighted algorithm is that it does not assume any classifier to be

superior than others. The relative power is decided on the basis of their individual predictive

ability. Every classifier employs a different strategy for making a prediction of the true class

and averaging the classifiers may produce a better approximation of the true class. This

study shows that classifiers with diverse predictive ability can be combined together to

improve the overall sensitivity, which is desirable under REACH requirements for the use of

alternative methods of toxicity testing in regulatory applications. The example demonstrates

the applicability of the technique for carcinogenicity prediction. However, the method can

be extended to include more number of classifiers and other toxicological endpoints too.
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5.4 A Novel Strategy for Development of a Type 2 Hybrid

QSAR-QBAR Model

5.4.1 Classifier Selection Algorithm

High-throughput screening data have mostly been used as independent descriptors along

with physiochemical properties for development of type 2 hybrid QSAR-QBAR models. Herein, a

novel classifier selection method is proposed which considers multiple in vitro assays as

independent classifiers and then selects a classifier that is most competent in a local training space

for making the final classification. The proposed method first defines a local training dataset for

each chemical taking into account structural similarity of chemicals and then selects a classifier

using a selection criteria based on local efficiency. The following three steps characterize the

work-flow of this approach:

1. Selection of the local training dataset: The structural similarity score of each test chemical

from the remaining chemicals in the chemical dataset is determined. Similarity is measured

in terms of the Tanimoto coefficient and the scores are obtained from the structure clustering

option on Pubchem (https://pubchem.ncbi.nlm.nih.gov). For each chemical K nearest

neighbors are selected which serve as the local training dataset.

2. Selection of the most relevant classifier: Once the training dataset is established two types

of classifier selection techniques are used to select the most relevant classifier as described

below:

• Dynamic Classifier Selection (DCS): The final classification is based the predictive

accuracy of each in vitro assay is determined for each local training dataset. The in

vitro assay with the highest accuracy is selected as the most efficient classifier.

• Adaptive Classifier Selection (ACS): The final classification is based on how

accurately a class is predicted by the classifiers. Positive predictive value (PPV) and

negative predictive value (NPV) of each in vitro assay are determined for each local

training dataset. For each classifier the final selection is based on the higher value of
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PPV (positive) or NPV (negative). Finally, an average consensus decision based on

these predictions is used to make a final classification.

3. Classification of the test chemical: Each test chemical is classified based on prediction

made by the classifier identified in step 2 for the closest neighbor training data set.

The novelty of the proposed algorithm lies in the unique utilization of structural similarity

information for the construction of personalized training datasets and selection of the most relevant

classifier for each dataset. Similarity based training datasets are especially relevant in

characterization of the applicability domain of the model, which can be adjusted depending upon

the number of nearest neighbors selected. Moreover, since the prediction is based on a training

dataset of structurally similar chemicals, both the classifier selection and its outcome are

transparent.

5.4.2 Case Study: Using Chemical Similarity and In vitro Genotoxicity Data to

Develop a Hybrid QSAR-QBAR Model for In vivo Carcinogenicity Prediction

In vitro genotoxicity assays (e.g., Ames test) are widely used as an alternative to in vivo

animal testing methods for predicting the carcinogenic potential of chemicals used in consumer

products. However, genotoxicity assays are generally reported to show low concordance with high

rates of false negatives. False negatives or low sensitivity is especially undesirable under the

REACH regulations for regulatory acceptance of alternative methods for risk assessment.

Chapter 4 discussed an ensemble approach to address the issue of low sensitivity of

genotoxicity assays. In this chapter, the applicability of classifier selection algorithm is explored

for the integration of the concept of chemical structural similarity (borrowed from QSAR

modeling) with chemical response data from genotoxicity assays (biological data) in the selection

of the most reliable assay for each test chemical.

• Dataset

In vitro genotoxicity assay dataset described in Chapter 4, Section 4.3.2.1 is used in this

analysis. The dataset consists of chemical response data across 9 high-throughput in vitro
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genotoxicity assays (Ames, micronucleus, H2AXISV, Vitotox, Radarscreen, RAD51,

Cystatin, p53, Nrf2 [125, 126, 127]). The corresponding in vivo rodent carcinogenicity

information was obtained from publicly available carcinogenic potency database

(CPDB) [78] and chemical carcinogenesis research information system (CCRIS [79]). The

dataset consists of a total of 56 chemicals with the ratio of carcinogens to non-carcinogens of

31:25.

• Results

Table 5.3 shows the performance of genotoxicity assays in predicting carcinogenicity for the

ECVAM dataset. Classifier selection technique is used to determine the prediction for each

chemical based on leave one out cross validation. Table 5.4 shows the performance of the

model. The hybrid model boosts the sensitivity of predictions at the expense of specificity.

Variation in the number of closest neighbors can be made to select a desirable trade-off

between sensitivity and specificity as shown in the receiver operating curve (ROC) in

Figure 5.3.

In vitro Assay Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

Ames 67.86 45.16 96.00

MN 64.29 41.94 92.00

H2AXISV 69.94 51.61 92.00

Vitotox 64.29 41.94 92.00

Radarscreen 62.50 45.16 84.00

RAD51 60.71 35.48 92.00

Cystatin A 66.07 41.94 96.00

P53 66.07 48.39 88.00

Nrf2 62.50 54.84 72.00

Table 5.3: Performance metrics of genotoxicity assays. The highest value for each metric is high-
lighted in red.
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Model Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

Training Data Size = 5

DCS 57.14 67.74 44.00

ACS 50.00 54.84 44.00

Training Data Size = 10

DCS 55.36 54.84 56.00

ACS 46.43 67.74 20.00

Training Data Size = 15

DCS 48.21 32.26 68.00

ACS 57.14 70.97 40.00

Table 5.4: Performance metrics for classifier selection model. The highest value for each metric is
highlighted in red.

Figure 5.3: Receiver Operating Characteristic plot comparing the performance of the ACS and DCS
methods with varying number of nearest neighbors. The black line depicts a random classifier.

• Discussion

As discussed in Chapter 4, it is seen that the well accepted in vitro genotoxicity assays are

not very accurate predictors of in vivo carcinogenicity. In general, the sensitivity of
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genotoxicity assays is very low (< 50%) for carcinogenicity prediction. The performance of

the classifier selection technique does not improve the predictive ability to a great extent.

The success of the method depends on how well a test chemical is represented in the closest

neighbor training dataset i.e., closeness and the number of nearest neighbors.

The diversity of the chemical dataset used in this example is shown in Figure 5.4. The

heatmap shows that the chemicals in the EVCAM dataset are very dissimilar in nature where

most chemical pairs have a low Tanimoto score (< 0.5) and very few chemical pairs have a

high Tanimoto score (> 0.8). The method, therefore, needs to be validated using a chemical

dataset with more structurally similar compounds. Other measures of chemical similarity

can also be explored to determine the best structural analogs.

Figure 5.4: HeatMap representation of chemical diversity of the ECVAM dataset measured in terms
of Tanimoto distance. The annotations in each cell correspond to the distance between the two
chemicals (numbers). The colorbar on the right shows mapping of the distance (range: 0-1) to a
gray colorscale.

Nonetheless, the example demonstrates how the classifier selection method can be used to

develop type 2 hybrid QSAR-QBAR models for carcinogenicity prediction. The method can

also be used to predict any toxic endpoint with suitable selection of relevant in vitro assays.
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5.5 Conclusion

Development of novel hybrid QSAR-QBAR models is the next step in the advancement of

the field of predictive toxicology. This chapter introduced two novel algorithms for development of

hybrid models and discussed how they can improve the performance of existing methods. The case

studies demonstrate the proof-of-concept and the advantages of the proposed strategies over

existing QSAR and QBAR methods. These methods are expected to produce robust models

because they incorporate both structural similarity and biological similarity for predictive

toxicology.

The databases with the results of high-throughput in vitro screening of environmental

chemicals continue to grow. Most of this data is publically accessible and provides opportunities

for novel applications. With availability of more chemicals related to more and more toxic

endpoints, such data can be used for further evaluation of the methods developed in this chapter.

Synergistic use of relevant biological interactions and physicochemical/structural similarity better

represents the underlying complex mechanisms by which chemicals exert their toxic effects. Use

of in vitro data along with structural similarity in computational toxicology provides important

clues for identifying biomarkers and helps in refining the mechanistic understanding of the

mechanisms of toxicity (e.g.oxidative stress). These indications can support the design and

development of more focused short-term in vitro assays for specific toxic endpoints. This can,

further, improve the reliability and transparency of predictions in accordance with the legislative

guidelines for development of computational toxicology models. Thus, integration of QSAR and

QBAR modeling techniques for development of hybrid models has the potential of producing

powerful tools for toxicity prediction.
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CHAPTER 6

CONCLUSION

”Hope is not the conviction that something will turn out well but the certainty that something

makes sense, regardless of how it turns out” - Vàclav Havel”

Computational or in silico toxicology has witnessed a significant influx of new methods in

the past few decades. Most of these technologies are driven by legislative regulations enforced by

the European Union for the risk assessment of xenobiotics used in consumer products for

protection of human and environmental health. Regulatory guidelines for development of in silico

models is driven partly by ever increasing concerns regarding the effects of long-term exposure to

a wide range of xenobiotics and partly by the need to maintain the ecological balance and ethical

considerations in reduction of animal models for toxicity testing.

Traditional in silico methods, Quantitative Structure Activity Relationships (QSARs), are

presently limited in their ability to accurately and reliably predict toxicity associated with newly

tailored and untested chemicals. The limitations in structure-activity correlation based QSAR

models can be attributed to the general challenges in modeling a complex phenomenon (such as

toxicity) and corroborating the model predictions with a firm scientific rationale. In the past few

decades, computational toxicology has embraced a focus on the use of mechanism based data in

training in silico models. Mechanistic approaches offer new avenues for un-earthing new

mechanisms for addressing the gaps in QSAR methods. Such approaches improve the confidence

in prediction since they are not just based on correlation but on the mechanistic knowledge of how

xenobiotics exert their toxic effects. Mechanism based approaches also align with the legislative

guidelines enforced by various regulatory organizations which ensure that in silico models are

reliable before they can be used for regulatory risk assessment. Toxicology has, thus, evolved from

phenomenon based remediation methods to in silico predictive methods to mechanism based

methods.

This disseration addresses some of the limitations associated with the use of current in

silico QSAR tools and explores novel methods for the development of mechanism based

computational toxicology models with special emphasis on regulatory considerations. Chapter 3



79

addresses the issue of variability in toxicity predictions for a chemical by different in silico QSAR

tools. A novel method is presented for combining predictions from multiple in silico QSAR tools

to develop an ensemble QSAR tool. The method allows for flexibility in choosing a balance

between false positive and false negative predictions and, hence, the overall predictive ability of

the ensemble QSAR tool. This feature provides an additional control to the regulators in grading a

chemical based on the severity of the toxic endpoint under study. Chapter 4 addresses the concerns

in the use of mechanistically relevant in vitro assays in development of in silico tools for toxicity

prediction. Two novel methods are presented to demonstrate how to derive mechanistically

relevant in vitro data for the development of Quantitative Biological Activity Relationship (QBAR)

models for in vivo carcinogenicity prediction. The case studies show lower rates of false negatives

which is desirable under regulatory legislation. The results demonstrate how QBAR models can

sufficiently predict carcinogenicity when QSAR model predictions may fail. Chapter 5 presents

two novel methods for the fusion of QSAR and QBAR idealogies for the development of in silico

tools for toxicity prediction. These methods explore the capabilities of synergistic use of structural

similarity and mechanistic approaches to develop more powerful predictive models. Two case

studies are presented which demonstrate the feasibility of the proposed methods and their

relevance within regulatory guidelines.

There is still a lot to explore within and beyond the scope of this dissertation. There still

exists a need for development of new methods that incorporate different facets of chemical nature

for the development of rapid and reliable methods for computational prediction of toxicity. While

no single in silco tool can be deemed as a marvel, each one of them continues to contribute to the

overall development of the field of computational toxicology.
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APPENDIX A
DATASETS - CHAPTER 3

A.1 Dataset 1: Air Toxins

Table A.1: List of Chemicals for Dataset 1 (Air Toxins) in Chapter 3

No. CASRN Chemical Name
1 2278-53-7 [R-(E)]-5-isopropyl-8-methylnona-6,8,-dien-2-one
2 7287-82-3 1-(2-methylphenyl)ethanol
3 630-20-6 1,1,1,2-tetrachloroethane
4 71-55-6 1,1,1-Trichloroethane
5 79-00-5 1,1,2-trichloroethane
6 75-34-3 1,1-dichloroethane
7 75-35-4 1,1,-Dichloroethylene (1,1-DCE)
8 156-59-2 1,2 (trans)-dichloroethylene
9 87-61-6 1,2,3-trichlorobenzene
10 96-18-4 1,2,3-Trichloropropane
11 95-94-3 1,2,4,5-tetrachlorobenzene
12 120-82-1 1,2,4-trichlorobenzene
13 95-63-6 1,2,4-trimethylbenzene
14 930-87-0 1,2,5-trimethylpyrrole
15 84-78-6 1,2-benzenedicarboxylic acid, butyl octy
16 96-12-8 1,2-dibromo-3-chloropropane
17 106-93-4 1,2-Dibromoethane
18 95-50-1 1,2-dichlorobenzene
19 107-06-2 1,2-dichloroethane
20 78-87-5 1,2-Dichloropropane
21 122-66-7 1,2-diphenylhydrazine
22 106-88-7 1,2-Epoxybutane (EBU)
23 2235-12-3 1,3,5 hexatriene
24 108-67-8 1,3,5-trimethylbenzene
25 99-35-4 1,3,5-trinitrobenzene
26 106-99-0 1,3-Butadiene
27 542-92-7 1,3-cyclopentadiene
28 541-73-1 1,3-dichlorobenzene
29 542-75-6 1,3-Dichloropropene
30 99-65-0 1,3-dinitrobenzene
31 646-06-0 1,3-dioxalane
32 106-46-7 1,4-Dichlorobenzene
33 123-91-1 1,4-dioxane
34 575-43-9 1,6-dimethylnaphthalenea
35 822-06-0 1,6-Hexamethylene disocyanate
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No. CASRN Chemical Name
36 75-68-3 1-Chloro-1,1-difluoroethane
37 622-96-8 1-ethenyl-4-methyl-benzene
38 621-32-9 1-ethoxy-3-methyl-benzene
39 874-41-9 1-ethyl-2,4-dimethyl-benzene
40 620-14-4 1-ethyl-3-methyl-benzene
41 622-96-8 1-ethyl-4-methylbenzene
42 592-41-6 1-hexene
43 3034-50-2 1H-imidazole-4-carbaldehyde
44 99-87-6 1-isopropyl-4-methylbenzene
45 2886-59-1 1-methoxy-1,4-cyclohexadiene
46 767-59-9 1-methyl-1H-indene
47 99-85-4 1-methyl-4-(1-methylethyl)1,4- cyclohexadiene
48 3333-13-9 1-methyl-4-(2-propenyl)-benzene
49 90-12-0 1-methylnaphthalene
50 110-66-7 1-pentanethiol
51 103-65-1 1-propylbenzene
52 2409-55-4 2-(1,1-dimethylethyl)-4-methyl-phenol
53 2219-82-1 2-(1,1-dimethylethyl)-6-methyl-phenol
54 4901-51-3 2,3,4,5-tetrachlorophenol
55 58-90-2 2,3,4,6-tetrachlorophenol
56 28790-86-5 2,3,4-trimethyl-2-cyclopenten-1-one
57 431-03-8 2,3-butanedione
58 83-33-0 2,3-dihydro-1H-inden-1-one
59 526-75-0 2,3-dimethyl-phenol
60 118-96-7 2,4,6-trinitrotoluene
61 96-76-4 2,4-bis(1,1-dimethylethyl)-phenol
62 120-83-2 2,4-dichlorophenol
63 13494-06-9 2,4-dimethyl-1,3-cyclopentanedione
64 565-80-0 2,4-dimethyl-3-pentanone
65 105-67-9 2,4-dimethylphenol
66 51-28-5 2,4-dinitrophenol
67 26471-62-5 2,4/2,6-Toluene diisocyanate mixture (TDI)
68 5875-45-6 2,5-bis(1,1-dimethylethyl)-phenol
69 120-52-5 2,5-cyclohexadiene-1,4-dione, bis(O-benzoyloxime)
70 3891-98-3 2,6,10-trimethyldodecane
71 112-35-6 2-[2-(2-methoxyethoxy)ethoxy]-ethanol
72 78-92-2 2-butanol
73 78-93-3 2-butanone
74 532-27-4 2-Chloroacetophenone
75 91-58-7 2-chloronaphthalenea
76 95-57-8 2-chlorophenol
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No. CASRN Chemical Name
77 693-54-9 2-decanone
78 769-25-5 2-ethenyl-1,3,5-trimethyl-benzene
79 110-80-5 2-Ethoxyethanol
80 1758-88-9 2-ethyl-1,4-dimethylbenzene
81 104-76-7 2-ethyl-1-hexanol
82 1551-06-0 2-ethyl-1H-pyrrole
83 123-05-7 2-ethylhexanal
84 591-78-6 2-Hexanone
85 90-02-8 2-hydroxybenzaldehyde
86 1195-09-1 2-methoxy-5-methylphenol
87 109-86-4 2-Methoxyethanol
88 636-41-9 2-methyl-1H-pyrrole
89 75-66-1 2-methyl-2-propanethiol
90 565-69-5 2-methyl-3-pentanone
91 78-78-4 2-methylbutane
92 91-57-6 2-methylnaphthalenea
93 95-48-7 2-methylphenol
94 75-66-1 2-methyl-propane-2-thiol
95 78-84-2 2-methylpropanal
96 554-14-3 2-methylthiophene
97 7045-71-8 2-methylundecane
98 88-74-4 2-nitroaniline
99 79-46-9 2-Nitropropane

100 821-55-6 2-nonanone
101 111-13-7 2-octanone
102 2809-67-8 2-octyne
103 107-87-9 2-pentanone
104 21915-53-7 2-phenyl-oxiranemethanol
105 75-33-2 2-propanethiol
106 873-94-9 3,3,5-trimethylcyclohexanone
107 119-90-4 3,3-dimethoxybenzidine
108 27129-87-9 3,5-dimethyl-benzenemethanol
109 108-68-9 3,5-dimethyl-phenol
110 26472-00-4 ”3a,4,7,7a-tetrahydrodimethyl-4,7-methano-1H-inde”
111 21835-01-8 3-ethyl-2-hydroxy-2-cyclopenten-1-one
112 767-60-2 3-methyl-1H-indene
113 563-80-4 3-methyl-2-butanone
114 590-86-3 3-methylbutanal
115 96-14-0 3-methylpentane
116 108-39-4 3-methylphenol
117 99-09-2 3-nitroaniline
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No. CASRN Chemical Name
118 24851-98-7 3-oxo-2-pentyl-cyclopentaneacetic acid
119 96-22-0 3-pentanone
120 101-55-3 4-bromophenyl-phenylether
121 59-50-7 4-chloro-3-methylphenol
122 7005-72-3 4-chlorophenyl-phenylether
123 2896-60-8 4-ethyl-1,3-benzenediol
124 4748-78-1 4-ethylbenzaldehyde
125 121-33-5 4-hydroxy-3-methoxybenzaldehyde
126 150-76-5 4-methoxyphenol
127 108-10-1 4-methyl-2-pentanone
128 141-79-7 4-methyl-3-penten-2-one
129 104-87-0 4-methylbenzaldehyde
130 589-18-4 4-methyl-benzenemethanol
131 106-44-5 4-methylphenol(p-cresol)
132 100-01-6 4-nitroaniline
133 3775-01-7 5-benzylidenehydantoin
134 15356-70-4 5-methyl-2-(1-methylethyl)-cyclohexanol
135 17312-76-4 6,6-dimethylundecane
136 514-10-3 abietic acid
137 75-07-0 Acetaldehyde
138 75-05-8 Acetonitrile
139 98-86-2 acetophenone
140 107-02-8 Acrolein
141 79-06-1 Acrylamide
142 79-10-7 Acrylic acid
143 107-13-1 Acrylonitrile
144 107-05-1 Allyl chloride
145 319-84-6 alpha-hexachlorocyclohexane
146 62-53-3 Aniline
147 120-12-7 anthracenea
148 12674-11-2 aroclor 1016
149 100-52-7 benzaldehyde
150 71-43-2 Benzene
151 60-12-8 benzeneethanol
152 56-55-3 benzo(a)anthracenea
153 50-32-8 benzo(a)pyrene
154 191-24-2 benzo(ghi)perylenea
155 65-85-0 benzoic acid
156 100-47-0 benzonitrile
157 100-51-6 benzyl alcohol
158 100-44-7 benzyl chloride
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No. CASRN Chemical Name
159 319-85-7 beta-hexachlorocyclohexane
160 92-52-4 biphenyl
161 111-44-4 bis(2-chlorethyl)ether
162 108-60-1 bis-1,2-chloroisopropyl ether
163 464-41-5 bornyl chloride
164 108-86-1 Bromobenzene
165 75-27-4 bromodichloromethane
166 75-25-2 bromoform
167 74-83-9 Bromomethane
168 123-72-8 butanal
169 106-97-8 butane
170 107-92-6 butanoic acid
171 128-37-0 butylated hydroxytoluene
172 123-72-8 butyraldehyde
173 56-23-5 Carbon tetrachloride
174 108-90-7 chlorobenzene
175 75-45-6 Chlorodifluoromethane
176 75-00-3 chloroethane
177 218-01-9 chrysene a
178 156-59-2 cis-1,2-dichloroethylene
179 123-73-9 crotonaldehyde
180 98-82-8 Cumene
181 592-57-4 cyclohexa-1,3-diene
182 110-82-7 Cyclohexane
183 108-94-1 cyclohexanone
184 108-91-8 cyclohexylamine
185 542-92-7 cyclopentadiene
186 124-18-5 decane
187 53-70-3 dibenzo(ah)anthracene a
188 124-48-1 dibromochloromethane
189 75-09-2 Dichloromethane
190 75-71-8 dichlorodifluoromethane
191 62-73-7 Dichlorvos
192 110-81-6 diethyl disulfide
193 84-66-2 diethyl phthalate
194 352-93-2 diethyl sulfide
195 108-83-8 diisobutylketone
196 624-92-0 dimethyl disulfide
197 131-11-3 dimethyl phthalate
198 75-18-3 dimethyl sulfide
199 3658-80-8 dimethyl trisulfide
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No. CASRN Chemical Name
200 127-19-5 dimethylacetamide
201 2432-89-5 di-n-decyl sebacate
202 117-84-0 di-n-octylphthalate
203 112-40-3 dodecane
204 112-95-8 eicosane
205 506-30-9 eicosanoic acid
206 106-89-8 Epichlorohydrin
207 75-08-1 ethanethiol
208 64-17-5 ethanol
209 75-00-3 Ethyl Chloride
210 111-76-2 Ethylene glycol monobutyl ether (EGBE) (2-Butoxyethanol)
211 97-63-2 ethyl methacrylate
212 62-50-0 ethyl methanesulfonate
213 624-89-5 ethyl methyl sulfide
214 100-41-4 Ethylbenzene
215 106-93-4 ethylene dibromide
216 75-21-8 ethylene oxide
217 64-18-6 formic acid
218 629-78-7 heptadecane
219 142-82-5 heptane
220 111-14-8 heptanoic acid
221 87-68-3 hexachloro-1,3-butadiene
222 118-74-1 hexachlorobenzene
223 77-47-4 Hexachlorocyclopentadiene (HCCPD)
224 67-72-1 Hexachloroethane
225 70-30-4 hexachlorophene
226 544-76-3 hexadecane
227 66-25-1 hexaldehyde
228 110-54-3 n-Hexane
229 95-13-6 indene
230 79-77-6 ionone
231 75-28-5 iso-butane
232 78-59-1 isophorone
233 67-63-0 iso-propanol
234 98-82-8 isopropylbenzene
235 50-21-5 lactic acid
236 97-67-6 malic acid
237 78-85-3 methacrolein
238 126-98-7 methacrylonitrile
239 74-93-1 methanethiol
240 79-20-9 methyl acetate



96

No. CASRN Chemical Name
241 74-83-9 methyl bromide
242 74-87-3 Methyl chloride
243 78-93-3 Methyl ethyl ketone (MEK)
244 108-10-1 Methyl isobutyl ketone (MIBK)
245 80-62-6 Methyl methacrylate
246 298-00-0 methyl parathion
247 1634-04-4 Methyl tert-butyl ether (MTBE)
248 108-87-2 methylcyclohexane
249 96-37-7 methylcyclopentane
250 74-95-3 methylene bromide
251 75-09-2 methylene chloride
252 101-68-8 Methylene Diphenyl Diisocyanate and polymeric MDI
253 78-98-8 methylglyoxal
254 91-20-3 Napthalene
255 68-12-2 N,N-Dimethylformamide
256 629-97-0 n-docosane
257 463-82-1 neo-pentane
258 629-94-7 n-heneicosane
259 57-10-3 n-hexadecanoic acid
260 98-95-3 Nitrobenzene
261 924-16-3 n-nitroso-di-n-butylamine
262 86-30-6 n-nitrosodiphenylamine
263 621-64-7 n-nitrosodipropylamine
264 111-84-2 nonane
265 103-65-1 n-propylbenzene
266 14167-59-0 n-tetratriacontane
267 638-68-6 n-triacontane
268 57-11-4 octadecanoic acid
269 111-65-9 octane
270 95-53-4 o-toluidine
271 144-62-7 oxalic acid
272 106-47-8 p-chloroaniline
273 608-93-5 pentachlorobenzene
274 82-68-8 pentachloronitrobenzene
275 87-86-5 pentachlorophenol
276 109-66-0 pentane
277 4292-92-6 pentylcyclohexane
278 85-01-8 phenanthrenea
279 108-95-2 phenol
280 60-12-8 phenylethanol
281 75-44-5 Phosgene
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No. CASRN Chemical Name
282 85-44-9 phthalic anhydride
283 123-38-6 propanal
284 74-98-6 propane
285 75-33-2 propane-2-thiol
286 115-07-1 propene
287 123-38-6 Propionaldehyde
288 107-98-2 Propylene glycol monomethyl ether (PGME)
289 75-56-9 Propylene oxide
290 129-00-0 pyrenea
291 110-86-1 pyridine
292 3232-37-9 salicylidene benzhydrazide
293 100-42-5 Styrene
294 127-18-4 Tetrachloroethylene
295 629-59-4 tetradecane
296 109-99-9 Tetrahydrofuran
297 7098-22-8 tetratetracontane
298 108-88-3 Toluene
299 79-01-6 Trichloroethylene
300 75-69-4 trichlorofluoromethane
301 67-66-3 trichloromethane
302 629-50-5 tridecane
303 121-44-8 Triethylamine
304 75-50-3 trimethylamine
305 540-84-1 2,2,4-Trimethylpentane
306 791-28-6 triphenylphosphine oxide
307 1120-21-4 undecane
308 110-62-3 valeraldehyde
309 121-33-5 vanillin
310 108-05-4 Vinyl acetate
311 593-60-2 Vinyl bromide
312 75-01-4 Vinyl chloride
313 95-47-6 o-Xylene
314 106-42-3 p-Xylene
315 544-25-2 1,3,5-cycloheptatriene

A.2 Dataset 2: Medical Device Leachables

Data cannot be shared.
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A.3 Dataset 3: Subset of Carcinogenic Potency Database

Table A.2: List of Chemicals for Dataset 3 (CPDB) in Chapter 3

No. CASRN Chemical Name
1 62-73-7 Dichlorvos
2 126-72-7 Tris(2,3-dibromopropyl) phosphate
3 597-25-1 Dimethyl morpholinophosphoramidate
4 52-68-6 Trichlorfon
5 531-18-0 Hexamethylmelamine
6 513-37-1 Dimethylvinyl chloride (DMVC)
7 593-60-2 Vinyl bromide
8 75-02-5 Ethene, fluoro-
9 75-01-4 Ethene, chloro-

10 305-03-3 Chlorambucil
11 50-18-0 Cyclophosphamide
12 148-82-3 Melphalan
13 3546-10-9 Phenesterin
14 51-75-2 Nitrogen mustard
15 3068-88-0 beta-Butyrolactone
16 1955-45-9 Pivalolactone
17 1120-71-4 Propane sultone
18 57-57-8 Propiolactone
19 106-92-3 Allyl glycidyl ether
20 101-90-6 Diglycidyl resorcinol ether, technical grade
21 77-83-8 Ethyl-3-methyl-3-phenylglycidate
22 75-21-8 Ethylene oxide
23 106-87-6 4-Vinyl-1-cyclohexene diepoxide
24 556-52-5 Glycidol
25 57-39-6 Metepa
26 122-60-1 Phenyl glycidyl ether
27 75-56-9 1,2-Propylene oxide
28 96-09-3 Styrene oxide
29 52-24-4 Tris(aziridinyl)-phosphine sulfide (thio-tepa)
30 298-18-0 1,2,3,4-Diepoxybutane DL
31 106-88-7 1,2-Epoxybutane
32 100-44-7 Benzyl chloride
33 3296-90-0 2,2-Bis(bromomethyl)-1,3-propanediol, technical grade
34 108-60-1 Bis(2-chloro-1-methylethyl)ether, technical grade
35 75-27-4 Bromodichloromethane
36 109-69-3 n-Butyl chloride
37 75-88-7 2-Chloro-1,1,1-trifluoroethane
38 532-27-4 2-Chloroacetophenone (CN)
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No. CASRN Chemical Name
39 124-48-1 Chlorodibromomethane
40 107-30-2 Chloromethyl methyl ether
41 96-12-8 1,2-Dibromo-3-chloropropane
42 106-93-4 1,2-Dibromoethane
43 107-06-2 1,2-Dichloroethane
44 78-87-5 1,2-Dichloropropane (propylene dichloride)
45 72-56-0 Di(p-ethylphenyl)dichloroethane
46 306-83-2 Ethane, 2,2-dichloro-1,1,1-trifluoro-
47 144-48-9 Iodoacetamide
48 75-47-8 Iodoform
49 3778-73-2 Isophosphamide
50 576-68-1 Mannitol nitrogen mustard
51 74-83-9 Methyl bromide
52 79-11-8 Monochloroacetic acid
53 79-34-5 1,1,2,2-Tetrachloroethane
54 15318-45-3 Thiamphenicol
55 75-25-2 Tribromomethane
56 79-00-5 1,1,2-Trichloroethane
57 96-18-4 1,2,3-Trichloropropane
58 542-88-1 Bis(chloromethyl) ether
59 74-96-4 Bromoethane (ethyl bromide)
60 75-45-6 Methane, chlorodifluoro-
61 75-00-3 Chloroethane
62 593-70-4 Chlorofluoromethane
63 75-34-3 1,1-Dichloroethane
64 96-24-2 3-Chloro-1,2-propanediol
65 75-09-2 Methylene chloride
66 10318-26-0 Dibromodulcitol
67 79-43-6 Dichloroacetic acid
68 542-56-3 Isobutyl nitrite
69 79-06-1 Acrylamide
70 14484-47-0 Deflazacort
71 50-02-2 Dexamethazone
72 50-23-7 Hydrocortisone
73 78-59-1 Isophorone
74 123-33-1 Maleic hydrazide
75 50-24-8 Prednisolone
76 37076-68-9 Tegafur
77 76-25-5 Triamcinolone acetonide
78 66-22-8 Uracil
79 34661-75-1 Urapidil
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80 518-75-2 Citrinin
81 51-21-8 5-Fluorouracil
82 75-07-0 Acetaldehyde
83 100-52-7 Benzaldehyde
84 98-01-1 Furfural
85 129-43-1 1-Hydroxyanthraquinone
86 129-15-7 2-Methyl-1-nitroanthraquinone
87 117-10-2 Danthron
88 81-54-9 Purpurin
89 57-14-7 Dimethyl hydrazine (DMH)
90 34176-52-8 2-Hydrazino-4-phenylthiazole
91 122-66-7 Hydrazobenzene
92 54-85-3 Isoniazid
93 6294-89-9 Methyl carbazate
94 671-16-9 Procarbazine
95 32852-21-4 Formic acid 2-(4-methyl-2-thiazolyl)hydrazide
96 2411-74-7 2-Furaldehyde semicarbazone
97 1156-19-0 Tolazamide
98 25843-45-2 Azoxymethane
99 622-78-6 Benzyl isothiocyanate
100 2257-09-2 Phenethyl isothiocyanate
101 10473-70-8 1-(4-Chlorophenyl)-1-phenyl-2-propynyl carbamate
102 598-55-0 Methyl carbamate
103 51-79-6 Urethane
104 1212-29-9 N,N’-Dicyclohexylthiourea
105 96-45-7 Ethylene thiourea (ETU)
106 13752-51-7 Morpholine, 4-[(4-morpholinylthio)thioxomethyl]-
107 97-77-8 Tetraethylthiuram disulfide
108 137-26-8 Tetramethylthiouram disulfide
109 62-55-5 Thioacetamide
110 62-56-6 Thiourea
111 2489-77-2 Trimethylthiourea
112 105-55-5 N,N’-Diethylthiourea
113 50-32-8 Benzo(a)pyrene
114 56-49-5 3-Methylcholanthrene
115 128-66-5 C.I Vat yellow 4
116 244-63-3 Norharman
117 115-28-6 Chlorendic acid
118 143-50-0 Chlordecone (kepone)
119 39801-14-4 Mirex, photo-
120 2385-85-5 Mirex
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No. CASRN Chemical Name
121 760-56-5 1-Allyl-1-nitrosourea
122 10589-74-9 1-Amyl-1-nitrosourea
123 16338-97-9 Diallylnitrosamine
124 56654-52-5 1,3-Dibutyl-1-nitrosourea
125 3276-41-3 3,6-Dihydro-2-nitroso-2H-1,2-oxazine
126 3851-16-9 N,N’-Dimethyl-N,N’-dinitrosophthalamide
127 55557-00-1 Dinitrosohomopiperazine
128 38434-77-4 Ethylnitrosocyanamide
129 14026-03-0 R(-)-2-Methyl-N-nitrosopiperidine
130 16813-36-8 1-Nitroso-5,6-dihydrouracil
131 55090-44-3 N-Nitroso-N-methyl-N-dodecylamine
132 684-93-5 N-Nitroso-N-methylurea
133 55556-92-8 Nitroso-1,2,3,6-tetrahydropyridine
134 51542-33-7 N-Nitrosobenzthiazuron
135 53609-64-6 N-Nitrosobis(2-hydroxypropyl)amine
136 60599-38-4 N-Nitrosobis(2-oxopropyl)amine
137 924-16-3 Nitrosodibutylamine
138 1116-54-7 N-Nitrosodiethanolamine
139 55-18-5 N-Nitrosodiethylamine
140 62-75-9 N-Nitrosodimethylamine
141 86-30-6 N-Nitrosodiphenylamine
142 621-64-7 N-Nitrosodipropylamine
143 17608-59-2 N-Nitrosoephedrine
144 10595-95-6 Nitrosoethylmethylamine
145 614-95-9 Nitrosoethylurethane
146 30310-80-6 Nitrosohydroxyproline
147 26921-68-6 N-Nitrosomethyl-(2-hydroxyethyl) amine
148 614-00-6 Nitrosomethylaniline
149 59-89-2 N-Nitrosomorpholine
150 4515-18-8 Nitrosopipecolic acid
151 930-55-2 N-Nitrosopyrrolidine
152 816-57-9 N-Propyl-N-nitrosourea
153 18883-66-4 Streptozotocin
154 40548-68-3 Tetrahydro-2-nitroso-2H-1,2-oxazine
155 3817-11-6 n-Butyl-N-(4-hydroxybutyl)nitrosamine
156 869-01-2 N-n-Butyl-N-nitrosourea
157 13256-06-9 Dipentylnitrosamine
158 13743-07-2 1-(2-Hydroxyethyl)-1-nitrosourea
159 760-60-1 N-Nitroso-N-isobutylurea
160 13256-11-6 Nitroso-N-methyl-N-(2-phenyl)ethylamine
161 1133-64-8 Nitrosoanabasine
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No. CASRN Chemical Name
162 625-89-8 N-Nitrosobis(2,2,2-trifluoroethyl) amine
163 42579-28-2 1-Nitrosohydantoin
164 5632-47-3 N-Nitrosopiperazine
165 100-75-4 N-Nitrosopiperidine
166 7519-36-0 Nitrosoproline
167 26541-51-5 N-Nitrosothiomorpholine
168 7227-91-0 1-Phenyl-3,3-dimethyltriazene
169 4164-28-7 Dimethylnitramine
170 598-57-2 Methylnitramine
171 108-05-4 Vinyl acetate
172 611-23-4 o-Nitrosotoluene
173 3688-53-7 AF-2
174 88-73-3 2-Chloronitrobenzene
175 100-00-5 4-Chloronitrobenzene
176 551-92-8 1,2-Dimethyl-5-nitroimidazole
177 606-20-2 2,6-Dinitrotoluene
178 298-00-0 Methyl parathion
179 139-94-6 Nithiazide
180 92-55-7 5-Nitro-2-furanmethanediol diacetate
181 91-23-6 o-Nitroanisole
182 98-95-3 Nitrobenzene
183 1836-75-5 Nitrofen
184 86-57-7 1-Nitronaphthalene
185 607-35-2 8-Nitroquinoline
186 56-38-2 Parathion
187 99-35-4 1,3,5-Trinitrobenzene
188 97-00-7 Dinitrochlorobenzene
189 443-48-1 Metronidazole
190 62-23-7 p-Nitrobenzoic acid
191 613-50-3 6-Nitroquinoline
192 91-76-9 1,3,5-Triazine-2,4-diamine, 6-phenyl-
193 108-78-1 Melamine
194 396-01-0 Triamterene
195 59-05-2 Methotrexate
196 303-34-4 Lasiocarpine
197 22571-95-5 Symphytine
198 315-22-0 Monocrotaline
199 97-53-0 Eugenol
200 52214-84-3 Ciprofibrate
201 77-92-9 1,2,3-Propanetricarboxylic acid, 2-hydroxy-
202 104-76-7 2-Ethylhexanol
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No. CASRN Chemical Name
203 25812-30-0 Gemfibrozil
204 78-42-2 Tris(2-ethylhexyl)phosphate
205 75330-75-5 Lovastatin
206 131-17-9 Diallyl phthalate
207 85-68-7 Butyl benzyl phthalate
208 87-68-3 Hexachloro-1,3-butadiene
209 127-18-4 Tetrachloroethylene
210 116-14-3 Tetrafluoroethylene
211 79-01-6 Trichloroethylene
212 1825-21-4 Pentachloroanisole
213 476-66-4 Ellagic acid
214 90-43-7 o-Phenylphenol
215 51481-61-9 Cimetidine
216 86315-52-8 Isomazole
217 50-44-2 6-Mercaptopurine
218 58-55-9 Theophylline
219 148-79-8 Thiabendazole
220 73590-58-6 Omeprazole
221 58-93-5 Hydrochlorothiazide
222 54-31-9 Furosemide
223 94-58-6 Dihydrosafrole
224 120-62-7 Piperonyl sulfoxide
225 533-31-3 Sesamol
226 56-23-5 Carbon tetrachloride
227 67-72-1 Hexachloroethane
228 72-43-5 Methoxychlor
229 76-03-9 Trichloroacetic acid
230 51-52-5 6-Propyl-2-thiouracil
231 30516-87-1 3’-Azido-3’-deoxythymidine (AIDS)
232 141-90-2 Thiouracil
233 477-30-5 Colcemid
234 123-73-9 Crotonaldehyde
235 2475-45-8 C.I. Disperse blue 1
236 81-49-2 1-Amino-2,4-dibromoanthraquinone
237 117-79-3 2-Aminoanthraquinone
238 82-28-0 1-Amino-2-methylanthraquinone
239 79-19-6 Thiosemicarbazide
240 142-46-1 2,5-Dithiobiurea
241 13010-08-7 N-Butyl-N’-nitro-N-nitrosoguanidine
242 59-87-0 Nitrofurazone
243 2302-84-3 1-Formyl-3-thiosemicarbazide
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244 3570-75-0 Formic acid 2-[4-(5-nitro-2-furyl)-2-thiazolyl]hydrazide
245 555-84-0 1-[(5-Nitrofurfurylidene)amino]-2-imidazolidinone
246 91-93-0 3,3’-Dimethoxybenzidine-4,4’-diisocyanate
247 103-85-5 1-Phenyl-2-thiourea
248 5522-43-0 1-Nitropyrene
249 53-95-2 N-Hydroxy-2-acetylaminofluorene
250 3096-50-2 N-(9-Oxo-2-fluorenyl)acetamide
251 607-57-8 2-Nitrofluorene
252 363-17-7 N-(2-Fluorenyl)-2,2,2-trifluoroacetamide
253 28314-03-6 1-Acetylaminofluorene
254 53-96-3 2-Acetylaminofluorene
255 28322-02-3 4-Acetylaminofluorene
256 67730-10-3 Glu-P-2
257 76180-96-6 IQ
258 943-41-9 N-Nitroso-N-methyl-4-nitroaniline
259 5461-85-8 N-Isobutyl-N’-nitro-N-nitrosoguanidine
260 13010-10-1 N-Pentyl-N’-nitro-N-nitrosoguanidine
261 99-80-9 N-Methyl-N,4-dinitrosoaniline
262 70-25-7 1-Methyl-3-nitro-1-nitroso-guanidine
263 13010-07-6 N-Propyl-N’-nitro-N-nitrosoguanidine
264 34627-78-6 1’-Acetoxysafrole
265 94-52-0 6-Nitrobenzimidazole
266 121-88-0 2-Amino-5-nitrophenol
267 5307-14-2 2-Nitro-p-phenylenediamine
268 2425-85-6 C.I. Pigment red 3
269 712-68-5 2-Amino-5-(5-nitro-2-furyl)-1,3,4-thiadiazole
270 99-56-9 4-Nitro-o-phenylenediamine
271 99-55-8 5-Nitro-o-toluidine
272 99-57-0 2-Amino-4-nitrophenol
273 119-34-6 4-Amino-2-nitrophenol
274 1777-84-0 3-Nitro-p-acetophenetide
275 6471-49-4 C.I. Pigment red 23
276 121-66-4 2-Amino-5-nitrothiazole
277 446-86-6 Azathioprine
278 1582-09-8 Trifluralin, technical grade
279 531-82-8 N-[4-(5-Nitro-2-furyl)-2-thiazolyl]acetamide
280 619-17-0 4-Nitroanthranilic acid
281 33229-34-4 HC blue 2
282 15721-02-5 2,2’,5,5’-Tetrachlorobenzidine
283 97-56-3 o-Aminoazotoluene
284 58-14-0 Pyrimethamine
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285 80-08-0 4,4’-Sulfonyldianiline (Dapsone)
286 95-80-7 2,4-Diaminotoluene (2,4-toluene diamine)
287 91-94-1 3,3’-Dichlorobenzidine
288 106-50-3 1,4-Benzenediamine
289 133-90-4 Chloramben
290 101-14-4 4,4’-Methylenebis(2-chloroaniline)
291 2243-62-1 1,5-Naphthalenediamine
292 101-80-4 4,4’-Oxydianiline
293 5131-60-2 4-Chloro-m-phenylenediamine
294 95-74-9 3-Chloro-p-toluidine
295 95-79-4 5-Chloro-o-toluidine
296 838-88-0 4,4’-Methylene-bis(2-methylaniline)
297 92-87-5 Benzidine
298 102-50-1 m-Cresidine
299 120-71-8 p-Cresidine
300 609-20-1 2,6-Dichloro-p-phenylenediamine
301 62-53-3 Aniline
302 101-79-1 4-Chloro-4’-aminodiphenylether
303 137-17-7 2,4,5-Trimethylaniline
304 91-59-8 2-Naphthylamine
305 106-47-8 p-Chloroaniline
306 1912-24-9 Atrazine
307 60-11-7 4-Dimethylaminoazobenzene
308 55-80-1 3’-Methyl-4-dimethylaminoazobenzene
309 101-61-1 4,4’-Methylenebis(N,N-dimethyl)benzenamine
310 2784-94-3 HC blue 1
311 121-69-7 N,N-Dimethylaniline
312 90-94-8 Michler’s ketone
313 2832-40-8 C.I. Disperse yellow 3
314 398-32-3 N-4-(4’-Fluorobiphenyl)acetamide
315 4463-22-3 3-Hydroxy-4-acetylaminobiphenyl
316 62-44-2 Phenacetin
317 6673-35-4 Practolol
318 77-46-3 4,4’-Sulfonylbisacetanilide
319 18699-02-0 4-Acetylaminophenylacetic acid
320 103-33-3 Azobenzene
321 842-07-9 C.I Solvent yellow 14
322 599-79-1 Salicylazosulfapyridine
323 924-42-5 N-Methylolacrylamide
324 22131-79-9 Alclofenac
325 101-05-3 Anilazine
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326 37087-94-8 2-Chloro-5-(3,5-dimethylpiperidinosulphonyl)benzoic acid
327 2698-41-1 o-Chlorobenzalmalononitrile (CS)
328 108-90-7 Chlorobenzene
329 94-20-2 Chlorpropamide
330 106-46-7 1,4-Dichlorobenzene (p-dichlorobenzene)
331 53-86-1 Indomethacin
332 2227-13-6 p-Chlorophenyl-2,4,5-trichlorophenyl sulfide
333 72-55-9 p,p’-Dichlorodiphenyl dichloroethylene
335 115-32-2 Dichlorodiphenyltrichloroethane (DDT)
336 94-59-7 Safrole
337 95-06-7 Sulfallate
338 103-23-1 Di(2-ethylhexyl)adipate
339 133-07-3 N-(Trichloromethylthio)phthalimide
340 23255-69-8 Fusarenon-X
341 765-34-4 Glycidaldehyde
342 106-89-8 Epichlorhydrin
343 76-01-7 Pentachloroethane
344 56980-93-9 Celiprolol
345 101-21-3 Isopropyl-N-(3-chlorophenyl) carbamate
346 135-88-6 N-Phenyl-2-naphthylamine
347 74-31-7 N,N’-Diphenyl-p-phenylenediamine
348 622-51-5 p-Tolylurea
349 5979-28-2 C.I. pigment yellow 16
350 968-81-0 Acetohexamide
351 79-10-7 Acrylic acid
352 107-18-6 Allyl alcohol
353 60-32-2 6-Aminocaproic acid
354 60142-96-3 1-(Aminomethyl)cyclohexaneacetic acid
355 57-43-2 Amobarbital
356 50-81-7 L-Ascorbic acid
357 22839-47-0 Aspartame
358 51-55-8 Atropine
359 71-43-2 Benzene
360 271-89-6 Benzofuran
361 120-32-1 o-Benzyl-p-chlorophenol
362 110-97-4 Diisopropanolamine
363 96-48-0 Gamma-butyrolactone
364 58-08-2 Caffeine
365 105-60-2 Caprolactam
366 7235-40-7 beta-Carotene
367 50892-23-4 (4-Chloro-6-(2,3-xylidino)-2-pyrimidinylthio) acetic acid
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368 22494-47-9 Clobuzarit
369 76-57-3 Codeine
370 31698-14-3 Cyclocytidine
371 1192-28-5 Cyclopentanone oxime
372 53-43-0 Dehydroepiandrosterone
373 333-41-5 Diazinon
374 1717-00-6 Ethane, 1,1-dichloro-1-fluoro-
375 2921-88-2 Chlorpyrifos (Dursban)
376 111-46-6 Diethylene glycol
377 56-53-1 Diethylstilbestrol
378 60-51-5 Dimethoate
379 120-61-6 Dimethyl terephthalate
380 127-19-5 N,N-Dimethylacetamide
381 57-41-0 5,5-Diphenylhydantoin (phenytoin)
382 63-84-3 dl-Dopa
383 2629-59-6 S-Ethyl-l-cysteine
384 100-41-4 Ethylbenzene
385 41340-25-4 Etodolac
386 55-38-9 Fenthion
387 118-74-1 hexachlorobenzene
388 319-84-6 alpha-1,2,3,4,5,6-Hexachlorocyclohexane
389 77-47-4 Hexachlorocyclopentadiene (HCCPD)
390 70-30-4 Hexachlorophene
391 100-97-0 Urotropine
392 136-77-6 4-Hexylresorcinol
393 15687-27-1 Ibuprofen
394 5989-27-5 D-Limonene
395 1634-78-2 Malaoxon
396 89-78-1 dl-Menthol
397 67-98-1 MER-25
398 149-30-4 2-Mercaptobenzothiazole
399 493-78-7 Methaphenilene
400 150-76-5 Hydroquinone monomethyl ether
401 1634-04-4 Methyl-t-butyl ether
402 872-50-4 N-Methyl-2-pyrrolidone
403 98-85-1 alpha-Methylbenzyl alcohol
404 452-86-8 p-Methylcatechol
405 119-47-1 Phenol, 2,2’-methylenebis[6-(1,1-dimethylethyl)-4-methyl-
406 91-62-3 6-Methylquinoline
407 54-11-5 Nicotine
408 139-13-9 Nitrilotriacetic acid (NTA)
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409 600-24-8 2-Nitrobutane
410 75-52-5 Nitromethane
411 64224-21-1 Oltipraz
412 23135-22-0 Oxamyl
413 149-29-1 Patulin
414 108-95-2 Phenol
415 77-09-8 Phenolphthalein
416 92-13-7 Pilocarpine
417 110-85-0 Piperazine
418 110-89-4 Piperidine
419 57-66-9 Probenecid
420 121-79-9 Propyl gallate
421 115-07-1 Propylene
422 57-55-6 1,2-Propylene glycol
423 99-50-3 Protocatechuic acid
424 98-96-4 Pyrazinamide
425 108-46-3 Resorcinol
426 127-47-9 Retinol acetate
427 79-81-2 All-trans-retinyl palmitate
428 81-07-2 Saccharin
429 108-30-5 Succinic anhydride
430 107-35-7 L-Taurine
431 732-26-3 Phenol, 2,4,6-tris(1,1-dimethylethyl)-
432 2438-88-2 2,3,5,6-Tetrachloro-4-nitroanisole
433 109-99-9 Ethane, 1,1,1,2-tetrafluoro-
434 91-79-2 Thenyldiamine
435 96-69-5 4,4-Thiobis(6-tert-butyl-m-cresol)
436 64-77-7 Tolbutamide
437 88-19-7 o-Toluenesulfonamide
438 76-13-1 1,1,2-Trichloro-1,2,2-trifluoroethane, technical grade
439 71-55-6 1,1,1-Trichloroethane, technical grade
440 75-69-4 Trichlorofluoromethane
441 88-06-2 2,4,6-Trichlorophenol
442 112-27-6 Triethylene glycol
443 127-48-0 Trimethadione
444 458-37-7 Turmeric ( 98% curcurmin)
445 57-13-6 Urea
446 88-12-0 2-Pyrrolidinone, 1-ethenyl-
447 127-06-0 Acetoxime
448 616-91-1 N-acetylcysteine
449 2835-39-4 Allyl isovalerate
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450 2432-99-7 11-Aminoundecanoic acid
451 4180-23-8 Benzene, 1-methoxy-4-(1E)-1-propenyl-
452 65-85-0 Benzoic acid
453 331-39-5 3,4-Dihydroxycinnamic acid
454 853-23-6 Dehydroepiandrosterone acetate
455 95-50-1 1,2-Dichlorobenzene (o-dichlorobenzene)
456 94-75-7 2,4-Dichlorophenoxyacetic acid
457 685-91-6 Diethylacetamide
458 62488-57-7 5,6-Dihydro-5-azacytidine
459 13265-60-6 O,O-Dimethyl S-2(acetylamino)ethyl dithiophosphate, TG
460 13073-35-3 Ethionine (DL-ethionine)
461 64-17-5 Ethanol
462 111-68-2 Heptylamine
463 148-24-3 8-Hydroxyquinoline
464 115-11-7 Isobutene
465 121-75-5 Malathion
466 531-06-6 Methafurylene
467 112-63-0 Methyl linoleate, native
468 578-76-7 7-Methylguanine
469 95-71-6 Methylhydroquinone
470 79-24-3 Nitroethane
471 79-46-9 2-Nitropropane
472 50-06-6 Phenobarbital
473 89-25-8 1-Phenyl-3-methyl-5-pyrazolone
474 1918-02-1 Picloram, technical grade
475 105-11-3 p-Benzoquinone dioxime
476 23031-25-6 Terbutaline
477 1972-08-3 1-trans-delta-9-Tetrahydrocannabinol
478 538-23-8 Tricaprylin
479 95-63-6 Benzene, 1,2,4-trimethyl-
480 75-38-7 Vinylidene fluoride
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APPENDIX B
DATASETS - CHAPTER 4

B.1 Case Study 4.3.1: Identification of a Novel Biological Descriptor
Based on Xenobiotic Induced Cytochrome P450 Transcription
for Carcinogenicity Prediction

Dataset 1 (6hr Exposure)
No. Chemical Name CASRN
1 Carboxin 5234-68-4
2 Chlorpyrifos oxon 5598-15-2
3 Cypermethrin 52315-07-8
4 Diazinon 333-41-5
5 Disulfoton 298-04-4
6 Fenitrothion 122-14-5
7 Fenthion 55-38-9
8 Indoxacarb 173584-44-6
9 Isazofos 42509-80-8

10 Lactofen 77501-63-4
11 Methoxychlor 72-43-5
12 Parathion 56-38-2
13 Parathion-methyl 298-00-0
14 Piperonyl butoxide 51-03-6
15 Propazine 139-40-2
16 Thiophanate-methyl 23564-05-8
17 Trifluralin 1582-09-8

Dataset 2 (24hr Exposure)
No. Chemical Name CASRN

1 Acetochlor 34256-82-1
2 Azinphos-methyl 86-50-0
3 Bromacil 314-40-9
4 Carboxin 5234-68-4
5 Diazinon 333-41-5
6 Diuron 330-54-1
7 Fentin 76-87-9
8 Indoxacarb 173584-44-6
9 Iprodione 36734-19-7
10 Isazofos 42509-80-8
11 Lactofen 77501-63-4
12 Linuron 330-55-2
13 Methidathion 950-37-8
14 Parathion 56-38-2
15 Propazine 139-40-2
16 Trifluralin 1582-09-8

Table B.1: List of Chemicals for Case Study 4.3.1 in Chapter 4

B.2 Case Study 4.3.2: QBAR Model of In-vitro Genotoxicity Assays
for Carcinogenicity Prediction

No. Chemical Name CASRN
1 CPA 6055-19-2
2 ENU 759-73-9
3 MMS 66-27-3
4 BaP 50-32-8
5 DMBA 57-97-6
6 DMNA 62-75-9



111

No. Chemical Name CASRN
7 2-AAF 53-96-3
8 2,4 - DAT 95-80-7
9 2,Amino-3-methylimidazo 76180-96-6
10 2-amino-1,6-dimethylimidazo 132898-04-5
11 AFB1 1162-65-8
12 Cadmium chloride 10108-64-2
13 Cisplatin 15663-27-1
14 p-Chloroaniline 106-47-8
15 Etoposide (ETO) 33419-42-0
16 Hydroquinone 123-31-9
17 AZT 30516-87-1
18 Sodium arsenite 7784-46-5
19 Chloramphenicol 56-57-7
20 Ampicillin trihydrate 7177-48-2
21 D-Mannitol 69-65-8
22 Phenforim HCl 834-28-6
23 n-Butyl chloride 109-69-3
24 2-Chloroethyl]trimethyl-ammonium chloride 999-81-5
25 Cyclohexanone 108-94-1
26 N,N-Dicyclohexyl thiourea 1212-29-9
27 Trisdoium EDTA trihydrate 150-38-9
28 Erythromycin stearate 643-22-1
29 Flumetron 2164-17-2
30 Phenanthrene 85-01-8
31 D-limonene 5989-27-5
32 Di-[2-ethylhexyl]phtalate 117-81-7
33 Amitrole 61-82-5
34 tert-butyl alcohol 75-65-0
35 Diethanolamine 111-42-2
36 Melamine 108-78-1
37 Methyle carbamate 598-55-0
38 Progesterone 57-83-0
39 Pyridine 110-86-1
40 Tris[2-ethylhexyl]phosphate 78-42-2
41 Hexachloroethane 67-72-1
42 D,L-menthol 15356-70-4
43 Pthalic anhydride 85-44-9
44 o-Anthranilic acid 118-92-3
45 Reorcinol 108-46-3
46 2-Ethyl-1,3-hexanediol 94-96-2
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47 Sulfisoxazole 127-69-5
48 Ethionamide 536-33-4
49 Curcumin 458-37-7
50 Benzyl alcohol 100-51-6
51 Urea 57-13-6
52 Soduim saccharin 128-44-9
53 p-Nitrophenol 100-02-7
54 Sodium xylene sulfonate 1300-72-7
55 Ethyl acrylate 140-88-5
56 Eugenol 97-53-0

Table B.2: List of Chemicals for Case Study 4.3.2 in Chapter 4
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APPENDIX C
DATASETS - CHAPTER 5

C.1 Case Study 5.3: A Novel Strategy for Development of a Type 1
Hybrid QSAR-QBAR Model

Same dataset used in Case Study 4.3.2 (Table A.2).

C.2 Case Study 5.4: A Novel Strategy for Development of a Type 2
Hybrid QSAR-QBAR Model

Same dataset used in Case Study 4.3.2 (Table A.2).
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