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PURPOSE. To evaluate how metrics used to describe the cone mosaic change in response to
simulated photoreceptor undersampling (i.e., cell loss or misidentification).

METHODS. Using an adaptive optics ophthalmoscope, we acquired images of the cone mosaic
from the center of fixation to 108 along the temporal, superior, inferior, and nasal meridians in
20 healthy subjects. Regions of interest (n ¼ 1780) were extracted at regular intervals along
each meridian. Cone mosaic geometry was assessed using a variety of metrics � density,
density recovery profile distance (DRPD), nearest neighbor distance (NND), intercell distance
(ICD), farthest neighbor distance (FND), percentage of six-sided Voronoi cells, nearest
neighbor regularity (NNR), number of neighbors regularity (NoNR), and Voronoi cell area
regularity (VCAR). The ‘‘performance’’ of each metric was evaluated by determining the level
of simulated loss necessary to obtain 80% statistical power.

RESULTS. Of the metrics assessed, NND and DRPD were the least sensitive to undersampling,
classifying mosaics that lost 50% of their coordinates as indistinguishable from normal. The
NoNR was the most sensitive, detecting a significant deviation from normal with only a 10%
cell loss.

CONCLUSIONS. The robustness of cone spacing metrics makes them unsuitable for reliably
detecting small deviations from normal or for tracking small changes in the mosaic over time.
In contrast, regularity metrics are more sensitive to diffuse loss and, therefore, better suited
for detecting such changes, provided the fraction of misidentified cells is minimal. Combining
metrics with a variety of sensitivities may provide a more complete picture of the integrity of
the photoreceptor mosaic.

Keywords: adaptive optics, photoreceptors, modeling, cone mosaic

Adaptive optics (AO) enhanced ophthalmoscopes permit
noninvasive visualization of the human retina with cellular

resolution. Imaging of the cone,1–5 rod,6–8 and retinal pigment
epithelium (RPE)9–13 mosaics has been demonstrated in healthy
and diseased eyes. While pathology can often be quite striking
when imaged with single-cell resolution, the ability to use these
images to detect subtle changes relies on the ability to extract
quantitative information about the mosaic of interest. This
process often involves assessing metrics derived from the cell
locations within an image. Metrics such as density,14–24

spacing,12,14,15,23,25–31 and regularity19,32–34 are frequently used
to characterize the cone mosaic. Despite their broad use, there
has been minimal evaluation of the ability of these metrics to
detect disruptions of the photoreceptor mosaic. Such testing is
needed to objectively assess the strengths and weaknesses of
these metrics in evaluating retinal mosaics, especially with the
growing demand to image the photoreceptor mosaic over time
(either following therapeutic intervention or to monitor disease
progression).

One of the more significant factors known to affect metrics
used to describe the cone mosaic is undersampling. Under-
sampling can come from two sources: cell misidentification or
cell loss.35,36 First, algorithms used to automatically or semiauto-
matically identify cells in retinal mosaics have some nonnegligible

errors that can vary substantially with image quality.14,15,34 As
most metrics rely on cell identification rather than the retinal
image itself (though Cooper et al.37 uses a Fourier transform-
derived spacing extracted directly from the image), the error
introduced by this undersampling is an inherent feature of most
current AO analyses. How this source of undersampling affects a
given metric provides a direct measure of its ‘‘robustness.’’
Second, various retinal diseases result in the actual loss of cells
from the mosaic.21,22,25,29–33,38–42 How a metric changes in
response to known amounts of cell loss defines its ‘‘sensitivity.’’
As there is a wide range of metrics used to assess retinal mosaics,
it is critical to characterize how each metric is affected by
undersampling: an ideal metric should be sensitive enough to
detect cell loss, but robust enough to not be affected by small
errors in cell identification.

Due in part to the optical waveguiding properties of
photoreceptors, the cone mosaic can be imaged with particular
ease. In fact, the cone mosaic can be resolved in some individuals
even without using AO.43–46 Moreover, cone photoreceptors
drive the majority of our visual function and are affected in a
variety of retinal diseases. Thus, there is continued interest in the
development and validation of metrics for detecting disruptions
or changes in the cone mosaic. Following the approach
developed by Cook,35 in which he compared versions of the
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same mosaic that had different amounts of undersampling, we
examined the performance of a number of metrics by applying
known amounts of diffuse cell loss (i.e., undersampling) to
photoreceptor mosaic coordinates derived from images of the
human cone mosaic. This pattern of cone mosaic disruption has
been observed in conditions such as retinitis pigmentosa,25,41

cone-rod dystrophy,25 red-green color vision deficiency,38 and
acute macular neuroretinopathy.22 In addition, this type of
undersampling approximates the expected pattern that might
occur as a result of errors in manual or automated cell detection.
The data presented here provide a useful framework for
understanding the strengths and limitations of these metrics,
and highlight the important ‘‘philosophical’’ issue of whether the
insensitivity (or robustness) of a metric to diffuse cell loss
represents a strength or a weakness when trying to determine
whether a given cone mosaic is normal or abnormal.

METHODS

Human Subjects

This research followed the tenets of the Declaration of
Helsinki, and was approved by the institutional review boards
at the Medical College of Wisconsin (Milwaukee, WI, USA) and
Marquette University (Milwaukee, WI, USA). Twenty subjects
with normal trichromatic vision were recruited for this study
(median age: 23.5, range, 9–67 years; Supplementary Table S1).
Subjects provided informed consent after the nature and
possible consequences of the study were explained. Individ-
uals with high myopia or hyperopia (>10 diopters [D]) were
excluded from this study. Axial length measurements were
obtained on all subjects using an IOL Master (Carl Zeiss
Meditec, Dublin, CA, USA). To convert from image pixels to
retinal distance (lm), we first acquired images of a Ronchi
ruling positioned at the focal plane of a lens with a 19-mm focal

length to determine the conversion between image pixels and
degrees. An adjusted axial length method47 was then used to
approximate the retinal magnification factor (in lm/degree)
and convert to micrometer per pixel.

Imaging the Human Photoreceptor Mosaic

The photoreceptor mosaic was imaged using an AO scanning
light ophthalmoscope (AOSLO), where both confocal48 and
nonconfocal split-detector1 imaging modalities were acquired
simultaneously. Imaging was performed along the temporal,
inferior, nasal, and superior meridians using a 790-nm super-
luminescent diode. Using a 1.08 field of view (FOV), each
meridian was sampled every half degree from fixation out to 68,
and then every degree from 78 to 108. Using a 1.58 FOV, each
meridian was sampled every degree from fixation out to 108.
To correct for static intraframe distortion resulting from the
sinusoidal motion of the resonant optical scanner, we
estimated the distortion from images of a stationary Ronchi
ruling and then resampled each frame over a grid of equally
spaced pixels. Then, a reference frame was selected manually
from within each image sequence for subsequent registration
using custom software.49 Montages of overlapping split-
detector and confocal images using both 1.08 and 1.58 FOVs
were created semiautomatically using custom software. To
simplify the process of montaging, custom software was
created in MATLAB (Mathworks, Natick, MA, USA) that allows
the user to rapidly screen which images should be included in
a montage. After screening, the selected images were
automatically placed in a corresponding Photoshop (Adobe,
San Jose, CA, USA) file at a location extracted from the digitized
image acquisition notes. Once the montage was ‘‘seeded’’
using this software, the user manually positioned the images
within Photoshop to achieve a more accurate alignment.

Analyzing the Cone Photoreceptor Mosaic

Because foveal cones could not be reliably resolved in all
subjects, the location of peak foveal density was determined
using a previously described method.50 First, cone coordinates
were semiautomatically identified from a foveal montage using
a previously described cell identification algorithm.15 Isoden-
sity contour maps were generated from the resulting coordi-
nates. Six contours (at 80%–93% of the peak cone density)
were extracted from each map, and the center (x, y) position
of each contour was averaged to provide an estimate of the
location of peak foveal cone density within the foveal montage.

Regions of interest (ROIs) were then extracted from each
montage, relative to the location of peak foveal cone density,
using custom software (Photoshop and MATLAB). The size of
each ROI varied as a function of eccentricity, using published
AOSLO-derived cone density data51 to estimate the area
necessary to encompass approximately 100 cones at each
ROI as described next. Using the minimum foveal cone density
observed by Wilk et al.51 (84,000 cones/mm2), we set the area
of ROIs at the location of peak foveal cone density to 37 3 37
lm. Due to the minimal change in cone density beyond 108, we
set the area of ROIs at and beyond 108 to 100 3 100 lm. We
next fit an exponential function to these areas, establishing an
eccentricity-to-ROI area relationship. We obtained ROIs at the
foveal center, every 50 lm from 50- to 600-lm eccentricity,
every 200 lm from 600- to 1600-lm eccentricity, and every
300 lm from 1600- to 3100-lm eccentricity. Within 500 lm of
peak foveal cone density, ROIs were extracted from the
confocal modality, while beyond 500 lm, ROIs were extracted
from the split-detector modality due to superior cone contrast.
When either blood vessels or seams between overlapping
images occurred at a desired ROI sampling location, we

FIGURE 1. A schematic of a hexagonally arranged patch of cones
illustrating the relationship between the distance measurements used
in this study. A single cone (red circle) and its six closest neighbors
(open circles) are highlighted for clarity. The NND is defined as the
distance from a given cone to its closest neighbor (orange dashed

line). The FND is defined as the distance from each cone to its most
distant neighbor (blue dashed line), and ICD is defined as the average
distance between a cone and all of its neighbors (dashed lines). In
order to mitigate boundary effects, only cones with bound Voronoi
regions (shaded region) are included when calculating each metric.
The regularity of each of these metrics (M) is defined as the mean (lM)
of the metric for all cones with bounded Voronoi cells, divided by the
metric’s SD (rM).
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adjusted the ROI’s location to a nearby unobstructed area. To
enable easier comparison, each ROI was binned based on the
nearest sample location. Regions of interest within an
eccentricity bin were then compared across all subjects. On
average, the ROIs deviated from their bin location by 4.7 lm
within 600 lm of the foveal center, and 67.4 lm beyond 600
lm from the foveal center. Cone coordinates were then
semiautomatically identified within each confocal ROI,15 and
manually identified within each split-detector ROI using
custom software (Java 1.8; Oracle, Redwood City, CA, USA)
by a single observer (RFC).

Mitigation of Boundary Effects

All geometrical descriptors extracted from a discrete set of
coordinates are subject to boundary effects at the ROI edges.
The edge cells do not necessarily contribute all of their
connected neighbors to a spacing measurement, or even all of
the area that they encompass to a density measurement. To
mitigate this effect, we used the Voronoi tessellation to
establish which cell locations should be included for analysis.
Only cones with their corresponding Voronoi cell fully

contained within the ROI (i.e., ‘‘bound’’) were considered for
the metric calculations.

Descriptive Metrics of the Cone Mosaic

The cone coordinates for each ROI were analyzed using the
following spacing and regularity metrics (regularity metrics, as
the name implies, capture the variation of a particular metric
over an ROI):

Density. As mentioned above, Voronoi tessellation of the
cone coordinates was used to define the bound Voronoi cells in
a given ROI. Density was defined as the ratio of the number of
bound Voronoi cells in an ROI to the summed area of the
bound Voronoi cells. The shaded Voronoi polygons in Figure 1
represent bound Voronoi cells.

Percent Six-Sided Voronoi Cells. The number of sides of
each bound Voronoi cell was determined, and the number of
Voronoi cells with six sides was divided by the total number of
bound Voronoi cells within an ROI.

Density Recovery Profile Distance (DRPD). The density
recovery profile (DRP) is a method based on a two-dimensional
autocorrelogram that is an expression of the spatial density of
cells as a function of the distance of each cell from all other
cells.26,36 To automatically determine spacing from the DRP,
we first determined the width of each bin as defined by
equation 16 in Rodieck et al.,36 assuming a reliability of two.
After calculating the DRP, we interpolated between each bin
using splines. We then found the first local maximum within
the spline that was greater than the DRP density mean. The x-
axis location (distance) of the maximum was taken as the
DRPD.

Nearest Neighbor Distance (NND). The distance be-
tween a given cone and its closest neighbor, where the
neighbors of a given cone are comprised of all cones with
adjacent Voronoi cells. The NND reported for each ROI is the
average NND for all of the cones with bound Voronoi cells in
that ROI (Fig. 1, orange dashed line).

Intercell Distance (ICD). The average distance between a
given cone and each of its neighbors, where the neighbors of a
given cone are comprised of all cones with adjacent Voronoi
cells. The ICD reported for each ROI is the average ICD for all
of the cones with bound Voronoi cells in that ROI (Fig. 1, black
dashed lines).

Farthest Neighbor Distance (FND). The distance be-
tween a given cone and its farthest neighbor, where the
neighbors of a given cone are comprised of all cones with
adjacent Voronoi cells. The FND reported for each ROI is the
average FND for all of the cones with bound Voronoi cells in
that ROI (Fig. 1, blue dashed line).

Nearest Neighbor Regularity (NNR). The mean nearest
neighbor distance (NND) for all of the cones with bound
Voronoi cells in an ROI divided by the standard deviation (SD)
of the NND for all of the cones with bound Voronoi cells in that
ROI.

Number of Neighbors Regularity (NoNR). The mean
number of sides of all bound Voronoi cells in an ROI divided by
the SD of the number of sides of all bound Voronoi cells in that
ROI.

Voronoi Cell Area Regularity (VCAR). The mean area of
the bound Voronoi cells in an ROI divided by the SD of the area
of the bound Voronoi cells in that ROI.

Examining the Sensitivity of Metrics to
Undersampling

After calculating each metric from each normal ROI, we used a
statistical classifier to determine the threshold at which a
metric could sensitively detect diffuse loss. To create the

FIGURE 2. Assessing the sensitivity of cone density to varying amounts
of cell loss. (A) The mean of all 20 subjects’ density as a function of
eccentricity (solid line) with the 95% prediction interval (dashed

lines). (B) The statistical power curve for cone density (solid line) does
not reach the 80% threshold (horizontal dashed line) until a 24% cone
undersampling, implying that density cannot reliably detect an
abnormal cone mosaic until greater than 24% of the cells have been
lost.
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classifier, both the eccentricity of each ROI and the normal
metric values from each subject were transformed to conform
to statistical assumptions for linear models. Each ROI’s
eccentricity was transformed as follows:

Et ¼
1

1þ Elm

; ð1Þ

where Elm is eccentricity in lm, and Et is the transformed
eccentricity value. The metric values were transformed using
the natural log. These transformed data were then fit to a
polynomial (orders 1–4). The (1–4) polynomial coefficients
from each fit were used to create a 95% prediction ellipsoid,
which defined the plausible values for each coefficient.

We used this classifier to assess the sensitivity of each
metric to undersampling with the following process: First, we
randomly selected a subject and removed between 5% and 80%
of the cone coordinates from each of their ROI’s (again,
representing diffuse cell loss due to disease, or cells missed
during the identification step). Cones were removed by first
permuting the cone coordinate list according to a uniform
random distribution using the randperm MATLAB function.
After permuting the cone coordinate list, the number of
coordinates defined by the percent loss was removed from the
beginning of the list. Next, the remaining (now undersampled)
cone coordinates were analyzed using the metrics described
above. We then transformed the resultant metric and
eccentricity data and performed a polynomial fit as described
above on these undersampled mosaics. Finally, we determined
if the set of fit coefficients were significantly different from
normal by comparing them with the prediction ellipsoid using
Hotelling’s t-squared statistic with a 95% significance cutoff.53

This process was repeated 1000 times for each cone loss
percentage to calculate an ‘‘abnormal mosaic detection rate.’’

Using this process, we assessed the detection rate of
abnormalities (or statistical power) for each metric at different
percent loss values. A metric was considered sensitive to loss at
a given percent cone loss when it correctly identified abnormal
mosaics in 80% of trials. Finally, at each eccentricity, we
constructed 95% pointwise prediction intervals (PIs) for each
of the above metrics to describe pointwise uncertainty.

RESULTS

We were able to obtain images from all 20 subjects across each
eccentricity. The numerical results are summarized in the Table
(for meridian-specific values, refer to Supplementary Table S2).
Figure 2A illustrates the expected exponential decrease of
cone density with eccentricity as reported in previous
studies,5,19,20,51,52 and the 95% PI for our population. The PI
appears larger near the foveal center due to the increased
normal variability in foveal cone density. In contrast, the cone
spacing metrics increased monotonically as a function of
eccentricity (Fig. 3), with the 95% PI being smaller near the
fovea (<500 lm). The three regularity metrics and percent six-
sided cells followed previously observed patterns,19,32–34

peaking at about 250 lm (Fig. 4).
To characterize how each metric was affected by under-

sampling, we first applied undersampling to a single ROI that
exhibited average metric values (JC_10145, 200-lm eccentric-
ity). Figure 5 illustrates the effect of 40% and 80% under-
sampling on this particular ROI. Qualitatively, the mosaic
appears less regular with fewer cells remaining. However,
without a priori eccentricity information, the ROI could simply
be from a location more distant to the fovea. The histograms of
each type of spacing each appear different; NND remains
tightly clustered about the mean, whereas the mean and spread
of ICD and FND measurements dramatically change as

FIGURE 3. Mean population cone spacing measurements. Four
different spacing measurements: (A) NND; (B) DRPD; (C) ICD; (D)
FND are plotted as a function of eccentricity (solid lines) with their
respective 95% prediction intervals (dashed lines). All four spacing
metrics increased monotonically with eccentricity.

Descriptive Metrics of the Human Cone Mosaic IOVS j June 2016 j Vol. 57 j No. 7 j 2996

Downloaded From: http://iovs.arvojournals.org/pdfaccess.ashx?url=/data/journals/iovs/935339/ on 01/27/2017



increasing amounts of loss are applied. In the DRP, the mean
only slightly changes; in fact, the estimated spacing decreased,
though this is likely an artifact due to the bin size selection
algorithm. All measurements of regularity and percent six-sided
cells for this ROI decreased in response to undersampling (Fig.
6). In this single ROI, the percentage of six-sided cells
decreased by a similar amount (by 39% between 0%–40%
undersampling, by 40% between 40% and 80% undersampling)
between each percent undersampling. Number of neighbors
regularity decreased by 47% between 0% and 40% under-
sampling, and 32% between 40% and 80% undersampling.
Interestingly, VCAR decreased by 75% between 0% and 40%
undersampling, and roughly half that (31%) between 40% and
80% undersampling, implying that the metric changes more
with lower amounts of loss. NNR was the opposite, decreasing
only 27% between 0% and 40% undersampling, but substan-
tially more (79%) between 40% and 80%.

We then used the prediction ellipse method described
above to examine each metric’s ability to detect undersampling
in simulations from all 20 subjects. Density did not reliably
detect an abnormality until 24% of the cones had been
removed across all eccentricities (Fig. 2B). The NND and DRPD
were remarkably insensitive to undersampling; an abnormal
mosaic was unable to be detected for either metric until 53%
and 55% of cone coordinates were removed, respectively (Fig.
7). In contrast, ICD and FND were able to detect an abnormal
mosaic at 29% and 23% undersampling, respectively (Fig. 7). Of
the regularity metrics, NNR was the least sensitive, and
detected abnormality with above 35% undersampling (Fig. 7).
The VCAR and percentage of six-sided cells and were similarly
sensitive and were able to consistently detect a deviation from
normal beyond 17% and 14% undersampling, respectively (Fig.
7). Of the regularity metrics, NoNR was the most sensitive, and
was able to detect an abnormal mosaic after only 10% of the
cone coordinates had been removed (Fig. 7).

DISCUSSION

We characterized the normal cone mosaic as a function of
eccentricity using both new and previously described geomet-
rical metrics. The metrics examined here had different 95% PI
widths, suggesting each metric had different variance. While we
examined a wide variety of metrics describing the cone mosaic,
this is not an exhaustive list; new metrics may be derived as other
retinal cell types are imaged, or as disease processes are better
understood. Additionally, metrics can be derived directly from
the retinal image; approaches based on analysis of the Fourier
spectrum of the image (‘‘Yellot’s Ring’’) are already in
use,12,25,26,29,30,37,42,54 and others have been published to assess
beam direction in the lamina cribrosa.55 Nevertheless, different
metrics respond more sensitively to undersampling than others.
NND, DRPD, and NNR were the least sensitive to cone
undersampling, whereas percentage of six-sided Voronoi cells,
VCAR, and NoNR were the most sensitive. Intuitively, one might
think that the most sensitive metrics should always be used;
however, there are some important points that should be
reviewed to provide context to these results.

The pointwise PIs constructed here represent the range
that individual metric values will fall, within 95% likelihood.
The PIs are constructed from 20 subjects; assuming our 20
healthy subjects are representative of the variance in the
population, our estimate of the PI is more conservative than it
would be had we included a larger population. For each
metric’s PI, we aggregated the results from all meridians to
construct the PI. In our population, metrics measured along
each meridian (temporal, inferior, nasal, and superior) behaved
similarly, which may not always hold.52,56–58 In contrast, the

FIGURE 4. Mean population regularity measurements. Three different
regularity measurements: (A) NNR; (B) VCAR; (C) Number of neighbors
regularity and percent six-sided cells (D) are plotted as a function of
eccentricity (solid lines) with their respective 95% prediction intervals
(dashed lines). All three regularity metrics and percent six-sided cells
increased in the parafoveal region and decreased near the foveal center.
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classifier tools were constructed for each metric to classify all
ROIs from a single subject as either abnormal or normal.
However, these classifiers were based on multiple regressions
of our data. While density and spacing metrics fit lower order
polynomial models closely (R2 goodness-of-fit > 0.95), the
unusual shape of the regularity metrics required higher-order
(fourth) polynomials to fit well (R2 > 0.8). While on average
regularity metrics had R2 goodness-of-fit values above 0.8,
without a closer fit (R2 > 0.95), our classifier may underesti-
mate the true amount of variability in regularity metrics across
all subjects.

In addition to affecting the size of the PI, the sample size
can cause artifacts when constructing the statistical power
curves. The prediction ellipse-based classifier used to generate
the power curves is constructed from the normal data with no
loss; thus, the classifier should correctly identify normal
mosaics at a rate similar to the significance level of 95%, or
statistical power of 5%.

A different issue relates to the type of cone loss that was
adopted for these analyses. Photoreceptor loss is a dynamic
process; when cones or rods die, their neighbors can move and
fill the gaps, albeit to varying degrees.22,39,59,60 This is seen in
part in the image in Figure 8, which is from a subject with
significant cone mosaic disruption (evidenced by the interleaved
dark regions throughout the image).38 The image has density and
ICD values that correspond to only 48% of the normal mean at
that eccentricity. However, the NND and DRPD values are

FIGURE 5. An illustration of the effect of cone undersampling on histograms of cell distances (NND, ICD, FND) and the DRPD from a single subject
(JC_10145, image acquired 200 lm from the fovea). In each plot, the blue dashed line is the mean of the histogram from the complete mosaic,
while the orange dashed line is the mean of the histograms from the 40% (middle row) and the 80% undersampled mosaics (bottom row). On all
plots, the y-axis is the number of cells within each histogram bin. The NND histogram is only marginally affected (indicated by the similarity in the
blue and orange dashed lines), even with an 80% loss. Similarly, the DRPD is largely unaffected by cell loss; its estimated spacing is only affected
when the bin size increases (bottom right) due to a decrease in density. In contrast, the mean (indicated by further separation of the blue and

orange dashed lines) and spread of both ICD and FND increase substantially with cell loss.

FIGURE 6. The effect of cone undersampling on measurements of
regularity and percent six-sided cells in the same ROI shown in Figure
5. The measured value (normal) is represented by white bars.
Undersampling the mosaic by 40% (gray bars) and 80% (black bars)
results in a reduction in all four metrics, though each metric decreases
at a different rate. Note: Percent six-sided cells has been divided by 10
to fit the scale.
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consistent with a greater than 70% cell loss, and VCAR, NoNR,
and percent six-sided are consistent with only a 20% cell loss for
this retinal location. Given that each of these metrics describe a
different aspect of the mosaic, and that there is such a large
disparity between the actual value of each metric and the value
predicted by simulated undersampling, the inconsistency of
these metrics is likely indicative of an alternative type of loss
(such as photoreceptor remodeling). Regardless, exploring the
relationship between different metrics and examining how each
responds to both simulated and real loss could enable a more
quantitative description of the type of cone loss in different
retinal degenerations/loss types.

A major concern with the translation of AO imaging to the
clinical arena (specifically clinical trials) is that image quality may
not always be sufficient to visualize the entire photoreceptor
mosaic. In addition to differences in hardware capabilities,
pathologies such as AMD and RP are linked with poor image
quality due to age or secondary effects of the disease (e.g.,
cataracts or cystoid macular edema).61,62 In these situations, the
use of a metric that is insensitive (i.e., robust) to undersampling
(DRPD, NND, NNR) should be used. However, as shown here,
these same metrics would be poorly suited for use in longitudinal
studies, due to this very same insensitivity. Thus, one has to be
very explicit with what it is they are trying to measure when
choosing which metric to use. In the end, the most sensitive
metric cannot be assumed to be the ‘‘best’’ metric.
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42. Ratnam K, Västinsalo H, Roorda A, Sankila E-MK, Duncan JL.
Cone structure in patients with Usher syndrome type III and
mutations in the Clarin 1 gene. JAMA Ophthalmol. 2013;131:
67–74.

43. Miller DT, Williams DR, Morris GM, Liang J. Images of cone
photoreceptors in the living human eye. Vision Res. 1996;36:
1067–1079.

44. Wade AR, Fitzke FW. In vivo imaging of the human cone-
photoreceptor mosaic using a confocal laser scanning
ophthalmoscope. Lasers Light Ophthalmol. 1998;8:129–136.

Descriptive Metrics of the Human Cone Mosaic IOVS j June 2016 j Vol. 57 j No. 7 j 3000

Downloaded From: http://iovs.arvojournals.org/pdfaccess.ashx?url=/data/journals/iovs/935339/ on 01/27/2017



45. Wolsley CJ, Saunders KJ, Silvestri G, Anderson RS. Comparing
mfERGs with estimates of cone density from in vivo imaging of
the photoreceptor mosaic using a modified Heidelberg retina
tomograph. Vision Res. 2010;50:1462–1468.

46. Larocca F, Nankivil D, Farsiu S, Izatt JA. Handheld simultaneous
scanning laser ophthalmoscopy and optical coherence tomog-
raphy system. Biomed Opt Express. 2013;4:2307–2321.

47. Bennett AG, Rudnicka AR, Edgar DF. Improvements on
Littmann’s method of determining the size of retinal features
by fundus photography. Graefe’s Arch Clin Exp Ophthalmol.
1994;232:361–367.

48. Dubra A, Sulai Y. Reflective afocal broadband adaptive optics
scanning ophthalmoscope. Biomed Opt Express. 2011;2:
1757–1768.

49. Dubra A, Harvey Z. Registration of 2D images from fast
scanning ophthalmic instruments. In: Fischer B, Dawant B,
Lorenz C, eds. Lecture Notes in Computer Science. Berlin,
Germany: Springer-Verlag; 2010;60–71.

50. Putnam NM, Hofer HJ, Doble N, Chen L, Carroll J, Williams DR.
The locus of fixation and the foveal cone mosaic. J Vis. 2005;
5(7):3.

51. Wilk MA, McAllister JT, Cooper RF, et al. Relationship between
foveal cone specialization and pit morphology in albinism.
Invest Ophthalmol Vis Sci. 2014;55:4186–4198.

52. Curcio CA, Sloan KR, Kalina RE, Hendrickson AE. Human
photoreceptor topography. J Comp Neurol. 1990;292:497–
523.

53. Hotelling H. The generalization of student’s ratio. The Annals

of Mathmatical Statistics. 1931;2:360–378.

54. Roorda A, Williams DR. Optical fiber properties of individual
human cones. J Vis. 2002;2(5):4.

55. Sredar N, Ivers KM, Queener HM, Zouridakis G, Porter J. A
principal component analysis based approach to determine
predominant lamina cribrosa beam orientation directly from in
vivo images. J Vis. 2013;13(15):71.

56. Curcio CA, Sloan KR. Packing geometry of human cone
photoreceptors: Variation with eccentricity and evidence for
local anisotropy. Vis Neurosci. 1992;9:169–180.

57. Curcio CA, Sloan KR Jr, Packer O, Hendrickson AE, Kalina RE.
Distribution of cones in human and monkey retina: individual
variability and radial symmetry. Science. 1987;236:579–582.

58. Chui TYP, Song H, Burns SA. Adaptive-optics imaging of
human cone photoreceptor distribution. J Opt Soc Am A Opt

Image Sci Vis. 2008;25:3021–3029.

59. Cideciyan AV, Hufnagel RB, Carroll J, et al. Human cone visual
pigment deletions spare sufficient photoreceptors to warrant
gene therapy. Hum Gene Ther. 2013;24:993–1006.

60. Curcio CA. Photoreceptor topography in ageing and age-
related maculopathy. Eye. 2001;15:376–383.

61. Talcott KE, Ratnam K, Sundquist S, et al. Longitudinal study of
cone photoreceptors during retinal degeneration and in
response to ciliary neurotrophic factor treatment. Invest

Ophthalmol Vis Sci. 2011;52:2219–2226.

62. Land ME, Cooper RF, Young J, et al. Cone structure in subjects
with known genetic relative risk for AMD. Optom Vis Sci.
2014;91:939–949.

Descriptive Metrics of the Human Cone Mosaic IOVS j June 2016 j Vol. 57 j No. 7 j 3001

Downloaded From: http://iovs.arvojournals.org/pdfaccess.ashx?url=/data/journals/iovs/935339/ on 01/27/2017


	Evaluating Descriptive Metrics of the Human Cone Mosaic
	Recommended Citation

	f01
	t01
	f02
	f03
	f04
	f05
	f06
	b01
	b02
	b03
	b04
	b05
	f07
	f08
	b06
	b07
	b08
	b09
	b10
	b11
	b12
	b13
	b14
	b15
	b16
	b17
	b18
	b19
	b20
	b21
	b22
	b23
	b24
	b25
	b26
	b27
	b28
	b29
	b30
	b31
	b32
	b33
	b34
	b35
	b36
	b37
	b38
	b39
	b40
	b41
	b42
	b43
	b44
	b45
	b46
	b47
	b48
	b49
	b50
	b51
	b52
	b53
	b54
	b55
	b56
	b57
	b58
	b59
	b60
	b61
	b62

