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Abstract

An algebra has the Howson property if the intersection of any two finitely generated subalgebras
is finitely generated. A simple necessary and sufficient condition is given for the Howson property
to hold on an inverse semigroup with finitely many idempotents. In addition, it is shown that any
monogenic inverse semigroup has the Howson property.
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1 Introduction

An algebra has the Howson property if the intersection of any two finitely generated subalgebras is again
finitely generated. The eponym ‘Howson’ stems from [3], where it was shown that free groups have
this property. Motivated by recent work by P.V. Silva and F. Soares [9], we find a remarkably simple
characterization of the inverse semigroups having the Howson property, under the assumption that the
semilattice of idempotents is finite: the Howson property holds if and only if the same is true for its
maximal subgroups. When specialized to E-unitary semigroups, it can immediately be deduced that the
Howson property holds if and only if the same is true for its maximal group image. Thus we generalize
the main theorem of [9] using only elementary methods based on Green’s relations. Some of the technical
ideas were motivated by techniques from the author’s work [4] on full inverse subsemigroups.

Throughout, inverse semigroups are to be regarded as unary semigroups. Thus a group has the
Howson property, regarded as a group, if and only if the same is true regarded as an inverse semigroup.
Perhaps the deepest earlier work on the Howson property for inverse semigroups was by P.G. Trotter and
the author [5], who showed that although free inverse semigroups of rank one have the Howson property,
the property fails for free inverse semigroups of rank greater than one. Silva also showed [8], however,
that the intersection of any two monogenic inverse subsemigroups of any free inverse semigroup is again
finitely generated.

Before providing technical background, we connect this work with the cited paper [9], which concerns
itself with the (E-unitary) inverse semigroups that are the semidirect products of semilattices and groups.
Their first main result (Theorem 3.4, that the resulting semigroup has the Howson property if and only
if the group itself does) is proved under the hypothesis that the semilattice is finite, and thereby follows
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from our cited theorem (see Corollary 3.6). Although they do not make this observation, we may note
that in fact our corollary may be decuced from their result, by virtue of O’Carroll’s embedding theorem
[6]. See the discussion following the cited corollary for more details.

2 Preliminaries

We refer the reader to the text by Petrich [7] for inverse semigroups in general, including background
on Green’s relations, congruences and so on. The semilattice of idempotents of an inverse semigroup
S is denoted ES . If X ⊆ S, then 〈X〉 denotes the inverse subsemigroup generated by X. An inverse
semigroup is monogenic if it is generated by a single element. The notation T ≤ S means that T is an
inverse subsemigroup of S.

The Brandt semigroups [7, Section II.3] are the completely 0-simple inverse semigroups. They are
the semigroups isomorphic to the following: given a group G and a nonempty set I, B(G, I) consists
of the set I ×G × I ∪ {0}, where (i, g, j)(j, h, k) = (i, gh, k) and all other products are 0. The nonzero
idempotents are therefore in one-one correspondence with the set I. Every primitive inverse semigroup
— one in which every nonzero idempotent is minimal — is the 0-direct union of Brandt semigroups.

Let S be an inverse semigroup. For each J -class J of S, let PF (J) denote the principal factor
associated with J . Formally [7, Section I.6], if J = Ja is not the least J -class of S, PF (J) = J(a)/I(a),
where J(a) = SaS and I(a) = J(a)\Ja. In practice, we consider PF (J) as J ∪ {0}, with the products
from J being those in S, if they lie in J , all other products being 0. If J is the least J -class of S, then
PF (J) is defined to be J itself.

If J is the least J -class of S (its kernel), then PF (J) is a group. Otherwise, PF (J) is 0-simple and,
if EJ is finite, completely 0-simple and thus a Brandt semigroup. In general, S is completely semisimple
if each principal factor is a group or a Brandt semigroup. This holds if and only if S contains no bicyclic
subsemigroup. In such a semigroup, D = J .

We shall represent the bicyclic semigroup B via the presentation 〈x : xx−1 ≥ x−1x〉, in which case ES

is the chain e0 > e1 > e2 > · · · , where ei = x−ixi (x0 corresponding to the identity element 1 = xx−1).
For alternative representations see [7].

An inverse semigroup S is E-unitary if whenever s ∈ S, e ∈ ES and es ∈ ES then s ∈ ES . Let
σ = {(s, t) ∈ S × S : es = et for some e ∈ ES}, the least group congruence on any inverse semigroup, so
that S/σ is its maximal group homomorphic image. Then [7, Proposition III.7.2] S is E-unitary if and
only if ES is a σ-class of S and if and only if R∩ σ is the identity relation.

Note that if the E-unitary inverse semigroup S has a least idempotent e, say, then its kernel Je = He

is isomorphic to S/σ.

3 The main theorem

Proposition 3.1. A Brandt semigroup B(G, I) is finitely generated if and only if I is finite and G is
finitely generated.

Proof. First suppose I is finite, I = {1, 2, . . . , n}, say, and let A be any generating set for G. As usual,
the nonzero R-classes and the nonzero L-classes may be indexed by I and thus the nonzero H-classes by
I × I, in such a way that the group H-classes are {Hii : i ∈ I}, all isomorphic with G. Let x1, x2, . . . , xn
be a transversal of the H-classes H11, H12, . . . ,H1n, with x1 the identity element e of H11. By Green’s
lemma [7, Lemma I.6.9], Hij = x−1

i H11xj for each (i, j) ∈ I×I, so B(G, I) = 〈A∪{x2, . . . , xn}〉. Clearly,
if G is finitely generated, then so is B(G, I).
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Conversely, if B(G, I) is finitely generated, then I is finite (since any nonzero element is R-related to
either a generator or the inverse of a generator). In the notation of the previous paragraph, B(G, I) =
〈B ∪ {x2, . . . , xn}〉 for some finite subset B of A. Now if g ∈ H11, then the only nonzero products with
members of {x2, . . . , xn} ∪ {x−1

2 , . . . , x−1
n } are of the form gxj , x

−1
i g and x−1

i gxj . But the only nonzero
products of members of {x2, . . . , xn}∪{x−1

2 , . . . , x−1
n } are xjx

−1
j = e and x−1

j xj ∈ Hjj . Hence H11 = 〈B〉
and G is finitely generated.

Corollary 3.2. A Brandt semigroup B(G, I) has the Howson property if and only if the same is true of
G.

Proof. Necessity is clear. To prove the converse, first consider any inverse subsemigroup T of S = B(G, I)
that is not just a subgroup. Then T is primitive and thus a 0-direct union of Brandt subsemigroups.
Clearly T is finitely generated if and only if there are finitely many factors, each of which is finitely
generated. So by Proposition 3.1 it is finitely generated if and only if each factor has finitely many
idempotents and its maximal subgroups (which are subgroups of G) are finite generated.

Then let U and V be finitely generated inverse subsemigroups of S that are not just subgroups. If
U ∩ V is nonempty and not {0}, first suppose it is a nonzero group, a subgroup of He, say, for some
e ∈ ES . Then it is a common subgroup of a 0-direct factor of U and a 0-direct factor of V and therefore
it is the intersection of the subgroups U ∩He and V ∩He. By the preceding paragraph, each of these
subgroups is finitely generated and therefore, by the Howson property, so is U ∩ V .

If U ∩V is not just a subgroup, then, similarly, each factor in its 0-direct union is contained within a
0-direct factor of U and a 0-direct factor of V and so is the intersection of those two factors. Each of its
maximal subgroups is therefore the intersection of a maximal subgroup of U with a maximal subgroup
of V and is therefore finitely generated. By Proposition 3.1, U ∩ V is finitely generated.

Lemma 3.3. Let S be an inverse semigroup, T = 〈X〉 an inverse subsemigroup of S, and J a J -class
of S. Then T ∩ J ⊆ 〈EJX ∩ T ∩ J〉.

Proof. Let t ∈ T ∩ J , t = y1 · · · yn, where for each i, yi or y−1
i belongs to X. Then by the result of

Hall [2, Lemma 1], t = ȳ1 · · · ȳn, where for each i, ȳi = eiyi, ei = yi · · · ynt−1y1 · · · yi−1 (with the usual
provisions in case i = 1 or i = n). By the cited result, each ȳi D t and each ei ∈ EJ . Clearly each ei ∈ T .
Note that if yi = x−1 then eiyi = (fix)−1, where fi = xeix

−1 ∈ EJ ∩ T . Thus t ∈ 〈EJX ∩ T ∩ J〉.

Let T ≤ S and let J = Ja be a non-group J -class of S that T meets nontrivially. Then T∩J(a) ≤ J(a)
and so (T ∩ J) ∪ {0} may be regarded as an inverse subsemigroup of PF (J). Denote it by TJ . If J is a
subgroup, put TJ = T ∩ J .

Proposition 3.4. Let S be an inverse semigroup with finitely many idempotents and T ≤ S. Then T is
finitely generated if and only if TJ is finitely generated for each J -class J of S that meets T nontrivially.

Proof. If T is generated by the finite set X then, by Lemma 3.3, each such TJ is generated by the finite
set EJX ∩T ∩ J . Conversely, if for each such J , TJ = 〈XJ〉, where we may assume XJ does not contain
the zero of PF (J) in the non-group case, then when interpreted in S each XJ is contained in T and
T ∩ J ⊆ 〈XJ〉. Thus T is generated by the union of the sets XJ .

We can now prove the theorem stated in the introduction.

Theorem 3.5. Let S be an inverse semigroup with finitely many idempotents. Then S has the Howson
property if and only if each of its maximal subgroups has this property.
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Proof. Necessity is clear. For the converse, let U and V be finitely generated inverse subsemigroups of
S. Let J be a J -class of S that meets U ∩ V nontrivially.

If J is the minimum J -class of S, then all the relevant intersections are subgroups of J and so
(U ∩ V )J is finitely generated, by the Howson property for J .

Otherwise, by the direct half of Proposition 3.4, UJ and VJ are finitely generated inverse sub-
semigroups of PF (J). Applying Proposition 3.2, UJ ∩ VJ is finitely generated. But UJ ∩ VJ =
((U ∩ J) ∩ (V ∩ J)) ∪ {0} = ((U ∩ V ) ∩ J) ∪ {0} = (U ∩ V )J . Applying the reverse half of Propo-
sition 3.4, U ∩ V is therefore finitely generated and the Howson property holds in S.

Without finiteness of the semilattice of idempotents, the theorem may fail: as remarked in the
introduction, the free inverse semigroups of rank greater than one do not satisfy the Howson property,
but all their subgroups are trivial.

Corollary 3.6. Let S be an E-unitary inverse semigroup with finitely many idempotents. Then S has
the Howson property if and only if the maximal group image S/σ has this property. In particular [9,
Theorem 3.4], the semidirect product of a finite semilattice and a group has the Howson property if and
only if the group has this property.

Proof. In this special case, the minimum J-class J is isomorphic to S/σ and each maximal subgroup of
S embeds in J , so the result is immediate from Theorem 3.5.

Remark: in [9, Corollary 4.1], Silva and Soares cleverly apply the last statement of the corollary
just stated to extend it to the case of locally finite actions: those for which the orbit of each element of
the semilattice under finitely generated subgroups is finite. One application was to actions on ‘strongly
finite above semilattices with identity’. These are semilattices possessing a well-defined height function,
given by the maximum length of a chain from each element to the identity, and, further, having only
finitely many elements of any given height. Note that the semilattice of idempotents of any free inverse
semigroup of finite rank has this property. Thus it does not guarantee the Howson property for E-unitary
inverse semigroups in general.

Another application of the same corollary — to the case that the group is locally finite — is moot:
any E-unitary inverse semigroup whose maximal group homomorphic image is locally finite is itself
locally finite, by Brown’s lemma [1], and therefore immediately has the Howson property.

On the other hand, as remarked in the introduction, Corollary 3.6 may also be deduced from [9,
Theorem 3.4]. Sufficiency follows from O’Carroll’s theorem [6] that any E-unitary inverse semigroup
S [with finite semilattice of idempotents and] maximum group homomorphic image G embeds in a
semidirect product of a [finite] semilattice with G. Necessity follows from the fact that S/σ is isomorphic
to the group kernel of S.

Finally we should also note that the authors of [9] used some rather heavy ‘machinery’ to prove their
main theorem, while our methods are elementary.

4 Monogenic inverse semigroups

As remarked in the introduction, the author and P.G. Trotter showed that the free inverse semigroup
FI1 of rank one (which is an E-unitary inverse semigroup) has the Howson property. A key tool was
the following.

Result 4.1. [5, from Proposition 1.5] For any inverse subsemigroup S of the free inverse semigroup of
rank one, the inverse subsemigroup generated by the nonidempotents of S is finitely generated.
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As far as the author is aware, all the inverse semigroups hitherto known to have the Howson property
were completely semisimple, so the following results are of special interest.

Lemma 4.2. Every inverse subsemigroup of the bicyclic semigroup B that does not consist solely of
idempotents is finitely generated.

Proof. Let S be such a subsemigroup and let ek be the greatest idempotent for which the associated
R-class of S is nontrivial, where k a nonnegative integer. Say ekx

m ∈ S, where m is a positive integer.
Then for every nonnegative integer r, S contains (ekx

m)r = ekx
mr and so (ekx

m)−r(ekx
m)r = ek+rm.

Since B is a quotient of the free inverse semigroup of rank one, S is generated by a finite set A of
nonidempotents, together with a set F of idempotents. Suppose S contains ek+sm+i for some s and some
i, 0 < i < m. Since xsmx−sm = 1, direct calculation shows that S contains (ekx

sm)ek+sm+i(ekx
sm)−1 =

ek+i and ek+i(ekx
m) = ek+ix

m, in which case, further, S contains ek+rm+i for every nonnegative r, as
in the previous paragraph.

Thus S is generated by A together with the finite set of idempotents {ej : 0 ≤ j < k +m} ∩ S.

Corollary 4.3. The bicyclic semigroup B has the Howson property.

Proof. Let U, V be finitely generated inverse subsemigroups. If either consists solely of idempotents,
then it is finite, so assume otherwise. Then for some positive integers m and n and nonnegative integers
j and k, u = ejx

m ∈ U and v = ekx
n ∈ V . By replacing u and v respectively by un and vm, if necessary,

we may assume m = n, so that u σ v.
If U ∩V contains a nonidempotent, then Lemma 4.2 applies. In particular, this is the case whenever

U ∩ V contains an idempotent ei such that i ≥ max(j, k), that is, ei ≤ uu−1, vv−1: for then eiu R eiv
and eiu σ eiv, so since B is E-unitary, eiu = eiv is a nonidempotent of U ∩ V .

Otherwise, U ∩ V is contained in the finite set {ei : i < max(j, k)}.

Apart from the free one, the monogenic inverse semigroups are determined by the following classes
of defining relations [7, Theorem IX.3.11], where k, ` are positive integers: (1) xk = xk+`; (2) xkx−1 =
x−1xk; (3) xk = x−1xk+1.

The first class consists of the finite instances. The second consists of the the infinite cyclic group
(k = 1) and ideal extensions of that group by finite Rees quotients of FI1. The third consists of the
bicyclic semigroup B (k = 1) and ideal extensions of B by finite Rees quotients of FI1.

Proposition 4.4. Every monogenic inverse semigroup has the Howson property.

Proof. We have already noted that FI1 has this property. For the first class this is obvious; those in
the second class have finitely many idempotents and the maximal subgroups are either trivial or infinite
cyclic, so Theorem 3.5 applies. We have just proved that B has the Howson property, so let S be an
ideal extension of B by a finite Rees quotient of FI1, where xn ∈ B, say. Let U, V be finitely generated
inverse subsemigroups of S. As in the proof of Corollary 4.3, we may assume that neither U nor V
consists of idempotents. Since x is of infinite order, neither U ∩ B nor V ∩ B consists of idempotents.
By Lemma 4.2, U ∩ B and V ∩ B finitely generated, so (U ∩ V ) ∩ B is finitely generated and, since
(U ∩ V )\B is finite, U ∩ V is also finitely generated.
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