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Abstract

In volcanology, the sparsity of datasets for individual volcanoes is an important problem, which,
in many cases, compromises our ability to make robust judgments about future volcanic haz-
ards. In this contribution we develop a method for using hierarchical Bayesian analysis of global
datasets to combine information across different volcanoes and to thereby improve our knowl-
edge at individual volcanoes. The method is applied to the assessment of mobility metrics for
pyroclastic density currents in order to better constrain input parameters and their related un-
certainties for forward modeling. Mitigation of risk associated with such flows depends upon
accurate forecasting of possible inundation areas, often using empirical models that rely on mo-
bility metrics measured from the deposits of past flows, or on the application of computational
models, several of which take mobility metrics, either directly or indirectly, as input parameters.
We use hierarchical Bayesian modeling to leverage the global record of mobility metrics from
the FlowDat database, leading to considerable improvement in the assessment of flow mobility
where the data for a particular volcano is sparse. We estimate the uncertainties involved and
demonstrate how they are improved through this approach. The method has broad applicability
across other areas of volcanology where relationships established from broader datasets can be
used to better constrain more specific, sparser, datasets. Employing such methods allows us to
use, rather than shy away from, limited datasets, and allows for transparency with regard to
uncertainties, enabling more accountable decision-making.

Introduction
Efforts in quantitative volcanic hazards assessment (QVHA) are currently being bolstered by a number of
ongoing initiatives to compile important databases such as the Global Volcanism Program database (Global
Volcanism Program, 2013), WOVOdat (Venezky & Newhall, 2007), Geologic Survey of Japan (GSJ) Quaternary
and Active volcanoes databases (Geological Survey of Japan and the National Institute of Advanced Industrial
Science and Technology (AIST), 2013), LaMEVE (Crosweller et al., 2012), DomeHaz (Ogburn et al., 2012, 2015),
and FlowDat (Ogburn, 2012, 2014). These efforts collectively reflect a growing understanding of the value that
is added by undertaking global analysis. Challenges remain, however, in dealing with variable data quality,
sparse data for particular volcanic systems, and quantification of uncertainty. Some of these outstanding issues
can be dealt with by exploring and developing statistical methods, which can not only improve our predictive
capacity for future eruptions but can also contribute to advancing our scientific understanding of the volcanic
processes involved.

Data sparsity, in particular, is a ubiquitous problem when assessing volcanic hazards (Siebert et al., 2010).
Indeed, Siebert et al. (2010) posit that poorly known, thickly vegetated, long-quiescent volcanoes that have had
no historical activity ... may be the most dangerous of all. The record of activity at any given volcano may
be incomplete or heavily biased due to inadequate or differential preservation and exposure of the deposits,
or the history of nearby human settlement (e.g., Crosweller et al., 2012; Brown et al., 2014; Kiyosugi et al.,
2015; Whelley et al., 2015). Other practical issues, such as accessibility and remoteness (e.g., Whelley et al.,
2015), also hinder investigation and therefore influence data completeness. In many cases, scientific interest in
a given system is driven by significant observable volcanic activity, while small magnitude or effusive activity
is often poorly recorded (Deligne et al., 2010; Furlan, 2010; Siebert et al., 2010; Crosweller et al., 2012; Brown
et al., 2014). Often, newly active volcanoes, especially those that had previously been dormant ( e.g., Chaitén,
Chile, in 2008; Alfano et al., 2011; Watt et al., 2013), may be poorly understood and may simply lack sufficient
information on which to base assessments about renewed and future behavior.

The issues discussed above often result in information concerning a particular type of phenomenon (such
as pyroclastic density currents) being plentiful at some well-studied volcanoes but very limited at others. Two
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end-member approaches to deal with this problem are, 1) to assume that particular phenomena have similar
characteristics at every volcano, and thus use information from the global record of all volcanoes, or 2) to assume
that particular phenomena at different volcanoes behave dissimilarly, and use only the information from a given
volcano. Often, however, it is reasonable to assume that a particular volcanic phenomenon, while not identical
across volcanoes, is controlled by similar processes, and can be assumed to vary according to some probability
distribution. This allows one to borrow information from a global database, leading to better quantification of
uncertainty and improved accuracy in hazard assessment at a particular volcano. The statistical methodology
for doing this is hierarchical Bayesian analysis (Allenby et al., 2005). Bayesian approaches to volcanic hazard
assessment have been used successfully for event tree construction (Marzocchi et al., 2008, 2010) and have
recently been expanded using hierarchical Bayesian methods (Sheldrake, 2014).

In this work, we use hierarchical Bayesian methods to augment statistical analysis of the mobility of pyroclas-
tic density currents. Specifically for this work, our interest is in dense, concentrated dome-collapse pyroclastic
density currents. Pyroclastic density currents (PDCs) are hot avalanches of rock and gas which, due to their
ability to travel great distances at high speeds, are among the most destructive volcanic hazards. This effort,
in part, is motivated by the need for more robust characterization of the mobility relationships of PDCs for
different volcanic systems. Mitigation of risk associated with these phenomena depends upon accurate fore-
casting of possible flow paths and inundation areas, often using empirical models that rely on mobility metrics
(e.g., the energy cone model, Malin & Sheridan (1982); PFz, Widiwijayanti et al. (2008)) or the application of
computational flow models (e.g., TITAN2D Patra et al. (2005); VolcFlow, Kelfoun & Druitt (2005)). Linear
regression of mobility metrics such as the Heim coefficient (height dropped/runout length of a PDC, or H/L) or
the relationship between the area inundated by a PDC and its volume, often informs such models, sometimes as
direct model inputs (e.g., the energy cone model, PFz), or indirectly as proxies for input parameters (e.g., basal
friction angle in TITAN2D, constant resisting shear stress in VolcFlow). There are many examples where such
data has been used successfully to simulate and replicate the behavior of past events (Kelfoun & Druitt, 2005;
Widiwijayanti et al., 2008; Charbonnier & Gertisser , 2009, 2012; Murcia et al., 2010; Sheridan et al., 2010;
Capra et al., 2011; Ogburn, 2014). However, the use of such data as input parameters in forward modeling of
future hazards is compromised by the relative dearth of information on large volume events and the scarcity
of data from remote, under-studied, or recently active volcanoes. When eruptive activity initiates at a newly
active volcano, for which little PDC data is available, forward modeling by simply substituting PDC mobility
parameters from other volcanoes is of tenuous merit, as local source conditions and topographic effects influence
flow mobility (Stinton, 2014; Charbonnier & Gertisser , 2011; Lube et al., 2011; Ogburn, 2014) and inundation
estimates will have high uncertainties. Instead, what is required are more accountable approaches to enable the
use of the limited existing data to their maximum potential while also quantifying the associated uncertainty.

We develop a method using hierarchical Bayesian analysis to leverage the global record of mobility metrics
from the FlowDat mass flow database (Ogburn, 2012, 2014). Strength is borrowed from the global record to
understand mobility characteristics at specific volcanoes, leading to considerable improvement in assessments
where data for a particular volcano is sparse. First, the background to the problem of assessing mobility of
PDCs and how PDC mobility metrics are used with, and subsequently propagated through, flow modeling,
is presented in Section 1. The hierarchical Bayesian analysis of the compiled data is presented in Section 2,
and the results are discussed in Section 3. The variables and abbreviations used throughout are presented in
Appendix A and a detailed step-by-step methodology is provided in Appendix B.

Statistics in Volcanology
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1 Mobility metrics for mass flows

1.1 Frictional vs. resisting shear stress models

The most widely used mobility metric for concentrated mass flows of (e.g., volcanic and non-volcanic debris
avalanches, dome- and column-collapse PDCs) is the Heim coefficient (Heim, 1932), commonly denoted as
(H/L), where H is the vertical fall height traversed by a flow and L is the runout length. (H/L) is equivalent
to the coefficient of friction following a Mohr-Coulomb friction model, in which shear stress at the initiation of
failure is proportional to the normal stress.

According to Mohr-Coulomb friction models, the mass or volume, V , of the flow should be irrelevant to
mobility, and the coefficient of friction should be a function of material properties. Numerous studies of real
deposits, however, have shown a linear inverse relationship between log(V ) of a mass flow (of any type) and
log(H/L) (Heim, 1932; Scheller , 1971; Scheidegger , 1973; Hsü, 1975), with large volume flows demonstrably
being more mobile than small volume flows.

An alternative to the frictional model approach is the class of the constant resisting shear stress models.
In these models, the mobility of mass flows is described by a constant resisting shear stress (CRS), or yield
strength, and the planimetric area, Ap, is related to V 2/3 via scaling arguments (Hungr , 1990; Iverson et al.,
1998; Dade & Huppert, 1998; Calder et al., 1999). This model indicates a relationship between inundated area
and resisting shear stress, suggesting a yield stress rheology (Kilburn & Sørenson, 1998; Crosta et al., 2003;
Griswold & Iverson, 2008).

Both of these metrics (H/L and Ap vs. V 2/3) have been applied to PDC mobility with success (Sparks, 1976;
Nairn & Self , 1978; Francis & Baker , 1977; Sheridan, 1979; Begét & Limke, 1988; Fisher & Schmincke, 1984;
Hayashi & Self , 1992; Calder et al., 1999; Cole et al., 2002; Vallance et al., 2010; Charbonnier & Gertisser ,
2011) and have become standard mobility metrics with which to compare and contrast PDC behavior, especially,
but not exclusively, those of concentrated PDCs.

1.2 Mobility metrics for flow modeling

Many empirical flow inundation models are based directly on measurements of (H/L) or (Ap vs. V 2/3). Hsü
(1975), Sheridan (1979), and Malin & Sheridan (1982) first used the energy-line or energy-cone concept (which
is defined by H/L). This concept has been applied at a variety of volcanoes (e.g., Sheridan & Malin, 1983;
Wadge & Isaacs, 1988; Höskuldsson & Cantagrel, 1994; Alberico et al., 2002; Sheridan et al., 2004) and also
forms the basis for the FLOW2D and FLOW3D computer models (e.g., Kover & Sheridan, 1993; Martin del
Pozzo et al., 1995; Sheridan & Macías, 1995; Hooper & Mattioli, 2001) which base shear resistance on basal
friction (taken directly from H/L), viscosity, and turbulence.

(H/L) also informs computational flow models that use a Coulomb friction law, including TITAN2D (Patra
et al., 2005), which have built upon the work of Savage & Hutter (1989), who used Coulomb friction laws
in conjunction with depth-averaged equations for mass and momentum. The Heim coefficient can therefore
provide a guideline for choosing appropriate basal friction input angles for different flow volumes for TITAN2D
(Ogburn, 2008, 2014; Charbonnier & Gertisser , 2012; Charbonnier et al., 2015).

LAHARZ and PFZ use semi-empirical equations for planimetric area (Ap = cV 2/3) and cross-sectional area
(Axs = CV 2/3) to predict lahar (Iverson et al., 1998), debris flow, rock avalanche (Griswold & Iverson, 2008)
and PDC (Widiwijayanti et al., 2008) inundation using empirically derived coefficients (c and C) from a variety
of mass flow deposits worldwide. These relationships also form the basis of flow models using constant shear
stress instead of constant friction (e.g., VolcFlow, Kelfoun & Druitt, 2005).

With increasing application of these respective flow modeling approaches, it is now timely and appropriate
to undertake more considered approaches to understanding and quantifying the uncertainty related to the use
of mobility metrics as model inputs. This work has been driven by our specific interest in constraining the basal
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friction input parameter required by TITAN2D when undertaking ensemble runs for generating probabilistic
hazards maps (Bayarri et al., 2009; Spiller et al., 2014; Bayarri et al., 2015), by using the (H/L)-volume
mobility relationships for block-and-ash flows from the FlowDat database. The application of the method
developed can, however, be applied widely.

2 Statistical analyses
Herein, we present a method using hierarchical Bayes modeling to leverage the global record of mobility metrics
for PDCs, which can aid in cases where data for a particular volcano is sparse. We use the FlowDat database
of mass flow mobility metrics (Ogburn, 2012, 2014), which is current through 2014. From FlowDat (Ogburn,
2012), 4 volcanoes were selected with plentiful (H/L) data, planimetric areas, and volume data for dome-
collapse PDCs (14 to 80 flows): (i) Colima Volcano, Mexico (data from: Saucedo et al., 2002, 2004, 2010),
(ii) Merapi Volcano, Indonesia (data from: Boudon et al., 1993; Bourdier & Abdurachman, 2001; Schwarzkopf
et al., 2005; Charbonnier & Gertisser , 2011; Charbonnier et al., 2013; Komorowski et al., 2013), (iii) Soufrière
Hills Volcano, Montserrat (data from: Calder et al., 1999; Cole et al., 2002; Hards et al., 2008; Komorowski
et al., 2010; Loughlin et al., 2010; Cole et al., 2014), and (iv) Unzen Volcano, Japan (data from: Nakada et al.,
1999; Takarada, 2008) (Figure 1). Volcanoes with sparse data were also used: (i) for the (H/L) plot, Semeru
Volcano, Indonesia, (data from Thouret et al., 2007), and (ii) for the (Ap vs. V 2/3) plot, Augustine Volcano,
Alaska (data from: Kamata et al., 1991; Vallance et al., 2010; Global Volcanism Program, 2013) and Unzen
Volcano, Japan, (data from Nakada et al., 1999). These flows are all dense, concentrated dome-collapse PDCs
(block and ash flows), for which it is reasonable to assume broadly similar flow behavior. Error was rarely
reported by the sources of the data, but is shown as error bars where available. However, the error bars were
often smaller than the markers themselves.

For the frictional model of mobility (H/L vs. V ), the strong linear relationship between the logarithm
of PDC volume and the logarithm of the coefficient of friction suggests the use of a linear model, such as a
regression model

y = α+ βx+ ε, ε
iid∼ N(0, σ2)

where x is the log-volume1, y is the log-coefficient of friction (H/L), α and β are the intercept and slope of the
regression line, and ε is random error. Graphically, this model corresponds to fitting a straight line through all
of the data y in Figure 1, which minimizes the errors between estimated and observed values. This approach
corresponds to one end-member option, that is, to assume that the relationship between the coefficient of friction
and flow volume for block-and-ash flows is constant at every volcano, and thus use information from all the
volcanoes to fit a regression.

Alternatively, one could fit separate regression lines for each of the J volcanoes, namely

yj = αj + βjx+ ε, ε
iid∼ N(0, σ2

j ) ,

based on the data yj from volcano j alone. The result of separate regression fits is shown in Figure 1. This
approach represents the alternative end-member option, that is, to assume that the relationship between the
coefficient of friction and volume at different volcanoes is unrelated, and thus uses only the information from a
given volcano to fit a regression.

Likewise, to fit the constant resisting shear stress relationship (Ap vs. V 2/3), we apply the same models
to the transformed volume (V 2/3) and planimetric area data (Ap) by letting x be the log(V 2/3) and y be the
log(Ap). The analysis in the next section is described in terms of the frictional relationship, but applied in

1Actually x = log10(volume/105.5). This x-origin then corresponds volume of 105.5m3, roughly where the slope and intercept are
least correlated.

Statistics in Volcanology
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Figure 1: Data from all volcanoes considered for each of the two respective relationships along
with their respective linear regression lines. Upper plot shows coefficient of friction (H/L) vs. vol-
ume (V ). Colima, Merapi, Soufrière Hills, and Unzen have plentiful data, while data for Semeru is
sparse. Lower plot shows planimetric area (Ap) vs. transformed volume (V 2/3). Colima, Merapi,
and Soufrière Hills have plentiful data, while data for Unzen and Semeru is sparse. Error bars
on all values are smaller than the markers themselves and errors for volumes were only reported
for Soufrière Hills. Note that not all PDCs had both (H/L) and (Ap) values reported in the
literature.

Statistics in Volcanology
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an identical manner for the constant resisting shear stress relationship using the appropriate definitions for x
and y. Furthermore, the hierarchical analysis presented in the next section could prove useful for any linear
relationship suggested by transformations of volcanic datasets; the frictional and constant resisting shear stress
relationships for dome-collapse PDCs used here are just two pertinent examples.

2.1 Hierarchical Bayesian model

In situations where it is unclear whether to fit an overall regression model or separate regression models, it has
become common statistical practice to use the hierarchical or multilevel approach, which is a happy medium
between these end-member alternatives. Hierarchical modeling is carried out via Bayesian analysis, wherein a
prior probability distribution is chosen to describe knowledge about the unknown model parameters (here the
various regression parameters); this distribution will then be updated by the data to form posterior probability
distributions of the unknown model parameters.

The version of hierarchical modeling utilized here links together the separate regressions by assuming that
the regression line slopes arose from the common normal distribution (part of the prior distribution)

βj are i.i.d. N(µ, τ2) ,

with unknown hyper-mean (the mean of the prior distribution) µ and hyper-variance (the variance of the prior
distribution) τ2. Note that, if τ2 = 0, then all the βj would be equal, so we would be back to the case of a
single regression. At the other extreme, as τ2 → ∞, this model would yield the same answers as the separate
regression models. The performance of the hierarchical model, in situations such as this, is typically better than
that of either of the two extremes.

An initial presumption is that little is known about µ and τ2 (a vague prior distribution will be used for
these parameters), but more will be learned about them from the data through their posterior distribution and
they, in turn, will affect the posterior distribution of the βj .

If data were plentiful at each volcano, there would be little need (but also no harm) in employing the
hierarchical model, as the effect of the posterior distribution of µ and τ2 on the βj would then be minimal.
When data is sparse for one or more volcanoes, however, the gains with the hierarchical approach can be
considerable. For example, from the top panel of Figure 1 it can be seen that there are only four data points
from Semeru for a very narrow range of PDC volumes, and attempting to fit a separate regression to just four
points will lead to a very uncertain result. In contrast, the hierarchical modeling approach allows for borrowing
strength from the other volcanoes in estimating Semeru’s regression line slope (because of the assumption that
all slopes arose from a common normal distribution), and will be seen to result in much tighter credible intervals
for the regression line for Semeru.

To complete the specification of the hierarchical model, prior distributions for the other unknown parameters
in the model need to be chosen. Whereas the regression coefficients from Figure 1 appear quite related, the
intercepts, αj , seem considerably more variable. A hierarchical model for the intercepts could be utilized, but
since there would be little gain, an objective constant prior distribution πO(α1, . . . , αJ) = 1 is employed instead;
although this objective prior does not induce any sharing of intercept information across volcanoes, the changes
in the slope parameters through their hierarchical modeling will influence the intercepts.

In developing prior distributions for the regression variances σ2
j , it is important to consider that the PDC

data represented in Figure 1 come from both highly channelized and unchannelized (unconfined) flows; both
flows experience different frictional forces and exhibit different mobilities (Ogburn, 2014; Charbonnier & Ger-
tisser , 2011; Stinton, 2014). Modeling by Stinton (2014) using TITAN2D showed that flows confined in synthetic
channels had longer runouts, higher velocities, and shorter travel times than flows simulated over synthetic un-
confined terrain. Lube et al. (2011) found a similar topographic effect on the (Ap vs. V 2/3) metric, whereby
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increasing the proportion of the flow which escaped from a channel strongly increased this ratio. This was ex-
plained by the order of magnitude difference between the thickness of channel-confined and unconfined portions
of the deposits. Lube et al. (2011) and Charbonnier & Gertisser (2011) also noted a change in mobility metrics
as flows inundating the same drainage progressively filled and reduced the carrying capacity of the channel,
resulting in higher proportions of unconfined deposits. The degree of channelization of particular PDCs is not
trivial to determine in a quantitative sense, as PDCs often exhibit a combination of both channelized and un-
channelized transport that varies downstream. Additionally, many of the traditional metrics (i.e., plan aspect
ratio) can be heavily influenced by the width of, and thus confinement imposed by, the channels themselves
(Ogburn, 2014). However, both qualitative descriptions of PDCs from the literature and transect measurements
of channelization for a limited number of PDCs indicate that both the Merapi and Colima datasets contain
PDCs with lower degrees of channelization than the datasets from the other three volcanoes. PDCs at Mer-
api and Colima also tend to inundate multiple channels, while those elsewhere typically travel down a single
channel.

These differences are also apparent in the data. Indeed, Table 1 gives the results of separate regressions at
the five volcanoes, and the mean square residuals (MSR) are very similar for the three volcanoes with domi-
nantly channelized flows and are much smaller than the MSR for the volcanoes with dominantly unchannelized
flow deposits. The higher MSR for unchannelized flows or those that inundate multiple channels makes intu-
itive sense, as these flows travel over extremely varied topography, with greater variation in slope and surface
roughness than flows which travel down channels. An exception are PDCs at Augustine, which were mainly
unchannelized, but each PDC was emplaced over relatively similar substrates of snow and ice, reflected in the
low MSR for those flows. We have, therefore, grouped these PDCs with the channelized flows. It would be
natural to have a separate variance for the channelized and the unchannelized flow data. Thus, we assign Merapi
and Colima a common variance σ2

C and the other volcanoes common variance σ2
U , with the two variances being

unknown.
The equivalent slope, intercept, error information for the (Ap vs. V 2/3) relationship is summarized in Table

2. For this analysis, we also apply the channelized/unchannelized grouping to specify σ2
C and σ2

U .

Table 1: Linear regression parameters and MSR for each volcano for (H/L vs. V )
relationship.

Volcano Lin. Reg. Slope Lin. Reg. Intercept MSR (×10−4)

Colima* -0.224 -0.386 66.5
Merapi* -0.183 -0.384 95.2

Soufrière Hills -0.201 -0.531 24.8
Unzen -0.156 -0.493 26.3
Semeru -0.314 -0.172 24.3

* indicates volcanoes with flows which are generally unchannelized, otherwise flows
are channelized

To complete the Bayesian model, prior distributions are needed for σ2
C and σ2

U and for the hyperparameters
µ and τ2 from the hierarchical prior. For these parameters we utilize a standard objective prior, the reference
prior, πR(µ, σ2

β, σ
2
C , σ

2
U ); this is given in Appendix B. The reference prior is chosen so as to minimize the influence

of the prior distribution on the analysis, i.e., to ensure that the posterior distribution of the model parameters
only reflects what the data has to say.

This completes the specification of the Bayesian hierarchical model, and one now simply applies Bayes
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Table 2: Linear regression parameters and MSR for each volcano for the
(Ap vs. V 2/3) relationship.

Volcano Lin. Reg. Slope Lin. Reg. Intercept MSR

Colima* 1.041 1.421 0.142
Merapi* 1.256 2.165 0.128

Soufrière Hills 0.912 1.260 0.042
Unzen 0.553 0.971 0.076

Augustine* 0.340 0.757 0.039
* indicates volcanoes with flows which are generally unchannelized,
otherwise flows are channelized, with the exception of Augustine PDCs
(see text)

theorem to obtain the posterior distribution of all unknowns parameters, given all the data y, as

π(α1, . . . , αJ , β1, . . . , βJ , µ, τ
2, σ2

C , σ
2
U | y) ∝

J∏
j=1

f(yj | αj , βj , σ2
j )

×πO(α1, . . . , αJ)πR(µ, σ2
β, σ

2
C , σ

2
U )

J∏
j=1

N(βj | µ, τ2) ,
(1)

where f(yj | αj , βj , σ2
j ) is the likelihood arising from the data at volcano j and the σ2

j are either the channelized
or unchannelized variance.

2.2 Analysis

There are no closed form analytical expressions for estimates of unknown parameters or for credible intervals,
but there is a relatively straightforward Markov Chain Monte Carlo (MCMC) method, described in Appendix
B, for drawing samples from the posterior distribution in (1). From this set of samples,

{(αi1, . . . , αiJ , βi1, . . . , βiJ , µi, (τ2)i, (σ2
C)i, (σ2

U )i), i = 1, . . . ,m} ,

all desired inferences can be performed.
The typical parameter estimate would be the posterior mean, computed as the average of all of the samples;

enough samples are typically chosen (m = 106 was used in the computations herein) that the numerical error in
this computation is negligible. Similarly a 95% credible interval, for example, would be formed as the interval
containing the central 95% of the ordered sample. Even more informatively, the entire posterior distribution of
a parameter could be approximated by simply making a histogram of the sample values. These histograms are
illustrated in Appendix B (Figure 5 and Figure 6). Note, in particular, from Figure 6 that the channelized and
unchannelized variances do seem to be quite different.

3 Geophysical results and discussion
The relationship between coefficient of friction and volume can be studied in several ways from the posterior
sample of parameters. For volcano j, we have a sample {(αij , βij), i = 1, . . . ,m} of the intercepts and slopes.
This yields a sample from the posterior distribution of all regressions lines, illustrated in Figure 2.

Samples of regression lines are useful for the computation of inundation probabilities from PDCs; for ex-
ample, where it is necessary to consider different possible mobilities for flows over a range of volumes. Samples
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Figure 2: Both figures represent samples from the hierarchical linear regression model of the
frictional relationship applied to the data, but show the same sample curves on different scales.
Left plot shows coefficient of friction and volume each on a log scale (which the linear model was
fit to). Right plot shows Basal friction angle (calculated as arctan of the coefficient of friction)
versus volume on a linear scale (1× 106 m3).

from regression lines can be used directly for empirical models such as the energy line/cone method or for
estimating the basal friction input parameter for a geophysical model like TITAN2D (Bayarri et al., 2009;
Ogburn, 2014; Spiller et al., 2014) or the constant resisting shear stress input parameter in VolcFlow (Ogburn,
2014). Furthermore, using regression samples generated by this method allows one to account for uncertainty
in probabilistic assessments of PDC inundation.

Figure 3 gives, for each volcano, a posterior summary consisting of the regression line corresponding to the
posterior median values of the sample regression lines (the solid red line); this would be the natural estimated
regression line from the Bayesian analysis. 95% credible intervals (the dashed red lines) are also shown and are
obtained, at each volume value V , by taking the central 95% interval of values of αij + βij log10(V ), over the
posterior samples.

For comparison, the confidence intervals on the regression function from classical individual regressions are
also given in Figure 3, with the solid black line being the standard estimated regression function and the dashed
black lines being the standard 95% confidence intervals. As expected, for the volcanoes with abundant data,
there is not much difference between the hierarchical model regression summaries and the classical regressions.
But, for Semeru, which had only four data points all of which are closely clustered in volume, the differences
found would affect the results of a probabilistic analyses, with the hierarchical approach providing tighter
uncertainty estimates. This conclusion is, of course, predicated on the scientific judgment that the slope of the
Semeru regression line is related to the slopes of the others, but this is reasonable.

For the (Ap vs. V 2/3) relationship, again we summarize the posterior distribution of the hierarchical linear
model. Figure 4 gives, for each volcano, the regression line corresponding to the posterior median values of the
sample regression lines (the solid red line), and 95% credible intervals (the dashed red lines) formed, at each
volume value V , by taking the central 95% interval of values of αij+βij log10(V ), over the posterior samples. And
again, for comparison, the confidence intervals on the regression function from classical individual regressions
are also given, with the solid black line being the standard estimated regression function and the dashed black
lines being the standard 95% confidence intervals.

Again, for Figure 4 we have two volcanoes with limited data, Unzen (three data points) and Augustine (four
data points). The reduction in uncertainty obtained through the hierarchical linear model is rather different
for the two cases. Although the 95% credible intervals from the hierarchical model are reduced in both cases

Statistics in Volcanology



Ogburn et al. Pooling strength among limited data using hierarchical Bayesian analysis 11

Figure 3: Comparison of the 95% confidence intervals (black dotted line) on the regression line
for each individual volcano (black solid lines) and credible intervals (red dotted line) obtained
from the hierarchical model (red solid line) as applied to the coefficient of friction vs. volume
relationship. PDCs in (a) and (b) were considered unchannelized; PDCs in (c) and (d) were
considered channelized in this analysis. PDCs from Semeru (e) were also considered channelized,
but with only four data points.
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Figure 4: Comparison of the 95% confidence intervals (black dotted line) on the regression line
for each individual volcano (black solid lines) and credible intervals (red dotted line) obtained
from the hierarchical model (red solid line) as applied to the (Ap) vs. (V 2/3). PDCs in (a) and (b)
were considered unchannelized; PDCs in (c) and (d) were considered channelized in this analysis.
Augustine (e) produced unchannelized flows which traveled over surfaces of snow and ice.
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(as well as for Colima), the improvements are much more dramatic for Unzen, which has data points that are
tightly clustered in volume. This is a case, much like Semeru in the frictional relationship, where borrowing
strength from other volcanoes via the hierarchical analysis greatly reduces uncertainty in fitting an inferential
relationship.

This type of approach is broadly applicable to other types of mass flows (debris avalanches, lahars, or
column-collapse PDCs, for example) or other types of data entirely (ash-dispersion metrics, for example), but it
is important that the datasets selected describe phenomena that are similar. This work focused only on dense,
dome-collapse PDCs which are considered to have broadly similar emplacement dynamics; and accounted for
dissimilarities (i.e., differences in channelization) by allowing for different variances. However, the more similar
the phenomena at different volcanoes, the better the method is able to reduce uncertainty. The selection of
appropriate data is thus subject to scientific judgment.

Finally, it is important to note that this work does not seek to recommend one mobility metric over another,
but rather to illustrate the usefulness of the hierarchical Bayesian approach for different types of commonly
reported mobility metrics that inform model inputs. The choice of which mobility metric, conceptual model, or
computational model is most appropriate for different types of mass flows is a matter of much debate (e.g., Dade
& Huppert, 1998; Kilburn & Sørenson, 1998; Legros, 2002; Kelfoun & Druitt, 2005) and detailed comparisons
of these models can be found elsewhere in the literature (Kelfoun & Druitt, 2005; Charbonnier & Gertisser ,
2012; Ogburn, 2014). It is also worth noting here that for larger volume and more dilute flows, fluidization and
turbulence plays a more dominant role and that the mobility metrics and modeling tools referred to here are of
limited utility.

Conclusions
Understanding the past behavior of a particular volcano is the foundation upon which assessments of potential
future hazards are based. However, complete and robust datasets are very rare, and really only exist for a
handful of very well-studied volcanoes. Additionally, newly active volcanoes may produce hazards with poorly
constrained characteristics. This problem can be handled by, 1) using only data from a particular volcano (which
may be sparse, and thus introduce large uncertainties into hazard assessments), or 2) using the global record
of volcanoes (which may ignore or downplay any particularities of the volcano in question). The hierarchical
Bayesian method for analyzing mobility metrics presented herein allows one to achieve a happy medium between
these two approaches by not only using data from a particular volcano, but also by borrowing strength from the
global record of PDC behavior and thus greatly reducing the uncertainty for volcanoes with sparse data.
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Appendix A

Table 3: Variables and abbreviations.

Frictional model
V volume of PDC
H height dropped/vertical travel distance of PDC
L runout length of PDC

H/L Heim coefficient, coefficient of friction in the friction model

Constant resisting shear stress model
Ap Planimetric area of PDC inundation

Statistical model
y dependent variable: log-coefficient of friction (H/L), or planimetric area
x independent variable: log-volume or V 2/3

α intercept of the regression line
β slope of the regression line
ε random error
iid is independent and identically distributed
∼ has the distribution

N(0, σ2) a normal distribution with a mean of 0 and a variance σ2

J each of the J volcanoes
µ hyper-mean, the mean of the prior distribution
τ2 hyper-variance, the variance of the prior distribution

πO(αa, ..., αJ) = 1 objective constant prior distribution
σ2
C common variance for channelized PDCs
σ2
U common variance for unchannelized PDCs

πR(µ, σ2
β, σ

2
C , σ

2
U ) reference prior

MSR Mean square residual
MCMC Markov Chain Monte Carlo
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Appendix B
The technical details of the hierarchical Bayesian analysis are given herein. First, some notation: write the
design matrix for the jth regression (i.e., the intercept constant 1 and the transformed volume input values) as
(with nj being the number of observations for Volcano j)

Xj =


1 xj1
1 xj2
...

...
1 xjnj

 ,

and define (recalling that the σ2
j are σ2

C or σ2
U for the channelized and unchannelized volcanoes)

x̄j = 1
nj

nj∑
i=1

xji, Sj =
nj∑
i=1

(xji − x̄j)2, λj = τ2

σ2
j

, vj = vj(σ2
j , τ

2) = dj + τ2, dj =
σ2
j

Sj
,

v = (v1, . . . , vJ), n =
J∑
j=1

nj ,

(
α̂j

β̂j

)
= (X ′

jXj)−1X
′
jyj , µ̂(v) =

∑J
j=1 β̂j2/vj∑J
j=1 1/vj

.

The objective reference prior for the parameters (µ, τ2, σ2
U , σ

2
C) is (Berger & Bernardo, 1992)

π(µ, τ2, σ2
U , σ

2
C) =

(
1

σ2
Uσ

2
C

)√√√√ J∑
j=1

1
v2
j (σ2

j , τ
2)
.

Then a Gibbs sampler (Casella & George, 1992) can be constructed as follows, to draw samples from the
posterior distribution in (1).
Step 1. Draw the βj , given σ2

j , µ and τ2, from the following distribution:

N

(
β̂j −

(β̂j − µ)
1 + λjSj

,
σ2
jλj

1 + λjSj

)
.

This is the marginal posterior distribution of βj , given σ2
j , µ and τ2 (i.e., αj has been integrated

out). Note that we could have also integrated out µ, but that should not be necessary because below
we generate µ from its marginal posterior distribution with the βs integrated out.

Step 2. Draw the αj , given σ2
j and βj , from the N

(
α̂j − x̄j(βj − β̂j), σ2

j /nj
)
distribution. This is the

conditional posterior distribution of αj , given σ2
j and βj . (It happens to not depend on τ2 or µ.)

Step 3a. Propose a value of σ2
U , given the {βj}, j = 1, 2, by drawing a random variable from the inverse

gamma distribution with shape parameter αU = (n1 + n2)/2 and rate parameter

βU = 1
2

2∑
j=1

(yji − [αj + xjiβj ])2 .

Draw a uniform random variable U on (0, 1) and accept the proposed σ2
U if

U <

√∑J
j=1 1/v2

j (σ2
j , τ

2)√∑2
j=1 1/v2

j (0, τ2) +
∑5
j=3 1/v2

j (σ2
j , τ

2)
;
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else discard σ2
U and propose a new σ2

U , repeating as necessary until a σ2
U is accepted. This arises

from the standard accept-reject algorithm because the numerator above, which is the unnormalized
ratio of the target posterior distribution and the inverse gamma proposal distribution, is maximized
at σ2

U = 0.
Step 3b. Propose a value of σ2

C , given the {βj}, j = 3, 4, 5, by drawing a random variable from the inverse
gamma distribution with shape parameter αC = (n3 + n4 + n5)/2 and rate parameter

βC = 1
2

5∑
j=3

(yji − [αj + xjiβj ])2 .

Draw a uniform random variable U on (0, 1) and accept σ2
C if

U <

√∑J
j=1 1/v2

j (σ2
j , τ

2)√∑2
j=1 1/v2

j (σ2
j , τ

2) +
∑5
j=3 1/v2

j (0, τ2)
;

else discard σ2
C and draw a new σ2

C , repeating as necessary until a σ2
C is accepted. The rationale is as

in Step 3A. These steps yield draws from the conditional posterior distributions of σ2
U and σ2

C , given
the {αj , βj}, and do not depend on the other parameters.

Step 4. Draw µ, given the σ2
j and τ2, from the following distribution:

N

(
µ̂(v), 1∑J

j=1 1/vj

)
.

This is the marginal posterior distribution of µ, given the σ2
j and τ2, i.e., all the βs have been

integrated out.
Step 5. Generate τ2, given µ, the {βj} and the σ2

j , by the following accept-reject algorithm:

• Generate τ2 from the inverse gamma distribution with shape parameter α = (J−2)/2 and

rate parameter β = 1
2

J∑
j=1

(βj − µ)2.

• Draw a uniform random variable U on (0, 1) and accept τ2 if

U <

√∑J
j=1 1/v2

j (σ2
j , τ

2)√∑J
j=1 1/v2

j (σ2
j , 0)

;

else discard τ2 and draw a new τ2, repeating as necessary until a τ2 is accepted.
This algorithm follows from noting that the likelihood for τ2, given all the other parameters, is
proportional to the given inverse gamma distribution. The posterior distribution of τ2, given all the
other parameters, is then proportional to this likelihood times the prior; a sample is then drawn from
this posterior using accept/reject with the likelihood as the proposal distribution.
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To view samples from the posterior and assess that the MCMC algorithm is behaving properly (Mengersen
et al., 1999), we consider histograms and trace plots, respectively. Trace plots illustrate the entire sequence of
samples from the posterior distribution, or chain, (after the first few thousand are discarded) with the value of
the random variable plotted on the vertical axis vs. the sequence index. The reader unfamiliar with MCMC
sampling should note that a well-mixing algorithm should not get stuck at one value for many samples, should
not have too many vertical outliers, and should not have a discernible periodic envelope. Note, the samples
(and trace plots) have been thinned keeping every fifth sample from the MCMC sequence.

Of particular interest are slope parameters for each volcano, βj , illustrated for the frictional model in
Figure 5. Histograms of slope parameter samples for each volcano give reassurance that we are sampling
around a common slope, near −0.2. Spread in each individual histogram reflects the uncertainty of the slope
parameter for each volcano. Of course, wider histograms indicate more uncertainty.

Samples for any of the unknown parameters described by the posterior distribution can be visualized in this
manner. For example, one might be interested in estimating the inferential variance parameters for the two
flow categorizations, channelized vs. unchannelized. Descriptive illustrations of these samples are presented in
Figure 6. The unknown parameters of particular interest are always dependent on the scientific questions at
hand for a given problem.
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Figure 5: Left: Normalized histograms of sampled slopes for the frictional model for each of the
five volcanoes considered. Right: corresponding trace plots from MCMC samples.
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Figure 6: Left: Normalized histograms of the inferential variances, σ2
u (unchannelized, top) and

σ2
c (channelized, bottom), for linear regression model applied to the frictional relationship, plotted

on a log scale. Right: corresponding trace plots from MCMC samples.
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