
Marquette University
e-Publications@Marquette
Mathematics, Statistics and Computer Science
Faculty Research and Publications

Mathematics, Statistics and Computer Science,
Department of

12-31-2007

Unit Rectangle Visibility Graphs
Alice M. Dean
Skidmore College

Joanna A. Ellis-Monaghan
Saint Michael's College

Sarah J. Hamilton
Marquette University, sarah.hamilton@marquette.edu

Greta Pangborn
Saint Michael's College

Published version. Electronic Journal of Combinatorics, Vol. 15, No. R79 (2008). Permalink. © 2008
Electronic Journal of Combinatorics. Used with permission.
Sarah Hamilton was affiliated with St. Michael's College at the time of publication.

https://epublications.marquette.edu
https://epublications.marquette.edu/mscs_fac
https://epublications.marquette.edu/mscs_fac
https://epublications.marquette.edu/mscs
https://epublications.marquette.edu/mscs
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v15i1r79

Unit Rectangle Visibility Graphs

Alice M. Dean
Department of Mathematics and Computer Science

Skidmore College, Saratoga Springs, NY
adean@skidmore.edu

Joanna A. Ellis-Monaghan∗

Department of Mathematics
Saint Michael’s College, Colchester, VT

jellis-monaghan@smcvt.edu

Sarah Hamilton†

Department of Mathematics
Saint Michael’s College, Colchester, VT

shamilton2@smcvt.edu

Greta Pangborn‡

Department of Computer Science
Saint Michael’s College, Colchester, VT

gpangborn@smcvt.edu

Submitted: Aug 27, 2007; Accepted: Jun 1, 2008; Published: Jun 6, 2008

Mathematics Subject Classification: 05C62

Abstract

Over the past twenty years, rectangle visibility graphs have generated consider-
able interest, in part due to their applicability to VLSI chip design. Here we study
unit rectangle visibility graphs, with fixed dimension restrictions more closely mod-
eling the constrained dimensions of gates and other circuit components in computer
chip applications. A graph G is a unit rectangle visibility graph (URVG) if its ver-
tices can be represented by closed unit squares in the plane with sides parallel to the
axes and pairwise disjoint interiors, in such a way that two vertices are adjacent if
and only if there is a non-degenerate horizontal or vertical band of visibility joining
the two rectangles. Our results include necessary and sufficient conditions for Kn,
Km,n, and trees to be URVGs, as well as a number of general edge bounds.

∗Research supported by VT EPSCoR under grant NSF EPS 0236876 and the National Security Agency.
†Research supported by NASA under Training Grant NGT5-40110 to the Vermont Space Grant Con-

sortium.
‡Research supported by VT EPSCoR under grant NSF EPS 0236876 and by NASA under Training

Grant NGT5-40110 to the Vermont Space Grant Consortium.

the electronic journal of combinatorics 15 (2008), #R79 1

1 Introduction

Over the past twenty years the difficulty of VLSI chip design and layout problems has
motivated the study of bar visibility graphs (BVGs) [3, 5, 6, 11, 12, 16, 17] and their
two-dimensional counterparts, rectangle visibility graphs (RVGs) [1, 4, 9, 13, 14, 15]. In
these constructions, horizontal bars or rectangles in the plane model gates or other chip
components, and edges are modeled by vertical visibilities between bars, or by vertical and
horizontal visibilities between rectangles. The two visibility directions in RVGs provide a
model for two-layer chips with wires running horizontally on one layer and vertically on
the other. The dimensions of bars and rectangles in BVGs and RVGs may vary arbitrarily,
but chip components typically have restricted area and aspect ratios. In order to more
closely model the restricted dimensions of chip components, Dean and Veytsel [5] studied
unit bar visibility graphs (UBVGs), in which all bars have equal length. A related model,
using boxes in 3-space, was studied in [2, 8]. In this paper we study the similarly restricted
class of RVGs, unit rectangle visibility graphs (URVGs), in which all rectangles are unit
squares.

In Section 2 we give definitions and basic properties that we use throughout the paper.
In Section 3 we characterize the complete graphs that are URVGs. In Section 4 we
characterize URVG trees, and we show that any graph with linear arboricity 2 is a URVG.
In section 5 we characterize which complete bipartite graphs are URVGs or subgraphs of
URVGs. In section 6 we give edge bound results for URVGs as well as examples that show
these bounds are tight up to constant coefficients. We provide edge bounds for depth-s
UBV and URV trees, bipartite URVGs, and arbitrary URVGs. We conclude in Section 7
with two open problems on URVGs.

2 Definitions and Basic Properties

2.1 Definition. A graph G is a unit rectangle visibility graph or URVG if its vertices
can be represented by closed unit squares in the plane with sides parallel to the axes
and pairwise disjoint interiors, in such a way that two vertices are adjacent if and only
if there is an unobstructed non-degenerate (positive width) horizontal or vertical band of
visibility joining the two rectangles.

We denote the square in the URV layout corresponding to a vertex v by Sv. We identify
the position of the square Sv in a URV layout by its bottom-left corner coordinates (xv, yv).
We define Xv to be the line segment given by the intersection of the line x = xv with the
square Sv, and Yv to be the line segment given by the intersection of the line y = yv with
the square Sv.

Two squares Sv and Sw are called flush if xv = xw or yv = yw (this does not preclude
other squares obstructing visibility between Sv and Sw). In Fig. 1, squares S2 and S3 are
collinear but not flush, and squares S1 and S2 are flush, as are squares S1, S5, and S6.

2.2 Definition. A graph G is a weak unit rectangle visibility graph if its vertices can
be represented by closed unit squares in the plane with sides parallel to the axes and

the electronic journal of combinatorics 15 (2008), #R79 2

S

S

S

S

S S
1 6 5

2 3 4

1

4

6 5

3

2

Figure 1: A graph with a URV layout.

pairwise disjoint interiors, in such a way that whenever two vertices are adjacent there is
an unobstructed non-degenerate, horizontal or vertical band of visibility joining the two
rectangles. Equivalently, G is a weak URVG if it is a subgraph of a URVG.

An example of a graph with a weak URV layout is given in Fig. 2. (There is a band of
visibility between squares S3 and S4 but no edge {3, 4}.) We conclude this section with a
straightforward but useful proposition.

1

4

2
3

5

S

SS2

S
S

1

4

5

3

Figure 2: A graph with a weak URV layout.

2.3 Proposition. If G has a URVG layout L, let GX and GY , respectively, denote the
graphs induced by the horizontal and vertical visibilities of L. GX and GY are UBVGs
with bars given by {Xv|v ∈ G} and {Yv|v ∈ G}, and G = GX

⋃

GY .

Fig. 3 illustrates the decomposition of a URV layout into horizontal and vertical UBV
layouts.

3 Cycles and Complete Graphs

In this section we characterize the cycles and complete graphs that are URVGs.

the electronic journal of combinatorics 15 (2008), #R79 3

Figure 3: URV layout and corresponding UBV layouts for GX and GY .

3.1 Proposition. The n-cycle Cn is a URVG.

See Fig. 4 for a layout of Cn.

n-1

Figure 4: A layout of the n-cycle Cn.

The following theorem of Erdős and Szekeres [7] is used here in characterizing which
complete graphs are URVGs, and then again in Section 5 for the characterization of the
complete bipartite graphs that are URVGs.

3.2 Theorem (Erdős and Szekeres [7]). For n ≥ 0, every sequence a1, a2, . . . , an2+1

of n2 + 1 terms contains a monotonic subsequence of n + 1 terms.

3.3 Theorem. Kn is a URVG if and only if n ≤ 4.

Proof. We first note that since all edges are present in a complete graph, any URV layout
of Kn gives a URV layout of Km for all m ≤ n. Thus it suffices to prove that K4 is a URVG
and K5 is not a URVG. Fig. 5 gives a URV layout of K4. To show that K5 is not a URVG,

the electronic journal of combinatorics 15 (2008), #R79 4

Figure 5: URV layouts of K4 and of K5 minus one edge.

we first observe that if squares S1, S2, S3 give a URV layout of K3 with x1 ≤ x2 ≤ x3

then (y1, y2, y3) must be non-monotonic. This follows since if the sequence (y1, y2, y3) is
monotonic, then S2 blocks S3 from seeing S1. Now suppose we have a URV layout of five
squares. By relabeling if necessary, we may assume that x1 ≤ x2 ≤ x3 ≤ x4 ≤ x5. Now
consider the sequence of y-coordinates. By Theorem 3.2 this sequence has a monotonic
subsequence of length 3, say (yi1, yi2, yi3). Thus the squares Si1 , Si2, Si3 cannot be a layout
of K3, and the five squares cannot be a layout of K5.

3.4 Corollary. Any graph G that contains K5 as a subgraph is not a URVG.

Remark. Proposition 2.3 states that every URVG is the union of two UBVGs. Fig. 6 gives
a decomposition of K5 into the union of two UBVGs, so the converse of Proposition 2.3
is false.

Figure 6: K5 is the union of two UBVGs.

4 Trees, Caterpillars, and Arboricity 2

In this section we characterize the trees that are URVGs. We begin with a simple necessary
degree condition.

4.1 Theorem. If v is a vertex of a URVG G with degree ≥ 7, then v lies on a cycle.

Proof. Suppose G is a URVG having a vertex v with degree ≥ 7. Let GX and GY be
the UBVGs induced by the horizontal and vertical visibilities of a URV layout of G, as

the electronic journal of combinatorics 15 (2008), #R79 5

described in Proposition 2.3. Since deg(v) ≥ 7, it follows from the Pigeonhole Principle
that deg(v) ≥ 4 in GX or GY . Without loss of generality, assume that deg(v) ≥ 4 in GX .
In [5] it is shown that any vertex in a UBVG with degree ≥ 4 lies on a cycle. Since GX

is a subgraph of G, it follows that v lies on a cycle in G.

4.2 Corollary. A URVG tree T has maximum degree ≤ 6.

4.3 Definition. A caterpillar is a tree in which all vertices with degree greater than 1 lie
on a single path. Such a path is called a spine of the caterpillar if it has maximal length.
A subdivided caterpillar is a caterpillar in which each edge may be replaced by a path
of arbitrary length. A leg of a caterpillar or subdivided caterpillar is a path having one
endpoint on the spine and the other a degree-1 vertex. See Fig. 7.

Figure 7: A caterpillar and a subdivided caterpillar.

The following theorem of Dean and Veytsel [5] characterizes the trees that are UBVGs.

4.4 Theorem (Dean and Veytsel [5]). A tree is a UBVG if and only if it is a subdivided
caterpillar with maximum degree 3.

It follows from Proposition 2.3 that if a tree is a URVG, it is the union of two subdivided
caterpillar forests, each with maximum degree 3. Although in general it is not true that
the union of two UBVGs is a URVG, as illustrated in Fig. 6, we show that a tree T is a
URVG if and only if its horizontal and vertical UBVG subgraphs, TX and TY , are UBV
forests.

4.5 Theorem. A tree T is a URVG if and only if it is the union of two subdivided
caterpillar forests, each with maximum degree 3.

Proof. Necessity follows from Theorem 4.4 and Proposition 2.3. For sufficiency, we give
an algorithm to construct a URVG layout:

INPUT: A partition of a tree T into two caterpillar forests F1 and F2, each having
maximum degree 3.

OUTPUT: A URVG layout of T with TX = F1 and TY = F2.
Choose an arbitrary root r for T and give T a breadth-first numbering, v1, . . . , vn,

starting with r = v1. For each i, let Si denote the square in the URVG layout representing
vi, and let (xi, yi) be the coordinates of the lower left corner of Si. The algorithm places
square S1 arbitrarily, and then, for i = 1, . . . , n − 1, it places squares representing the
children of vertex vi. For each i = 1, . . . , n − 1, at the point in the algorithm at which
we have placed a square for vi and squares for all its children, but no higher-numbered
squares, the following set of invariants is maintained.

the electronic journal of combinatorics 15 (2008), #R79 6

Algorithm Invariants:

1. A leg edge in F1 corresponds to a horizontal flush visibility in the layout.

2. A leg edge in F2 corresponds to a vertical flush visibility in the layout.

3. A spine edge in F1 corresponds to a horizontal protruding (i.e., not flush) visibility
in the layout.

4. A spine edge in F2 corresponds to a vertical protruding visibility in the layout.

5. If a vertex vj has parent vi in the breadth-first numbering, where i < j, then at the
point when the square Sj is placed, it sees no square other than Si.

We observe that if Si is a square in the layout corresponding to vertex vi, then vi may
have either at most two incident leg edges in F1, or at most one incident leg edge and two
incident spine edges in F1. In the former case the algorithm places the squares for the two
leg neighbors of Si flush with it on opposite sides. In the latter case, the square for the
leg neighbor is placed flush on one side of Si, and both squares for the spine neighbors are
placed on the opposite side of Si, protruding so that they both see Si but not one another.
A similar statement holds for the neighbors of vi in F2; see Fig. 8. The algorithm chooses
the exact placement of each square so as not to introduce unwanted visibilities with other
squares that have already been placed.

Figure 8: Placement of neighbor squares in a tree layout.

Algorithm to create a URVG layout of the tree T :

1. Let i = 1, and arbitrarily place square S1 representing v1. Define xm to be the
smallest x-coordinate of any square that has been placed in the layout and xM to be
the largest x-coordinate of any square that has been placed in the layout. Similarly,
define ym and yM to be the smallest and largest y-coordinates of any squares that
have been placed in the layout.

2. Place squares representing the children of v1 as follows, maintaining the invariants:

the electronic journal of combinatorics 15 (2008), #R79 7

• There are at most two leg edges of F1 incident with v1. Place squares repre-
senting the endpoints of these edges, if they exist, at position (x1 − 2, y1) for
the first (in breadth-first order) and (x1 + 2, y1) for the second. For leg edges
of F2 incident with v1, place the squares at (x1, y1 − 2) and (x1, y1 + 2).

• If v1 is incident to any spine edges in F1, then it is incident to at most two
such edges, and it is incident to at most one leg edge of F1, already placed at
(x1−2, y1). Place squares representing the endpoints of the spine edges, if they
exist, at (x1 + 2, y1 + 2/3) and (x1 + 4, y1 − 2/3), in breadth-first order. For
spine edges of F2 incident with v1, place the squares at (x1 + 2/3, y1 + 2) and
(x1 − 2/3, y1 + 4).

3. Let i = i + 1. Square Si has been placed as a child of its parent square Sp, where
1 ≤ p < i. If i = n, the layout is complete, since vn has no children. Otherwise, we
place squares for each child vj of vi as follows:

• Leg edges to children of vi: If vi has a leg edge vi–vj in F1, incident to a child
vj, the placement of Sj depends on the relative placements of Si and its parent
square Sp. If vp–vi is also an edge (leg or spine) of F1, assume without loss
of generality (since we can flip the existing layout horizontally or vertically if
necessary) that its square was placed to the left of Si. Then we place the square
Sj to the right of Si, at position (xM + 2, yi). Otherwise we place the (at most
two) leg edges of Fi from vi to its children, in breadth-first order, at positions
(xm − 2, yi) and (xM + 2, yi). We place squares representing the endpoints of
(at most two) leg edges of F2 from vi to its children in an analogous manner,
using positions (xi, ym − 2) and (xi, yM + 2). The values of xm, xM , ym, and
yM are updated after the placement of each square.

• Spine edges to children of vi: If vi has a spine edge vi–vj in F1, incident to a
child vj, the placement of Sj depends on the relative placements of Si and its
parent square Sp. If vp–vi is a leg edge of F1, then Sp is a horizontal, flush
neighbor of Si; assume without loss of generality that Sp is flush neighbor
lying to the right of Si. If vp–vi is a spine edge of F1, then Sp is a horizontal,
protruding neighbor of Si. Without loss of generality, we assume that Sp lies
to the left of Si and is a downward protruding neighbor of Si.

We wish to place Sj as an upward protruding neighbor of Si, also lying to the
left of Si (on the side opposite of Sp if vp is a leg neighbor of vi in F1, and
on the same side if vp is a spine neighbor of vi in F1). Invariant 5 guarantees
that a horizontal line through the upper edge of Si intersects the interiors of
no other squares in the layout. We replace that line with a horizontal band of
height one to create room for an upward protruding neighbor of Si; see Fig. 9.
If xm is the smallest x-coordinate in the current layout, then the coordinates
of Sj are (xm − 2, yi + 2/3), and the invariants are maintained. The values of
xm, xM , ym, and yM are updated after placement.

the electronic journal of combinatorics 15 (2008), #R79 8

If vp–vi is not a spine edge of F1, then we place the square for the first spine
neighbor in F1 to the left of Si as described above. To place a square for a
second spine neighbor of vi in F1, we replace the line through the lower edge
of Si with a horizontal band of height one, creating room to place the square
at position (xm − 2, yi − 2/3). The values of xm, xM , ym, and yM are updated
after placement.

We place squares representing the endpoints of (at most two) spine edges of F2

from vi to its children in an analogous manner, using positions (xi−2/3, ym−2)
and (xi + 2/3, ym − 2).

4. At this point squares representing all the children of vi have been placed. Return
to step 3.

Sp
Si

Sp
Si

�������������������
�������������������
�������������������

Sj

Figure 9: Making room for a child square Sj of Si.

A similar result holds for general graphs, if we require a decomposition into two forests
of paths, rather than into subdivided caterpillar forests with maximum degree 3. The
linear arboricity of a graph G is the minimum number of linear forests whose union is
G. Similarly the caterpillar arboricity of G is the minimum number of caterpillar forests
whose union is G. It is shown in [1] that, if G has caterpillar arboricity 2, then it is an
RVG. The proof is constructive: each caterpillar forest is represented as an interval graph,
one along the x-axis and the other along the y-axis. The Cartesian product of horizontal
and vertical intervals corresponding to the same vertex is a rectangle in the plane, and
the resulting set of rectangles is an RVG representation of G. If it happens that both
caterpillar forests are actually linear forests, then the intervals can all have equal length,
making G a URVG; an example is shown in Fig. 10. Hence the following result follows
immediately. Note that the converse is false, since the 6-star (a single vertex adjacent to
six degree-1 vertices) is a URVG by Thm. 4.5, but its linear arboricity is 3.

4.6 Theorem. If G has linear arboricity 2, then G is a URVG.

Breadth-first search of a tree has linear time complexity, but in each iteration of Step 3
of the layout algorithm of Thm. 4.5, we may be required to update the coordinates of all

the electronic journal of combinatorics 15 (2008), #R79 9

Figure 10: URV layout of a graph with linear arboricity 2.

the squares that have already been placed, making the total time complexity quadratic
in the number of vertices. Note also that we must be given a decomposition of the
tree into two subdivided caterpillar forests, each with maximum degree 3. However, the
computational complexity of determining if a tree can be decomposed in this way, and if it
can, of producing such a decomposition, are open questions. It is known (see Shermer [14]
and Peroche [10]) that determining the caterpillar and linear arboricity of general graphs
are NP-complete problems.

The next result states that, in contrast to Theorem 4.5, every tree is a weak UBVG.
See Fig. 11 for a sample layout.

Figure 11: Weak UBV layout of a tree.

4.7 Theorem. Every tree is a weak UBVG, and hence a weak URVG.

Proof. We prove this by providing an algorithm to construct a weak UBV layout. Let T be
a tree. We choose an arbitrary root r and give T a breadth-first numbering starting with
r = 0. We specify the position of a bar bv corresponding to vertex v by the coordinates
of its left endpoint (xv, yv). We begin by placing the bar corresponding to r at position
(0, 0). If r has k0 children, we place the bar for child i of r at position (1 − i/k0,−i).

Now suppose we have placed bars for all the vertices through level `. We proceed in
breadth-first order, placing bars for the children of each vertex on level `. Let p be a

the electronic journal of combinatorics 15 (2008), #R79 10

vertex on level `. If bp sees any bars to its south, let bq be the northernmost such bar,
and let h = yp − yq; if bp sees no bars to its south, let h = 1. If p has kp children, then
place child i of p at position (xp + 1− i

kp

, yp − ih
kp+1

). We continue in this manner to place

the children on all levels of T .

Since the layout algorithm here again has time complexity equal to that of breadth-first
search on a tree, its time complexity is linear in the number of vertices.

5 Complete Bipartite Graphs

In this section we establish which complete bipartite graphs are URVGs, and which are
weak URVGs. Throughout, we always write Km,n with m ≤ n, and we denote by Vm and
Vn the two partite sets of Km,n.

5.1 Theorem. The complete bipartite graph Km,n, m ≤ n, is a URVG if m ≤ 2 and
n ≤ 6, or m = 3 and n ≤ 4. Km,n is a weak URVG if m ≤ 2 (and n is arbitrary), or
m ≤ 3 and n ≤ 4.

Proof. URV layouts of K1,6, K2,6, and K3,4 are shown in Fig. 12. A weak URV layout of
K2,n is shown in Fig. 13. Layouts for smaller values of n are obtained by deleting squares
from these layouts.

Figure 12: URV Layouts of K1,6, K2,6, and K3,4.

Figure 13: A weak URV layout of K2,n.

the electronic journal of combinatorics 15 (2008), #R79 11

The results of the remainder of this section prove that the conditions of Theorem 5.1
are also necessary.

Given a URV layout of Km,n, we write KX and KY for (Km,n)X and (Km,n)Y . We call
a cycle in a plane graph empty if it bounds a finite face. As noted in [5], the layout of
an empty n-cycle C in a UBVG corresponds to a vertical line `C joining the interiors of
the top and bottom cycle bars, such that each of the other n− 2 ‘intermediate’ bars of C
has its left or right endpoint on `C . See Fig. 14. We call a UBV layout of an empty cycle
one-sided if all the intermediate bars lie on the same side of `C and two-sided otherwise.

Figure 14: Two-sided UBV layout of an empty cycle.

5.2 Lemma. If C is a cycle in a UBVG, then in the plane embedding induced by the
corresponding UBV layout, every edge of C lies on an empty cycle.

Figure 15: A cycle whose edges do not lie on an empty cycle.

Proof. It follows from the characterization of BVGs in [17] and [16] that the plane embed-
ding induced by a UBV layout has all cutpoints on the exterior face, but we must show
that no 2-connected block incident with such a cutpoint lies in the interior of a finite face;
see Fig. 15. We claim that the subgraph GC comprised of the vertices and edges lying on
C and in its interior is 2-connected. First, C itself is a 2-connected graph. Next, let bw

be a bar in the interior of GC . The set comprised of the bars of C, together with vertical
lines representing visibilities corresponding to the edges of C, contains a Jordan curve.
Thus, if we pass a vertical line through bw, it induces a path of visibilities containing bw

from one vertex u of C to another vertex v of C. Hence, every vertex in GC lies on a
path joining two vertices of C. Therefore GC is 2-connected, and so its internal faces are
bounded by empty cycles.

5.3 Lemma. If there is a URV layout of Km,n with an empty cycle C in KY , then C is
a 4-cycle, m = 2, and the maximum degree of any vertex in KY is 3. Furthermore,

1. If C is one-sided, then 2 ≤ n ≤ 3;

the electronic journal of combinatorics 15 (2008), #R79 12

2. If C is two-sided, then 2 ≤ n ≤ 4.

The analogous result holds when C is in KX .

Proof. First we note that C has at most two left-intermediate and two right-intermediate
bars: if C has, say, three or more left-intermediate bars, let Yp be the third-highest one
of these. Then p and t are in different partite sets, but Sp cannot see St. Next note that
there cannot be both two left-intermediate bars and two right-intermediate bars, because
then t and b would be in different partite sets, but St could not see Sb. So C is a 4-cycle,
and either C has one left-intermediate and one right-intermediate bar or, without loss of
generality, two left-intermediate bars and no right-intermediate bars.

Suppose next that C has two left-intermediate bars with Yu the higher of the two.
Without loss of generality, assume that xt ≤ xb, as illustrated in Fig. 16(a). Then the
only way there can be additional squares is if xt < xb, and a square Sp is placed with
xt + 1 ≤ xp < xb, so that Sp sees Su horizontally and Sb vertically. Furthermore at most
one such square can be placed this way, thus m = 2 and 2 ≤ n ≤ 3.

Lastly, assume C has one left-intermediate and one right-intermediate bar. Then t
and b are in the same partite set, and the intermediate bars prevent them from having
any other common neighbors in the URV layout. Hence m = 2. It is possible to place
at most two more squares in the same partite set as t and b, as illustrated in Fig. 16(b),
so that 2 ≤ n ≤ 4. Furthermore, each of these squares must see one intermediate square
horizontally and the other vertically, so that the maximum degree of any vertex in KY is
3.

Figure 16: The two cases of Lemma 5.3.

5.4 Lemma. If n ≥ 7, then Km,n is not a URVG.

Proof. We assume Km,n has a URV layout and obtain a contradiction. Since n ≥ 7, there
is a vertex s in, say, KY , that has vertical degree ≥ 4. By [5], the vertex s lies on a
cycle in KY , and so by Lemma 5.2, s lies on an empty cycle. This contradicts the degree
conditions of Lemma 5.3.

the electronic journal of combinatorics 15 (2008), #R79 13

If we let Gn be the URVG induced by all the visibilities in the weak layout of K2,n

given in Fig. 13, then clearly Gn has K2,n as a proper subgraph. Since K2,n is not a URVG
for n ≥ 7, we see that the property of being a URVG is not hereditary. On the other
hand, it’s easy to see that the property of being a weak URVG is hereditary.

5.5 Theorem. If m, n ≥ 4, or m ≥ 3 and n ≥ 5, then Km,n is not a weak URVG.

Proof. Let m, n ≥ 4 or m ≥ 3, n ≥ 5, and suppose that L is a weak URV layout of
Km,n. If necessary, we modify the layout slightly so that it becomes noncollinear without
losing any visibilities. By a monotonic set of squares we mean a set of squares whose
set of y-coordinates forms a monotonic sequence when listed in increasing order of the
x-coordinates. The conditions on m, n imply that there are eight or more vertices, so
by Theorem 3.2 there is a monotonic set of three squares in the layout L. We assume
without loss of generality that this set is monotonically increasing. We consider two cases
depending on whether or not such a sequence exists with all elements in the same partite
set.

Case 1: There is an increasing set of three squares {S1, S2, S3} ⊆ V ′ = Vm or Vn. Let
V ′′ = V (Km,n)\V ′, and assume without loss of generality the squares are labeled from left
to right, S1, S2, S3. Note that no square Sb with b ∈ V ′′ can be part of a larger increasing
sequence containing S1, S2, S3, because then Sb would be able to see at most two other
squares in the sequence. For an element b ∈ V ′′, consider the 3-tuple of directions from
which Sb sees Si, i = 1, 2, 3. For example, the 3-tuple (N, N, W) signifies that Sb is above
S1 and S2, so sees them from the north, and is to the left of S3, so sees it from the west.
Because S1, S2, S3 is an increasing sequence, a 3-tuple must have at least two consecutive
repeated terms. The triples (N, N, E), (W, S, S), (E, E, N), and (S, W, W) are prohibited.
The remaining possible 3-tuples are:

(N, N, N), (N, N, W), (N, N, S), (S, S, S), (E, S, S), (N, S, S),

(E, E, E), (E, E, S), (E, E, W), (W, W, W), (N, W, W), (E, W, W).

Since S1, S2, S3 is increasing, if Sb sees two squares from the north or east they must
be S1 and S2, and if from the south or west they must be S2 and S3. Note that when Sb

sees two squares from the same direction, it blocks any other square from simultaneously
seeing those two squares from that direction, so |V ′′| ≤ 4.

We next show that, while V ′′ may have three or four elements, V ′ can have only three,
so it is not the case that m, n ≥ 4 or m ≥ 3 and n ≥ 5.

We label the four possible elements that V ′′ could have by Sn, Ss, Se, Sw, to indicate
the direction from which they each see more than one of S1, S2, S3, as prescribed by the
3-tuples above. The following argument applies whether or not Sw is present (phrases
that may be omitted are enclosed by square brackets), and by symmetry it applies if any
three of the four are present. Consider the square S2, which all four of these squares see in
the directions prescribed by their subscripts. There are four disjoint regions of the plane
composed of points not visible to S2, located to the northwest, southwest, southeast, and
northeast of S2; see Fig. 17(a). Because Sn sees both S1 and S2 from the north, and

the electronic journal of combinatorics 15 (2008), #R79 14

because {S1, S2, S3} is increasing, Sn must intersect the region northwest of S2. Similarly,
[Sw also intersects this region, while] Ss and Se both intersect the region southeast of
S2. If there is an additional square S4 ∈ V ′ in the layout, it cannot intersect the region
northwest of S2, since then it cannot see either Ss or Se; likewise it cannot intersect the
region southeast of S2 since it must see Sn [and Sw]. Assume without loss of generality
that S4 intersects the region northeast of S2 (recall our assumption that the layout is
noncollinear). Since both S1, S2, S3 and S1, S2, S4 are increasing sets, we relabel S3 and
S4, if necessary, so that S3 is further left than S4. Now Ss sees S3 and S4 from the south,
so Se cannot see both these squares from the south. Hence Se must see the one that is
further left, namely S3, from the east, forcing S3 to intersect the visibility corridor to the
east of S2. But this prevents S4, which intersects the region northeast of S2, and which
is further right than S3, from seeing Ss. This conclusion is reached whether or not Sw is
present, so by symmetry, we conclude that V ′ has at most three elements.

Figure 17: Positions of squares in proof of Theorem 5.5.

Case 2: There is no monotonic subsequence of length 3 or more with all elements
in one of V ′, V ′′. By Theorem 3.2, this can occur only if both m and n are ≤ 4 so
m = n = 4. Again by Theorem 3.2, there is a strictly increasing subsequence of length
3 or more with two elements in V ′ and one element in V ′′. Note that the element of
V ′′ in the increasing sequence of three must be the middle in order to see both of the
other two, so we name these elements left to right, S1, Sa, S2. As in Case 1, consider the
regions northwest, southwest, southeast, and northeast of the middle square, Sa. The
square S1 can intersect only the southwest region, and S2 can intersect only the northeast
region. No other element of V ′′ can intersect these two regions, because then it cannot
see whichever of S1 or S2 intersects only the diagonally opposite region. Without loss of
generality, assume that there is another square Sb that intersects the region northwest of
Sa. Then no element of V ′′ can intersect the southeast region, because it, together with Sa

and Sb, would form a monotonic set of length 3, contradicting the assumption of Case 2.
Suppose there are three or more elements of V ′′ in the region northwest of Sa; see Fig. 17.

the electronic journal of combinatorics 15 (2008), #R79 15

Since none can have y-coordinates less than S1’s and they can’t be monotonic, then some
two out of the three form a monotonic set with S1, giving a contradiction. Thus V ′′ has
at most three elements.

6 Edge Bounds

In this section we give several results bounding the number of edges of URVGs. First
we use the characterizations of Theorems 4.4 and 4.5 to give tight upper bounds on the
number of edges in a depth-s UBV tree and in a depth-s URV tree. Next we modify the
methods used for RVGs in [9] and [4] to bound the number of edges in general URVGs
and bipartite URVGs, respectively, and we give examples to show that these bounds have
tight order.

Edge bounds for depth-s trees

6.1 Theorem. If T is a rooted depth-s tree that is a unit bar visibility graph, then T has
at most s2 + 2s edges.

Proof. Throughout we use the result of Theorem 4.4, that a tree is a UBVG if and
only if it is a subdivided caterpillar forest with maximum degree 3. Define TB,s to be
the subdivided caterpillar whose spine has length 2s + 1, rooted at the center spine
vertex, and with a leg at each vertex extending to depth s, as illustrated in Fig. 18. By
Theorem 4.4, TB,s is a UBVG, and it’s easy to see that the number of edges of TB,s equals
3 + 5 + . . . + (2s + 1) =

∑s

k=1(2k + 1) = s2 + 2s. If T 6= TB,s and T is rooted at a spine
vertex, then T is a subtree of TB,s. If T 6= TB,s and T is not rooted at a spine vertex,
suppose that v is the spine vertex closest to the root r of T , and that v is a depth-q vertex,
where 1 < q ≤ s. Then the subtree rooted at v is a subtree of TB,s−q with no leg at v, so
it has at most (s− q)2 + 2(s− q)− (s − q) = s2 − 2sq + q2 + s − q edges. The path from
v to r adds another q edges plus s possible edges on a path from r to depth s, for a total
of at most s2 + 2s − 2sq + q2 = (s − q)2 + 2s < s2 + 2s edges.

Figure 18: The depth-3 UBVG tree TB,3.

the electronic journal of combinatorics 15 (2008), #R79 16

6.2 Theorem. Let T be a rooted URV tree. Then the number of vertices at depth k ≥ 1
is bounded by ck, where ck is given recursively by the linear recursion relations ck =
ak−1 + 4ck−1 and ak = ak−1 + 2ck−1 with initial values a1 = 4 and c1 = 6. Furthermore,
this bound is tight.

Proof. We first exhibit a canonical depth-s URV tree TR,s achieving this bound, as this
motivates the given recursion relations. The tree TR,s is defined analogously to TB,s in the
proof of Theorem 6.1. Its root r is the center vertex of two spines, each of length 2s + 1,
for two subdivided, maximum degree 3 caterpillars, one in each forest. We distinguish the
two forests by calling one red and the other blue. For each vertex v from level 1 to level
s−1, the number of v’s children and the colors (red or blue) and types (spine or leg) of the
edges from v to its children are determined by the edge e from v to its parent. If e is a blue
spine edge, then v has five children, one incident with a blue spine edge, two with red spine
edges, one with a blue leg edge, and one with a red leg edge; a symmetric definition holds
if e is red spine edge. If e is blue leg edge, then v has four children, two incident with red
spine edges, one with a blue leg edge, and one with a red leg edge; a symmetric definition
holds if e is red leg edge. In this case, the current subdivided caterpillar containing the
edge e is continued at the vertex v, and a new subdivided caterpillar of the opposite color
begins with v as its root. Part of the tree TR,3 is shown in Fig. 19 (spine edges are thicker
lines, and leg edges are thinner lines).

Figure 19: Part of the depth-3 URVG tree TR,3.

We now count the vertices on each level k of TR,s. For 1 ≤ k ≤ s − 1, let ak be
the number of vertices at level k with five children, i.e., those with spine edges to their
parents; let bk be the number of vertices at level k with four children, i.e. those with leg
edges to their parents; and let ck = ak + bk be the total number of vertices on level k.

Note that each vertex v at level k with five children has three children who themselves
have five children; the other two children each have four children. If v has four children,
then two of them have five children and two of them have four children. We therefore
have the following recurrence equations:

ak = 3ak−1 + 2bk−1, bk = 2ak−1 + 2bk−1, a1 = 4, b1 = 2. (1)

Using the fact that ck = ak +bk, we can eliminate the bk term to get a system involving
ak and ck:

ak = ak−1 + 2ck−1, ck = ak−1 + 4ck−1, a1 = 4, c1 = 6. (2)

the electronic journal of combinatorics 15 (2008), #R79 17

Now let T be any depth-s URV tree, with a decomposition into two UBV forests (one
red and one blue) as guaranteed by Theorem 4.5. We say T is a downward tree if every leg
extends strictly downward from its point of attachment to its spine. If T is a downward
tree, then T is a subtree of TR,s, and in fact can be mapped onto TR,s preserving the UBV
decomposition. This can be seen easily by induction on s. Thus for every downward tree,
the bound holds.

Now suppose T has an up-leg, that is, a leg that does not extend strictly downward
from its spine. We observe the following consequences of T being a rooted tree:

• Each caterpillar in the decomposition may have at most one such leg.

• This leg must be attached to the highest vertex of the spine.

• This leg must extend strictly upward to its highest vertex and then strictly down-
ward from there.

Consider each vertex x of T in breadth first order. If an up-leg intersects its spine
at vertex x, we perform the following surgery on T . We convert the portion of the spine
that is to the left of x to a leg, and convert the up-leg into a spine, extending its terminus
downward if necessary until it reaches at least the same depth as the old left side of the
spine. We then remove the edge connecting each leg to the old spine, and add an edge
connecting the leg to the vertex of the new portion of the spine at precisely the same depth
as the one it was attached to on the old spine. All other edges of T remain unchanged.
See Figures 20 and 21.

Figure 20: A tree with an up-leg adjacent to vertex x. The number on each vertex
corresponds to its depth in the tree.

The result is a downward URV tree with at least as many vertices at each depth as
the original tree, and hence no more than ck vertices at level k.

the electronic journal of combinatorics 15 (2008), #R79 18

Figure 21: The modified tree, removing the up-leg from Fig. 20. The new edges are
represented by dashed lines.

Standard linear recursion techniques can be used to compute ck, either as the coefficient
of xk in the generating function V (x) =

∑

∞

k=0 ckx
k = 2(3−x)

2x2
−5x+1

+ 1, or in the following
closed form:

ck =
1

17
2−1−2k((17 − 7

√
17)(10 − 2

√
17)k+ (3)

21+k
√

17(5 +
√

17)k + (2(5 +
√

17))k(17 + 5
√

17)).

6.3 Corollary. If T is a rooted depth-s URV tree, then the maximum number of edges in
T is

−2+

(

1 − 3√
17

) (

1

2

(

5 −
√

17
)

)s

+ (4)

(

1 +
3√
17

) (

1

2

(

5 +
√

17
)

)s

Proof. This is the sum of Equation (3) as k ranges from 1 to s.

Edge bounds for general URVGs

6.4 Theorem. Let G be a URVG with n ≥ 1 vertices. Then |E(G)| ≤ 6n − 4d√n e + 1.

Proof. For n = 1, . . . , 10 this bound follows immediately from the edge sets of complete
graphs. Let L be a URV layout of G. Surround the layout L with four rectangles (that
are not unit squares) labeled N, S, E, and W , as shown in Fig. 22. Call the induced
rectangle visibility graph G+. Partition the edges of G+ into the two sets E = E(G)
and E ′ = E(G+) − E. Hence E ′ comprises the edges of G+ that have either one or two
endpoints in the set {N, S, E, W}. By a result of [9], any rectangle visibility graph with
p ≥ 5 vertices has at most 6p − 20 edges. Therefore,

|E| + |E ′| = |E(G+)| ≤ 6(n + 4) − 20 = 6n + 4

the electronic journal of combinatorics 15 (2008), #R79 19

Figure 22: A URV layout plus 4 surrounding rectangles.

Now note that the number of edges of E ′ with exactly one end point in {N, S, E, W}
is at least as large as the number of squares on the perimeter of a rectangle containing
all n squares of G. This is at least d4√n e, which is greater than or equal to 4d√n e − 3.
There are 6 edges with both endpoints in {N, S, E, W}, so

|E ′| ≥ (4d
√

n e − 3) + 6 = 4d
√

n e + 3.

Therefore,

|E| ≤ 6n + 4 − |E ′| ≤ 6n + 4 − (4d
√

n e + 3) ≤ 6n − 4d
√

n e + 1.

Note that if 5 ≤ n ≤ 25, then 6n−4d√n e+1 ≥ 6n−20, the upper bound established
in [9] for any RVG. Hence Theorem 6.4 says something stronger than that result only for
n ≥ 26.

If Bn denotes the maximum number of edges among all URVGs with n vertices, then
Theorem 6.4 says that Bn ≤ 6n−4d√n e+1. The next theorem uses examples of URVGs
with n ≥ 64 vertices and at least 6n−12

⌊√
n
⌋

+6 edges to establish that Bn = 6n−Θ(
√

n).

6.5 Theorem. There is a URVG on n vertices with at least 6n − 12
⌊√

n
⌋

+6 edges for
each n ≥ 64.

Proof. First consider the case when n = k2 is a perfect square. Fig. 23, adapted from a
figure in [9], shows a layout of a URVG with 64 vertices. The numbers on the squares
indicate the degrees of the corresponding vertices, and this example can be extended to
give an analogous URVG with k2 vertices for k ≥ 8. For k ≥ 8, the resulting URVG on
n = k2 vertices has four vertices of degree 4, four of degree 6, 4(k − 3) of degree 7, four
of degree 10, 4(k − 4) of degree 11, and the rest of degree 12. Hence the degree sum of
this graph is 16 + 24 + 28(k − 3) + 40 + 44(k − 4) + 12(k2 − 8k + 16) = 12(k − 1)2, and
therefore the graph has 6(k − 1)2 = 6n − 12

√
n + 6 edges. Call this graph Gn.

Now suppose k ≥ 8. We show how to add additional unit squares to an initial layout
with n = k2 squares to give examples satisfying the condition for n = k2+1, k2+2, . . . , k2+
2k = (k + 1)2 − 1. The numbered squares in Fig. 24 are being added to a layout with

the electronic journal of combinatorics 15 (2008), #R79 20

4

6

7

7

10

7

7

11

7

11

11

7

7

12

11

7

11

12

11

4

7

12

12

10

11

12

12

6

7

12

12

11

11

12

12

7

6

12

12

11

10

12

12

7

4

11

12

11

7

11

12

7

7

11

11

7

11

7

7

10

7

7

6

4

Figure 23: A URV layout with 6n − 12
√

n + 6 edges.

n = 64 = 82, but the method works for any n = k2 with k ≥ 8. We begin by adding
the northeasternmost square labeled 1, which adds one vertex and six new edges to the
corresponding graph. We then add, in sequence, the squares labeled 2, 3, 4, . . . , k − 4,
completing a new row of k − 4 squares along the upper side of the original layout. Each
vertex, when added, increases the edge count by 6. We repeat this process on each of the
other three sides of the original layout, adding a total of 4(k − 4) squares, which is at
least 2k squares, since k ≥ 8.

The function f(n) = 6n−12
⌊√

n
⌋

+6 does not increase as quickly as the linear function
6n+6, hence each unit increase of n results in an increase of at most 6 for f(n). Therefore,
for k ≥ 8, n = k2 and i = 0, . . . , 2k − 1, we have by induction that

f(n + i + 1) ≤ f(n + i) + 6 ≤ |E(Gn+i)| + 6 ≤ |E(Gn+i+1)|

This establishes the claim of the theorem.

Edge bounds for bipartite URVGs

In [4] it is shown that if a bipartite graph G with n ≥ 4 vertices is a subgraph of an
RVG, then G has at most 4n − 12 edges. We use that result to bound the number of
edges in a bipartite URVG.

6.6 Theorem. For n ≥ 7, let G be a bipartite URVG with n vertices. Then |E(G)| ≤
4n − 2d√n e + 5.

Proof. Let G be a bipartite graph with n vertices and bipartition {A, B}, and suppose
that L is a URV layout of G. As in Fig. 22, surround L with the four rectangles N, S, E, W ,
creating an RVG layout that induces a (non-bipartite) graph on n + 4 vertices. As in the

the electronic journal of combinatorics 15 (2008), #R79 21

1

1

1

1
22

3
4

Figure 24: Adding squares to a layout with k2 squares.

proof of Theorem 6.4 the number of edges with exactly one endpoint in {N, S, E, W} is
at least 4d√n e − 3. For each of the four rectangles, {N, S, E, W}, add it to A if it sees
more rectangles from B; otherwise add it to B. Call the enlarged bipartite sets A′ and
B′.

Define G′ to be the bipartite graph induced by the edges with one endpoint in A′ and
the other in B′. All the edges of G are edges of G′ and there are at least 2d√n e − 1
bipartite edges with exactly one endpoint in {N, S, E, W}. By a result of [4], the graph
G′ has at most 4(n + 4) − 12 = 4n + 4 edges.

If we let E ′ = E(G′) \ E(G), then we have that

|E(G)| ≤ 4n + 4 − |E ′| ≤ 4n + 4 − (2d
√

n e − 1) = 4n − 2d
√

n e + 5

Theorem 6.5 constructed examples of URVGs with 6n−Θ(
√

n) edges. A construction
similar to the one in the proof of that theorem gives examples, for n ≥ 81, of bipartite
graphs with 4n − Θ(

√
n) edges that are URVGs.

6.7 Theorem. For every n ≥ 81, there is a bipartite graph with n vertices that is a URVG
and has at least 4n − 8

⌈√
n
⌉

+4 edges.

Proof. As in the proof of Theorem 6.5, we do an initial construction when n = k2, and
then we show how to handle the cases n = k2 + 1, . . . , k2 + 2k = (k + 1)2 − 1. The
construction is illustrated with k = 9 in Fig. 25. The initial array of k2 squares (labeled
with vertex degrees) has 4k2 − 8k + 4 = 4n − 8

√
n + 4 edges. We then add the two

rows with k − 3 unlabeled squares, each of which adds four new edges, and then the two
rows with k − 6 unlabeled squares, adding four more edges each. We thus add a total of
2(k − 3) + 2(k − 6) = 4k − 18 which is at least 2k if k ≥ 9, and the result follows by the
same argument as in the proof of Theorem 6.5.

the electronic journal of combinatorics 15 (2008), #R79 22

2
3

4

5

4

7

4

8

4

5

8

4

7

8

4

8

8

3

5

8

8

7

8

7

8

8

5

3

8

8

4

8

7

4

8

5

4

8

4

7

4

5

4
3

2

5
7

8

5

8

7

8

8

8

5

8

8

7

8

7

8

8

5

5

8

8

7

8

7

8

8

5

8

8

8

7

8

5

8
7

5

Figure 25: Adding squares to a weak bipartite layout with k2 squares.

7 Open Problems

We conclude with two open problems motivated by the work in this paper.

1. Is any union of two subdivided caterpillar forests, each with maximum degree 3, a
URVG? Theorem 4.5 says that a tree is a URVG if and only if it is the union of two
subdivided caterpillar forests, each with maximum degree 3. The same statement
for general graphs is false, because, for example, there are URVGs with maximum
degree greater than 6. However, we are not aware of any example of a graph G
that is the union of two subdivided caterpillar forests, each with maximum degree
3, that is not a URVG. Note that Theorem 4.6 implies that any such example could
not be constructed using two forests of paths.

2. Is there an efficient algorithm to determine if an arbitrary graph G is a URVG? We
do not know the answer to this question, even if G is a tree. While Theorem 4.5
characterizes a URVG tree as one that is the union of two subdivided caterpillar
forests, each with maximum degree 3, it does not give an algorithm for determining
when this is the case. Peroche [10] has shown that deciding linear arboricity 2
is NP-complete. Shermer [14] has shown that deciding caterpillar arboricity 2 is
NP-complete, and also that deciding if a graph is an RVG is NP-complete.

References

[1] P. Bose, A. Dean, J. Hutchinson, and T. Shermer. On rectangle visibility graphs.
In Lecture Notes in Computer Science 1190: Graph Drawing, pages 25–44. Springer-
Verlag, London, UK, 1997.

[2] P. Bose, A. Josefczyk, J. Miller, and J. O’Rourke. K42 is a box visibility graph.
Technical Report #034, Smith College, 1994.

the electronic journal of combinatorics 15 (2008), #R79 23

[3] A. M. Dean, E. Gethner, and J. P. Hutchinson. Unit bar-visibility layouts of trian-
gulated polygons: Extended abstract. In Lecture Notes in Computer Science 3383:
Graph Drawing, pages 111–121. Springer-Verlag, London, UK, 2005.

[4] A. M. Dean and J. P. Hutchinson. Rectangle-visibility representations of bipartite
graphs. In GD ’94: Proceedings of the DIMACS International Workshop on Graph
Drawing, pages 159–166, London, UK, 1995. Springer-Verlag.

[5] A. M. Dean and N. Veytsel. Unit bar-visibility graphs. Congressus Numerantium,
160:161–175, 2003.

[6] P. Duchet, Y. Hamidoune, M. Las Vergnas, and H. Meyniel. Representing a planar
graph by vertical lines joining different levels. Discrete Mathematics, 46:319–321,
1983.

[7] P. Erdös and A. Szekeres. A combinatorial problem in geometry. Compositio Math-
ematica, 2:463–470, 1935.

[8] S. P. Fekete and H. Meijer. Rectangle and box visibility graphs in 3D. International
Journal of Computational Geometry and Applications, 9(1):1–21, 1999.

[9] J. P. Hutchinson, T. Shermer, and A. Vince. On representations of some thickness-
two graphs. Computational Geometry, 13:161–171, 1999.

[10] B. Peroche. Complexité de l’arboricité lineaire d’un graphe. RAIRO Recherche
Opérationnelle, 16(2):125–129, 1982.

[11] P. Rosenstiehl and R. E. Tarjan. Rectilinear planar layouts and bipolar orientations
of planar graphs. Discrete and Computational Geometry, 1(4):343–353, 1986.

[12] M. Schlag, F. Luccio, P. Maestrini, D. Lee, and C. Wong. A visibility problem in
VLSI layout compaction. In F. Preparata, editor, Advances in Computing Research,
volume 2, pages 259–282. JAI Press Inc., Greenwich, CT, 1985.

[13] T. Shermer. On rectangle visibility graphs II: k-hilly and maximum-degree 4.
Manuscript, 1996.

[14] T. Shermer. On rectangle visibility graphs III: external visibility and complexity.
In Proceedings of the 8th Canadian Conference on Computational Geometry, pages
234–239. Carleton University Press, 1996.

[15] I. Streinu and S. Whitesides. Rectangle visibility graphs: Characterization, construc-
tion, and compaction. In STACS ’03: Proceedings of the 20th Annual Symposium on
Theoretical Aspects of Computer Science, pages 26–37, London, UK, 2003. Springer-
Verlag.

[16] R. Tamassia and I. G. Tollis. A unified approach to visibility representations of
planar graphs. Discrete and Computational Geometry, 1(4):321–341, 1986.

[17] S. K. Wismath. Characterizing bar line-of-sight graphs. In SCG ’85: Proceedings
of the First Annual Symposium on Computational Geometry, pages 147–152, New
York, NY, USA, 1985. ACM Press.

the electronic journal of combinatorics 15 (2008), #R79 24

	Marquette University
	e-Publications@Marquette
	12-31-2007

	Unit Rectangle Visibility Graphs
	Alice M. Dean
	Joanna A. Ellis-Monaghan
	Sarah J. Hamilton
	Greta Pangborn

	tmp.1493917992.pdf.Efy6H

