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Abstract 

 
A novel, simple method was developed to synthesize biocompatible 

composites containing 50% cellulose (CEL) and 50% keratin (KER) and silver 

in the form of either ionic (Ag+) or Ag0 nanoparticles (Ag+NPs or Ag0NPs). In 

this method, butylmethylimmidazolium chloride ([BMIm+Cl–]), a simple ionic 

liquid, was used as the sole solvent and silver chloride was added to the 

[BMIm+Cl–] solution of [CEL+KER] during the dissolution process. The silver 

in the composites can be maintained as ionic silver (Ag+) or completely 

converted to metallic silver (Ag0) by reducing it with NaBH4. The results of 

spectroscopy [Fourier transform infrared and X-ray diffraction (XRD)] and 

imaging [scanning electron microscopy (SEM)] measurements confirm that 

CEL and KER remain chemically intact and homogeneously distributed in the 

composites. Powder XRD and SEM results show that the silver in the 

[CEL+KER+Ag+] and [CEL+KER+Ag0] composites is homogeneously 

distributed throughout the composites in either Ag+ (in the form of AgClNPs) 

or Ag0NPs form with sizes of 27 ± 2 or 9 ± 1 nm, respectively. Both 

composites were found to exhibit excellent antibacterial activity against many 

bacteria including Escherichia coli, Staphylococcus aureus, Pseudomonas 

aeruginosa, methicillin-resistant S. aureus (MRSA), and vancomycin-resistant 

Enterococus faecalis (VRE). The antibacterial activity of both composites 

increases with the Ag+ or Ag0 content in the composites. More importantly, for 

the same bacteria and the same silver content, the [CEL+KER+AgClNPs] 

composite is relatively more toxic than [CEL+KER+Ag0NPs] composite. 

Experimental results confirm that there was hardly any Ag0NPs release from 

the [CEL+KER+Ag0NPs] composite, and hence its antimicrobial activity and 

https://dx.doi.org/10.1021/acsami.6b14347
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biocompatibility is due not to any released Ag0NPs but rather entirely to the 

Ag0NPs embedded in the composite. Both AgClNPs and Ag0NPs were found to 

be toxic to human fibroblasts at higher concentration (>0.72 mmol), and for 

the same silver content, the [CEL+KER+AgClNPs] composite is relatively 

more toxic than the [CEL+KER+Ag0NPs] composite. As expected, by lowering 

the Ag0NPs concentration to 0.48 mmol or less, the [CEL+KER+Ag0NPs] 

composite can be made biocompatible while still retaining its antimicrobial 

activity against bacteria such as E. coli, S. aureus, P. aeruginosa, MRSA, and 

VRE. These results, together with our previous finding that [CEL+KER] 

composites can be used for the controlled delivery of drugs such as 

ciprofloxacin, clearly indicate that the [CEL+KER+Ag0NPs] composite 

possesses all of the required properties for it to be successfully used as a 

high-performance dressing to treat chronic ulcerous infected wounds. 

 

Keywords: antibacteria, biocompatible, cellulose, ionic liquid, keratin, silver 

nanoparticles 

Introduction 

Interest in nanoparticles (NPs), particularly silver nanoparticles 

(AgNPs), has increased significantly recent years because, among 

other unique features, NPs are known to exhibit both antimicrobial and 

antiviral activities.1-8 It has been shown that AgNPs exhibit highly 

antimicrobial activity against both Gram-positive and -negative 

bacteria.1-8 They have also shown to be effective antiviral agents.1-9 

The size, morphology, and stability of NPs are known to strongly affect 

their antimicrobial and antiviral activity.1-8 Colloidal NPs are known to 

undergo coagulation and aggregation in solution, which, in turn, lead 

to changes in their size and morphology and, hence, their antibacterial 

and antiviral properties. It is, therefore, important to develop an 

effective and reliable method to anchor the NPs to a supporting 

material in order to prevent their coagulation and aggregation, so that 

they can maintain their activity. In fact, AgNPs have been 

encapsulated in various man-made polymers and/or biopolymers, and 

such systems have been reported to retain some of their antimicrobial 

and antiviral activity.1-18 For example, anchoring AgNPs to methacrylic 

acid copolymer beads has proven to be highly effective against a few 

bacteria.1-18 However, the antimicrobial properties of all reported 

AgNP-encapsulated composites were tested for only a very few 

bacteria, and, more importantly, their biocompatibility has not been 

determined.1-18 The lack of the latter information is critical because 

toxicity of AgNPs is known to be dependent on the concentration, and 

without information on the biocompatibility, the application of such a 
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composite is rather limited. It is, therefore, of particular importance to 

develop a novel method to anchor AgNPs to composite biopolymers 

such as cellulose (CEL) and keratin (KER) and thoroughly and 

systematically investigate the antimicrobial and biocompatibility of the 

composites. 

 

KERs are a group of cysteine-rich fibrous proteins found in 

filamentous or hard structures such as hairs, wools, feathers, nails, 

and horns.19-28 KER possesses amino acid sequences similar to those 

found on an extracellular matrix (ECM), and because ECM is known to 

interact with integrins, which enable it to support cellular attachment, 

proliferation, and migration, KER-based materials are expected to have 

such properties as well.19-28 Furthermore, KER is known to possess 

advantages for wound care, tissue reconstruction, cell seeding and 

diffusion, and drug delivery.11-20 Unfortunately, in spite of its unique 

properties, KER has relatively poor mechanical properties, and as a 

consequence, it was not possible to fully exploit the unique properties 

of KER for various applications.19-28 To increase the structural strength 

of KER-based materials, attempts have been made to cross-link KER 

chains with a cross-linking agent or introduce functional groups to its 

amino acid residues via chemical reaction(s).19-28 The rather 

complicated, costly, and multistep process is not desirable because it 

may inadvertently alter its unique properties, making the KER-based 

materials less biocompatible and toxic and removing or lessening its 

unique properties. A new method that can improve the structural 

strength of KER-based products not by synthetic methods but rather 

by the use of naturally occurring polysaccharides such as CEL is 

particularly needed. 

 

We have demonstrated recently that a simple ionic liquid (IL), 

butylmethylimmidazolium chloride ([BMIm+Cl–]), can dissolve both CEL 

and KER, and by using this IL as the sole solvent, we developed a 

simple, green, and totally recyclable method to synthesize [CEL+KER] 

composites just by dissolution without using any chemical 

modifications or reactions.29-35 Spectroscopy [Fourier transform 

infrared (FTIR), near-infrared (NIR), and cross-polarization magic 

angle spinning (CP-MAS) 13C NMR] results indicate that there was no 

chemical alteration in the structures of CEL and KER.29-35 While there 

may be some changes in the molecular weights of CEL and KER, by 

https://dx.doi.org/10.1021/acsami.6b14347
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using newly developed partial least-squares regression to analyze the 

FTIR spectra of the [CEL+KER] composites, we found that KER retains 

some of it secondary structure in the composites.31,35 The [CEL+KER] 

composites obtained were found to retain unique properties of their 

components, namely, superior mechanical strength from CEL and 

controlled release of drugs by KER.29-35 

 

The information presented clearly indicates that it is possible to 

use [CEL+KER] as a biocompatible composite to encapsulate AgNPs. 

Such considerations prompted us to initiate this study, which aims to 

hasten the breakthrough by systematically exploiting the advantages 

of ILs, a green solvent, to develop a novel, simple method to 

synthesize the [CEL+KER] composite containing silver in either Ag+ or 

Ag0 forms. As will be demonstrated, by initially introducing silver salt 

into the [CEL+KER] composite during the dissolution of CEL and KER 

by [BMIm+Cl–] and subsequently reducing Ag+ to Ag0NPs directly in the 

composite, we successfully synthesize the [CEL+KER+Ag0NPs] 

composite. Alternatively, by not carrying out the reduction reaction, 

we can obtain the [CEL+KER+Ag+NPs] composite. Because the 

[CEL+KER+Ag0NPs] and [CEL+KER+Ag+NPs] composites obtained can 

keep the Ag+NPs and Ag0NPs from changing size and morphology as 

well as undergoing coagulation, they can, therefore, fully retain the 

unique property of the AgNPs for repeated use without any 

complication of the reducing activity and not fully recover after each 

use. With these two composites, we will be able to finally address the 

important question that, to date, still remains unanswered, namely, 

the antimicrobial activity of AgNPs due to either Ag+ or Ag0 or both, 

and if both forms are active, which NPs have higher activity. We will 

also systematically investigate the biocompatibility of the two 

composites; information obtained will be used to guide the selection 

and use of the NP composites. The synthesis, characterization, 

antimicrobial activity, and biocompatibility of the [CEL+KER+Ag+NPs] 

and [CEL+KER+Ag0NPs] composites are reported herein. 
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Experimental Section 

Chemicals 
 

Microcrystalline cellulose (CEL; DP ≈ 300) and AgCl were from 

Sigma-Aldrich and were used as received. Raw (untreated) sheep 

wool, obtained from a local farm, was cleaned by Soxhlet extraction 

using a 1:1 (v/v) acetone/ethanol mixture at 80 ± 3 °C for 48 h. The 

wool was then rinsed with distilled water and dried at 100 ± 1 °C for 

12 h.30-32 1-Methylimidazole and n-chlorobutane (both from Alfa Aesar, 

Ward Hill, MA) were distilled and subsequently used to synthesize 

[BMIm+Cl–] using a method previously reported.19-35 Nutrient broth 

(NB) and nutrient agar (NA) were obtained from VWR (Radnor, PA). 

Minimal essential medium (MEM), fetal bovine serum (FBS), and 

penicillin–streptomycin were obtained from Sigma-Aldrich (St. Louis, 

MO), whereas Dulbecco’s modified Eagle medium (DMEM), phosphate-

buffered saline, and a trypsin solution (Gibco) were obtained from 

Thermo Fischer Scientific (Waltham, MA). CellTiter 96 AQueous One 

Solution Cell Proliferation Assay was obtained from Promega (Madison, 

WI). 

 

Bacterial and Cell Cultures 
 

The bacterial cultures used were obtained either from the 

American Type Culture Collection (ATCC, Rockville, MD) or from the 

Leibniz Institute DSMZ, German Collection of Microorganisms and Cell 

Cultures (Braunschweig, Germany). The cell cultures of human 

fibroblasts were obtained from ATCC (Rockville, MD). 

 

Synthesis 
 

[CEL+KER+Ag+NPs] and [CEL+KER+Ag0NPs] composites were 

synthesized with minor modification to the procedure that we 

developed previously for the synthesis of [CEL+CS+KER] 

composites.30-32,35 As shown in Scheme 1, washed wool was dissolved 

in BMIm+Cl– at 120 °C. Once dissolved, the solution temperature was 

reduced to 90 °C before CEL was added to the KER solution. Using this 

procedure, [BMIm+Cl–] solutions of CEL and KER containing up to a 

https://dx.doi.org/10.1021/acsami.6b14347
http://epublications.marquette.edu/
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total concentration of 6 wt % (relative to the IL) with various 

compositions and concentrations were prepared. Concurrently, in a 

separate flash, AgCl was dissolved in 2 mL of [BMIm+Cl–], and the 

mixture will then be added dropwise to the BMIm+Cl– solution of 

[CEL+KER]. The resulting solution was then cast onto 

poly(tetrafluoroethylene) (PTFE) molds with the desired thickness on 

Mylar films to produce thin composite films with different compositions 

and concentrations of CEL, KER, and Ag+. They were then kept in the 

dark and at room temperature for 24 h to allow gelation to yield gel 

films. The Ag+-doped gel film was then washed with water for 3 days 

to remove BMIm+Cl– and then dried slowly (3–5 days) in the dark at 

room temperature in a humidity-controlled chamber to yield a 

[CEL+KER+Ag+NPs] composite. Alternatively, the Ag+-doped gel film 

was reduced with NaBH4 to Ag0NPs. For example, the gel film, 

sandwiched between two PTFE meshes, was placed in an aqueous 

solution of NaBH4 either in the dark and at room temperature for 48 h. 

Subsequently, the reduced film was washed and dried slowly (∼3–5 

days) in the dark and at room temperature in a humidity-controlled 

chamber to yield a [CEL+KER+Ag0NPs] composite. 

 
Scheme 1 

 

https://dx.doi.org/10.1021/acsami.6b14347
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Analytical Characterization 
 

FTIR spectra (from 450 to 4000 cm–1) were recorded on a 

Spectrum 100 series FTIR spectrometer (PerkinElmer, USA) at a 

resolution of 2 cm–1 by the KBr method. Each spectrum was an 

average of 64 individual spectra. X-ray diffraction (XRD) 

measurements were taken on a Rigaku MiniFlex II diffractometer 

utilizing nickel-filtered Cu Kα radiation (1.54059 Å). The voltage and 

current of the X-ray tube were 30 kV and 15 mA, respectively. The 

samples were measured within the 2θ angle range from 2.0 to 40.00°. 

The scan rate was 5°/min. Data processing procedures were 

performed with the Jade 8 program package.29-35 The surface and 

cross-sectional morphologies of the composite films were examined 

under a vacuum with a JEOL JSM-6510LV/LGS scanning electron 

microscope with standard secondary electron (SEI) and backscattering 

electron (BEI) detectors. Prior to scanning electron microscopy (SEM) 

examination, the film specimens were made conductive by applying a 

20 nm gold–palladium coating to their surfaces using an Emitech 

K575x Peltier-cooled sputter coater (EMI-Tech Products, Timpson, TX). 

 

In Vitro Antibacterial Assays 
 

The antibacterial characteristics of the newly synthesized 

composites were tested against Escherichia coli (ATCC 8739, DSMZ 

498), Staphylococcus aureus (ATCC 25923, DSMZ 1104), methicillin-

resistant S. aureus (ATCC 33591, DSMZ 11729), vancomycin-resistant 

Enterococcus faecalis (ATCC 51299, DSMZ 12956), and Pseudomonas 

aeruginosa (ATCC 9027, DSMZ 1128) using previously published 

protocol.29,33,34 The cultures were grown in a sterile NB medium 

overnight at 37 °C and 150 rpm. Composites of dimensions of 3 × 20 

mm were prior to the assay thermally sterilized at 121 °C and 15 psi 

for 20 min. They were placed in a diluted overnight culture (2 μL of 

overnight culture in 2 mL of NB) and incubated for 24 h at 37 °C and 

200 rpm. Bacteria were plated in serial dilutions onto sterile NA plates 

at time 0 and after 24 h and incubated overnight at 37 °C. Colony-

forming units (CFUs) were quantified on statistically significant plates 

(30–300 CFUs) and compared to a control (no added material). The 

log of reduction of bacteria was calculated for each experiment as 

follows: 

https://dx.doi.org/10.1021/acsami.6b14347
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where N0 is the number of bacteria at the beginning of the experiment 

and Nt is the number of bacteria after 24 h. 

 

In Vitro Biocompatibility Assays 
 

The biocompatibility of [AgNPs@CEL:KER] composites was 

assessed by the adherence and growth of fibroblasts in the presence of 

the composites, as previously reported.29,33,34 Human fibroblasts (ATCC 

CRL-2522 or ATCC CCL-186) were grown in a sterile MEM or in a 

sterile DMEM supplemented with 10% FBS and 1% penicillin–

streptomycin according to ATCC guidelines. The inoculated culture was 

grown at 37 °C in a humified atmosphere of 5% CO2 until the third 

passage. Between passages, cells at approximately 80% confluency 

were subjected to trypsinization and recovered by centrifugation at 

1000g for 10 min. The cell pellets were resuspended homogeneously in 

the culture media and transferred to a 75 cm2 tissue culture flask for 

further passages. Cells were seeded in the wells of the 24-well plate at 

a concentration of 2 × 104 cells/mL and left for 1 day to allow for their 

attachment (approximately 50% confluency). Circle-shaped 

composites with either 15 or 7 mm diameter were autoclaved at 

121 °C and 15 psi for 20 min and placed in the wells with attached 

cells the following day. Some wells contained cells without any added 

material and served as a control. After incubation for 3 days, that 

viability and fitness of the cells were evaluated both with a colorimetric 

CellTiter 96 AQueous One Solution Cell Proliferation Assay and visually 

with an Olympus DP12 digital microscope camera. The procedure as 

specified in the manufacturer’s manual for the CellTiter 96 AQueous 

One Solution Cell Proliferation Assay was followed. In brief, the MTS 

reagent was added in a 1:5 ratio to each well after the medium in the 

wells was supplemented with a colorless MEM or DMEM. The cells were 

then incubated at standard culture conditions for 3 h. Then 100 μL 

from each well was transferred to a new 96-well cell culture plate, and 

the optical density (OD) value of the extracted supernatant was 

measured with a PerkinElmer HTS 7000 Bio Assay Reader at 490 nm. 

The percent viability was calculated using the following equation: 

https://dx.doi.org/10.1021/acsami.6b14347
http://epublications.marquette.edu/
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where ODtest sample is the measured OD at 490 nm of the extract from 

the test sample well and ODcontrol is the measured OD at 490 nm of the 

extract from the control well. 

 

Statistical Analysis 
 

All experiments had a sample size of n = 3 and are 

representative of repeated trials. Sample error bars on the plots 

represent ± standard error of mean, where applicable. Tests for the 

statistical significance of the difference of the means were performed 

using a two-tailed Student’s t test assuming unequal variances using 

Microsoft Office Excel. P values are indicated as follows in the figures: 

*, P < 0.05; **, P < 0.005; ***, P < 0.001. 

Results and Discussion 

FTIR 
 

The FTIR spectrum of the [CEL+KER+Ag0NPs] composite is 

presented as the green spectrum in Figure 1. For reference, the 

spectrum of the [CEL+KER] composite is also added (blue spectrum). 

As expected, the blue spectrum of [CEL+KER] is similar to those 

previously observed for the [CEL+KER] composites, namely, bands at 

1700–1600 and 1550 cm–1 are due to C═O stretch (amide I) and C–N 

stretch (amide II) vibrations and those at 1300–1200 cm–1 are from 

the in-phase combination of the N–H bend and C–N stretch vibrations 

(amide III).30-32,36-38 Major bands between 1200 and 900 cm–1 are due 

to sugar ring deformations of the CEL.30-32,36-38 The fact that the green 

spectrum of the [CEL+KER+Ag0NPs] composite is relatively similar to 

the blue spectrum of the [CEL+KER] composite seems to indicate that 

there may not be strong interaction between the Ag0NPs and CEL and 

KER in the composite. However, careful inspection of the spectra 

revealed that there are indeed minor differences in the amide bands at 

around 1700–1600 and 1550 cm–1 between the two spectra. 

Specifically, interaction between the Ag0NP and the C═O group leads to 

https://dx.doi.org/10.1021/acsami.6b14347
http://epublications.marquette.edu/
http://pubs.acs.org/doi/full/10.1021/acsami.6b14347#fig1
http://pubs.acs.org/doi/full/10.1021/acsami.6b14347#fig1
javascript:void(0);
javascript:void(0);


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

ACS Applied materials & Interfaces, Vol 8, No. 50 (2016): pg. 34791-34801. DOI. This article is © American Chemical 
Society and permission has been granted for this version to appear in e-Publications@Marquette. American Chemical 
Society does not grant permission for this article to be further copied/distributed or hosted elsewhere without the 
express permission from American Chemical Society. 

11 

 

a shift in the amide band from 1650 cm–1 (of the [CEL+KER] 

composite) to 1655 cm–1 (of the [CEL+KER+ Ag0NP] composite). Also, 

the small shoulder at ∼1449 cm–1 disappears upon the addition of 

Ag0NP to the composite. These results seem to indicate that there may 

be some interactions between the Ag0NP and the amide groups of the 

KER. Furthermore, the difference of the band at ∼2870 cm–1 between 

the spectra of the two composites suggests that there may be some 

modifications in the hydrogen bonding when the Ag0NP was 

incorporated into the [CEL+KER] composite.30-32 

 
Figure 1. FTIR spectra of the [CEL+KER] (blue) and [CEL+KER+AgNPs] (green) 
composites. 

Powder XRD 
 

X-ray diffractograms of [CEL+KER+Ag+NPs] and 

[CEL+KER+Ag0NPs] composites are shown in Figure 2. Because CEL 

and KER are present in both composites, it is expected that both 

spectra have two similar broad bands at around 2θ = 10.75° and 

20.85°, which are due to CEL and KER. Because the valency of the 

AgNPs is different in the composites, narrow crystalline bands that are 

due to the AgNPs are distinctly different for the two composites. 

Specifically, the diffractogram of the [CEL+KER+Ag+NPs] composite 

(blue spectrum) exhibits three major peaks at 2θ = 27.94°, 32.35°, 

and 46.37°, which are characteristic of the (1 1 1), (2 0 0), and (2 2 

0) peaks, respectively, of silver chloride nanoparticles (AgClNPs).39-43 

https://dx.doi.org/10.1021/acsami.6b14347
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The fact that these peaks are the same as those previously reported 

for AgClNPs40-43 as well as the reference diffractogram of AgCl reported 

in the JCPDS 31-1238 seems to indicate that Ag+ is present in the 

form of AgCl nanoparticles in the composite. It is hardly surprising that 

AgCl NPs are present in the [CEL+KER+Ag+] composites. This is 

because, as described in the Experimental Section, AgCl was used as 

the source for Ag+ during the synthesis of the composites. Because 

AgCl is completely soluble in [BMIm+Cl−], it was initially dissolved in 

the IL and then added to the [BMIm+Cl−] solution of [CEL+KER]. It 

seems that when the [CEL+KER+Ag+] film underwent gelation and 

subsequently washing with water to remove [BMIm+Cl−] from the film, 

Ag+ recombined with Cl− to form the AgCl NPs. The presence of excess 

chloride ion from [BMIm+Cl−] further promotes forming of AgCl NPs 

from Ag+ as well. 

 

Conversely, the diffraction peaks at 38.47°, 44.57°, 64.87°, and 

77.66° in the orange spectrum of the [CEL+KER+Ag0NPs] composite 

can be attributed to the (1 1 1), (2 0 0), (2 2 0), and (3 1 1) bands of 

Ag0.44-46 The fact that there is no diffraction peak of Ag0 in 

[CEL+KER+Ag+NPs] suggests that this composite contains only 

AgClNPs. Similarly, because no peak due to AgClNPs is seen in the 

diffractogram of the [CEL+KER+Ag0NPs] composite, it is reasonable to 

infer that silver ion was completely reduced to metallic AgNPs during 

the synthesis. 

 
Figure 2. Powder XRD spectra of the [CEL+KER+Ag+NPs] (blue) and 
[CEL+KER+Ag0NPs] (orange) composites. 

The Scherrer equation was then used to determine the size (τ 

value) of the AgClNPs and Ag0NPs in the composites from the full width 

https://dx.doi.org/10.1021/acsami.6b14347
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at half-maximum (fwhm; β value in the equation) of their 

corresponding XRD peaks:47,48 

 

 
 

where τ is the size of the NP, λ is the X-ray wavelength, and k is a 

constant.31,32 The size of the metallic AgNP in the [CEL+KER+Ag0] 

composite was found to be 9 ± 1 nm, while the AgClNP in the 

[CEL+KER+Ag+] composite has a size of 27 ± 2 nm. It is unclear why 

the size of the silver chloride is much larger than that of the metallic 

AgNP. It may be possible that the stirring and reduction with NaBH4 

further dispersed the AgNPs in the [CEL+KER] composite, thereby 

preventing them from coagulation upon reduction to Ag0NPs. 

 

SEM Images and Energy-Dispersive Spectroscopy 

(EDS) Analysis 
 

Shown in Figure 3A are the surface (left) and cross-sectional 

SEM images of the [CEL+KER+Ag0NPs] composite. As expected, the 

images of the composite are similar to those previously observed for 

the [CEL+KER] composites.30-32 That is, CEL and KER are 

homogeneously distributed throughout the composite. While CEL is 

known to have rather smooth structure, the presence of KER in the 

composite gives it a rough and porous structure with a three-

dimensional interconnection throughout the film. More information on 

the chemical composition and homogeneity of the composite can be 

seen in Figure 3B,C, which show the EDS spectrum of the composite 

(part B) and images taken with an EDS detector specifically set for 

carbon (part C, left), silver (part C, center), and oxygen (part C, 

right). As is evident from the figures, the AgNPs not only were well-

incorporated in the composites but also were present as well-

distributed NPs throughout the composite. 

https://dx.doi.org/10.1021/acsami.6b14347
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Figure 3. (A) SEM images of the [CEL+KER+AgNPs] composite: (left) surface image; 
(right) cross-sectional image. (B) EDS spectrum and (C) EDS images recorded for 
carbon (left), silver (middle), and oxygen (right) of the [CEL+KER+AgNPs] composite. 

Antibacterial Assay 
 

To assess the antimicrobial effect of AgNPs in the 

[CEL+KER+AgNPs] composites, bacteria were grown in the presence 

of the composites and then plated out onto NA and measured by the 

number of colonies formed compared to those for the blank 

([CEL+KER] composite) and the control (no composite). Results for 

the microbial log of reduction of different composites are shown in 

Figure 4 in both the top (for composites with 3.5 mmol of either Ag+ or 

Ag0) and bottom (for NPs with three different concentrations: 3.5, 

0.72, and 0.48 mmol). It is evident that the bactericidal activity of the 

[CEL+KER+AgNPs] composites increases with the concentration of 

https://dx.doi.org/10.1021/acsami.6b14347
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AgNPs in both Ag0 and Ag+ forms for all bacteria tested. Specifically, as 

shown in Figure 4, top, the [CEL+KER+Ag0 ] composites (blue bar) 

with 3.5 mmol of silver exhibited the highest bactericidal activity 

against all selected bacteria with up to 6 logs of reduction in the 

number of bacteria, which corresponds to a 99.9999% growth 

reduction. Even at a silver concentration of as low as 0.48 mmol, the 

composite still exhibited up to 0.5 logs of reduction, or a 68% growth 

reduction for most of bacteria, with the exception of VRE, where 1 log 

of reduction was observed (Figure 4, bottom). As expected, the 

controls and blank samples (yellow bar) did not exhibit any statistically 

significant reduction in the number of bacteria, and there was no 

significant difference between them. 

 
Figure 4. Log of growth reduction for E. coli, S. aureus, VRE, MRSA, and P. 
aeruginosa after 24 h of exposure to (top) [CEL+KER+Ag+NPs] and 
[CEL+KER+Ag0NPs] composites with a AgNP concentration of 3.5 mmol and (bottom) 

[CEL+KER+Ag+NPs] and [CEL+KER+Ag0NPs] composites with AgNP concentrations of 

https://dx.doi.org/10.1021/acsami.6b14347
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3.5, 0.72, and 0.48 mmol for (A) E. coli, (B) S. aureus, (C) VRE, (D) MRSA, and (E) P. 

aeruginosa. In these figures, CEL+KER was labeled as CK; red and blue bars are for 
the [CEL+KER+Ag+] and [CEL+KER+Ag0NPs] composites, respectively. Yellow bars 
are for both the blank ([CEL+KER] composite with no AgNPs) and control. See the text 
for detailed information. 

While it is known that AgNPs are bactericidal, to date, it is still 

unclear if the antimicrobial activity is due to Ag0 or Ag+ (as in AgCl). As 

described above, by the judicious selection of the synthetic method, 

[CEL+KER+AgNPs] can be synthesized with the AgNPs in either Ag0 or 

Ag+ form. This makes it possible, for the first time, to elucidate the 

mechanism of the antimicrobial activity of AgNPs. Accordingly, 

microbial assays were carried out in the presence of either 

[CEL+KER+Ag0NPs] (blue bars) or [CEL+KER+Ag+] (red bars) 

composites. The results obtained, shown in both the top and bottom of 

Figure 4, clearly show that, for the same bacteria and the same silver 

content, the [CEL+KER+Ag0] composites (blue bar) exhibit relatively 

greater antimicrobial activity against bacteria compared to the 

corresponding [CEL+KER+Ag+] composites (red bars). For example, as 

shown in the bottom of Figure 4A–D, up to 6 logs of reduction of 

growth was found by the [CEL+KER+Ag0NPs] composite for all four 

bacteria (E. coli, S. aureus, MRSA, and VRE), whereas the [CEL+KER+ 

Ag+] composite exhibits only a 3.5 log of reduction. Surprisingly, 

within experimental error, there was no significant difference between 

these two NP composites for P. aeruginosa (Figure 4E). The results 

obtained also indicate not only that the [CEL+KER+Ag0NPs] 

composites have relatively stronger antimicrobial activity compared to 

the corresponding [CEL+KER+Ag+] composites but also that the rather 

limited antimicrobial activity of the latter cannot be enhanced by 

increasing the concentration of Ag+ in the composites because, as will 

be shown in the following section, Ag2
+ is not biocompatible and, as a 

consequence, increasing the Ag+ concentration would undesirably lead 

to the damaging and killing of human cells. Again, as expected, there 

was no statistically significant decrease in the number of bacteria after 

24 h in the control experiments (no composite) and blank samples. 

 

Biocompatibility Assay 
 

To assess the potential cytotoxicity of the [CEL+KER+AgNPs] 

composites with different concentrations of AgNPs, the morphology 

and proliferation capability of adherent human fibroblasts in the 
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presence or absence of NP composites were analyzed. The proliferation 

capability was assessed using a CellTiter 96 AQueous Non-Radioactive 

Cell Proliferation Assay (or CellTiter 96 AQueous One Solution Cell 

Proliferation Assay) colorimetric assay, whereas the morphology of 

fibroblasts was examined microscopically. Three trials were performed 

for this assay, employing composites with different sizes (circles of 

either 15 or 7 mm diameter) and silver concentrations. Fibroblasts 

were exposed to the composites for 3 days. The proliferation and 

viability of fibroblasts in the presence or absence of composites with 

different concentrations of AgNPs over 3 days are shown in Figure 5. 

The statistical significance in the differences between the sample and 

control wells was evaluated with a two-tailed Student’s t test, and the 

degree of significance is indicated with P values in different 

significance levels (α = 0.05, 0.005, or 0.001). In the first trial, the 

composites of 15 mm diameter with 3.5 mmol of either Ag+ or Ag0 

concentration were tested (Figure 5A). The fibroblasts in contact with 

either the 3.5 mmol [CEL+KER+Ag0] (blue bar) or the 3.5 mmol 

[CEL+KER+Ag+] (red bar) exhibited low absorbances at 490 nm, 

indicating that the cells were not viable. Morphological data obtained 

through microscopic examination indicated that the fibroblasts in these 

wells were not attached and exhibit unusual round morphology (data 

not shown). This seems to indicate that the cells were not healthy and 

possibly not viable. To reduce the concentration of AgNPs in the 

composites, in the second trial, the diameter of the composites used 

was reduced from 15 to 7 mm, which corresponds to a 4.6 reduction in 

the area of the composites. As shown in Figure 5B, the cells in the 

sample wells exhibited slightly increased viability after 3 days 

compared to that in the first trial. Morphological data showed round 

unattached cells (data not shown). Because the results obtained so far 

indicate that the biocompatibility of the [CEL+KER+Ag0] composites 

are relatively better than that of the corresponding [CEL+KER+Ag+] 

composites, subsequent experiments were carried out using only the 

former. Specifically, [CEL+KER+Ag0] composites with relatively lower 

Ag0NP concentrations (0.48 and 0.72 mmol) were used (Figure 5C). In 

this case, the viability of the cells in the composite wells after 3 days 

of exposure was high, approximately 83% for 0.48 mmol of Ag0NPs 

and (64 ± 5)% for 0.72 mmol of Ag0NPs compared to the control. It is 

evidently clear that, within experimental error, there was no 

statistically significant difference between the cells in the wells of 0.72 
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and 0.48 mmol of Ag0NPs and those in the control well. Morphological 

data presented as images of cells in the 0.48 mmol of Ag0NPs well 

(Figure 6C) and in the 0.72 mmol of Ag0NPs well (Figure 6D) show a 

mix of healthy-looking cells and round unattached cells, similar to 

those observed for cells in the absence of composite (Figure 6A) and 

with the [CEL+KER] composite (Figure 6B). Taken together, the 

results clearly indicate that both Ag+ and Ag0NPs are toxic to human 

fibroblasts at higher concentration (>0.72 mmol). At the same 

concentration, Ag+ is relatively more toxic than Ag0. More importantly, 

at or below the silver concentration of 0.48 mmol, the 

[CEL+KER+Ag0NPs] composite not only is fully biocompatible but also 

fully reatains its antimicrobial activity against bacteria such as E. coli, 

S. aureus, P. aeruginosa, MRSA, and VRE. 

 
Figure 5. Fibroblast viability based on the absorbance at 490 nm after being exposed 
to the [CEL+KER] (yellow), [CEL+KER+Ag0NPs] (blue), and [CEL+KER+Ag+NPs] (red) 

composites for 3 days. In part A, composites of 15 mm diameter were used, and in 
parts B and C, the composites were of 7 mm diameter. Each bar represents an 
average of three experiments. Error bars represent standard errors of the average. P 
values are indicated as follows: *, P < 0.05. The results for the control experiment (no 
composite) are also presented as yellow bars. Composites causing <70% cell viability 
(dashed line) are considered cytotoxic. 
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Figure 6. Images (100×) of human fibroblasts after 3 days in the absence of any 
composite (A), with the [CEL+KER] composite (B), with [CEL+KER] containing 0.48 
mmol of Ag0NPs (C), and with [CEL+KER] containing 0.72 mmol of Ag0NPs (D). 

Release of Ag0NPs from the [CEL+KER+Ag0NPs] 

Composites 
 

We also carried out experiments to determine if any Ag0NPs are 

leaking out from the [CEL+KER+Ag0NPs] composites during the 

microbial and biocompatibility assays. Such information is particularly 

important because it would clarify the mechanism of the antibacterial 

activity and biocompatibility of the composites. That is, the activity is 

due to either Ag0NPs in the composites and/or Ag0NPs released from 

the composites. As described in the Experimental Section, because the 

[CEL+KER+Ag0NPs] composites were exhaustively washed with water 

for a total of up to 10 days, it is expected that, if there is any leaking 

of AgNPs from the composites, their concentration should be extremely 

low. Accordingly, we used a modified version of the recently developed 

ultrasensitive method based on the thermal lens technique to 

determine the concentration of any possible leaking of Ag0NPs from 

the composites during the bioassay.49,50 No experiment was carried out 
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to measure the release of Ag+ form the [CEL+KER+Ag+] composites 

because, compared to the [CEL+KER+Ag0NPs] composites, the 

[CEL+KER+Ag+] composites are not readily usable because they are 

not biocompatible and have relatively lower antimicrobial activity. This 

thermal lens detection method is so sensitive that it can detect 

released AgNPs at a concentration as low as 0.51 μg/L.33 As described 

in detail in the Supporting Information, two different concentration 

values can be obtained from this method: the colloidal silver 

concentration or concentration of released Ag0NPs and total silver 

concentration, which is the sum of the released Ag0NPs concentration 

plus the released Ag+ concentration. As described above, XRD results 

show that there is no Ag+ in the [CEL+KER+Ag0NPs] composites; i.e., 

all Ag+ was reduced by NaBH4 to Ag0NPs during the preparation. 

However, there is a possibility that the concentration of Ag+ remaining 

in the composites was so low that it cannot be detected by XRD. This 

thermal lens detection is so sensitive that it can detect any Ag+ that is 

released from the Ag+ remaining in the composites. 

 

The results obtained are presented in Figure 7 and plotted as 

the concentration of released silver against the time that the 

composites were immersed in a solution similar to the media used in 

the microbial and biocompatibility assays. The fact that, within 

experimental error and at all times (from the beginning to 7 days), the 

obtained concentration of released Ag0NPs (blue bars) was the same 

as that of the total concentration of released silver (red bars) clearly 

indicates that all released silver was Ag0NPs and there was no Ag+ 

released from the composites. Also, the concentrations of released 

Ag0NPs after 3 days were the same, within experimental error, as 

those after 7 days indicate that no more Ag0NPs was released beyond 

3 days. More importantly, even after a plateau was reached at about 3 

days and continued beyond 7 days, only 2.3 μg of Ag0NPs was 

released from [CEL+KER+Ag0NPs]. Because the total concentration of 

silver in the composite used in the measurements was about 12 mg, 

less than 0.02% of Ag0NPs was released from the [CEL+KER+Ag0NPs] 

composites even after they were soaked in the solution for 7 days. 

Taken together, the results obtained clearly indicate that there was 

hardly any Ag0NPs release from the [CEL+KER+Ag0NPs] composite, 

and hence its antimicrobial activity and biocompatibility are due not to 
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any released Ag0NPs but rather entirely to the Ag0NPs embedded in 

the composite. 

 
Figure 7. Plot of the concentration of AgNP released from the composites against the 
time that the composites were immersed in a solution similar to the media used in the 
microbial and biocompatibility assays. See the text for detailed information. 

Conclusions 

In summary, we have shown that biocompatible composites 

containing 50% CEL and 50% KER and silver of either ionic (Ag+, 

presented as AgClNPs) or metallic (Ag0NPs) were successfully 

synthesized in a simple process in which [BMIm+Cl–], a simple IL, was 

used as the sole solvent and AgCl was added to the [BMIm+Cl–] 

solution of [CEL+KER] during the dissolution process. The silver in the 

composite can be maintained as Ag+ or completely converted to 

Ag0NPs by reducing it with NaBH4. The results of spectroscopy (FTIR 

and XRD) and imaging (SEM) measurements confirm that CEL and KER 

remain chemically intact and homogeneously distributed in the 

composites. The XRD and SEM results show that the silver in the 

[CEL+KER+Ag+] and [CEL+KER+Ag0] composites is homogeneously 

distributed throughout the composites in either AgClNPs or Ag0NPs 

form with sizes of 27 ± 2 or 9 ± 1 nm, respectively. Both composites 

were found to exhibit excellent antibacterial activity against many 

bacteria including E. coli, S. aureus, P. aeruginosa, MRSA, and VRE. 

The bacterial activity of both composites increases with the Ag+ or 

Ag0NPs content in the composites. More importantly, for the same 

https://dx.doi.org/10.1021/acsami.6b14347
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bacteria and the same silver content, the [CEL+KER+Ag0NPs] 

composite exhibits relatively greater antimicrobial activity against 

bacteria compared to the corresponding [CEL+KER+Ag+] composite. 

Experimental results confirm that there was hardly any Ag0NPs 

released from the [CEL+KER+Ag0NPs] composite, and hence its 

antimicrobial activity and biocompatibility are due not to any released 

Ag0NPs but rather entirely to the Ag0NPs embedded in the composite. 

Both Ag+ and Ag0NPs were found to be toxic to human fibroblasts at 

higher concentration (>0.72 mmol), and for the same silver content, 

the [CEL+KER+Ag+] composite is relatively more toxic than the 

[CEL+KER+Ag0NPs] composite. As expected, by lowering the Ag0NPs 

concentration to 0.48 mmol or less, the [CEL+KER+Ag0NPs] composite 

is biocompatible while still retaining its antimicrobial activity against 

bacteria such as E. coli, S. aureus, P. aeruginosa, MRSA, and VRE. 

These results, together with our previous finding that [CEL+KER] 

composites can be used for the controlled delivery of drugs such as 

ciprofloxacin, clearly indicate that the [CEL+KER+Ag0NPs] composite 

possesses all the required properties for it to be successfully used as a 

high-performance dressing to treat chronic ulcerous infected wounds. 
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Measurements of Ag
0
NPs released from [CEL+KER+ Ag

0
NPs] Composites by Thermal 

Lens Method 

Any possible AgNPs released from the composite materials was determined using the 

previously developed method.  In this method, AgNPs were detected by measuring their surface 

plasmons resonance band at 409 nm by the thermal lens technique in a flow injection analysis 

(FIA).  As described in the Experimental Section, AgNPs were produced by reducing Ag
+
 with 

sodium borohydride, there is a remote possibility that some minute amount of Ag
+
 may remained 

unreduced and remained in the composites (even though XRD results indicate that no Ag
+
 is 

present in the composite) which was subsequently released.  Because this thermal lens detection 

technique cannot detect any released Ag
+
 as it does not have any surface plasmon resonance 

absorption, any released Ag
+
 was converted into AgNPs by sodium borohydride directly by use 

of the FIA so that they can be readily detected.  As a consequence, results obtained will provide 

information on two concentrations:  colloidal silver concentration or (concentration of released 

AgNPs) and total silver concentration which is the sum of released AgNPs concentration plus 

released Ag
+
 concentration.

 

The experimental setup to measure silver release was imitating the experimental setup 

used in bioassays.
SI-1

  Composite materials of dimensions 3 x 20 mm
2
 were put in sterile falcon 

tubes with 2 mL of sterile 1x PBS at pH 7.4. Three replicates each of blank samples 

([CEL+KER]) and  [CEL+KER + 500 mg Ag
0
 NPs] composites were used. Tubes were put on a 

shaker at 400 rpm and kept at 37°C in darkness for 7 days. Samplings were conducted at time 0, 

24 hrs, 3 days and 7 days. At every sampling 200 µL of sample was taken out of each tube and 

replaced with 200 µL of fresh PBS. The dilution was taken into account when calculating final 

concentrations. 100 µL of sample was reduced with 0.60 mM sodium borohydride (NaBH4) in 
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order to measure total silver (AgNPs + Ag
+
), whereas the other 100 µL of sample was not 

reduced in order to measure only colloidal silver (AgNPs) released from the sample. Sample 

preparation was done as shown on the Figure SI-1 below:                   

 

Figure S1: Sample preparation for silver release from the [CEL+KER+Ag
0
NPs] composites. 

 

Sample preparation was done in glass tubes wrapped in aluminum foil to protect it from 

light.  Dilution made at sample preparation was taken into account when calculating measured 

concentrations.  

All measurements were conducted on an in-house-built FIA system with a dual beam 

TLS detection unit.
S1,S2

  The instrumental setup is schematically presented in Figure SI-2. 

Krypton laser operating at 407 nm (150 mW power) was used as a source of the pump-beam. 

The emission of a He-Ne laser (632.8 nm, 2 mW) served as a probe beam. The pump-beam 

modulation frequency was 40 Hz. Flow rate of the carrier (dd H2O) was 0.600 mL/min. Sample 

was injected through the metal free injection valve, equipped with a 100 µL PEEK sample loop. 
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Figure S2: Schematic presentation of the FIA setup with thermal lens detection unit. 

 

Separate calibration curve was prepared every time a set of samples was measured. Limit 

of detection (LOD) for this method was calculated as follows: 

��� �
3 ∙ ���	
��



 

where SDblank corresponds to standard deviation of blank signal, and k is the slope of the 

calibration curve. 

To further confirm that the signals obtained are from the Ag
0
NPs released from the 

[CEL+KER + Ag
0
NPs] composites, additional experiment was designed in which nitric acid 

(HNO3) was added to the released sample solution to dissolve the released Ag
0
NPs.  Specifically,  

2.0 µL of concentrated HNO3 was added to 6 mL of released sample to dissolve the Ag
0
NPs.  

The Ag
+
 obtained was then reconverted back to Ag

0
NPs by addition of 6.0 mL PBS (pH 12.5) 

and 600 µL 0.6 mM NaBH4 to 6 mL of dissolved sample. Samples at each stage of the 
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experiment (before dissolution, after dissolution, and after recovery) were measured on the FIA-

thermal lens setup described above using the same conditions. 
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