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ABSTRACT
COMPUTATIONAL APPROACHES FOR REMOTE MONITORING OF

SYMPTOMS AND ACTIVITIES

Ferdaus Ahmed Kawsar, B.S., M.S.

Marquette University, 2015

We now have a unique phenomenon where significant computational power, storage,
connectivity, and built-in sensors are carried by many people willingly as part of their
life style; two billion people now use smart phones. Unique and innovative solutions
using smart phones are motivated by rising health care cost in both the developed and
developing worlds. In this work, development of a methodology for building a re-
mote symptom monitoring system for rural people in developing countries has been
explored. Design, development, deployment, and evaluation of e-ESAS is described.
The system’s performance was studied by analyzing feedback from users. A smart
phone based prototype activity detection system that can detect basic human activities
for monitoring by remote observers was developed and explored in this study. The ma-
jority voting fusion technique, along with decision tree learners were used to classify
eight activities in a multi-sensor framework. This multimodal approach was examined
in details and evaluated for both single and multi-subject cases. Time-delay embedding
with expectation-maximization for Gaussian Mixture Model was explored as a way
of developing activity detection system using reduced number of sensors, leading to a
lower computational cost algorithm.

The systems and algorithms developed in this work focus on means for remote
monitoring using smart phones. The smart phone based remote symptom monitor-
ing system called e-ESAS serves as a working tool to monitor essential symptoms of
patients with breast cancer by doctors. The activity detection system allows a remote
observer to monitor basic human activities. For the activity detection system, the major-
ity voting fusion technique in multi-sensor architecture is evaluated for eight activities
in both single and multiple subjects cases. Time-delay embedding with expectation-
maximization algorithm for Gaussian Mixture Model was studied using data from mul-
tiple single sensor cases.
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Chapter 1

Introduction

Remote monitoring of different parameters is important for many reasons.

Information like different symptoms can be crucial for doctors to provide quality

treatment to the patients. Accurate information regarding human physical activity and

ability to access that information real time remotely has far-reaching significance.

Activity information is important to doctors who wants to monitor their patients. This

technology can be used for monitoring elderly people who wants to maintain their

independence. However, such monitoring systems usually require complex devices

and significant involvement from the participants. Complex devices can be expensive

whereas intrusive systems greatly discourages the usage in real life. Consequently, we

focused on developing monitoring systems using smart phones. Smart phones are ideal

candidate for numerous innovation. This is the first device that has significant

computational power, storage and communication capability and is conveniently

carried out by mass people. Developing a system centered around smart phones will

most likely remove the necessity of carrying other extra devices. Even if it is required

to use other sensors, it is possible to connect with those sensors using Bluetooth

connectivity. As, by now 2 billion people worldwide are using smart phones, we now

have a unique phenomenon where significant computational power, storage,

connectivity, and built-in sensors are carried by mass people willingly as part of their

life style. This unique phenomenon provides a great opportunity in terms of research

and innovation. A realistic smart phone based symptom monitoring system or activity

monitoring system can help to reduce the cost of health care. Rising cost of health care

in developed countries are a serious threat for a sustainable economy. On the other

hand, expensive health care prevents the poor from accessing basic health care service.
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Inexpensive monitoring system through smart phones has the potential to greatly

narrow the gap between rich and poor in terms of access to health care service. It can

also help governments by reducing health care cost by reducing hospital visits and

admission as some of the hospital services can be provided to patients even when the

patients are at home. This dissertation focuses on design, development and

deployment of self-reported remote symptom monitoring system as well as

development of algorithm for activity detection from analysis of multiple sensor data.

1.1 Dissertation focus

In this dissertation we discuss how we developed a remote symptom

monitoring system according Edmonton Symptom Assessment Scale (ESAS) to

monitor rural breast cancer patients in Bangladesh. We described our plantar pressure

based activity detection system that we built to enable remote monitoring of activities.

We also developed a multimodal method for human activity detection and evaluated its

performance. Another time-delay embedding approach was developed as a way of

finding computationally inexpensive algorithm for activity detection.

1.2 Dissertation organization

Chapter 2 of this dissertation describes the mathematics behind machine

learning algorithms that we have used for developing our activity detection system.

This chapter also describes the necessary mathematics behind time-delay embedding

approach for activity detection. Chapter 3 describes a detailed study of various

research on different activity detection systems so far. Chapter 4 describes the

methodology we adopted for design, development and deployment of e-ESAS. We

also identified the barriers in developing a remote symptom monitoring system for

rural developing countries and discussed them in this chapter. In chapter 5, a detail

discussion about the design and development of e-ESAS was presented along with

evaluation of the system from the deployment of e-ESAS. Chapter 6 describes the
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multimodal approach for activity detection and the design and development of our

prototype system. In this chapter, we worked with single subject and for four activities.

In chapter 7, we applied our multimodal approach in multiple subject scenario for

eight activities. In chapter 8, we presented our findings from applying time-delay

embedding with Gaussian Mixture Model for activity detection.
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Chapter 2

Background

In this chapter, we provide background knowledge of some of the concepts that

we have used. We have extensively used decision learning algorithm for activity

detection. The primary motivation is twofold. First, decision tree based learners are

quite accurate in classification. Second, it is easy implement the learned decision tree.

We have also used time-delay embedding with Gaussian Mixture Model. We will

discuss these two concepts in this chapter.

2.1 Decision Tree

In decision tree learning, the learned function is represented by a decision tree.

Decision tree classify instances by traversing down the tree from the root to some leaf

node. Leaf node is where classification of the instances is decided,. Each node in tree

conducts a test of some feature on the instance. Each branch descending from that

node corresponds to possible values of that feature. An instance is classified by

starting at the root node, test attribute specified by this node, and then moving down

the branch based on the outcome of the test until it reaches one of the leaves. We will

demonstrate this using examples from our experiments. In a simple three activity

scenario, we have two features, namely meanP5 and meanP2. meanP5 is defined as

the average of 60 consecutive samples of pressure sensor P5 whereas meanP2 is the

average of 60 consecutive samples of pressure sensor P2.

meanP5 =
∑i+60
n=i P5(i)

60

Similarly for P2, the equation is:

meanP2 =
∑i+60
n=i P2(i)

60

In our prototype system, the three activities we worked with were sitting,

standing and walking. The tree we generated is shown below.
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Figure 2.1: Generated decision tree

In general, decision tree represent a disjunction of conjunction of constraint on

the feature values. Each path from root node to leaf node is associated with a

conjunction and tree itself is a disjunction of these conjunctions. For example, for

sitting,

sitting = meanP5 ≤ 73.44 ∧meanP2 ≤ 31.12

For walking, the expression will be

walking = ¬(meanP5 ≤ 73.44)

For standing, the expression will be,

standing = meanP5 ≤ 73.44 ∧ ¬(meanP2 ≤ 31.12)

2.1.1 Decision Tree Learning Algorithm

Basic algorithm for learning decision tree is Iterative Dichotomiser 3 (ID3).

This is a top-down, greedy search for best possible decision tree. In short, this is how it

works. First, to find which attribute should be tested at the root, each attribute or
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feature is evaluated to determine how well it alone classifies the training examples.

Based on this evaluation of all attributes, the best attribute is selected to be the root

node. A descended of the root node is created using all possible values of attribute at

the root. Training examples are distributed to appropriate descendant node. This

process is repeated for each of these descendant nodes using training examples

associated with that node.

A statistical property called, information gain is defined that measures how

well a given attribute separates the training examples. ID3 uses information gain to

select among the possible attributes at each step of growing decision tree.

Information gain is closely related to entropy. Entropy from information

theory, we know, is defined for a collection with positive and negative examples of

some target concept,

Entropy = −p+log2p+ − p−log2p− where p+ is the proportion of positive

examples and p− is the proportion of negative examples.

More generally, when the target classification can take m different values, then

entropy equation is generalized as Entropy =
∑i=m

i=1 −pilog2pi

In our case, for a three activity scenario, we have 110 examples of sitting, 111

examples of standing and 111 examples of walking data. As m is 3 , entropy in this

case is 1.585. We can interpret entropy as the minimum number of bits needed to

encode an arbitrary member from the sample set.

Effectiveness of an attribute can be measured using information gain, which is

simply the expected reduction in entropy. Mathematically, Gain(S,A) for an attribute A

for a collection of samples S is defined as,

Gain(S,A) = Entropy(S)−
∑

v∈V alues(A)
|Sv |
|S| Entropy(Sv) where

V alues(A) is the set of all possible values for attribute A and Sv is the subset of S for

which attribute A has value v. Gain(S,A) can be interpreted as expected reduction in

entropy caused by knowing the value of attribute A. In ID3 approach, Gain for all
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attributes are estimated and the attribute with highest gain is specified as root node.

The training examples are distributed over the descendants of root node according to

the attribute values of node at root. Same process is repeated for all the descendant

nodes. The attributes at the higher in the tree are excluded. As a result any attribute

can occur at most once in any path in the tree. The process continues for each new leaf

new node until either of two conditions are met: (1) every attribute has already been

included along this path or (2) the training examples associated with leaf node all have

the same target attribute value.

2.2 Time-Delay Embedding with Gaussian Mixture Model

Time-delay embedding theorem gives the conditions under which a chaotic

dynamical system can be reconstructed from sequence of observations of the state of

dynamical system. The reconstruction preserves the properties of dynamical system

that do not change under smooth coordinate changes. Taken’s theorem [88] provides

the conditions under which a smooth attractor can be reconstructed from observations.

This theorem essentially provides approaches for reconstructing the essential

dynamics of the underlying system using a sequence of observations. The assumption

is that the dynamics of the underlying system are significantly different for different

activities of a person. In our case, we observed accelerometer data along X and Y axis

as well as six pressure sensors from left shoe.

The parameters of time-delay embedding models are learned using a Gaussian

Mixture Model. In our experiments, number of mixture models we used are three.

In reality, true dimension of phase space is usually unknown. Based on some

trial and error, we used a six dimensional phase space with time lag, δ = 5.

2.2.1 Gaussian Mixture Model

Gaussian mixture models are extension of k-means models. If random variable

X is Gaussian, it has the following pdf:
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N(x|µ, σ2) = p(x) = 1
σ
√
2π
e

−(x−µ)2

2σ2 The two parameters are mean, µ and

variance, σ2. p(x) can be conveniently written as N(x|µ, σ2). If we have independent

and identically distributed observations Xn
1 from a Gaussian distribution with

unknown mean µ, maximum likelihood estimation for µ will be 1
N

∑
i xi.

Gaussian mixture model (GMM) is useful for modeling data that comes from

one of several groups. The groups may be different from each other. However, data

from same group can be modeled using Gaussian distribution.

A superposition of K Gaussian densities can be written as

p(x) = sumK
k=1πkN(x|µ, σ2) which is called a mixture of Gaussians. Each Gauassian

density is called a component of the mixture and has its own mean, µk and variance σ.

The parameters πk is called mixing co-efficients. Also, sumK
k=1πk = 1 and 0 ≤ πk ≤ 1

in order to be valid probabilities.

Expectation-maximization (EM) algorithm is an iterative method for finding

maximum likelihood estimates of parameters in Gaussian Mixture environment.

Maximum likelihood estimation in Gaussian mixture model is the estimation of πk, µ

and σ of the component of Gaussian mixture.
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Chapter 3

Recognizing Human Physical Activity Using Accelerometers:
Current Status and Open Issues

Automatic detection of human physical activity is a long sought goal in

scientific community. Human posture and activity is an important contextual

information and identifying the context is important for context-sensitive applications.

On the other hand, quality and quantity of physical activity is an important indicator of

energy expenditure. Along with that, physical activity also indicates the health

condition of people. Traditional methods to quantify this parameter are subjective and

very much dependent on interpretation of the people involved. Consequently, an

objective method to quantify physical activity is of much importance to different

stakeholders including scientific community. Accelerometers provide an excellent

opportunity for identifying and quantifying physical activity. With the evolution of

accelerometers and cell phones with accelerometers, new opportunities are being

explored. Here we classified all the models detecting physical activity involving

accelerometers under different category and summed up their vital information in a

comparison table. Finally we talked about some open issues for future directions of

research in this area.

3.1 Introduction

The amount of physical activity is closely related to general wellbeing of a

person. People, who are ill, have difficulty in performing daily physical activities.

Also people who are in good health but avoid adequate physical activity runs the risk

of various health problems later in their lives. Considering the importance of Physical

Activity (PA), the organization Healthy People 2020 has recognized PA as one of the

leading health indicators (LHI). Identifying different human physical activities

automatically is very important to a great many group of people. Researchers want to
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find a cheap and easy alternative to measure energy expenditure. Also research is

going on for monitoring older people or people who are ill. Identifying and

quantifying human physical activity is also necessary for establishing correlation

between activity pattern and future health risk. Human activity is one of the most

important context information and context is center to ubiquitous application [78] as

ubiquitous applications are expected to provide services in seamless manner.

Two of the techniques to identify and measure physical activity involve

questionnaire [76] and videotaping [56] [80]. The first is interpretation dependent and

prone to recall bias whereas the later usually requires human to decode. Some

questions are lengthy that require up to an hour and sometimes need assistance from a

trained observer [86]. With the rapid increase of surveillance camera deployed in

public spaces, research is going on automatic detection, categorization and recognition

of human activity. But in many cases people feel uncomfortable to be videotaped

continuously. Also video camera is installed to fixed places and a person cannot be

videotaped every place he/she goes. Sensors like accelerometers have the advantage of

being portable and unobtrusive. On the other hand, objective techniques use wearable

or body-fixed motion sensors which range from switches, pedometers, accelerometers

and gyroscopes [55]. Step counters are the simplest wearable sensors to measure

human motion. Though these devices are cheap, they cannot identify other physical

activities like lying, sitting or upper body movements. They also cannot reflect

intensity of movement and cannot predict energy expenditure accurately [81].

Accelerometers can measure acceleration of objects along different axes. Pedometers

count body movement only if a certain threshold is passed. The advantage of using

accelerometer for identifying and measuring physical activity is that acceleration is

proportional to forces; thus estimates from accelerometers reflect intensity and

regularity of movement and thus is more accurate and performs better than

pedometers. Data from accelerometer have been successfully captured and analyzed to
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classify different human postures and activities. These studies vary in number of

accelerometers they use and their placements in the body. Some of the studies include

other sensors (gyroscope, digital compass [53][38]. Moreover, different studies

applied different classification algorithms. These studies also vary in different features

that were extracted from raw sensor data. Most of the research addressed activity

recognition in laboratory environment [16][53] [78]. A few also successfully

recognized physical activities in naturalistic and semi naturalistic environment [90]

with encouraging accuracy. The initial accelerometers were wired and transferred data

to a PDA or Laptop which hinders the free movements of the subjects.

3.2 Activty Recognition System

3.2.1 General Approach

An activity recognition system broadly consists of the following components.

These components are data acquisition, labeling of the data by the user, feature

extraction and classification. A data acquisition system consists of different sensors.

These systems can vary in number of sensors, types of sensors and placements of

sensors. Many parameters can differ in the design of a data acquisition system. Some

systems used tri-axial accelerometers and some systems used bi-axial accelerometers.

Among other parameters, sampling rate of accelerometers, naturalistic or laboratory

settings, placements of the sensors can also vary.

Supervised learning algorithms require training data. Researchers can directly

observe and label activity in real-time. Subjects can carry PDA where a digital diary

called Experience sampling Method (ESM) is running. Often subjects are reminded

periodically to fill a questionnaire to describe the activity he/she was doing.

Different features were extracted in different studies. Mean, standard deviation,

energy and correlation were extracted in [17] by Bao et al. Correlation is useful in

differentiating walking and running from climbing. Kwapisz et al. [50] extracted the
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following features from raw data: Average acceleration (for each axis), standard

deviation, average absolute difference, average resultant acceleration, time between

peaks and binned distribution. The right choice of features depends on the activity that

is being recognized. Figure 3.1 is a flow diagram of a generic activity recognition

system.

Figure 3.1: Generic Activity recognition System.

3.2.2 Classification Approach

Automatic recognition of physical activity is well-studied topic. Studies and

researches so far conducted vary in terms of environment, use of hardware, and also

classification algorithm. Environment, where the test has been performed is quite

important. Foerster et al. [34] demonstrated 95.8% recognition rates for data collected

in the laboratory but recognition rates dropped to 66.7% for data collected outside the

laboratory in naturalistic settings. In terms of use of sensors, most researchers adopted

multimodal format that incorporates other sensors along with accelerometer.

Classification algorithms include k-Nearest Neighbor (kNN) classification [34] [22],

Support Vector Machines (SVM) [51] [95], Naive Bayes classifier [39] [59], Gaussian

Mixture Model (GMM) [15], and Hidden Markov Model (HMM) [77]. A Bayes

classifier is a simple probabilistic classifier based on applying Bayes’ theorem with

naive independence assumptions. A naive Bayes classifier assumes that the presence
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of a particular feature of a class is unrelated to the presence of any other feature. Naive

Bayes classifier classifies a pattern as an activity according to the probabilities of that

signal pattern. Transitions from one activity to another can be described as a Markov

chain. After the HMM is trained by training data, it can be used to determine possible

activity state transitions. Figure 3.2 depicts the high level view for different

approaches of physical activity recognition.

Figure 3.2: Classification of physical activity recognition systems.

3.3 State of the Art

Researchers have tried to identify many activities including brushing, shaving,

vacuuming, walking, running, just to name a few. In table 3.1, we sum up different

activities that the researchers attempted to detect.

In the following subsections, we categorized and described different

approaches. It is difficult to categorize and label research in activity recognition as

there is no single criteria for categorization. Moreover, most of the studies about

activity recognition go through somewhat similar steps. They all go through data

acquisition, preprocessing, segmentation, feature extraction, dimensionality reduction,

and classification. As a result, any research in activity recognition falls into multiple

categories. We tried to categorize the research works based on their principal
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W J S LD L C CU CD St R SU Sp BT V WF Sh DV Ss EU ED

Ravi et
al[79]

X X X X X X X X

Lee and
Mase [53]

X X X

Randell and
Muller [78]

X X X X X X

Kwapisz et
al. [50]

X X X X X X

Long et
al.[59]

X X X X X

Krishnan et
al. [45]

X X X X X

Ince et al.
[40]

X X X

Subramanya
et al. [87]

X X X X X

Krishnan
and Pan-
chanathan
[47]

X X X X X X X

Uiterwaal et
al. [90]

X X X X

Yang 2009
[94]

X X X X X X

Choudhury
et al. [28]

X X X X X X X X

Maurer et al.
[65]

X X X X X X

Lester et al.
[54]

X X X X X X X X

Lee et al.
[66]

X X X X X

Karantonis
et al. [43]

X X X

Miluzzo et
al. [67]

X X X X

Table 3.1: Comparison Table Based on Different Physical Activity.
W: Walking, J: Jogging, S: Sitting, LD: Lying Down, L: Lying, C: Cycling, CU: Climbing Upstairs, CD: Climbing Downstairs, St:
Standing, R: Running, SU: Sit-ups, Sp: Sports, BT: Brushing Teeth, V: Vacuuming, WF: Washing Face, Sh: Shaving, DV: Driving

Vehicle, Ss: Seasaw, EU: Elevator Up, ED: Elevator Down
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emphasis.

3.3.1 Comparison of Different Classification Algorithms

Ravi et al. [79] formulated activity recognition as a classification problem.

Performance of base-level classifiers (decision tables, decision trees, k-nearest

neighbors, SVM, Naive Bayes) and meta-level classifiers (boosting and bagging,

plurality voting, stacking) were evaluated and compared. No noise filtering was carried

out on the data. Four features, namely mean, standard deviation, energy and

correlation were extracted. It was found that energy is the least significant attribute for

classification of activities. The overall performance of meta-level classifiers is found to

be better. Combining classifiers using Plurality Voting performs as the best classifier

for activity recognition from a single accelerometer and consistently outperformed

stacking. Accelerometer and Bluetooth transmitter is placed on a hoarder board.

Though data transmission is wireless, it is somewhat cumbersome to use. It was found

that climbing stairs up and down are hard to tell apart using this system. Brushing was

also often confused with standing or vacuuming and is in general hard to recognize.

Another drawback of this experiment is that, it was carried on two persons only.

Long, Yin, and Aarts collected accelerometer data from twenty-four users

using a single tri-axial accelerometer worn at the users waist without regard for

orientation [59]. Data were collected in natural environment, and decision trees (DT)

as well as a Bayes classifier were used to recognize activities. Performance of

Bayesian classifier with decision tree based approach was evaluated. DT shows good

performance but DT classifier has to be completely re-built if the activity set changes

or new features are incorporated which indicates low extensibility or poor forward

compatibility. Bayesian has the advantage of incorporating additional features. A total

of 19 features of 3 categories, namely time domain, frequency domain, and spatial

domain were considered. It was observed that standard deviation and intensity of

movement during activity is related. Orientation variation, one of the features, shows
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how severe the posture change can be during activity. Low pass filter was used to filter

high-frequency noises.

Standard Deviation may be a good feature to recognize running from others.

The drawback is that this study could identify cycling activity only with 50% accuracy.

The reason could be that sensor was placed at the waist. Performance of the three

classifiers is as follows: DT classifier- 72.8%, NB- 71.5%, NB classifier with PCA-

72.3%. PCA successfully reduced redundancy in features (19 reduced to 5) thus

reducing computational complexity.

Users wore five bi-axial accelerometers at right hip, dominant wrist,

non-dominant upper arm, dominant ankle, and non-dominant thigh in the experiment

done by Bao and Intille [17]. Data were collected from 20 users. Models were created

to recognize twenty daily activities using decision tables, instance-based learning,

C4.5 (An extension of ID3 algorithm ) and Naive Bayes classifiers. Dataset was

annotated by subjects themselves. Here 10G accelerometers were used where 12G is

the maximum acceleration in human body. The features extracted are: mean energy,

frequency domain entropy, and correlation of accelerometer data.

This work [17] investigated the performance of recognition algorithms with

multiple(5) wire-free accelerometers. Of all the classifiers, (decision table,

instance-based learning, C4.5 decision tree, and Naive Bayes classifiers), decision tree

classifier showed best performance with 84% accuracy. Decision trees run fast but are

slow to train. This study showed that conjunction of multiple accelerometer data can

help to identify some activities. There is a slight performance drop in case of using just

these two sensors for the whole activity recognition process. This paper also evaluated

the discriminatory power of each accelerometer location by determining recognition

accuracy. This was performed through decision tree classifier using

leave-one-accelerometer-in protocol. It was found that accelerometer placed in thigh is

the most important. If 2 accelerometers are used, then wrist and hip or wrist and thigh
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are the best places. One important improvement over earlier works is that there was no

researcher supervision and subjects were free to move while collecting and annotating

their own data. One drawback is the use of bi-axial accelerometers instead of tri-axial

accelerometers. For some activities, recognition accuracies were as low as 41%.

3.3.2 Extraction of Features

Krishnan and his colleagues in [45] collected data from three users using two

accelerometers and recognized five activities. The accelerometers were placed on the

right ankle and on left thigh. The authors carried experiments that demonstrated the

importance of multiple accelerometers for recognizing the selected activities. Their

work showed that data from a thigh accelerometer were not enough for classifying

activities that involve legs such as sitting, lying down, walking, and running. The

system was divided into three components:pre-processing, feature extraction, and

classification.

The main contribution of the paper is the improvement of standard feature

extraction frameworks by using a boosted classifier which produced higher accuracy

for real-time activity recognition. Each data segment passes through the feature

extraction step. In this step, features are extracted to capture the properties of the raw

data. These feature vectors are then sent through the classification stage, where a

trained AdaBoost classifier identifies the activity corresponding to the sample. The

accuracy was 84.4% for a fast walking subject. The most likely misclassification is

between walking and running. Data were transferred to a Pentium computer over

Bluetooth. The authors did not explore the high end cell phones and rather used a PC.

Also they did not recognize upper body movements. They did not explore use of other

sensors such as plantar pressure sensors.

Seven lower body activities are examined by Krishnan and Panchanathan [47]

using data collected from ten subjects wearing three accelerometers. This method was

tested in supervised and semi-naturalistic settings. Ten Randomly selected subjects’
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data from the experiments of Bao and Intille[17] were used. Statistical and spectral

features from acceleration data were extracted. Additionally, a new feature that

characterizes the variations in the first order derivative of the acceleration signal was

proposed. Introduction of this new feature resulted in 3% increase in the classification

accuracy. The usual features are mean, variance, correlation between all the axis of all

the accelerometers, along with the spectral features like energy and entropy. For

activities like walking and running, that has a significant amount of motion, the rate at

which the acceleration changes is a characteristic property of that activity. These

variations were captured by computing statistical features like mean, variance and

correlation between all the axes on the first order derivative of the acceleration data.

Performance of different discriminatory classifiers like, adaptive boosting (AdaBoost),

support vector machines (SVM) and Regularized Logistic Regression (RLogReg)

under three different evaluation scenarios (Subject Independent, Subject Adaptive, and

Subject Dependent) were evaluated. The superiority of AdaBoost for subject

independent classification was observed. An important drawback of these classifiers is

that they do not consider temporal information for continuous recognition. Krishnan

and Panchanathan[47] proposed adding temporal information on top of the classifier.

By adding temporal information, an improvement of 2.5-3% was observed for both

AdaBoost and RLogReg.

Tapia and his colleagues [89] collected data from five tri-axial accelerometers

from twenty-one users and used this data to implement a real-time system to

automatically recognize thirty gymnasium activities. Incorporating data from a heart

monitor in addition to the accelerometer data resulted in a slight increase in

performance. For some of the activities (walking, cyclic, and rowing), intensities were

also determined along with recognizing the activities. The performance accuracy is

94.6% and 56.3% for subject-dependent and subject-independent training respectively.

As heart rate is influenced by other factors such as emotional states, ambient
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temperature, and fitness level, its usefulness at discriminating intensities is not

significant. Features extracted are area under curve (AUC), variance, mean distances

between axes, mean, entropy, correlation coefficients, FFT peaks, and energy. The

most important features found, in decreasing order of importance, were the area under

curve (93.1% accuracy using only this feature), mean distances between axes (92.1%),

mean (91.3%), variance (88.7%), FFT peaks (86.1%), and correlation coefficients

(74.8%). However, instead of using portable devices like smart phones or PDAs, Tapia

et al. [89] in this work used a laptop to receive data wirelessly. The overall setup thus

become impractical for remote activity monitoring as it is unrealistic that laptops will

be carried by users.

Ince et al. [40] developed a system that can identify some morning bathroom

activities like brushing, washing face, and shaving activities. They placed a wireless

accelerometer at right wrist. Different time and frequency domain features were

extracted and efficiency of the extracted time and frequency domain features were

compared. They used FFT and autoregressive modeling for this comparison. When

only time domain features were considered, classification accuracy was found to be

poor. This work shows that combination of time domain (TD) and frequency domain

(BP) features yields better classification performance than using time domain (TD)

and autoregressive (AR) features. They used Gaussian Mixture Model (GMM) and

finite state machine to classify the extracted features. Accuracies are 93.5%, 92.5%,

95.6% for washing face, shaving and brushing respectively.

Lee and Mase [52] studied two well-established statistical tools PCA and ICA

to find features in order to help classifier to perform better. Movements of hip data

were collected using two sets of 3-axes accelerometer sensors placed in the hip using a

belt. The classifiers used were Multilayer Perceptron (MLP). Three MLPs were trained

using back propagation algorithm. Interestingly, it was found that ICA reveals the first

step in a walk which is not visible in the original data. It was found that the use of
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PCA and ICA in feature generation process improves classification performance. No

significant difference was observed between PCA and ICA performances.

Though this paper shows significance of using PCA and ICA for feature

generation, they only classified four activities, level walk, down stairs, up stairs, and

start/stop points. Here only two accelerometers were used and both of them were

placed in the hip. However, it is unclear how the PCa and ICA will influence if other

classification algorithms were applied. It is also not evident the influence of applying

PCA and ICA on other sensor data, pressure sensors, for example.

3.3.3 Studying and Developing Classification Algorithms

DeVaul and Dunn [31] identified standing, walking, riding the T and riding a

bicycle. Two 2-axes accelerometers were placed at right angles resulting in a 4 axes

accelerometer (2 redundant axes). Features were generated using Fastest Fourier

Transform in the West (FFTW) and Bayesian Information Criterion (BIC) and

Expectation Maximization (EM) were used for classification. BIC was first run

without FFTW and it chose a five-component model with two clear components: One

for walking and one for running. With FFTW, there were eight components that had

strong clusters for walking and running too. In both cases, with and without FFTW,

walking and running were classified with fine accuracy but this model could not

recognize other activities. To solve this problem, Markov models were constructed on

top of the Gaussian Mixture Model (GMM) to capture the dynamics of the data.

First-order Markov model classifier does good job in classifying 5 activities. It is

better than Gaussian class conditional assignments.

A generic classification framework consisting of a hierarchical binary tree for

classification of basic daily movements using a tri-axial accelerometer was developed

by Mathie et al. [63]. High level distinctions between human movements were applied

on the top level of the binary tree and successively more detailed classifications were

made in the lower levels of the tree. For example, movements were first divided as
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activity and rest and then activities were classified as postural transitions, falling,

walking, and other movements. The rest could also be classified as lying, sitting, or

standing. The advantage of this framework is that it will allow arbitrary movements to

be added to the classification without the need to redesign other parts of the classifier.

A classifier was developed in six steps: defining requirements, selecting instruments,

arranging movements within the tree, developing algorithms, evaluating the classifier

and refining the classifier. One drawback of the system is that it was carried out in

controlled laboratory environment. Experiment was carried out on 26 subjects.

3.3.4 Multimodal Systems

Lee and Mase [53] tested the feasibility of dead reckoning method to determine

a person’s location in indoor environment. The focus was to detect walking and

counting the steps in a particular direction. Main source of error was in recognizing

human activity. To improve activity recognition, the study included a gyroscope and a

digital compass. Two sensing modules, placed in pelvic region and thigh, identify

sitting, standing and 3 types of walking. Leg module contains accelerometer and

angular motion sensor (gyroscope) while the digital compass was worn at belt. The

unit motion recognizer identifies one of the five predefined types of unit motion. The

location recognizer determines the displacement vector by dead reckoning. Based on

some trials, they also found the optimum placement for the sensing modules at hip and

thigh.

Subramanya et al. [87] built a model using data from a tri-axial accelerometer,

two microphones, phototransistors, temperature and barometric pressure sensors, and

GPS. The model can distinguish between a stationary state, walking, jogging, driving a

vehicle, climbing up, and down stairs. Their work claims to detect both the location of

a person and the activity he is engaged to. Using one sensor device located at only one

location of the body, this work applied Dynamic Baysian Network (DBN) to model

dependency between different parts of the system.
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Choudhury et al. [28] used a multiple sensor device consisting of seven

different types of sensors (tri-axial accelerometer, microphone, visible light

phototransistor, barometer, visible and IR light sensor, humidity/temperature reader,

and digital compass) to recognize activities. Their work, Mobile Sensing Platform

(MSP) attempts to develop a trainable learning algorithm. They adopt an iterative

development and deployment approach. The lessons learned in earlier deployment are

addressed in next deployment. To make the system less intrusive, they placed all the

sensors in a single location of the body. Lester and his colleagues in this work [54]

showed that placing multiple sensors in same location can offset the information loss

of placement of multiple sensors in different body locations. The first effort

incorporated Bluetooth connectivity to transfer data to iPaq, but later they switched to

wired connection as a quick fix version.

Basic postures, like standing, sitting, lying, seesaw and locomotion were

identified in [90] by Uiterwaal. Two sensors are placed perpendicular to each other and

one is placed externally. Data is recorded in 10MB memory card continuously for 24

hours. In this setup, processing and analysis of raw accelerometer signals were carried

out after data were transferred to a local computer manually. Transmission of data to

the recorder happened through wired connection causing free movement difficult. One

sensor was placed in the belt, adjacent to the recorder. Other sensor was placed in one

of the thighs. An observer observed the video and annotated the class of the activities

through an interface. Though data were collected in natural, non-laboratory settings, it

was not processed in real time. Also, the wired connection between sensors and

recorder was inconvenient for free movement.

Schmidt [83] designed a system that could differentiate between stationary,

walking and running activity using a bi-axial accelerometer placed in a tie. Placing an

external accelerometer in tie is inconvenient and impractical, specially now that we

have accelerometers in cell phones. Moreover, this work only identifies very basic
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activities and does not address many relevant activities. No data were transmitted as

algorithm was implemented in a micro-controller.

‘eWatch’ by Maurer [65] is an activity recognition system which has multiple

types of sensors. Experimentation with different locations were carried out to find a

suitable location. Following locations were investigated: belt, shirt pocket, trouser

pocket, backpack, and necklace. Each ‘eWatch’ consists of a bi-axial accelerometer,

microphone, temperature sensor, and a light sensor. Decision trees, k-Nearest

Neighbor, Naive Bayes, and Bayes Net classifiers with five-fold cross validation were

used for learning. Decision Trees and Naive-Bayes were found to achieve high

recognition accuracy with acceptable computational complexity. It was demonstrated

that any of the six locations of ‘eWatch’ are good for detecting walking, standing,

sitting and running. Ascending and descending the stairs is difficult to distinguish from

walking activity in all locations of ‘eWatch’.

A single tri-axial accelerometer, along with an embedded image sensor worn at

the user’s waist has been used by Cho [27] to identify nine activities. In the image

sensor, features were extracted by using Lukas-Kanade Optical Flow. In the 3-axis

accelerometer sensor, correlation between axes and the magnitude of the FFT was used

for feature extraction. Also mean and energy features were calculated. Support Vector

Machine (SVM) was used for classification of different activities. Experiments showed

an overall accuracy rate of 93% in recognizing activities. They observed that human

activity recognition performance is improved if they use hybrid of image data and

accelerometer data.

Gyorbro [36] used ‘MotionBands’ attached to the dominant wrist, hip and

ankle of each subject to distinguish between six different motion patterns in real-time.

Each ‘MotionBands’ contained a tri-axial accelerometer, magnetometer and

gyroscope. The data collected by MotionBands were transmitted wirelessly to a smart

phone carried by the users, enabling unobtrusive data collection. The researchers in
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this study adopted feed-forward back propagation neural networks. The six activities

to be recognized were resting, typing, gesticulating, walking, running and cycling. The

average recognition rate was 79.76%.

Mobile phones lack processing power and constant supply of power.

Supervised learning is too heavy for even powerful mobile phones. So the system is

trained on a desktop workstation using feed-forward neural networks after collecting

sensory data. Feed-forward neural networks are powerful at pattern recognition and

after training, classification can be performed quickly. After training, neural network

can be implemented on a cell phone by setting the parameters of neural network equal

to the trained network of the workstation. It means that the learning phase was done

offline on a desktop workstation using MATLAB. Training of activities was done using

the Neural Network Toolbox in MATLAB. For the neural network, multiple small

networks architecture was chosen instead of a large single architecture. One problem

with this system was that recognition was somewhat insensitive to the training subjects

individual characteristics. If fine tuning on individual data were carried out then

greater accuracy could be expected. Due to limitations of Bluetooth technology, at

most seven MotionBands can connect at once to a single mobile phone or a computer.

Lester [54] used accelerometer data, along with audio and barometric sensor

data, to recognize eight daily activities from a small set of users. The experiments in

this study were carried out with some specific goals. Data should be collected only

from a single body location and it does not have to be from the same point for every

user. The system should be designed in such a manner that it works out across

individuals. Personalization should increase recognition abilities; and the system

should be effective even with a cost-sensitive subset of the sensors and data features.

Lester and his colleagues collected data for 8 different activities from 12 different

subjects. They showed that the resultant system has an accuracy rate of approximately

90% while meeting the previously mentioned requirements. The authors were able to
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demonstrate that their activity recognition system generalizes well. So there is no need

to learn body location-specific activity models. They also demonstrated that

customization to specific individuals is not required and the system works reliably

across new individuals. Another contribution of this work is identification of most

discriminative modalities. It was found that three modalities gave the most

discriminative information for activities: the audio, barometric pressure, and

accelerometer sensors. For classification algorithm, they employed a 2-layer

architecture. In the first layer, an ensemble of static classifiers selects the most useful

features, and then recognizes a set of basic human movements based on those features.

In the second layer, hidden Markov models (HMMs) combines the outputs of the

classifiers of the first layer and calculates the most likely activity.

3.3.5 Cell Phone-based Systems

Kwapisz et al. [50] used phone-based accelerometers to perform human

physical activity recognition. Labeled accelerometer data were collected from

twenty-nine users as they performed daily activities such as walking, jogging,

climbing stairs, sitting and standing. Authors used these data as training data to build a

predictive model for activity recognition. As users always carry cell phones in their

pockets, this work can help to collect information about the habits of millions of users.

They have used accelerometer data from android phone to identify several

activities. Android was chosen because the OS is free and open-source, easy to

program, and have potential to become dominant market leader in the coming days.

This architecture has the advantage of using a device that is conveniently carried by

mass people in their pockets. Authors have used the data to extract six features,

namely standard deviation, average absolute difference, average resultant acceleration,

time between peaks and binned distribution. Now raw time-series accelerometer data

must be transformed into examples since standard classification algorithms cannot be

directly applied to it. Three classification techniques - decision trees (J48), logistic
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regression and multilayer neural network from WEKA data mining suite were used.

The system is very unobtrusive as the cell phone carried by users work as data

collection system. But it does not identify other common activities, bicycling for

instance.

Indoor location of a person is estimated in Lee and Mase’s [52] work. The

system uses a bi-axial accelerometer, a digital compass and an infrared light detector.

This work identifies walking and whether the person is walking in level ground, going

up or going down. It also counts the number of steps. The strategy adopted by the

researchers is hybrid: dead-reckoning for relative measurements and infrared-based

beacon method for absolute measurement. Accumulation of error is common in

dead-reckoning system and an infrared-based beacon method that detects signals from

a transmitter in a fixed place (stairway) helps to correct those errors. By using

conventional peak detection algorithm, the system tries to find the peak values at every

sampling. If the values of all four peaks follow some specific conditions, step count is

incremented. Another feature called cross-correlation function of x(t) and z(t) is used

to improve performance. This feature is helpful for discriminating between level and

up/down. The classification results show good performance for level and down

behaviors but up behavior detection is not satisfactory. One problem with this work is

that as the connection to central mobile unit is not wireless.

Yang [94] developed an activity recognition system using the built-in

accelerometers in Nokia N95 phone. Although the study achieved relatively high

accuracies of prediction, stair climbing was not considered and the system was trained

and tested using data from only four users. Decision tree performed best among the

four classifiers evaluated. Other classifiers that were evaluated are Naı̈ve Bayes (NB),

k-Nearest Neighbor (kNN) and Support Vector Machine (SVM). As phone’s position

on a human body varies from person to person, its orientation cannot be fixed.

Orientation-independent features extraction was also explored in this study.
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Miluzzo et al. [67] exploits various sensors (such as a microphone,

accelerometer, GPS and camera) that are available on commercial smart phones for

activity recognition and mobile social networking applications. They collected

accelerometer data from ten users to build an activity recognition model for walking,

running, sitting and standing. Their applications ‘CenceMe’, collects sensor data of

individuals using off-the-shelf, sensor-enabled mobile phones, analyzes these data,

detects the activities and share these information through social networking

applications such as Facebook and MySpace. To make the system scalable,

classification task was shared between cell phones and backend servers. They also

carried a user study on twenty two people who used CenceMe continuously over a

three week period.

Both the Symbian operating system and Java Micro Edition (JME) virtual

machine which runs on top of the N95 have been designed to use small amounts of

memory and computational resources. Designing and implementing ‘CenceMe’

application on top of this environment was thus resource-constraining. One of the

contributions of the paper is the design of lightweight classifiers, running on mobile

phones where classification is split between cell phone and servers. Another

contribution is the measurement of the RAM, CPU, and energy performance of the

classifiers and the whole ‘CenceMe’ software suite.

3.3.6 Accelerometers for Detecting Fall, Sleep-time Activity, Postures and Others

Accelerometers have been used to identify many other types of activities

including falls, sleep, snoring, gait pattern etc. Here we mention a few of those.

Existing fall detection solutions can be divided into two categories. The

characteristic of the first category is that it only analyzes acceleration to detect falls.

The second class of solutions uses both acceleration and body orientation information

to detect falls.

Mathie et al. [62] used a single, waist-mounted, tri-axial accelerometer to
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detect falls. Lindemann et al. [57] placed an accelerometer in hearing aid housing for

detecting falls. The reasoning of this sensor placement was based on the hypothesis

that the individual intends to protect the head against higher acceleration caused by

abnormal activities. The system could also detect other daily activities. Lindemann

[57] used thresholds for acceleration and velocity for fall detection.

Kangas et al. [42] showed that acceleration measurements from waist and head

were more important for fall detection. Their findings show that parameter values

calculated at waist had some overlap in ADL and fall, which is contrary to findings of

Bourke’s [19] work where they were able to determine total sum vector, SVTOT , a

threshold value capable of discriminating between falls and ADL with 100%

sensitivity and specificity. Bourke and his colleagues [19] placed two tri-axial

accelerometers at the trunk and thigh. They estimated upper and lower thresholds for

both the trunk and thigh. Fall was indicated by exceeding any of these four thresholds.

Some other activities, like sitting down quickly or jumping also have large vertical

acceleration and thus can fool this method.

The followings are description of systems that use both acceleration and body

orientation to detect fall. Fall detection system developed by Noury et al. [71] has

three sensors: body orientation was measured using a tilt sensor; vertical acceleration

was measured using an accelerometer. They used a vibration sensor to monitor body

movements. Chen et al. [24] investigated change in body orientation during an impact

to monitor falls. Incorporation of body orientation information improves the fall

detection accuracy.

Below we discuss some works that was conducted to detect and measure

sleep-time activities through the analysis of accelerometer data.

Morillo et al. [69] evaluates the feasibility of using accelerometer in screening

sleep apnea which can be an alternative to ‘gold standard’ such as overnight

full-channel polysomnography (PSG). Vibration sounds were acquired from an
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accelerometer placed on supra-sternal notch of subjects in supine condition. Digital

signal processing was used to extract respiratory, cardiac and snoring components.

Right now current technology decides if an overnight polysomnography is needed

based on an output from oximetry sensors. So the oximetry sensors work as screening

device. The objective is to provide a new tool for screening Sleep Apnea-Hypopnea

Syndrome (SAHS). The goal is to develop a new tool that decreases false positives

during screening. For example, a simple algorithm was used to extract respiratory

information from the accelerometer signal. Respiration rate during normal breathing

ranges from 6 to 30 breaths/min (0.10.5 Hz). Hence, after removing the DC level, the

signals were passed through a 40th-order LP FIR filter with Hamming windowing and

a cutoff frequency of 1 Hz in order to remove noise and information out of the band of

interest. An algorithm was applied to estimate the breathing rate, using both

acceleration signal and airflow information.

Liszka-Hackzell et al. [58] determined sleep time duration from an

accelerometer (Actiwatch AW-64) placed on non-dominant arm of 18 patients with

chronic back-pain. Pain levels were calculated and correlations were calculated

between Actiwatch Sleep Analysis Variables and mean pain level differences. A

correlation was found between the difference in nighttime activity levels and the

daytime pain variance. They observed that if patients have large variability in their

daytime pain levels, they also experience large fluctuations in their nighttime activity.

In [64], Mathie and his colleagues diagnosed sleep apnea by detecting respiratory and

snoring features using an accelerometer worn at chest.

Gait-related features are best reflected by ankle-attached accelerometers. Park

et al. [72], Kuo et al. [48] in their work estimated steps, distance travelled, velocity,

and energy expenditure using an ankle-worn accelerometer. Foerster et al.[34], Veltink

et al. [91], Lyons et al. [60] in their works attached two accelerometers to the torso and

thigh to distinguish standing and sitting postures from static activities.



32

Najafi et al. [70] studied the characteristics of postural transition (PT) and their

correlation with falling risk in elderly people using a new method.

Accelerometers also provide an alternative method to estimate energy

expenditure in a free-living environment. Bouten et al. [21] showed that energy

expenditure due to physical activity can be predicted from the acceleration integral in

anterior-posterior direction of an accelerometer.

3.3.7 Single Accelerometer-based Systems

Randell and Muller [78] focused on minimizing the number of devices needed

by using a single accelerometer device. In steady state, the main processor will be

switched off and the sensors will remain as the only active parts. Four features were

extracted from accelerometer data collected from 2 axes. Several activity data are

collected to train for activity recognition. It was found that RMS and integrated values

of last 2 seconds were enough for recognizing these activities. THis study focused on

identifying the context for a tourist guide application. The tourist guide application is

suspended when the user is running; thus reducing irritation by inappropriate and

untimely rendering of information. One drawback of the system is that

misclassification occurred when people were going upstairs.

3.3.8 Others

Aminian et al. [16] created Physilog, a new activity monitoring system that

identifies lying, sitting, standing and locomotion using accelerometers placed at chest

and thigh with an error rate of 10.7%. Experiment was carried on 5 normal subjects.

Here the extracted features are average and deviation of acceleration signal. This paper

claims that parameters like threshold (th), angular threshold, sampling frequency (fs)

need to be carefully selected to have good result. Physilog uses two accelerometers

and is good for long term monitoring. It is validated against video. Basically it

classifies static versus dynamic postures.
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Kurata et al. [49] used two tri-axial accelerometers placed across a joint (elbow

or knee). This paper measures one axis joint movement (movement along elbow or

knee) using a new method developed by the authors. In the first part, a method that

measures one axis joint motion is described. Two accelerometers were placed on both

sides of the one-axis joint (elbow). Each x-y plane of both sensors is in the same plane.

Using rotation matrix, the relation between (ax1, ay1) and (ax2, ay2) can be described

by

ax1
ay1

 =

cos θ − sin θ

sin θ cos θ


ax2
ay2


Here (ax1, ay1) and (ax2, ay2) are acceleration components of accelerometers

placed across the joint and θ is the joint angle. From the above equation, joint angle

can be calculated. Joint angle was calculated using two potentiometers and was found

consistent with the proposed method. A similar but more complicated equation was

derived for three-axis joints (shoulder or hip). The problem is that when acceleration

becomes smaller it cannot show joint angle accurately.

In [61], Mannini and Sabatini discussed most common methods to

automatically classify human physical activity. They used five tri-axial accelerometers

attached to the hip, wrist, arm, ankle and thigh in order to recognize twenty activities

from thirteen users. Mannini and Sabatini also presented a state-of-the-art table of

features and classifiers for human activity recognition using accelerometer. This work

demonstrated that Markov model is effective in classification of human activities.

Lee et al. [66] used a single tri-axial accelerometer attached to the left waist of

five users. Five activities- standing, sitting, walking, lying and running were

recognized. Accuracy was high (99.5%) and they used fuzzy c-means classification

algorithm. Features extracted were mean and standard deviation of acceleration. Some

correlation features were also extracted. Acceleration signal was stored on micro
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SD-Memory card or transmitted wirelessly using (Zigbee-compatible) 2.4G bandwidth

for wireless communication.

Krishnan et al. [46] developed and evaluated algorithms for detecting and

recognizing short duration hand movements (lift to mouth, scoop, stir, pour, unscrew

cap). Subjects wore wireless tri-axial accelerometers on different parts of the hand and

data was simultaneously collected from these accelerometers. Mean, variance,

correlation, spectral entropy, and spectral energy were calculated. Three classifiers,

AdaBoost, HMM and k-NN were applied on these calculated features. AdaBoost

showed best performance, with accuracy of 86% for detecting each of these hand

actions. It was also demonstrated that some actions require some amount of

subject-specific training.

Yang and Hsu [93] designed a portable microprocessor-based acceleration

measuring device that works as real-time physical activity identification system. They

developed an algorithm to process tri-axial acceleration signals produced by human

movements. Their works not only identify still postures, postural transitions, and

dynamic movements, but also it can detect fall. Three still postures (sitting still,

standing still and lying still), four postural transitions (sit-to-stand, stand-to-sit,

lie-to-sit and sit-to-lie), and two dynamic movements (turning on bed and walking)

were detected. Their work achieved high identification accuracy in performance

evaluation. One important contribution of this work is its ability to detect activities in

real-time. The authors claim that the system can be used for long term physical

activity and mobility monitoring in the home environment.

Karantonis et al. [43] presented the implementation of a real-time classification

system with embedded intelligence. Data were acquired from a single, tri-axial

accelerometer which was attached to waist. The system is able to distinguish between

periods of activity and rest. It also has the ability to recognize the postural orientation

of the wearer. It also detects events such as walking and falls, and can give an
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estimation of metabolic energy expenditure. In a laboratory-based trial involving six

subjects, an overall accuracy of 90.8% across a series of 12 tasks (283 tests) was

observed. There was no error in distinguishing between activity and rest. Recognition

of postural orientation, walking, and possible falls were carried out with 94.1%,

83.3%, and 95.6% accuracy respectively. It also can differentiate between different

lying postures of left, right, front and back lying. The use of ZigBee for data

transmission will serve to maximize battery life. To perform the task in real-time,

several constrains had to be addressed. Sitting and standing sometimes may be

incorrectly classified. Identification of walking was interesting because the system

only stores 1 seconds worth of data which is usually not enough. So if any upright

activity is recognized, raw z-axis data is transmitted and buffered. It also provides an

indirect measure of energy estimation.

Bouten et al. [20] developed a tri-axial accelerometer using three perpendicular

uni-axial accelerometers. They also developed a portable data processing unit and used

it for measuring of physical activity. The experiment was carried out in laboratory

setting on 13 subjects and Bouten and others demonstrated a close relationship

between accelerometer output and energy expenditure as a result of physical activity.

One drawback of their work is low sensitivity to sedentary activities. The other

drawback is its inability to detect static exercise. The accelerometer was specifically

designed considering the amplitude and frequency characteristics of human motions.

Trunk was chosen as the appropriate placement of the accelerometer as trunk contains

a major part of total body mass and also it moves during most daily activities.

Table 3.2 provides comparison information among commonly used models of

physical activity recognition.

3.4 Open Issues

A rich amount of study and research has been carried out and quite a few

experimental systems were built for activity recognition. There is significant diversity
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Name Platform NoA R OS Inside Cell-
Phone

NAc CA NU A

Long et al.
2009[59]

No Cell-
phone

Tri-axial 5 Naive Bayesian vs
Decision tree

24 8̃0%

Schmidt et al. 1999
[83]

Bi-axial(1)

Bao and Intille
2004 [17]

Bi-axial(5) N No, Wireless 20* 20 41-97%

DeVaul and Dunn
2001 [31]

Bi-axial(2) Y 1st order Markov
Model

Lee and Mase
2001[52]

Notebook
Pentium II

Bi-axial(1) No,wired 3 6

Kawada et al.2008
[44]

5

Ravi et al.2005 [79] HP iPaq, Mi-
crosoft Win-
dows

Tri-axial(1) 8* 2

Lee and Mase 2002
[53]

Linux based
PDA

Bi-axial(1) Y No,wired 5

Randell and Muller
2000 [78]

MatsuCom
onHand PC

Bi-axial(1) 6* Neural Network 10 85-90%

Kwapisz et al.
2010 [50]

Android 1 N Yes 6 29

Krishnan et al.
2008] [45]

MMA7260Q
triple axis
accelerome-
ter

Tri-axial(2) Y 5 AdaBoost 3 95%

Ince et al. 2007].
[40]

Bi-axial 3 7 93.5%

Subramanya et al.
2006] [87]

iPAQ PDA Tri-axial(1) Y No,wired 5

Krishnan and Pan-
chanathan 2008
[47]

Dataset of
[Bao and
Intille 2004]
was used

3 7 AdaBoost 95.35%

Uiterwaal et al.
1998[90]

2+1 N

Tapia et al. 2007
[89]

Tri-axial(5) Y Y No, wireless 30 Decision Tree 21 94.6%

Yang 2009 [94] Nokia N95 Tri-axial(1) Yes 6 4

Lee et al. 2009 [66] Tri-axial(1) N No Cell-
phone

5 Fuzzy Logic 5 99.5%

Table 3.2: Comparison Table Based on Model.
NoA: Number of Accelerometer, R: Real time, OS: Other Sensors, A: Accuracy, NAc: Number of Activities, CA: Classification

Algorithm, NU: Number of User
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in the approaches they adopted in these studies.

In the earlier systems the focus was on recognizing the activities using

accelerometers. Usually these sensors were wired to a PDA. This setting was not

practical since the natural movement is hindered by the wired connections. Some

studies were carried in laboratory environment and the accuracy obtained by these

studies may not be attained in naturalistic environment. The focus of several research

projects was too centered on the issue of activity recognition and failed to take the

feasibility issue in account. Usability was not a concern for these systems. Therefore

some of the studies showed good accuracy in laboratory but fail to be useful in real life

naturalistic environment.

Many studies sends data to a PDA or Laptop, not to a cell phone. So the goal of

remote monitoring is not materialized by these systems. Some of the later studies use

mobile phone but orientation of the mobile phones changes in the pocket over time.

Also different persons keep phones in different locations in the body in different

orientations. Sometimes people do not keep the phone with themselves, specially

when sitting or studying in a desk. This issue is relevant to recent cell phone based

activity recognition systems because earlier systems used accelerometers that were

tightly attached to specific known body locations. Cell phone-based systems are also

constrained by limited computational power. Some methods that can be applied in

desktop computers cannot be used in cell phones. For example, FFT was avoided by

Yang [94] to save computational cost.

One problem with phone-based system is that transmitting over Bluetooth is

power consuming which creates serious strain on battery life. According to [28],

Bluetooth connection is not reliable enough. Packet losses and intermittent connection

losses were common. Another problem with cell phone based system is that mobile

phones are primarily designed for handling phone calls. As a result, resource requests

may be denied to third party applications running on the phone.
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The problem of automatically identifying a small set of features useful for

recognizing a particular set of activities has not been explored completely yet. Such a

finding can immensely simplify the classification process. Again so far no work has

been done where both phone-accelerometer and extra accelerometer have been used.

This could be a promising direction of study to increase accuracy of classification as

well as increased usability.

3.5 Future Works And Conclusions

Identification of human physical activities with accelerometers has gained a lot

of attention from the research communities for several years. The recent cause of

attention is due to the incorporation of accelerometers in the cell phones. During the

earlier attempts the focus was on identifying the activities where the usability was not

considered with enough importance.

The use of accelerometers for identification of human physical activities is

important for several reasons. One important advantage of accelerometers is that they

are better than other alternative ways of identifying human activities because they are

less obtrusive than them, especially as accelerometers are being incorporated in cell

phones and cell phones can collect acceleration data unobtrusively.

We want to find human activities for several reasons. One reason is that the

knowledge of human activity gives a very good description of context which can help

context-sensitive application to perform better. The information that a person needs or

does not need is very much dependent on the activities he/she is engaged to. The

second reason is that the quantity and quality of physical activities is important to

healthcare personnel, doctors or healthcare policy makers. For example, with

widespread obesity worldwide, it is important to find more accurate quantitative

relation between the quality and quantity of human activities and obesity. Possible

correlation between back pain and human activities or posture can be studied using

activity recognition systems. A good objective method for unobtrusively detecting
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human activities is of utmost importance to doctors and healthcare policy makers as

well as context-sensitive application developers.

The future brings in some old and some new challenges as well. It is true that

many human activities can be recognized now with good accuracy, still there are some

activities that are difficult to recognize. Stair climbing up and down are significant

source of error in many activity recognition systems. And again some approaches

perform very well in the laboratory setting but fail to perform in real environment with

an acceptable accuracy. Human activity is one of the most important context

information and identifying contexts is a step towards Weiser’s dream of ubiquitous

computing.

There is a rich set of ideas that can be explored in the future. Some old

challenges are still unresolved and new challenges are emerging as work goes on. One

challenge with cell phone based systems is that cell phones can change orientation in

pocket due to human movements. It is challenging to interpret the acceleration data

when issues like this happen.

Future works can try to answer a lot of questions and explore some challenges.

Is it possible to determine intensity of earthquakes from accelerometer of cell phones?

How can we exploit acceleration data from millions of cell phones at different

geographical locations and extract information? Do activity recognition systems open

new doors of violation of privacy?If yes, how do we protect these privacy? If someone

carries two cell phones, can we exploit accelerometer data from two phones and

improve the accuracy of activity identification? Can we determine walking speed from

accelerometer data? Nokia already has made a wellness diary which count steps,

calculate distance traveled and energy expenditure. But can we detect pace of running

from accelerometer data placed on wrist/wrists?

How the recognition capabilities vary with the inclusion of additional

accelerometers with cell phones? Does placing accelerometer on hands while walking
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or jogging increase accuracy of identifying activity? Can we derive breathing rate

from accelerometer data? If we incorporate gyroscope with accelerometer does it

increase accuracy of activity recognition? Activities like nodding and other head

movements can be explored in future. If we decide to use two accelerometers, what are

the optimal locations for the pair of accelerometers? What about three accelerometers?

Also identifying age or gender or some disease from gait pattern can be a challenging

problem. Investigating how gait pattern changes gradually for a particular disease with

time will be interesting topic for the healthcare personnel. These questions only show

the richness of opportunities that are still unexplored.
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Chapter 4

Remote Symptom Monitoring System: Methodology and Bar-
riers

The goal of this chapter is to discuss the background of our remote symptom

monitoring system. We will also discuss our study procedure. Later in this chapter we

will describe the barriers we identified and challenges we faced in the development of

our e-ESAS.

4.1 Introduction

According to Bangladesh Bureau of Statistics, cancer is the sixth leading cause

of death in Bangladesh [13]. Cancer is predicted to be an increasingly important cause

for mortality and morbidity in next few decades. According to International Agency

for Research on Cancer, cancer-related deaths will jump from 7.5% in 2005 to 13% in

2030 [33]. For males, two leading causes are lung cancer and oral cancer whereas for

females, it is breast cancer and cervical cancer. Lung cancer in males and cervical and

breast cancer in females constitute 38% of all cancer patients. The Government of

Bangladesh devised the ‘National Non Communicable Diseases Strategy and Plan of

Action’ with technical support from WHO in 2007.

While the cancer statistics from Bangladesh looks gloomy, cancer statistics for

women in Bangladesh is even gloomier. Cancer has become the number one killer of

women in childbearing age in Bangladesh, according to Maternal Mortality Survey in

2010. While looking for causes of death of women in childbearing age [8], this

shocking finding was noticed. It showed that cancer accounts for 21 percent of

women’s deaths between 15 and 49 years of age. Breast cancer statistics from

Bangladesh in particular is scary. Sixteen percent of the total cancer affected women in

Bangladesh are victims of breast cancer, says a World Health Organization (WHO)

study [1]. WHO also ranked Bangladesh 2nd in terms of mortality rate of women in
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the country from breast cancer [1]. Similar scenarios prevail in other developing

countries as 70% of all cancer deaths occurred in low or mid-income countries in 2008.

Although breast cancer is the most common type of cancer among women

worldwide, 69% of all deaths occur in developing countries [92]. Unlike western

countries where 89% of the women have a survival rate of more than 5 years [73],

most breast cancer (BC) patients in Bangladesh die because majority of cases are

diagnosed in late stages [10]. These patients need palliative care (treatment process for

terminally ill patients through symptom management to improve quality of life (QoL))

which is almost absent in rural Bangladesh.

Even in this scenario, more than 22,000 new BC patients being added each

year and 70% of them die due to lack of treatment [12] though it is possible to prevent

at least one-third of the deaths through early detection, allocation of adequate

resources and effective treatment. Many women in Bangladesh either never seek

treatment or arrive at hospitals with late-stage cancer.

Healthcare in a developing country such as Bangladesh is scarce. Too few

doctors have to attend too many patients degrading the quality of care in this process.

However, there are some promising statistics from Bangladesh too. As of

January 2015, there are 121.86 million cell phone subscription [11] in a country with

population 160 million. Even very poor people have access to cell phones. Moreover,

cell phone service is extremely cheap due to high population density. As a result there

is a great potential to address heath care problems using cell phones.

Our goal was to identify the problems in the treatment of rural women with

breast cancer and come up with a sustainable inexpensive solution that will improve

the quality of life of patients, doctors and healthcare personnel and thus improve the

healthcare infrastructure as a whole. With this goal in mind, we visited Bangladesh in

five phases and worked with Amader Gram. Our system helps in the communication

between doctors and patients by creating a cell-phone based channel.



43

4.2 Local Partner Information

We partnered with a local NGO named ‘Amader Gram’ (literally ‘Our

Village’) for our pilot study. Amader Gram is an initiative of Bangladesh Friendship

Education Society (BFES). In 2006 Amader Gram partnered with International Breast

Cancer Research Foundation (IBCRF) to open Amader Gram Breast Care Center

(AGBCC). The mission for AGBCC is to reduce morbidity and mortality from breast

cancer and other breast diseases. A trained female doctor and medical assistant attend

each center, examining and keeping records of patients. From 2006 till 2010, the total

number of patients diagnosed with BC is 1405. Over 500 women have been examined

as of October, 2007.

4.3 Time Line

We made five field trips between July 2010 and June 2012. The first two field

trips focused on identifying the challenges faced by doctors and patients in providing

and receiving treatments and how emerging mobile technology can solve these

challenges. The deployment of e-ESAS was done in the 3rd field trip. The last 2 field

trips focused on collecting feedback data from e-ESAS use and analyzing the collected

data. Here we provide a summary of tasks and milestones completed in each of the

field trips.

4.3.1 Field Trip 1 (4 Weeks, Jul ’10-Aug ’10)

In our first visit to Bangladesh in summer 2010, we tried to understand the

current practice so that we can propose a system which will improve the current

system. With this goal in mind, we interviewed people with different roles in the

system. We interviewed 39 patients, 12 doctors, and several medical assistants and

field workers. We were interested about their level of familiarity with cell phones,

especially in case of rural women. We observed patient-doctor interactions in clinical
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setting, interviewed patients in 2 hospitals and several patients in their homes. We

were especially interested in identifying barriers both from the perspectives of patients

in obtaining treatment, and of doctors in providing treatment. Instead of targeting all

the barriers, the goal was to identify a subset of problems that our proposed system

will be able to solve. We asked patients about their education, environment, family,

disease, economic condition and knowledge about cell phone use.

4.3.2 Field Trip 2 (3 Weeks, Dec ’10-Jan ’11)

We showed the 1st version of e-ESAS to 31 BC patients and 10 doctors and

collected their feedback.

4.3.3 Field Trip 3 (12 weeks, Jun ’11-Aug ’11)

We deployed the 2nd version of e-ESAS on 12 Nokia X6 mobiles. 10 of them

were given to 10 selected patients and the 2 others were given to doctors. Chronic pain

level ≤ 5 on ESAS scale, life expectancy >6 months and performance status ≤ 2 on

ECOG scale [2] were the main selection criteria. We will call these patients MOs

(Mobile Owners). We also interviewed a separate number of other BC patients

(registered with AGBCC) during different field trips. We call this patient group as OPs

(Other Patients).

4.3.4 Field Trip 4 (12 weeks, Nov ’11-Jan ’12)

Due to delayed approval from Bangladesh Medical Research Council (BMRC),

we started collecting data in Nov ’11. Two of the MOs were replaced since they no

longer met the selection criteria. In Dec ’11, we made 10 house visits to learn the

experience of MOs using e-ESAS. We observed a total of 77 patient visits (both MOs

and OPs) to evaluate the difference between doctor-MO interaction and that of

doctor-OP. We also had focus group sessions with the doctors.
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4.3.5 Field Trip 5 (3 weeks, May ’12-Jun ’12)

We had open discussions with the MOs and their family members during this

time period. We also had two open discussion sessions with the doctors. We all shared

our thoughts and talked about the future of e-ESAS.

4.4 Methodology

We followed a mixture of clinical observation, home interviews, and hospital

interviews as our methodology

4.4.1 Study Procedures

In our first trip, we observed 22 doctor-patient interactions during patient visits.

We measured the average duration of patient meetings, the steps followed by the

doctors, common questions asked by both patients and doctors. One researcher was

present during these sessions. The sessions lasted between 6 and 11 minutes. Later we

interviewed a total of 39 BC patients. The interviews took place in 3 different

scenarios- patients’ homes (5), AGBCC (22) and a hospital (12). One research team

member and one doctor or health worker (HW) took part in the interview with each

patient separately. The interview session had two parts. In the first part, we measured

their familiarity with mobile phones and in the 2nd part we collected demographic

information and had an open discussion regarding the socio-cultural barriers they face

as BC patients. We also collected information about average time spent in

transportation, average waiting time to visit doctors and average number of visits per

month. We had two focus group sessions with doctors. One session was with 8 doctors

in AGBCC at Khulna and the other was in Dhaka with four doctors.

Clinic Observation

We first observed 22 patient-doctor interactions in AGBCCs (11 in Khulna, 10 in

Bagerhat and 1 in Rampal) to get better understanding of the current procedures and
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practices. We found doctors using a paper based symptom monitoring system named

ESAS. We then interviewed each patient following the above mentioned procedure.

Hospital Interviews

We interviewed 9 patients in Dhaka Medical College and Hospital (DMCH) and 3

more in Khulna Medical College and Hospital (KMCH). These patients were admitted

in the hospital for either chemotherapy or surgery. The main goal of talking with these

patients was to observe how they use mobile phones in advanced stages of the disease.

Home Interviews

Generally patients feel more comfortable to talk and discuss in their home

environment. Also, 5 patients failed to show up due to the severity of their diseases. To

account for all these facts, we visited the houses of these patients in Khulna.

4.4.2 Participant information

As per requirement analysis we talked with 39 patients, 12 doctors, and 6 HWs

in Dhaka, Khulna, and Bagerhat region of Bangladesh. Table 4.1 summarizes the

participant distribution.

People—Places Khulna Bagerhat Rampal Dhaka
Patient 19 10 1 9

Heath Worker 2 2 2 0
Doctors 8 0 0 4

Table 4.1: Participant list

Patients

The patients were quite diverse in terms of level of education, expertise with mobile

phones whereas there was similarity in terms of occupation and household income.

Their ages ranged from 21 to 45 years. Patients’ education varied from illiterate to

high school. The average family income of the patients we met is BDT 4500 ($63) per
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Figure 4.1: Patient information

month. 29 patients were having BC for the first time and 10 for the second time. They

were under different types of treatment including radiotherapy, chemotherapy and

surgery. 96% of the patients have access to mobile phone. Figure 4.1 provides a high

level view of patient information.

Doctors

We had focus group sessions with 8 doctors in AGBCC of Khulna and 4 doctors in

DMCH. Four of the doctors have post graduate degrees in their fields and others are

resident doctors. Three of the doctors have more than 10 years of experience dealing

with BC patients. We primarily asked the following questions:

1. What are the problems you face during diagnosis?

2. Why do patients miss appointments?

3. How frequently the patients come?

4. Average time to assess each patient.

5. How mobile phones can be helpful in your work?

These sessions revealed the following issues:
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• Lack of regular information about the patients is the biggest drawback. Also, all

the doctors mentioned about the exaggeration of symptom values by patients.

Especially pain symptom was often exaggerated. In our clinical observation, we

found all 22 patients to report having maximum pain level.

• All the doctors complained that they did not like the manual task of drawing

graphs in paper-based ESAS and this consumes major part of the patient visit

time. This fact shows the necessity of a tool that can automatically generate

longitudinal graph based on patients’ symptoms.

4.5 Barriers

From our visits to Bangladesh, interviews with doctors, patients, attendants,

medical assistants and field workers, we have identified some barriers in the health

care system for the rural women in Bangladesh. Statistics of the country’s health care

system also gave us some insight. We have grouped the barriers in several categories.

4.5.1 Barriers in Diagnosis

Shyness

Culturally women in rural Bangladesh are very shy. Women feel more uncomfortable

to seek help for diseases like breast cancer due to shyness. All the health workers

mentioned this issue as one of the barriers in identification of breast cancer patients.

Female patients are also sometimes embarrassed to visit male doctors if exposure is

needed.

Lack of Familiarity

Though rural people in Bangladesh are well familiar with the term cancer, breast

cancer is not so well known to them. In many cases, they take it lightly and fail to pay

attention due to lack of understanding of danger. Unless it hurts, people usually do not

pay attention and skip visiting doctors. As most breast cancers do not cause pain in the
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breast, they usually visit doctors at later stage. Out of 39 patients we interviewed, only

3 patients (7.7%) said they had some kind of idea about breast cancer.

4.5.2 Barriers in Obtaining Treatment

Scarcity of Resources

Developing country like Bangladesh lacks the resources required for a good healthcare

system. Resources for cancer care are even more limited than the facilities available

for other diseases. One reason behind this is that cancer care is very expensive

compared to treatment of other diseases. According to a report by ‘National Cancer

Control Strategy and Plan of Action 2009-2015’, there are about 500 hospital beds

dedicated for cancer patients throughout different hospitals in the country. This

number is very small compared to what is needed for a population of 160 million.

According to government, there are about 250 doctors for 1.2 million cancer patients.

Every year 200000 more cancer patients are added and about 150000 die of cancer

related causes [3]. There are only 18 radiotherapy centers in the country where about

300 are required. Only one of them is situated in the rural areas. Only 11 of these are

modern Linear Accelerators [4]. The idea of palliative care for relieving the sufferings

of patients is almost non-existent in Bangladesh.

Underdeveloped Transport System

Like many other developing countries, Bangladesh suffers from a not-so-well transport

system. There are not enough vehicles and roads to support such a large population.

Most people use rickshaws to travel short distances and cars are way out of means for

majority. In rural area, there is no public transport system. To travel from one city to

another, people mostly uses buses, trains or launches which are uncomfortable partly

due to bad conditions of the road and partly due to overcrowding. Traveling to and

from Dhaka, the capital of the country and moving in the city is a painful ordeal due to

its notorious traffic jam. It is very common for people to make multiple change of
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vehicles to reach clinics. One patient described her experience as:

“I live in a distant village of Rajshahi division. First I took a van to come to the

boat stand. Then I crossed the river by boat. Then I shared another van to reach the

bus stand. It took 12 hours for the bus to reach Dhaka. Finally I hired a taxi and then a

rickshaw to reach here.”

4.5.3 Barriers in Continuation of Treatment

Long Term Monitoring

Cancer by nature needs long term monitoring. Even simpler diseases are too much for

poor rural patients as they have to make long commute to doctors while being sick.

Cancer, which requires long term treatment and care is a great calamity to these

patients.

Absence of Palliative Care

In case of terminally ill cancer patients, the treatment is usually palliative in nature

where the focus is pain management. In case of Bangladesh, palliative care is almost

non-existent, even in urban areas.

Inconsistent Patient Data

Patients some time exaggerate their pain level. Sometimes their information is

corrupted by lot of external factors unrelated to diseases. A lot of times doctors have

difficulty in interpreting data from subjective, contextual and sometimes contradictory

feedback they receive from patients.

Missing Appointments/Irregular Follow ups

Patients in Bangladesh, especially in rural areas, are not very consistent in their

subsequent visits to doctors. Reasons are manifold behind this. Traditionally patients

visit doctors with a family member or a friend. All the patients we interviewed came

with a relative or a friend. Failure to manage a companion can prevent them from
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visiting doctors. In case of women, they are mostly responsible for household work,

like cooking and taking care of children, especially in rural areas. Rural women have

to travel a significant distance in case the doctor is in another city and they have to find

a substitute for their household works. The long commute to doctors is another

deterrent for patients to visit doctors regularly. Financial problem is also very common

for not following up with treatment. One patient described her reason as:

“First time I missed the appointment since my husband was out of the town and

I failed to manage any other companion. Then my son was having his final

examination. There was no one else who can look after him. Then I waited for the crop

to be sold so that my husband can save some money for my appointment and

medicine.”

4.5.4 Structural Issues

Load-shedding

Load-shedding is very common in Bangladesh. In rural areas it is more prevalent.

However, there is always enough electricity to charge cell phones as it does not take

much electricity to recharge cell phones.

Urban-centric

The whole country is very much centralized. As a result, all the growth and

development is centered around Dhaka, the nation’s capital. There is shortage of

doctors, clinics even in small towns, let alone rural areas. As people in rural areas are

poorer, there are not many good doctors in those areas. Especially, oncologists are rare

even in Dhaka. As a result people often have to travel to the capital or other big cities

through a poor transport system to get treatment.

Lack of Privacy Guidelines

The concept of medical privacy is not very well established. As a result, there is no

national privacy framework. In USA, privacy of individually identifiable health
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information is protected by HIPAA. In the absence of such laws in Bangladesh, health

care system developers have difficulty in decoding and implementing privacy concerns

of patients.

4.5.5 User Issues

Illiteracy

The rate of education is quite low among poor rural women as is obvious from figure

4.1. Interestingly, out of 12 illiterate patients we interviewed, all but two can count and

read numbers. Moreover, all of them said they have close family members in the house

who can read and are familiar with mobile applications.

Unfamiliarity with Mobile Technology

Many women, even if they cannot read and write can use cell phones to some extent.

They can call and receive receive calls. However, they are unfamiliar with other usage

of cell phone, like texting and internet use.

4.6 Observations

4.6.1 Growth of Cell Phone Subscribers

There is a steep growth of cell phone subscribers since 2005 and as of May,

2015, total cell phone subscribers has reached 125.971 million in the country,

according to Bangladesh Telecommunication Regulatory Commission [11]. It has

actually more than quadrupled since 27.72 million in June, 2007. Unlike other

facilities, we observed that cell phones have reached even in rural areas. Almost 96%

of patients we interviewed have access to cell phones either by owning a phone

personally or having a family member who owns a cell phone.

4.6.2 Cheap Cell Phone Services

Interestingly, cell phone plans are cheaper than lot of developed countries due

to intense price competition and high density of population. Also poor families own
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one cell phone instead of every member in the family. Even a patient, who lives in a

mud hut in a remote village of Rampal, a small sub-district of a small southern town,

uses a Samsung phone. We found from [5] that 1 MB data cost less than 30 cent and

some packages sell 15 MB for 45 cents.

4.6.3 Smart Representation of Data

Medical data are often poorly represented as not enough attention is given to

representation of data. Representing data in a smarter way so that trend and pattern is

clearly visible will be helpful to doctors.

4.6.4 Lack of Ethnic Cancer Data

According to [6], compared to African-American women, white women are

slightly more likely to develop breast cancer, but less likely to die of it in USA. One

possible reason is that African American women tend to have more aggressive tumors.

There is lack of such ethnic data in Bangladesh. It is true that population is mostly

homogeneous in the country but it has a large population and the possibility of any

pattern among the population cannot be ignored and thus demands attention from the

researchers. Lack of such database prevents the discovery of such demographic

pattern.

4.6.5 Pain Management is Important

As cancer progresses, pain management becomes a significant part of

treatment. From our sessions with doctor and patients it was evident that pain is a very

important symptom as it controls the quality of life of patients significantly. Doctors

need regular updated information for improved pain management. The level of pain,

trend of pain, current medicine and their doses are some of the parameters that doctors

need to be updated of regularly. Doctors have to find the right regimen from the

feedback of patients.
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4.6.6 Doctors Use ESAS

We found the doctors use a paper-based tool, Edmonton Symptom Assessment

System [9], commonly known as ESAS, to record patient data when the patients visit

them at AGBCC. This tool was designed to assist in the assessment of ten symptoms

common in cancer patients: pain, tiredness, nausea, depression, anxiety, drowsiness,

appetite, well-being, shortness of breath and other problems. The symptom values are

scored from 0 to 10. Doctors’ big concern was lack of availability of symptom data for

patients. Patients use ESAS form in figure 4.2 to record their symptom information.

Figure 4.2: Unfilled ESAS form
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Doctors use form in figure 4.3 to prepare graphs from filled-up ESAS forms of

patients.

Figure 4.3: ESAS graph form

4.6.7 Bias in Data

Sometimes patients exaggerate their pain level to gain attention from doctors.

Sometimes symptoms are influenced by patients’ long commute to doctors. If we could

collect symptoms data in a more natural environment, bias in data could be reduced.

4.6.8 Patient Visit Time

As there is a shortage of doctors, there is a long queue of patients in most

hospitals. Doctors are forced to hurry during clinical visits by patients. Often they
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have to spend crucial time to record symptom information.

4.7 Conclusion

In this chapter, we primarily discussed our adopted methodologies. We also

discussed the barriers faced by rural breast cancer patients in different phases of health

care system in Bangladesh. Our observations built the foundation of e-ESAS which we

developed to address some of the barriers. We will discuss e-ESAS in the next chapter.
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Chapter 5

Design, Development and Evaluation of a Remote Symptom
Monitoring System called e-ESAS

5.1 Introduction

For cancer patients, palliative care is very important as quality of life

drastically decreases due to pain, tiredness, and depression as a side effect of

chemotherapy, radio-therapy, or surgery. Edmonton Symptom Assessment Scale

(ESAS) works as a tool for doctors, especially for palliative care specialists to assess

symptoms and provide interventions accordingly. Patients usually complete a

paper-based ESAS questionnaire when they come to the clinics. This form gives only

an instantaneous view of the symptoms to the doctors. Often, patients visit the doctors

irregularly and long intervals between visits are quite common. Since patient’s

symptom levels are recorded only when they visit clinic, doctors have very little data

about the patient’s symptom history. In addition, loss of previous prescriptions is not

very uncommon. We have found 7 patients during our clinical observations who have

either forgot to bring or lost their previous prescriptions.

5.2 Related Works

Hayes et al. [37] summarized the detailed overview of the cancer treatment

process and possible use of pervasive technology in urban settings. The effectiveness

of electronic symptom monitoring has been proven in chronic diseases like asthma

[14], diabetes [26] and cancer [32]. All these projects have been deployed in urban

settings in the developed world using web based online monitoring systems, which is

not feasible for the illiterate in rural areas of a developing country. In rural health care,

several projects work as ‘decision support system’ by implementing a guideline set by

WHO or other standard organizations in computer or hand-held devices [30] [75] [68].
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Early Diagnosis and Prevention System [75], a computer based healthcare

management software, registers patient history. e-IMCI [30] describes a PDA based

system for administering the Integrated Management of Childhood Illness (IMCI)

protocol. A large number of projects are used for ‘data collection/survey’ including

AED SATELLIFE [7] in Mozambique and Uganda and HIV/AIDS program in Angola

[25]. Our project has two fundamental differences with these projects. Firstly, instead

of trained professionals (health workers (HW) or doctors), patients or attendants (who

normally stay with the patients) are filling the symptom information by themselves.

Secondly, patients are doing this from home and sending data by using the data

network of mobile carriers. In all the aforementioned projects, either the patient has to

come to the health center or HWs need to go to remote houses of the patients to collect

such information. Several projects like WiLDNet [74], iPath [18] fall under

‘telemedicine’ category aiming to connect physicians with patients residing in rural

areas. But the prerequisite of network infrastructure capable of performing real time

media connections in a cheaper way makes these solutions infeasible for rural

scenarios of Bangladesh.

5.3 Design and Development of e-ESAS

From the clinical observations, it was obvious that it is not feasible for doctors

to complete the paper-based ESAS considering the timing restriction due to high

patient load. Also, a better tool is needed to obtain patient data on a regular basis.

Therefore, we developed a mobile based ESAS named e-ESAS for Nokia X6.

5.3.1 Architecture

The system consists of two parts: A server and a client. The architecture of

e-ESAS is shown in figure 5.1. The client has two modules: patient’s module and

doctor’s module. Same client software is installed for both modules. So, the same

phone can be used by both doctors and patients.



59

Figure 5.1: e-ESAS architecture

5.3.2 Technologies

On the server side, we used Apache Tomcat 6.0.26 as the server and MYSQL

as the database. We created 5 tables in the database; ‘patient’, ‘doctor’, ‘record’,

‘medicine record ’ and ‘videolog ’. The ‘patient’ table stores patient information. We

added a new field in the table for IMEI number as we moved to IMEI-based

authentication. The ‘doctor’ table contains doctor information. The ‘record’ table

stores all records of 13 symptoms (integer number), their date and patient id in 15

fields. The ‘medicine record’ table stores prescription, patient ID, doctor ID and time.

A new table called ‘videolog’ was added to keep track of frequency of video viewing

by patients. It logs ‘video ID’, patient name and timestamp. Another client was PHP

based client website. Ajax with PHP was used for developing the website. For Web

Service, JSP and SOAP were used. The application was developed for Nokia X6

phones. We used s60 5th edition SDK v1.0 emulator for developing the system. The

data is transmitted over the internet using the data plan of cell phone operators or

Wi-Fi service. When a command is executed as a client, a web service is called in

from the sever which executes their respective operations on the data in the

database,such as insertion, deletion, or updates in the database.
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5.3.3 Patients’ Module

In our first prototype, the patient module had 10 sliding bars all in the same

page, one for each of the ten symptoms of ESAS. After feedback from doctors, we

added 3 more sliding bars for 3 more questions. These 3 questions are: the minimum,

maximum, and average pain in the last 24 hours. We have put a button with the

Bengali label for each symptom and a sliding bar following each button which can be

set for any values between 0 and 10. If the button is pressed, it will play a voice

instruction in a local Bengali dialect. When the user presses the ‘submit’ button,

located at the bottom, it will send all of the sliding bar values set by the patient to the

database server as a string. Patients can also view their prescriptions.

Internaitonal Mobile Equipment Identity(IMEI)-based Login

In the first version, the patients had to log in using traditional usernames and

passwords as shown in figure 5.2(a). We changed the authentication process, and now

the IMEI number is used for automatic authentication, as the IMEI number of each

patient’s mobile phone is already in the database. Though we provided a one letter

name and password, patients were not enthusiastic about password-based

authentication. As one patient said, “I like the sliding bar part but I really dont like to

enter text at the beginning (login). I actually wait for my son to do that.” But the user

login is necessary to relate the submitted data with a specific user. To serve both the

purposes, we introduced IMEI based login as shown in figure 5.2(b). Here, when the

patient enters the e-ESAS application, the system collects the IMEI number using

Nokia API and matches the corresponding patient ID from the server. All 10 MOs and

their attendants expressed their preference for IMEI based login. Five of the MOs also

said that they have started submitting data by themselves without the help of attendants

as a result of this change.
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H

Figure 5.2: (a) Username-Password based Login. (b) IMEI based Login

Removal of Scrolling

Based on feedback from patients, we also modified the interface in our second version

so that 13 sliding bars for 13 questions are distributed over 6 pages. Each of the first 5

pages have 2 sliding bars whereas the last page has 3 sliding bars for 3 questions. In

the first version, all the sliding bars were on the same page. The idea was to ensure

minimum amount of time for data submission. However, this design proved to be error

prone since the users were repeatedly touching the wrong sliding bars, which were

placed to close to each other. Based on these findings, we later placed 2 sliding bars

per page which ensured enough room in the screen for the patients as shown in figure

5.3(b). We also increased font size and the gap between two sliding bars. This new

design got rid of the scrolling bar on the side which was a source of confusion and

errors as the patients unintentionally changed previously set values of symptoms while

scrolling up and down.
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Figure 5.3: Two versions of e-ESAS: (a) All sliding bars in one page. (b) Two sliding
bars in each page.

Automation of ESAS Symptom Submission

Instead of using cumbersome, time-consuming paper-based ESAS as in figure 5.4(a),

patients can use e-ESAS as in figure 5.4(b). After successful submission of symptom

data, the system provides a notification.

Figure 5.4: Two versions of e-ESAS: (a) Original paper version. (b) e-ESAS.
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View Prescription

Patients can view their prescriptions. They can choose to view all of their previous

prescriptions as shown in figure 5.5(a) or they can choose to view only their last

prescription.

Figure 5.5: (a) Patient options. (b) Patient can view his prescription.

5.3.4 Doctors’ Module

The doctors module has the following features:

• Longitudinal graph: Doctors can choose a patient and one or more symptoms to

see the values of those symptoms over a selected period of time. He\she can do

it either from cell phone or from the web app.

• Prescription: Doctors can check their previous prescriptions of a patient or add a

new prescription.
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• Alert Generation: An alert will be generated for doctors based on predefined

conditions. For example, an alert might be generated if the pain level is more

than 6 for 3 consecutive days.

Options

When a user logs in as a doctor, a page with a list of all their patients appears. Figure

5.6(a) shows screen shot of a list of the patients. Doctors can select a patient by

selecting the text by finger. After selecting the patient, a doctor has several options as

shown in figure 5.6(b). She can view all previous prescriptions, create a new

prescription, and view patient symptom data in graphic form or in simple text form.

These actions can also be performed from a website.

Figure 5.6: (a) Patient list. (b) Doctor’s choices.
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Selecting Date

If a doctor selects to view the graphs of a patient, a page appears and is prompted for a

start date and end date as shown in figure 5.7(a). The doctors have to type dates in the

cell phone. After selecting the ‘options’ menu in the ‘date page’, a doctor can select

several operations from the menu bar (shown in figure 5.7(b)). There are menu items

for each of the symptoms and the doctors can view the graph by selecting the symptom

of interest. In our first version, we had 10 menu items for 10 symptoms which we

increased to 13 items as 3 more pain questions were added.

Figure 5.7: (a) Doctor provide dates. (b) Doctor chooses symptom.

Doctor Views Graphs

The label below the graph explains what the graph is displaying, along with the time

range and the patient name. Another change we made in the doctor’s module is the

segmentation of the graph. Instead of squeezing all the data points in a single page, at
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most 7 data were shown in each page as shown in figure 5.8(b). If more data points are

there, the doctor can view them using the ‘Next’ and ‘Previous’ button. In our first

version, we tried to accommodate all data points in a single graph. A large number of

data points would not fit in the small screen of a cell phone, as in figure 5.8(a).

Figure 5.8: (a) Illegible due to too much data points. (b) Doctor views graph for Ap-
petite Symptom.

Doctors have the option to access the same patient data from both cell phones

or from a website. Figure 5.9 is graph of 3 symptoms viewed from web app.
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Figure 5.9: Doctor viewing 3 symptoms of a patient in a single graph

Prescriptions

Doctors can view all previous prescriptions for a particular patient shown in figure

5.10(a). He can create a new prescription too as shown in figure 5.10(b). If a new

prescription is written, it will be stored in server with previous prescriptions.

Figure 5.10: (a) Doctor views all prescriptions (b) Doctor creates new prescription.
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5.4 Evaluation

We deployed e-ESAS in 12 Nokia X6 phones. Two of them will be used by

doctors in different locations of AGBCC. The rest will be used by 10 BC patients.

Patients were selected based on the following criteria:

• Chronic pain score on ESAS 0-10 scale reported to be less than or equal to 5.

• Life expectancy, greater than 6 months.

• Normal mental status.

• Performance status 0, 1, or 2 based on ECOG scale [2]

• Able to understand and cooperate with study protocol.

• Patient has two people living with her (attendant).

• Patient lives less than one hour commuting distance from either AGBCC or

DMCH.

5.4.1 Designing to Reduce Error Rates

We asked the patients to set some values in their ESAS questionnaire. We

found that when the patients scroll down to set values of later symptoms, they

unintentionally changed previously set values. Also, sometimes they unintentionally

touched the exit button and closed the application. As can be seen from table 5.1, the

patients made 1.2 errors on average in completing the form. We changed the UI, and

instead of all 10 questions in one page, we made 5 pages, each with 2 questions,

removing any need to scroll down. We also added one page for 3 new questions related

to pain. We also increased the font size and increased the gap between two sliding

bars. In our 4th visit, we asked patients to fill out the ESAS form and only 1 patient

made a single mistake. We also removed the exit button from each page and placed it
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as a menu item in a menu on the last page. This prevented accidental closing of the

application.

Number of Errors

Version 0 1 2 3

First 9 16 11 3

Second 16 1 0 0

Table 5.1: Error comparisons of two versions of e-ESAS

5.4.2 Faster Use by Attendants

After one month of deployment of the system in November, 2011, we

performed the following steps for 10 MOs and their attendants.

• Each patient is given 13 random numbers from 0 to 10 and asked to set these

values using the sliding bars of e-ESAS sequentially.

• Record the time required by the patient to set the values.

• Count the number of errors (the values set by the patient that are different than

the given values are considered errors).

Figure 5.11 shows the timing requirement for MOs and attendants.
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Figure 5.11: Timing requirement histogram

The average time required by attendants is 2.4 minutes which is slightly less

than that of the patients (2.8 minutes). This is expected since, in most cases, attendants

were younger than the patients and more familiar with mobile phones. One of the

patients made 1 error and none of the attendants made any errors. This indicates the

simplicity and easy-to-use nature of e-ESAS.

However, we observed there is a slight increase in the timing requirement for

the 2nd version of e-ESAS (2.8 minutes) compared to 1st version (2.66 minutes) of

e-ESAS. The increase in timing requirement is due to two reasons; First, the number of

questions has increased from 10 to 13, and a small amount of time is required to move

to the next page (five page changes in total). Table 5.2 summarizes the timing

requirement to enter data in two versions.

Time in minutes

Version 1.5-2.0 2.0-2.5 2.5-3.0 3-3.5 >3.5

First 3 10 17 9 0

Second 0 3 4 2 1

Table 5.2: Time comparisons of two versions of e-ESAS
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5.4.3 Enhanced Flexibility

One advantage of e-ESAS is its flexibility. Doctors can view graphs at anytime

and from any place. They can view patient information from their taxi while stuck in

traffic, from a train, bus, or rickshaw. Patients can also record symptom data at

anytime or from any place. Cell phones have the advantage that people carry them all

the time. So, no extra device is needed.

5.4.4 Better Representation

Doctors can view the trend of pain and other symptoms as data is represented

graphically, which makes it easy to recognize any patterns if there are any. Based on

feedback from doctors, we introduced an option to view data of one symptom (pain or

nausea etc.) of multiple patients on a single graph in the web app. This allows doctors

to compare how an intervention is working on different patients. An example is shown

in figure 5.12.

Figure 5.12: Graph of patient G, H and R for the Symptom Pain

Also, multiple symptoms (pain, tiredness and nausea, for example) of one

patient can be viewed in a single graph. Viewing this information in graphic form

makes it easier to make critical observations. An example is shown in figure 5.13.
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Figure 5.13: Graph of patient X for the symptoms Pain, Tiredness and Nausea against
selected time period

5.4.5 Improved Data Quality

Data quality is improved by its validity, regularity, and frequency.

• Validity

– Doctors can view data instantaneously so that the information is fresh and

relevant.

– There is no possibility of forgetting to record date, time, and patient name

as the system automatically records this information, which is a possibility

in a paper-based system.

– The symptoms are recorded in the clinic where they are biased by several

factors. It can be the case that the patient exaggerates severity of some

symptoms to attract more attention from doctors. Or they might mention

higher tiredness levels as a result of traveling a long distance and waiting in

the queue at the clinic. The e-ESAS captures the true data as data are

recorded in a ‘natural’ setting and not influenced by external factors.

• Regularity
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– Patients submit their symptoms regularly as it is much easier and as they

become an active participant in their treatment.

• Quantity

– Our e-ESAS improves quality of data as data are captured more frequently.

In case patients forget to bring previous prescriptions, doctors can view all previous

prescriptions through e-ESAS from their cell phones or website and still remain

informed. Also in paper-based systems, converting data to a smart representation

requires human effort and thus have the risk of errors. For e-ESAS, this is not the case.

We argue that e-ESAS thus improves the quality of data.

5.4.6 Better Assessment

Better assessment of any chronic disease (e.g., cancer, diabetes, blood

pressure) requires information about the crucial symptoms over a period of time.

Doctors in rural contexts are highly constrained in assessing the progress and

criticality of the BC patients due to extremely limited availability of data. Doctors’

diagnosis of the disease symptoms and possible prescriptions were reliant on obscure

information of the patients who typically come after long delays, frequently without

their previous prescriptions. But now doctors can see the symptom curves for any

MOs over any defined period of time. They can also compare a specific symptom of

multiple MOs for analysis. Doctors are now able to diagnose patients in a better way

due to the availability of a longitudinal history of symptom values created through

e-ESAS. For example, D1 said

”These 2 patients (MO1 and MO8) were under my supervision since the

beginning and they have almost identical disease condition. They were under same

type of medication and their reported pain scores were also similar (figure 5.14). But

all on a sudden I found the MO8 is experiencing much higher pain values compared to

MO1. Then I talked with her and changed her medication with no effect. Then I
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compared their pain symptom graph over around 20 days time (as shown in Figure 7).

As you can see pain level of MO1 has decreased after X (some date) where as that of

MO8 has increased. Later I found that both these patients were scheduled for

chemotherapy around that date. MO8 missed her chemo due to family reasons. Later I

talked with the doctors in Khulna Medical College Hospital for her chemotherapy.”

Figure 5.14: Comparison of pain graph for Patient 1 and 8

5.4.7 Reduction in Missed Appointments

We were interested to see the effect of the deployment of e-ESAS on the issue

of missing appointments. We analyzed the data in two time frames; Dec ’10- May ’11

(before the deployment of e-ESAS) and Nov ’11-Dec ’11. We will call these periods

time frame 1 (TF1) and time frame 2 (TF2) respectively. We also divided the cancer

patients into 2 groups: MOs and the rest. This is because the MOs, having received the

mobiles, are naturally expected to be more punctual in their appointments. We show

the missing appointments statistics of each of the MOs for TF1 in figure 5.15. These

10 MOs were scheduled for a total of 107 appointments over the six month period,

making an average of 1.78 appointments per patient per month. They missed a total of

40 appointments, thus the average percentage of missed appointments became 37.4%.

According to the records of AGBCC, only 2 MOs missed one of their appointments

each in TF2.
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Figure 5.15: Missing appointment data for MOs in before deployment

When we analyze the appointment history of the other BC patients for TF1 and

TF2, we observe that the average percentage of missed appointments are 48.8 in TF1

and 39.8 in TF2 as shown by yellow and red solid lines in figure 5.16. There was a 9%

drop in missed appointments, even for patients, who were not given e-ESAS cell

phones. This is likely due to the positive environment created by the deployment of

e-ESAS.

Figure 5.16: Comparison of percentage of missed appointments for BC patients in TF1
and TF2.
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5.4.8 Reduction in Number of Appointments

Normally, doctors ask the BC patients to meet weekly or biweekly based on

their current health status. But in the case of MOs, doctors asked them to come

monthly. They were also encouraged to come if they feel any problems in between. As

a result of this, the number of appointments assigned for MOs has been reduced

automatically. According to figure 5.17, the average number of appointments for each

patient per month has been reduced to 1.25 in TF2 compared to that of 1.78 in TF1.

Figure 5.17: Comparison graph of average number of appointments in TF1 and TF2.

5.4.9 Reduction in Visit Time

The effectiveness of doctors can be increased by reducing the visit time

required by each patient without compromising the level of care. During TF2 we

recorded the duration of clinic visits of MOs and other BC patients through clinic

observation. MOs made 12 and 13 appointments in Nov ’11 and Dec ’11 respectively

and whereas other BC patients made 51 and 48 appointments respectively. Along with

all MO visits we recorded, the timing of 23 and 29 visits of other BC patients were

recorded for Nov ’11 and Dec ’11 respectively. The average timing requirement of

MOs and other BC patients in TF2 is shown in figure 5.18. The figures are based on
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averaging the time recorded during those visits. To avoid bias, doctors were not

notified about the timing issue.

Figure 5.18: Average timing requirements of MOs and others during TF2.

5.4.10 Satisfaction

In order to find the level of satisfaction of the users about e-ESAS, we asked

the MOs and 5 doctors to rate their corresponding e-ESAS module against 5 criteria

(easiness to use, easiness to learn, interactivity, helpfulness and overall satisfaction) on

a scale of 0 to 10. Figure 5.19 shows the average results. Both patients and doctors

find the system very satisfactory in terms of ‘helpfulness’. Being more educated and

familiar with mobile phones, doctors found e-ESAS more usable than the MOs in

terms of the rest of the features.
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Figure 5.19: Usability results of e-ESAS.

5.5 Conclusion

In this chapter, we presenedt the analysis, design, development, and

deployment of e-ESAS. At its present state, the system would be especially helpful to

palliative doctors in the management of pain and other symptoms. Patients in a

developing country, where there is shortage of palliative doctors, will be immensely

helped by accessing services from remote doctors.

One of our design principles was that the system be a viable one. Instead of

developing a sophisticated system with good performance, which requires expertise

from the users or is expensive, we focused on a simple inexpensive system. As our end

users were poor women with breast cancer in rural areas who have some experience

with cell phones, we expected that incorporating our system in the cell phone would

keep it simpler, instead of introducing a complete new device and training.

Discrimination between health services received by rich and poor can be

narrowed to some extent by e-ESAS. In an urban-centric country like Bangladesh, the

e-ESAS should remove the notion of distance to some extent and narrow the gap



79

between urban and rural areas.
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Chapter 6

Smartphone Based Multimodal Activity Detection System Us-
ing Plantar Pressure Sensors Placed On Shoes

6.1 Introduction

Physical activity (PA) is defined as bodily movement produced by skeletal

muscles that results in energy expenditure [23]. Measurement of physical activity has

been studied by researchers to investigate the relationship between human movements

and health status [41]. Lack of physical activity is known to be associated with

diabetes mellitus, cardiovascular diseases and obesity. Low-level physical activity is a

major symptom of illness and indicates functional impairment [85]. Various subjective

and objective tools have been developed to assess physical activity. Subjective tools

like diaries, surveys and questionnaires suffer from recall bias and thus are inaccurate.

A good amount of effort has been put forth to develop an accurate objective tool to

measure physical activity automatically.

Automatic detection and measurement of physical activity has applications in

context-sensitive systems. For example, they can be used in interruption management

systems. Physical activity is one of the most important contexts [78] and identifying

the correct activity is thus core to such systems. Such automatic detection of physical

activity is also needed by doctors who need to monitor the activity of patients

remotely. It has an application in the monitoring of elderly people who want to

maintain their independence as well as people who need to measure their physical

activity. Researchers in exercise science also want to find a cheap and easy alternative

to measure energy expenditure. On the other hand, identifying and quantifying human

physical activity is necessary for establishing correlation between activity patterns and

future health risk.

The automatic physical activity detection systems mostly use accelerometer
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data collected from accelerometers placed on different locations on the body [17] [28]

[34]. For example, Bao [17] used 5 accelerometers and placed them in five different

locations of the body. Some of the systems use other sensor data along with

accelerometer data [28], however such systems suffer from some limitations. First,

many of these studies primarily focused on the task of activity detection and ignored

usability resulting in an obtrusive system. For example, Chowdhury and her colleagues

[28], for example used a wired version making the system unobtrusive. Second, some

of the systems [34] perform well in a controlled laboratory environment but not so well

in a naturalistic environment.

In this paper, we came up with a wireless system that requires few extra devices

and was designed to accommodate human phone behavior patterns. For a system to be

user-friendly and unobtrusive, we argue that first it should be wireless. The presence of

wires makes any system obtrusive and unsuitable to be worn in a natural setting. The

user should not be required to wear any extra devices. Smart phones are typically

already carried by the users and they come with built-in accelerometers and other

sensors making smart phone based systems inherently unobtrusive. Smart phones are

thus the natural choice for an unobtrusive activity detection system. However, the

problem with a smart phone based system is that it is based on the assumption that the

smart phone will be carried by the users (usually in the pocket). Such assumptions are

not necessarily realistic as we have observed that people often put their phones on their

desk while working in the office. Furthermore, women often carry their phones in their

purses. Thus, in spite of a smart phone based system being unobtrusive, people’s

behavior patterns limit the applicability of such systems. For any such system to be

useful, the phone carrying behavior patterns of people must be considered. In this

chapter, we present and discuss our novel activity detection system. As our system

uses accelerometer and gyroscope data from smart phones and pressure data from

pressure sensors placed in shoes, users will not be required to carry or wear any new
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devices they are not already carrying or wearing. Our contributions:

• We have proposed a novel architecture for the unobtrusive detection of human

physical activity using accelerometer and gyroscope data from smart phones as

well as pressure data from shoes.

• Our architecture was designed to make the system unobtrusive and robust

against various human behavior patterns.

• We developed a prototype of the activity detection system using smart phones

and plantar pressure sensors based on our proposed architecture.

• We identified the various issues that came up while developing the system

alongside the caveats and their origins and possible solutions.

• We analyzed data from four activities and developed an algorithm based on our

analysis. Later we tested how our algorithm performs and achieved very good

accuracy for the activities in the data analysis stage. Several modifications of the

algorithm and the evaluation of their performances were also discussed.

6.2 Related Works

6.2.1 Smartphone based activity recognition system

Phone-based accelerometers were used to perform human physical activity

recognition by Kwapisz and her colleagues [50]. Labeled accelerometer data from

Android phones were collected from twenty-nine users as they performed daily

activities such as walking, jogging, climbing stairs, sitting and standing. Authors used

these data as training data to build a predictive model for activity recognition. After

extracting six features from the data, classification techniques such as decision trees,

logistic regression, and multi-layer neural network were used for classification.

Though the architecture has the advantage of using a device that is conveniently
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carried by people in their pockets, it fails to capture activities when the phone is not in

the pocket. In [94], Yang developed an activity recognition system using the built-in

accelerometers in the Nokia N95 phone. His work used orientation-independent

features, such as vertical and horizontal components in acceleration as well as

magnitude of acceleration to recognize daily motion activities. The decision tree

performed best among the four classifiers (Naı̈ve Bayes (NB), k-Nearest Neighbor

(kNN) and Support Vector Machine (SVM)) he evaluated. Miluzzo and his colleagues

developed CenceMe [67], using off-the-shelf, sensor-enabled mobile phones (Nokia

N95) and exploited various sensors (such as a microphone, accelerometer, GPS and

camera) that are available for activity recognition. They made it scalable by

distributing the classification task between cell phones and back-end servers and

recognized walking, running, sitting and standing activity.

In all of the above cases, the solution is phone based and the assumption is that

the phone will be carried by the users all the time in their pockets. This is not a very

realistic assumption as we found in our survey and observations forcing us to rethink

such approaches.

6.2.2 Multimodal activity recognition system

Lee and Mase tested the feasibility of the dead reckoning method to determine

a persons location in an indoor environment in [53]. The idea was to detect walking

and count the steps in a particular direction to determine indoor location. Data from a

gyroscope and a digital compass was used along with an accelerometer to detect

sitting, standing and 3 types of walking. Two extra sensing modules, placed in the

pelvic region and thigh. Multiple sensors in different locations of the body make the

system somewhat intrusive. Subramanya and his colleagues [87] built a model using

data from a tri-axial accelerometer, two microphones, phototransistors, temperature

and barometric pressure sensors, and GPS. The model can distinguish between a

stationary state, walking, jogging, driving a vehicle, and climbing up and down stairs.
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Their work claims to detect both the location of a person and the activity he is engaged

in. In this case, an extra sensor board needs to be worn by the users as well.

Choudhury [28] used multiple sensor devices consisting of seven different

types of sensors (tri-axial accelerometer, microphone, visible light phototransistor,

barometer, visible and IR light sensor, humidity/temperature reader, and digital

compass) to recognize activities. They placed all the sensors in a single location on the

body to make it less intrusive. In reality, the wired connection of the sensor module

with iPaq and the very use of the extra sensor device make it somewhat intrusive.

Uiterwaal [90] used two sensors placed in the belt and thigh to detect standing, sitting,

lying, seesawing and locomotion. Data transmission to a recorder was possible

through a wired connection. Wired connections and the use of multiple extra devices

make the system very obtrusive. In [65], Maurer used ‘eWatch’ which was worn in six

different locations to find the most suitable position for activity recognition. Each

‘eWatch’ has a bi-axial accelerometer, microphone, temperature sensor and a light

sensor. This ‘eWatch’ needs to be worn by the users and detected activity cannot be

communicated. Cho [27] used a single tri-axial accelerometer, along with an

embedded image sensor worn at the users waist to identify nine activities. Support

Vector Machine (SVM) was used for classification of different activities based on

features like mean, energy expenditure and FFT.

In [36], Gyorbro used ‘MotionBands’ attached to the dominant wrist, hip and

ankle of each subject to distinguish between six different motion patterns in real-time.

Each ‘MotionBand’ contained a tri-axial accelerometer, magnetometer, and gyroscope.

The data collected by MotionBands were transmitted wirelessly to a smart phone

carried by the user, thus enabling unobtrusive collection of data. The six activities

recognized were resting, typing, gesticulating, walking, running and cycling. The

average recognition rate was 79.76%. Though some unobtrusiveness is achieved,

multiple Motionbands need to be worn by users along with carrying the smart phone.
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In [54], Lester and his colleagues used accelerometer data, along with audio and

barometric sensor data, to recognize eight daily activities from a small set of users.

They collected data for 8 different activities from 12 different subjects. The subjects

had to wear three multi-modal sensor board (MSBs) resulting in an obtrusive system.

6.3 Motivation

Here we illustrate the motivation behind our system using some plausible cases.

6.3.1 Case 1

Ryan is a software engineer and he is always close to his phone. The way he

carries his phone primarily depends on the activity he is engaged in. Approximately

30-40% time the phone is in his shirt pocket, 30-40% time it is in his pocket, 0-20%

time it is in his hand.

6.3.2 Case 2

Erin is an undergraduate student at a university in the USA. She spends lot of

time in the library. While in the library, she places her phone on the table. She also

uses her phone to send approximately 200 text messages a week. When she is walking,

she puts the phone in her back pocket and listens to music.

6.3.3 Case 3

Linda is a woman in her 40s. She will either carry her phone in her bag/purse

or in her hand and almost never carries her phone in her pocket.

We have observed that phone carrying habits vary a lot depending on gender,

country, culture, the type of activity he or she is engaged in as well as some other

factors. Cui and his colleagues studied the phone carrying behavior of people in 11

cities in Europe, America, Africa, the Middle East, India and East Asia extensively and

showed in their paper [29] that generally women used bags (61% of women versus
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10% of men) and men use pant pockets as the primary way to carry a phone. A

significant percentage of men (∼14%) use belt cases to carry phones whereas the

percentage of women using belt cases is insignificant. They also found that phone

carrying behavior also depends on culture. For example 80% women in Helsinki carry

phones in their handbags while only 50% do so in Delhi. This is consistent with the

small survey we conducted among five graduate students. Only one of them keeps his

phone in his pocket 90% of the time. For others, it is less than 50%. Other popular

locations are the shirt pocket, hand, bag and the desk. We also observed undergraduate

students in a library setting and found differences in behavior between men and

women. All 13 women put their phones on the table while 8 of the 14 men put their

phones on the table.

Under these circumstances, we argue that any smart phone based system that

detects different activities based on the assumption that the phone will be carried by

users in their pockets will not be a pragmatic solution.

6.4 System Architecture

We propose an architecture where pressure sensors will be placed on the shoes

and these pressure data will be transmitted over Bluetooth to a smart phone carried by

the user. Now it does not matter where the phone is being carried as long as the phone

is within the Bluetooth range of the shoes. As Bluetooth has a range of 5-30 meters

and the distance from a person to his phone is almost always within this range, this

proposed architecture can almost always collect pressure data from shoes. We propose

a plantar pressure sensor system that interfaces with cell phones for activity detection.

Our system works in two phases: i) learning phase and ii) activity recognition phase.

In the learning phase, after the sensor data is collected and processed, the data is

analyzed to develop an algorithm. In the activity recognition phase, the algorithm is

implemented and the incoming sensor data is used by the algorithm to detect activities.
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Figure 6.1: a) System architecture for learning stage and b) system architecture for
activity recognition stage.

This novel architecture is our contribution 1 (C1), which ensures

unobtrusiveness for the users. Our system has two principal components: i) data

collection system and ii) activity recognition system.

6.4.1 Data Collection System

The Data Collection (DC) System is responsible for collecting sensor data. In

our case, we are collecting pressure data from pressure sensors placed on the sole of

both shoes, accelerometer data from the cell phone and gyroscope data from the cell

phone. The data collection system collects data from these four sensor systems and

stores them in four files in three different folders. We used DC in two stages. First, the

data collection system is used to collect the data and the collected data was later used

to learn a classification algorithm offline. Second, the learned algorithm detects

activities from the incoming sensor data collected by the DC system during the activity

recognition phase.

6.4.2 Activity Recognition System

The activity recognition system mainly consists of the implementation of the

algorithm learned in the learning phase. After data analysis, an algorithm is developed.

When this algorithm is implemented, it continuously takes sensor data as input. The

algorithm detects the activities during each time segment as streams of sensor data are
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fed to the algorithm and the algorithm outputs the activity. In our case, a decision tree

was learned after the learning phase and the decision tree was implemented as the

activity recognition system.

6.5 Prototype System Description

Based on the proposed architecture, we developed a prototype of the activity

recognition system. To reduce complexity, we only intended to detect three activities:

sitting, standing and walking. Instead of using data from all sensor systems, we only

used pressure data from the left shoe. Development of the system consisted of four

stages: data collection, data processing, algorithm continuously and recognition

system implementation.

6.5.1 Plantar pressure Sensor System

We decided to use an in-shoe plantar pressure sensor system based on a fabric

sensor array as in figure 6.2.

Figure 6.2: Pressure sensor system.
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This system was developed by Lin Shu et al. [84]. It has 8 pressure sensors in

each shoe. There is also a Bluetooth interface to transfer the pressure data to an

Android phone.

6.5.2 Data Collection

We used the system for collecting pressure sensor data. Though we collected

data from both shoes, we used data from only the left shoe. We collected data for

walking, sitting and standing. After the connection between the phone and shoe was

established, we performed the activities for 3 minutes. The subject disconnected the

connection by pressing the disconnect button when he finished the activity. While the

data was being collected, the phone was in the user’s hand. The collected data has 8

columns for data from 8 pressure sensors along with a time stamp.

6.5.3 Data Processing

We removed noise data throughout our dataset in the beginning and in the end

to reduce any possibility of data corruption. In figure 6.3, the raw data from the left

shoe is shown for both walking and sitting. There are about 37 samples of data for

Figure 6.3: Data from second pressure sensor (P2) in the left shoe: walking and sitting.
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each second (sampling rate 37Hz). We created a summary file where each row is a

summary of 160 samples of raw data and then we used Matlab to generate the

summary file for each of the three activities. Each summary file contains 40 columns

of data as we estimated mean, median, mode, standard deviation and summation of

160 samples for each of the 8 pressure sensors in the left shoe. After this, we merged

these three summary files and added another column at the end to indicate the activity

class (sitting, standing or walking).

6.5.4 Learning and Activity Recognition

We applied a decision tree based machine learning algorithm to generate a

decision tree classifier. This classifier algorithm (figure 6.4) was able to classify

correctly with 98.83% accuracy in a 10-fold cross validation setting. This means that it

showed 98.83% accuracy for the same data from which the classifier was generated.

After we implemented this generated tree in our recognition system, we found it took a

long time to detect the activity. According to our previous calculation, 160 samples

should take 4.3 seconds at 37Hz sampling rate. To address this issue we reduced

sample size to 60 from 160. This was done following the same process except that now

the sample size was 60. As a result, the accuracy remained the same but it took less

time to detect the activities than the prototype Activity Detection System. For a

60-sample system, the following algorithm (figure 6.4) was generated:
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Figure 6.4: Decision tree for three activities.

Here meanP5 is the average of 60 consecutive samples from pressure sensor 5

from the left shoe. Similarly, meanP2 is the average of 60 readings from pressure

sensor 2 from left shoe. We implemented a modified version of the algorithm (figure

6.5) based on trial and error. Whenever new data comes, the oldest data from queue is

removed and features are calculated again. Thus a queue (first-in-first-out) data

structure is used to ensure that features are calculated from the most recent 60 samples.

Then the algorithm is used to derive the activity.

6.5.5 Caveats and Discussion

We developed this prototype activity recognition system as a first version of the

more complex future activity recognition system. The design and development of this

prototype system is our contribution 3 (C3) which elicits some of the issues that came

up during the development of the system.
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Delay in settling to the right activity

The activity recognition system we built can correctly detect sitting, standing and

walking. But, for some transitions, it cannot immediately follow the activity. For

example, for transitioning from sitting to standing, detection is immediate, while

transitioning from standing to walking can take several seconds. This issue is more

pronounced for transition from a high acceleration activity to a low acceleration

activity. Theoretically, it should not be more than two seconds as we are dealing with

60 samples at a 37Hz sampling rate.A detailed investigation of our data stream reveal

couple of reasons. Obviously sample size has a major role. We know this because the

delay was much larger for a sample size of 160. The question is, ”How small we can

make the sample size without compromising the accuracy?” This is one issue that we

will investigate in the future. The second reason is that our decision tree is fairly

simple. We derived our decision tree from considering only discrete activities like

sitting, standing or walking. However, transition activities like sit-to-stand or

walk-to-stand have different patterns of data. As the data for transition between

activities were not considered during training our model, the model fails to capture

these transitory scenarios. The problem is that transition between activities takes so

little time that it is difficult to annotate data for transitory activities.

Empirically derived threshold values

We modified the generated algorithm (figure 6.4) and obtained the algorithm in figure

6.5 empirically. Though the structure remained same, the threshold values were

estimated empirically through trial and error. The original generated algorithm of

figure 6.4 works well when the subject is performing an activity for sometime.

However, when there is a transition from one activity to another, the dynamics is not

captured well. As a result, the time it takes to settle to sitting activity from standing

activity is significant. To address this, we observed the values of meanP2 while
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performing transition activities. We found that if we changed the threshold for

meanP2 from generated value 31.12 to 56.05, the time to settle from transition

decreases significantly. The following algorithm (figure 6.5) was finally obtained:

Figure 6.5: Modified decision tree.

Battery drainage

We found that Bluetooth connections are expensive in terms of battery use. We

propose several suggestions to address this issue. First, instead of maintaining a

connection all the time over Bluetooth, the connection should be intermittent and for a

percentage of time duration. Also, these periods of connectedness can be uniformly

distributed and the final estimation of activity can be extrapolated. This will be a

tradeoff between power consumption and accuracy of estimate of physical activity.

6.6 Remote Monitoring

After activity is detected, our system sends the information to a remote server.

A decision about activity is made in every 2 seconds. However, activity information is

not sent to server every two seconds. Instead, we developed a local database using

SQLite which stores activity record instantaneously every two seconds. A process

continuously runs in the background. The background process prepares a summary for
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every minute’s data from SQLite and sends the summary to remote server. The

background process also erases the data from SQLite after it has sent the summary to

server. This structure prevents the necessity to send activity data instantaneously and

thus save precious battery power of smart phones. Right now, we are updating the

server in every one minute. We can change it to other convenient intervals. However, if

we increase the time to 30 minutes, the remote monitoring person may have to access

30 minute old data. The best strategy probably is to set this interval according to need

of particular situation. Figure 6.6 shows a screen shot from our remote monitoring

system. A user can login to view the summary of activities by date. After date column,

first column is sitting time, followed by standing time and walking time in seconds.

Figure 6.6: Remote activity monitoring screen.
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6.7 The Multimodal Approach

In the multimodal approach, we combined four classifiers obtained from

analyzing data from gyroscope, accelerometer, right and left shoe. Each classifier was

obtained following data collection, processing and learning. Four classifiers were

combined and in the recognition phase, the combined classifier was used to detect

activity.

6.7.1 Data Collection

We collected data for four different activities: standing, sitting, walking and

running. As we need to synchronize data from all four systems (gyroscope data

collection system, accelerometer data collection system, left shoe data collection

system, right shoe data collection system), we needed the timestamp. For each activity,

we collected data three times (3 minutes each time).

6.7.2 System Description

We wrote two services on the android platform: TestService and GyroService.

TestService, when started will collect data from the accelerometer in the cell phone and

stores it in the SD card. Similarly, GyroService when started will collect data from the

gyroscope of the cell phone and store it in a file. DataReceiverService in the same way

collects pressure data from the left and right shoes. These services run in the

background on the android and after we start our application, the three Services

continue to run in the background to collect data from the accelerometer, gyroscope,

left shoe pressure sensors and right shoe pressure sensors. In all cases, the time stamp

is also recorded along with the data.

A sample row of data is shown in table 6.1. The first number is the timestamp.

For example, the data in table 6.1 was recorded at 1:41:42.5 p.m. P1 to P8 are pressure

data are in kilo Pascal (kPa).
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Time P1 P2 P3 P4 P5 P6 P7 P8
1:41:42.5 p.m. 25.3 11.9 0 5.1 13.5 22.9 14.2 7

Table 6.1: Sample data collected from left shoe during sitting activity.

When we press the connect device 1 menu item, TestService and GyroService

are started. Also another service is started which collects data from the left shoe.

When we press the connect device 2 menu item, data from the right shoe is being

collected. This means data from the right shoe is being collected from a later starting

time. We also observed this in our data noticing the later timestamp in the data from

the right shoe. Later during the preprocessing stage, we used this timestamp for

synchronization so that data from all four sources starts and end at the same time.

However, there are two issues that need to be mentioned:

First, while collecting data earlier for our prototype system, we only used

pressure data from left shoe. Pressure data was transmitted over Bluetooth to the smart

phone. As we were not collecting data from cell phones, the location of the phone was

not important. But this time we are collecting data simultaneously from the left shoe,

the right shoe, the phone’s accelerometer and the phone’s gyroscope during different

activities. As we start the app from the phone and then put the phone in the pocket,

there is some data in the beginning which does not reflect our target activity.

Second, while the phone is in the pocket and we are performing different

activities, due to movement and stirring, the disconnect button may accidentally be

pressed. Whenever the disconnect button is pressed, an alert sound is made before

stopping the connection. This was done to ensure to receive a notification if the

disconnect button is accidentally pressed when the phone is in the pocket. In case of

accidental disconnection, we discarded that reading and collected data again.
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6.7.3 Data Processing

Data preprocessing is very similar to what we did while developing our

prototype. The additional step that we did here is some preprocessing to ensure the

synchronization of data from four different sources. To synchronize, we clipped off the

initial data. For example, if data from left shoe starts from 41:42.5s and data from right

shoe starts from 51:29.3s then all rows in the left data where the time is less than

51:29.3s is removed. We did the same for gyroscope data and accelerometer data

assuming data from the right shoe starts at a later time. After this is done, all data

starts from the same time. We also clip off data at the end to ensure that all data ends at

the same time. Then we wrote a Matlab code to visualize the data in graphical form.

This is to check if there is any initial noise.

Figure 6.7 shows a graph of four activities superimposed on each other to show

a comparative view. This graph is for acceleration data from the Y axis collected from

the phone in the pocket. Similar graphs can be drawn from all 8 pressure sensors from

left shoe, 8 pressure sensors from right shoe, 3 axes of accelerometers and 3 axes of

gyroscope. Figure 6.8 shows pressure data from P1 of left shoe after pre-processing.
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Figure 6.7: Y-axis acceleration data from phone for running, walking, standing and
sitting.
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Figure 6.8: After preprocessing, walking data of pressure sensor 1 from left shoe.

After the synchronization part is done and after we have removed the noisy part

of the data, we are ready to retrieve the summary of data. In our case, we only used the

mean and standard deviation as a feature of the sample data. From our first

experiment, we found that a sample size of 60 from the left or right shoe works pretty

well for our purposes. We had to find the time equivalent of 60 samples from shoes

with accelerometer data and gyroscope data. For the accelerometer, it is about 80

samples and for gyroscope data it is about 167 samples. This of course is due to a

different sampling rate of accelerometer, gyroscope and shoes. Data from both shoes

has the same sampling frequency while the sampling frequency of the accelerometer

and gyroscope are different. Each 60 samples of pressure data from shoes (or each 80

samples in case of accelerometer data or each 167 samples in case of gyroscope data)

were converted to summary data from the time series data. The gyroscope had the

highest sampling rate where sampling frequency for left and right shoe was lowest.

But our sample size was calculated so that they always reflect the same time duration

for each of these four sensors.

After creating the summary files, we are almost ready to apply the machine

learning algorithms. We compile our data so that in each file we have the summary
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data for running, sitting, standing and walking. There are four such files for each of the

four kinds of data: left shoe data, right shoe data, gyroscope data and accelerometer

data. The next step is to make a single file for each of the four sensor systems with an

additional column indicating the activity. Sample rows from such files are shown in

table 6.2. For example, the first row in table 6.2 is derived by estimating the mean and

standard deviation of 60 samples of acceleration while running. Other rows were

similarly derived from the acceleration data while sitting, standing and walking

respectively. Of course, the original file has a lot more than just one row for each

activity (426 rows in total).

mean(X) std(X) mean(Y) std(Y) mean(Z) std(Z) mean(Res) std(Res) Activity
-10.1356 8.2814 -1.2303 4.7405 0.4934 6.9485 14.2984 6.2752 running
-7.6059 0.1863 2.4499 0.3183 6.1035 0.1939 10.0620 0.1828 sitting
-0.9902 0.2050 -10.5848 0.1583 -0.8619 0.1934 10.6697 0.1495 standing
-0.1999 3.0774 -10.0015 4.5001 -0.077 4.4461 11.1049 5.1232 walking

Table 6.2: Four sample rows of summary accelerometer data.

mean(X) is the average of 60 sample of acceleration along X-axis.

std(X) is the variance of 60 sample of acceleration along X-axis.

mean(Y ) is the average of 60 sample of acceleration along Y-axis.

std(Y ) is the variance of 60 sample of acceleration along Y-axis.

mean(Z) is the average of 60 sample of acceleration along Z-axis.

std(Z) is the variance of 60 sample of acceleration along Z-axis.

Resultant (Res) is obtained by the following equation.

Resultant, R =
√
ax2 + ay2 + az2

6.7.4 Learning

Then, we applied decision tree algorithms to each file compiled to find a

classifier. In each case, the decision tree algorithms gave us a classifier. Now we have
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four classifiers for each of four kinds of data (pressure data from the left shoe, pressure

data from the right shoe, accelerometer data from the phone in the pocket and

gyroscope data from the phone in the pocket) from four sensor systems. The classifiers

are mentioned below. Each of these classifiers is actually a decision tree.

1) Classifier 1

This classifier classifies based on the accelerometer data. The accuracy is

99.5305%.

2) Classifier 2

This classifier classifies based on the gyroscope data. The accuracy is

94.3662%.

3) Classifier 3

This classifier classifies based on the pressure data from the left shoe. The

accuracy is 99.061%.

4) Classifier 4

This classifier classifies based on the pressure data from the right shoe. The

accuracy is 98.8263%.

One thing that needs to be emphasized is that these classifiers were developed

by applying the decision tree on summary data similar to rows in table 6.2, not the

actual time series data. Because of our synchronization work, it was ensured that each

nth row in the summary file for acceleration represent a time period which is the same

time period in the nth row of summary file for gyroscope, nth row of summary file for

the left shoe, and nth row of summary file for the right shoe.

6.7.5 Combined Algorithm for Activity Recognition

In this setting, we developed the following algorithm which basically is a

fusion of four classifiers. In short, this is how it works: Classifier 1 takes

accelerometer data as input and outputs an activity. In the same way, classifier 2, 3,

and 4 takes gyroscope data, pressure data from left shoe and pressure data from right
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respectively. All four classifiers output activity based on the decision tree they have

learned previously in the learning phase. After each classifier gives an activity as

output, the algorithm decides the final activity based on the majority vote. This is

known as majority voting algorithm. It is displayed in figure 6.9.

Figure 6.9: Fusion of four sensor systems using majority voting.

6.7.6 Activity Recognition and Evaluation

In this particular setting we have 4 files each consisting of 426 rows of

summary data. Each of these rows was created using a summary of 60 samples of

pressure data (or 80 samples of accelerometer data from phone or 167 samples of

gyroscope data from phone). Four separate classifiers were learnt (decision tree in our

case) based on four separate datasets in the learning phase. Now in the recognition
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phase, for a given input, each decision tree decides an activity using the corresponding

classifier. Final activity is decided based on what the majority of classifiers have

decided. In the case of a tie, we consider it an error and failure to classify. We

implemented the following algorithm to evaluate performance.

Algorithm 1 Majority Voting
1: procedure ALGORITHM 1
2: for R=1: NumberOfRows do
3: Apply classifier 1 on the data of row R from accelerometer summary file
4: Store the decided activity in decision acc
5: Apply classifier 2 on the data of row R from gyroscope summary file
6: Store the decided activity in decision gyro
7: Apply classifier 3 on the data of row R from left summary file
8: Store the decided activity in decision left
9: Apply classifier 4 on the data of row R from right summary file

10: Store the decided activity in decision right
11: Final activity ← majority vote(decision acc, decision gyro,
12: decision left, decision right)
13:

The Majority vote function finds the activity that has the highest vote. Rows

from accelerometer summary file, gyroscope summary file,

left summary file, right summary file are passed through the algorithm.

Here we discuss the evaluation of this algorithm. We implemented each

classifier in Matlab. Our results show that though each classifier individually shows

errors, their combination using MajorityV oting results in a zero error system. For

example, row 94 is classified as sitting by classifier 1, while classifier 2 classifies it to

be walking, classifier 3 and 4 both classifies it to be running. So the final activity will

be decided as running (voted by majority classifiers). Any tie among decisions of

classifiers will be assumed to be an error. The following table summarizes different

combination of sensor systems and corresponding number of errors (misclassification).
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Structure Number Of Errors

Fusion of 4 sensor systems

Classifier 1,2,3,4 0

Fusion of 3 sensor systems

Classifier 1,2,3 1

Classifier 1,2,4 1

Classifier 1,3,4 0

Classifier 2,3,4 0

Fusion of 2 sensor systems

Classifier 1,2 9

Classifier 1,3 1

Classifier 1,4 3

Classifier 2,3 9

Classifier 2,4 12

Classifier 3,4 3

Table 6.3: Number of Errors against number of classification system

As we can see, algorithm 1 uses data from all four sensor system and using this

algorithm for our data, there was zero error. Average number of errors in general

decreases with the incorporation of more and more sensor system as can be seen in

figure 6.10.

6.8 Discussion

In table 6.3, we want to emphasize the row where we showed classifier 3 and 4

together made 3 errors. Classifier 3 and 4 were learned based on pressure data

collected from the left shoe and the right shoe. These two classifiers also take pressure
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Figure 6.10: Number of Sensor system Vs Average number of Errors.

data as input during the recognition time. This means that classification based on only

shoe data is possible with reasonable accuracy. As a result it is possible to detect

activities in scenarios where people take their phone out of their pocket, assuming they

still are keeping their shoes on. The advantage is that though people tend to use their

phones in various ways, the phone is almost always within the Bluetooth range of them

hence in range of their shoes. This shows that our architecture ensures robustness

against various human behavior patterns validating our contribution 2 (C2). We

identified some caveats (C4) during the development of our prototype and proposed

some solutions to address them. Our proposed combined algorithm and its evaluation

is contribution 5 (C5). To show that our architecture works, we synchronized data

from all four sensor systems. In reality, we do not need to synchronize all these data.

6.9 Conclusions

We showed that a decision made from the data of multiple sensors is more

accurate than decisions made from data of a single sensor system. In the next chapter,

we expand this idea to experiment with four more activities. For now, we worked with

60 samples of pressure data and their time-equivalent accelerometer and gyroscope

data.
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Chapter 7

Activity Detection Using Multimodal Approach in Cross Sub-
ject Setting for More Activities

7.1 Introduction

In the previous chapter, we developed a multimodal approach for activity

detection where we used majority voting fusion to determine the final activity. In this

chapter, we expand this approach for multiple subjects and for more activities. In the

last chapter, we worked with four activities: sitting, standing, walking and running. In

this chapter, we have expanded our framework to include four more activities: cycling,

driving, climbing stairs down and up. We also collected data for one more subject.

However, for subject 2 we have data for 6 activities.

Our discussion in this chapter includes following topics.

• In the last chapter, we showed how our multimodal approach works for four

activities. Here, we will show that our multimodal approach works very well

even when we incorporate 8 activities.

• In previous chapter, we included 1 subject only. In this chapter, we discuss how

our approach performs when we include multiple subjects.

7.2 Single Subject Multiple Activities

For our experiments, we used decision tree classifier.

7.2.1 Accelerometer

Using only accelerometer data, the decision tree gives an 98.01% accuracy for

a single subject 8 activities scenario. The tree we generated has 11 leaves and 21

nodes. The confusion matrix is shown below.
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a b c d e f g h ←Classified as

119 1 0 0 1 0 0 0 | a=cycling

0 132 0 0 0 0 0 0 | b=driving

0 0 120 0 0 0 0 1 | c=running

1 0 0 119 0 0 0 0 | d=sitting

0 0 0 0 68 2 0 4 | e=stair Down

0 0 2 0 4 76 0 0 | f=stair Up

0 0 0 0 0 1 129 0 | g=standing

0 0 0 0 1 0 0 123 | h=walking

Table 7.1: Confusion matrix for activity detection based on accelerometer data.

From the confusion matrix in table 7.1, it seems that stair Up is sometimes

misclassified as stair Down whereas descending down stairs is sometimes misclassified

as walking.

7.2.2 Gyroscope

Using only gyroscope data, the decision tree gives an 89.61% accuracy. The

tree we generated has 30 leaves and 59 nodes rendering it almost impractical to

implement it. A classifier generated from gyroscope data also introduces more errors

as evident from the confusion matrix in table 7.2. The confusion matrix is shown

below.
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a b c d e f g h ←Classified as

114 4 0 0 2 0 1 0 | a=cycling

5 106 0 7 0 0 15 0 | b=driving

0 0 121 0 0 0 0 0 | c=running

0 9 0 105 0 0 6 0 | d=sitting

1 0 0 0 72 0 0 1 | e=stair Down

1 0 0 0 2 78 0 1 | f=stair Up

0 20 0 18 0 0 92 0 | g=standing

0 0 1 0 0 0 0 123 | h=walking

Table 7.2: Confusion matrix for activity detection based on gyroscope data.

7.2.3 Pressure data from left shoe

Using only pressure data from left shoe, the decision tree gives an 99.12%

accuracy. The tree we generated has 9 leaves and 17 nodes rendering it easy to

implement it. The confusion matrix is shown below.
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a b c d e f g h ←Classified as

122 0 0 0 0 0 0 1 | a=cycling

0 134 0 0 0 0 0 0 | b=driving

0 0 121 0 1 0 0 0 | c=running

0 0 0 120 0 0 1 0 | d=sitting

0 0 1 0 72 0 0 1 | e=stair Down

0 0 1 0 0 82 0 0 | f=stair Up

0 0 0 0 0 0 131 0 | g=standing

0 0 2 0 0 0 0 121 | h=walking

Table 7.3: Confusion matrix for activity detection based on pressure data from left shoe.

7.2.4 Pressure data from right shoe

Using only pressure data from right shoe, the decision tree gives an 99.12%

accuracy. The tree we generated has 8 leaves and 15 nodes rendering it easy to

implement it. The confusion matrix is shown below.
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a b c d e f g h ←Classified as

122 0 0 0 1 0 0 0 | a=cycling

0 132 0 0 0 0 0 0 | b=driving

0 0 121 0 0 0 0 0 | c=running

0 0 0 121 0 0 0 0 | d=sitting

0 0 0 0 73 0 0 1 | e=stair Down

0 1 0 0 0 80 0 1 | f=stair Up

0 0 0 0 0 0 132 0 | g=standing

0 1 0 0 1 2 0 119 | h=walking

Table 7.4: Confusion matrix for activity detection based on pressure data from right
shoe.

7.2.5 Multimodal Approach

In the multimodal approach, for each type of sensor data, we create a classifier.

As we have four sensors, and hence four types of data, we have four classifiers. We

applied each of these classifiers to their corresponding data to get actual and predicted

class for each time segment. What it means is that for each time segment, we have

accelerometer data, gyroscope data , pressure data from left shoe and pressure data

from right shoe. We apply the corresponding decision tree classifier to each time

segment who either correctly or incorrectly classify that instance of time segment.

Thus for each segment, we have four classification decisions and by using majority

voting fusion, the final decision about classification is made. There were 0 errors out

of 903 time segments using this multimodal approach. This, off course, is the case

when training and testing is performed on one subject’s data. We demonstrate this

with some sample rows in table 7.5.

For example, row 3 in table 7.5 explains the case for time segment 22.
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Accelerometer Gyroscope Left Shoe Data Right Shoe Data
inst# actual predicted error actual predicted error actual predicted error actual predicted error Decision
7 drive drive drive drive drive drive drive stand + drive
10 drive drive drive cycle + drive drive drive drive drive
22 cycle cycle cycle stair

Dow
+ cycle cycle cycle cycle cycle

...
...

...
...

...
...

...
...

...
...

...
...

...
...

32 walk walk walk run + walk walk walk walk walk
45 sit sit sit stand + sit sit sit sit sit
116 cycle drive + cycle cycle cycle cycle cycle cycle cycle
305 walk walk walk walk walk stair

Down
+ walk walk walk

576 walk walk walk walk walk walk walk stair Up + walk

Table 7.5: Error labels by different sensor systems.

Classification from accelerator data correctly classifies the time segment 22 as cycling.

However, the classifier from gyroscope data wrongly classifies this time segment as

descending down stairs. The classifier from left shoe data and the classifier from right

shoe data also correctly classify this time segment 22 as cycling data. In summary,

three out of four classifiers classify time segment 22 correctly. According to the

majority voting fusion that we adopted, the final decision (last column in table 7.5)

will be cycling (correct classification).

Interestingly, our multimodal approach works as well as combining all features

from all sensor systems. We combined all features from all four sensor systems

creating a system of 368 features and applied decision tree algorithm. We achieved

100% accuracy. The tree was quite simple too, with 8 leaves and 15 nodes. As the

accuracy is 100%, we are not providing any confusion matrix.

7.3 Multiple Subjects

We collected data for another subject for all eight activities. However, due to a

technical problem, data for running and cycling activities were corrupted for subject 2.

We selected our subject based on shoe size. We ensured that both subjects have the

same shoe size. From previous experience, we know that our pressure data is not

useful when different subjects have a different shoe size. Here we test the
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performances of our system across different subjects.

In all the following cases, we considered six activities, and we applied the

decision tree learning algorithm.

Acceleration: Subject 1 trained using subject 1’s data achieves 97.73%

accuracy when tested on the data from same subject. However, when tested on subject

2’s data, the accuracy drops to 84.08%. Following is the confusion matrix when

subject 2’s data is tested on the decision tree developed from subject 1’s data only.

a b c d e f ←Classified as

168 0 0 0 0 0 | a=driving

0 84 0 0 0 0 | b=sitting

0 0 17 4 5 17 | c=stair Down

0 0 2 44 2 0 | d=stair Up

0 5 0 0 82 0 | e=standing

0 0 29 18 0 38 | f=walking

Table 7.6: Confusion matrix for testing on subject 2’s data based on accelerometer data
from subject 1.

Gyroscope: Subject 1 trained using subject 1’s gyroscope data achieves

98.94% accuracy when tested on the data from the same subject. However, when

tested on subject 2’s data, the accuracy drops to 54.37%. Following is the confusion

matrix when subject 2’s gyroscope data is tested on the decision tree developed from

subject 1’s gyroscope data only.
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a b c d e f ←Classified as

112 13 0 0 43 0 | a=driving

4 67 0 0 13 0 | b=sitting

10 0 11 12 0 10 | c=stair Down

3 0 18 24 0 3 | d=stair Up

13 11 0 0 63 0 | e=standing

0 0 41 41 0 3 | f=walking

Table 7.7: Confusion matrix for testing on subject 2’s data based on gyroscope data
from subject 1.

Left Shoe Data: Subject 1 trained using subject 1’s pressure data from left

shoe achieves 99.85% accuracy when tested on the data from the same subject.

However, when tested on subject 2’s data, the accuracy drops to 42.72%. Following is

the confusion matrix when subject 2’s data is tested on the decision tree developed

from subject 1’s data only.

a b c d e f ←Classified as

94 0 0 14 58 0 | a=driving

0 70 0 0 0 14 | b=sitting

0 0 10 33 0 0 | c=stair Down

0 0 2 46 0 0 | d=stair Up

0 74 0 0 0 14 | e=standing

0 0 80 6 0 0 | f=walking

Table 7.8: Confusion matrix for testing on subject 2’s left shoe data based on left shoe
data from subject 1.
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Right Shoe Data: Subject 1 trained using subject 1’s pressure data from right

shoe achieves 100% accuracy when tested on the data from the same subject.

However, when tested on subject 2’s data, the accuracy drops to 0.77%. Right shoe is

heavily used during driving activity. The asymmetric use of left shoe and right shoe

during driving probably explains so many misclassifications in cross-subject setting.

Following is the confusion matrix when subject 2’s data is tested on the decision tree

developed from subject 1’s data only.

a b c d e f ←Classified as

0 0 0 168 0 0 | a=driving

0 0 63 22 0 0 | b=sitting

0 18 0 0 25 0 | c=stair Down

0 48 0 0 0 0 | d=stair Up

0 0 0 88 0 0 | e=standing

3 0 8 71 0 4 | f=walking

Table 7.9: Confusion matrix for testing on subject 2’s right shoe data based on the
decision tree from right shoe data from subject 1.

We go through a similar process for subject 2’s data. We develop our model

using subject 2’s data for training and test it on subject 1’s data.

Acceleration: Subject 2 trained using subject 2’s data achieves 100% accuracy

when tested on the data from the same subject. However, when tested on subject 1’s

data, the accuracy drops to 57.25%.

Gyroscope: Subject 2 trained using subject 2’s gyroscope data achieves

98.84% accuracy when tested on the data from the same subject. However, when

tested on subject 1’s data, the accuracy drops to 60.18%.

Left Shoe Data: Subject 2 trained using subject 2’s pressure data from left
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shoe achieves 100% accuracy when tested on the data from the same subject.

However, when tested on subject 1’s data, the accuracy drops to 21.47%.

Right Shoe Data: Subject 2 trained using subject 2’s pressure data from right

shoe achieves 99.8% accuracy when tested on the data from the same subject.

However, when tested on subject 1’s data, the accuracy drops to 38.25%.

We also evaluated the performance of classifiers in a mixed subject setting.

Instead of using just one subject’s data, we used mixture of both subjects’ data for

training our decision tree model. Later, we used each subject’s data as test data and

evaluated the performance of these classifiers developed from using a mixture of both

subjects’ data as training data.

Acceleration Data: We used mixture of both subjects’ acceleration data to

develop a decision tree classifier. On the mixed data, the accuracy is 99.74%. We

achieved an accuracy of 99.69% when the decision tree was applied to the acceleration

data of subject 1. We achieved an accuracy of 99.8% when the decision tree was

applied to the acceleration data of subject 2.

Gyroscope Data: We used a mixture of both subjects’ gyroscope data to

develop a decision tree classifier. On the mixed data, the accuracy is 98.47%. We

achieved an accuracy of 98.18% when the decision tree was applied to the gyroscope

data of subject 1. We achieved an accuracy of 98.83% when the decision tree was

applied to the gyroscope data of subject 2.

Left Shoe Data: We used a mixture of both subjects’ pressure data from left

shoe to develop a decision tree classifier. On the mixed data, the accuracy is 99.57%.

We achieved an accuracy of 99.39% when the decision tree was applied to the left shoe

data of subject 1. We achieved an accuracy of 99.8% when the decision tree was

applied to the left shoe data of subject 2.

Right Shoe Data: We used a mixture of both subjects’ pressure data from right

shoe to develop a decision tree classifier. On the mixed data, the accuracy is 99.57%.
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We achieved an accuracy of 99.54% when the decision tree was applied to the right

shoe data of subject 1. We achieved an accuracy of 99.6% when the decision tree was

applied to the right shoe data of subject 2.

7.3.1 Multimodal Approach in Cross-Subject Setting

In the multimodal approach, for each type of data, we create a classifier.

However, in cross-subject setting, we create our classifiers by using mixture of data

from both subjects as training data. We iterate the same process for all four types of

data, namely, accelerometer, gyroscope, left shoe and right shoe. For each time

segment, we have accelerometer data, gyroscope data, pressure data from left shoe and

pressure data from right shoe.We apply the corresponding decision tree classifier to

each type of data on a given time segment to either correctly or incorrectly classify that

instance of time segment. However, using majority voting fusion, we observed 0 errors

out of 1174 time segments. Table 7.10 demonstrates our multimodal approach in a

mixed-subject setting using some sample rows.

Accelerometer Gyroscope Left Shoe Data Right Shoe Data
inst# actual predicted error actual predicted error actual predicted error actual predicted error Decision
56 drive drive drive stand + drive drive drive drive drive
144 sit sit sit drive + sit sit sit sit sit
289 stair

Dow
stair Up + stair

Dow
stair
Dow

stair
Dow

stair
Dow

stair
Dow

stair
Dow

stair
Dow

411 stand stand stand drive + stand stand stand stand stand
...

...
...

...
...

...
...

...
...

...
...

...
...

...

426 stand stand stand drive + stand stand stand stand stand
439 stand stand stand stand stand sit + stand stand stand
706 drive drive drive sit + drive drive drive drive drive
1009 stand stand stand sit + stand stand stand stand stand

Table 7.10: Error labels by different sensor systems in Mixed Subject Setting.

For example, in the last row in the table (instance 1009), the classifier

developed from accelerometer data from both subjects’ data correctly classifies the

time segment as standing. In the same way, the classifier generated from pressure

sensor data (of both subjects) from left shoe correctly classifies the time segment. The
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same is true for the classifier generated from pressure sensor data (of both subjects)

from right shoe. However, the classifier generated from gyroscope data (of both

subjects) incorrectly classifies the time segment as sitting. As we used majority voting

fusion technique, the final classification decision is correct (standing) in spite of

misclassification from gyroscope based classifier.

7.3.2 Summary

The majority voting fusion technique works quite well in our multiple sensor

system as is evident from our experiments. This is true for single subject setting as well

as multiple subject setting. Majority voting fusion technique has some advantages.

Accuracy: Accuracy is quite good as is evident from our experiments. Even if there

are errors from the decision of one sensor, the combined decision using all four sensor

often corrects the error and thus improves the overall accuracy of fusion.

Robustness: Even if one of the sensor systems is not working, our multimodal

approach can still work quite well using other sensor systems. For example, if the data

from right shoe is not available due to connection loss, the majority voting fusion with

other three sensors can still work quite accurately.

Usable: In an ideal scenario, the phone should be in the pocket since we trained our

models assuming that the phone would be in the pocket. However, even if the phone is

not in the pocket, accuracy will be still good based on the classification decision from

left shoe and right shoe data. In a real life scenario, it is not uncommon for people to

not carry their phone in their pockets. In the majority voting fusion technique, such

natural human behavior can be accommodated without losing significant accuracy.

However, more work is needed to accommodate such scenarios.

7.3.3 Conclusion

In this chapter, we presented our findings from experiments with eight

activities; whereas earlier, we presented our findings from four activities. We also
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presented our findings involving more than one subject. We found drastic drop of

accuracy when we tried to detect activities using a model trained on another subject.

However, accuracy improves dramatically when both subjects’ data is used for training

to develop the model.

7.4 Related Publications

• Ferdaus Kawsar and Sheikh Iqbal Ahamed. Activity Detection System Using

Majority Voting Fusion in A Heterogeneous Sensor Platform for Multiple

Subject Setting in preparation.
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Chapter 8

Activity Detection Using Time-Delay Embedding with Gaus-
sian Mixture Model

8.1 Introduction

The theoretical basis for this time series classification comes from the work of

Takens [88] and Sauer et al. [82]. Their work shows that a time series of observation

samples from a system can be used to reconstruct a space topologically equivalent to

original system. It is very easy to reconstruct such reconstructive phase space.

Time-delay embeddings attempt to reconstruct the state and dynamics of an unknown

dynamical from observations of that system taken over time [35]. Formulating time

series algorithm using multi-dimensional phase space is different than algorithms

developed using time or frequency domain features.

If a time series x = xn, where n = 1 . . . N , a reconstructive phase space (RPS)

matrix of dimension d and time lag τ is given by its row vectors:

xn = [xn−(d−1)τ . . . . . . x(n−τ)xn]

Determining the dimension, d, of reconstructive phase space (i.e. how many

measurements have to be considered) and determining τ (at what time the

measurements should be taken) is a key problem. A row vector is a point in RPS. To

be topologically equivalent, d must be greater than twice the box cutting dimension. In

our case, d is unknown. However, in our case we experimented with d = 2 and d = 3

and will present our findings for these two cases.

Following is a plot of a time series for pressure data for pressure sensor 1 (PS1)

from left shoe.
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Figure 8.1: Data from PS1 for left shoe for running.

A definite structure is visible from following phaseplot in 2 dimension where

time lag is 5.
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Figure 8.2: PhasePlot in 2 dimension with time lag 5 for running data from pressure
sensor 1 of left shoe.
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Structure is also obvious from following figure where we made a phase plot in

3 dimension for time lag 5 and 10.

2000
1500

Pressure(kPa)

1000
500

00

500

1000

Pressure(kPa)

1500

1500

2000

500

0

1000

2000

Pr
es

su
re

(k
Pa

)

Figure 8.3: PhasePlot in 3 dimension with time lag 5 and 10 for running data from
pressure sensor 1 of left shoe.

8.2 Our Approach

First we demonstrate our experiment in the case of 2 activities only: running

and sitting. We used Gaussian Mixture Model (GMM) with Expectation

Maximization(EM) algorithm for classification of embedding features. We build two

models for both running and sitting from pressure sensor data, P1 of left shoe. We

used 5 mixtures for GMM. When tested, sitting data for sitting model showed higher

probability; same was true for running data for running model. That means GMM with

time delay embedding can accurately distinguish these two activities of sitting and

running.
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We define LPmn as the log probability of applying data of n activity on the

model of activity m. We also define following symbols for 8 activities:

R for running

s for sitting

W for walking

St for standing

Sd for stair down

Su for Stair up

C for cycling and

D for Driving

The following table shows the log probability for just 1 pressure sensor data,

P1 from left shoe.

Case Log Probability

Testing running data against running model (LPRR) −3.0050× 10+04

Testing sitting data against sitting model (LPss) −1.7031× 10+04

Testing sitting data against running model (LPRs) −4.2674× 10+04

Testing running data against sitting model (LPsR) −1.1068× 10+06

Table 8.1: Log probabilities for siting and running activity for P1 from left shoe.

From the above table we see that LPRR>LPsR. We also find that LPss>LPRs.

The significance of this numbers is that we can distinguish running and sitting using

just 1 pressure sensor P1’s data. After a running model is developed from running data

and sitting model is made from sitting data, applying running and sitting data on these

models show that the probability of running data coming from running model is higher

than it coming from sitting model.

In the following table, we expand to include standing activity making it a three
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activity scenario.

Case Log Probability

Testing running data against running model (LPR R) −5.2250× 10+04

Testing sitting data against sitting model (LPs s) −3.3829× 10+04

Testing standing data against standing model (LPSt St) −4.025× 10+04

Testing sitting data against running model (LPR s) −1.3754× 10+05

Testing running data against sitting model (LPs R) −1.6040× 10+06

Testing standing data against sitting model (LPs St) −8.1173× 10+04

Testing sitting data against standing model (LPSt s) −4.0219× 10+04

Testing standing data against running model (LPR St) −1.2025× 10+05

Testing running data against standing model (LPSt R) −1.1099× 10+06

Table 8.2: Log probabilities for siting, running and standing activity for P1 from left
shoe.

Since (LPR R) >(LPs R) and (LPR R) >(LPSt R), running activity can be

correctly classified.

Since (LPs s) >(LPR s and (LPs s) >(LPSt s), sitting activity can be correctly

classified.

Since (LPSt St) >(LPs St) and (LPSt St) >(LPR St), standing activity is

correctly classified.

We also carried out similar analysis for four activity system and found out that

this approach can correctly classify activities in four activity setting. In our case, these

four activities are: sitting, standing, walking and running.
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8.3 Findings and Evaluation

Based on our preliminary experiments, we expanded our system to 8 activity

system. These 8 activities are: cycling, running, climbing stairs down, climbing stairs

up, walking, sitting and driving.

For each activity, we worked with 3000 samples and we divided the samples in

20 windows making each window with 150 samples. We applied GMM with EM for

training. Here we are working with data of single subject. Parameters are as follows:

Number of Gaussian Mixture: 5

Time Lag, τ = 5

dimension, d =6

Time Lag, τ and dimension, d were empirically obtained. We adopted a grid

search approach and observed the values of tau and d for which activity detection

accuracy is best. The following table shows a confusion matrix derived from applying

our approach on accelearation along X-axis. We use the following symbols in the

tables: C for cycling, R for running, Sd for downstairs, Su for Upstairs, St for standing,

W for walking, Si for sitting and D for driving. Miss-classifications are shown in red.

Out of 8× 20 = 160 time segments, 11 time segments are misclassified (93.13%

accuracy).

W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 W14 W15 W16 W17 W18 W19 W20 Actual

C C C C C C C C C C C C C C C C C C C C C

R R R R R R R R R R R R R R R R R R R R R

Sd Sd Sd Sd Sd Sd Sd Sd Sd Sd Sd Sd Su Sd Sd Sd Sd Sd Su Su Sd

Su Su Su Su Su Su Su Su Su Su Su Su Su Su Su Su Su Su Su Su Su

St St St St St St St St St St St St St St St St St St St St St

W W W W W W W W W W W W W W Sd Sd Sd Sd Sd Sd W

Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si

D D D D D D D D D D D D D D C C D D D D D

Table 8.3: Confusion matrix using GMM based on accelerometer data along X-axis.

A much better accuracy is achieved by using accelerometer along Y-axis as
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obvious from the following table (table 8.4)

W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 W14 W15 W16 W17 W18 W19 W20 Actual

C C C C C C C C C C C C C C C C C C C C C

R R R R R R R R R R R R R R R R R R R R R

Sd Sd Sd Sd Sd Sd Sd Sd Sd Sd Sd Sd Sd Sd Sd Sd Sd Sd Sd Sd Sd

Su Su Su Su Su Su Su Su Su Su Su Su Su Su Su Su Su Su Su Su Su

St St St St St St St St St St St St St St St St St St St St St

W W W W W W W W W W W W W W W W W W W W W

Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si

D D D D D D D D D D D D D D D D D D D D D

Table 8.4: Confusion matrix using GMM based on accelerometer data along Y-axis.

We generated similar confusion matrix based on data from P1, P2, P3, P4, P5,

P7. In each case, there are 20× 8 = 160 classifications. For P1, there are 41

miss-classifications. Similarly, for P2, 31; for P3, 9; for P4, 29; for P5, 9; and for P7,

there were 12 miss-classifications. As an example of performance of pressure sensors,

we show the confusion matrix of P3.

W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 W14 W15 W16 W17 W18 W19 W20 Actual

C C C St C Si C C C C C C C D C C C C C C C

R R R R R R R R R R R R R R R R R R R R R

Sd Sd Sd Sd Sd Sd Sd Sd Sd Sd Sd Sd Sd Sd Sd Sd Sd Sd Sd Sd Sd

Su Su Su Su Su Su Su Su Su Su Su Su Su Su Su Su Su Su Su Su Su

St St St St Si St St St St St St St St St St St St St St St St

W W W W W W W W W W W W W W W W W W W W W

St St St Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si

D D D D D D D D D D D D C D D D D D D C D

Table 8.5: Confusion matrix using GMM based on pressure sensor data P3 of left shoe.

8.4 Conclusion

Most promising aspect about time-delay embedding with GMM is that

significantly good accuracy is obtained just from analysis of small number of sensor

data. We have not applied this approach on gyroscope data, neither did we apply on

pressure data from right shoe. We are now working to develop a fusion of this
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approach. For example, we can generate decisions from P1, P2 and P3 sensor and

obtain the final decision from fusion of multiple sensor for any time segment. Even

with one sensor, we have significant accuracy.

Consequently, it will be possible to reduce computational complexity if we use

small number of sensors. As a result, a more energy-saving system can be reality.

Such systems can reduce energy cost in two ways. First, as fewer sensor data will be

transmitted over Bluetooth, energy can be saved by reducing energy for Bluetooth

transmission. Second, as there is less data and consequently, less computation, reduced

energy will be needed for computation. Memory and computational saving is

significant as it is most likely that activity detection applications will run on

resource-constraint smart phones. Most activity system demands real-time detection of

accuracy. Reduction in computational cost implies extended battery life.

Computational power and battery life, both are scarce resource in cell phones and an

algorithm that protects these resources are obviously preferable.

8.5 Related Publications

• Ferdaus Kawsar, Md. Kamrul Hasan, Richard Love, Sheikh I Ahamed: A

Novel Activity Detection System using Plantar Pressure Sensors and

Smartphon, in Compsac (Taichung, Taiwan)(2015).
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Chapter 9

Conclusion

9.1 Summary

Dramatic increase in computational power and memory in smart phones have

created opportunities for innovative solutions. We have developed e-ESAS, a remote

symptom monitoring system. We built a prototype activity detection system that can

detect three activities and send a summary of these activities regularly to a remote

server, which can be accessed by anyone who wants to monitor. This prototype system

can detect sitting, standing and walking. We have developed multi-modal activity

detection algorithm and evaluated it’s performance in single and multi-subject

environment. A time-delay embedding with GMM approach we developed and

applied reduce the requirement of number of sensors reducing the requirement of

computational power and memory.

9.2 Contributions

The contribution of this research work is algorithm development, system

design and development, and identifying and solving various usability issues. The

contributions are briefly as follows:

• Developed a methodology for building remote symptom monitoring system for

rural women in developing countries. We also diagnosed the barriers and

cataloged crucial observations in the development of smart phone based system

in developing countries.

• Designed, developed and deployed e-ESAS, a smart phone based remote

symptom monitoring system and identify and resolve the challenges in the

endeavor. We also evaluated the system’s performance by studying feedback

from users after deployment.
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• Built a prototype activity detection system that can detect basic activities for

monitoring by remote users.

• Developed a unique majority voting fusion algorithm to classify activities in a

multi-sensor framework. We evaluated the algorithm in

‘single-subject-4-activity’, ‘single-subject-8-activity’ and

‘multiple-subject-6-activity’ scenario.

• Developed a computationally inexpensive process using time-delay embedding

with Gaussian Mixture Model classification for activity recognition.

9.2.1 Survey of Activity Detection Systems

We have conducted a comprehensive study on research work on activity

detection systems. We primarily focused on accelerometer based activity detection

systems. A significant amount of research have been carried out so far and the interest

has gone up with the widespread use smart phones. However, many challenges still

remain to be addressed. Though a number of commercial products have recently hit

the market, an unobtrusive system that accurately detects good number of human

activities is still proving challenging .

9.2.2 e-ESAS: Remote Symptom Monitoring System

We have designed, developed, deployed and evaluated a smart phone based

remote symptom monitoring system. We also have identified the challenges associated

with building smart phone based systems for rural developing countries. The

methodology we adopted can be translated to the development of similar systems in

other developing countries. We have scaled our pilot study of ten patients to more than

1100 patients in three different countries for a cross-sectional study. It proves that such

mobile based symptom monitoring system can be applied in realistic scenarios.

Lessons learned from our experience can be valuable in monitoring other chronic
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diseases.

9.2.3 Activity Detection

In case of activity detection system, we have developed a prototype system that

can detect sitting, standing and walking. The system can also transmit these

information remotely to a remote server which can be accessed by a doctor. We

developed a multimodal algorithm and evaluated its performance in single and multiple

subject setting. Our time-delay embedding with GMM can be useful in reduction of

computational cost, which is important in a resource-constraint smart phone.

9.3 Broader Impact

Smart phone based remote monitoring of human parameters have the potential

to create far-reaching impact. Successful development of such systems can

significantly change the way we access healthcare services. Health care cost is

becoming unsustainable in developed world and tools that can reduce cost is extremely

significant. We believe e-ESAS has the potential to positively impact health care

system. We have already redeveloped e-ESAS in Android platform and deployed it to

collect various information along with ESAS symptoms for a cross-sectional study.

Symptom data as well as image data has been collected from Bangladesh, Nepal and

North Dakota, USA from more than 1100 patients. Another e-ESAS like systems can

simplify accesses to healthcare services for both patients and doctors, another

far-reaching byproduct is the collection of large amount of health data. These data can

be analyzed for research and critical observations can be made which might not be

possible in the absence of such system.

Activity detection in real-time is also crucial. In context-sensitive applications,

remote monitoring of patients or elderly people, or for simply to track user’s level of

physical exercise, such systems are invaluable.

Recently, there is a significant rise in effort to measure health parameters in
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portable devices driven by mainly mass use smart phones. If enough parameters can be

detected or computed, it may significantly reduce the need for travel. Thus a paradigm

shift may be possible through these efforts.

9.4 Future Works

There is much opportunities for research to advance knowledge in activity

detection. For example, in our research we have repeatedly observed that

performances of algorithms deteriorate when multiple subjects are involved. One way

to address this challenge is to develop a way to learn activities for each person. In that

case, in phone learning will be needed to accommodate personalized calibration. We

plan to investigate ways to develop in-phone learning techniques. Another way is to

develop an algorithm robust enough to work across subjects. Our multimodal approach

shows promising results in later approach. In our experiment, we exclusively used

decision tree classifier. We plan to investigate SVM, HMM, GMM, Naı̈ve Bayes to

find the best classifier for multiple subject environment. Our experiment with

time-delay embedding shows exciting outcome. In the future, we plan to incorporate

multimodal fusion approach with time-delay embedding to improve accuracy further.
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