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ABSTRACT 

BIOMECHANICAL CHARACTERIZATION AND EVALUATION OF 

CONSERVATIVE CLUBFOOT CORRECTION 

 

 

Tamara L. Cohen, B.S. 

 

Marquette University, 2015 

 

 

Congential talipes equinovarus, or clubfoot, affects approximately 200,000 

newborns worldwide each year and presents with equinovarus of the hindfoot, as well as 

cavus and adduction of the midfoot. In addition to bone malformation and displacement, 

soft tissue contractures encapsulate the medial and posterior aspects of the affected foot. 

The Ponseti method is a conservative treatment that progressively repositions the 

clubfoot through weekly casting, followed by bracing. Concerns exist regarding the 

variability in outcomes, resistance to treatment, and risk of relapse, which occur in 

approximately 10% of the population. Potential factors contributing to variability and 

resistant clubfoot include cast material performance, as well as biomechanics of medial 

soft tissue of the clubfoot. There are no clinical guidelines for clubfoot correction based 

upon mechanical response of commonly used casting materials, nor the mechanics of the 

medial fibrotic clubfoot tissue. Untreated or under-corrected clubfoot can result in 

abnormal gait, pain, and further foot deformity.   

The purpose of this research was to investigate the biomechanics of conservative 

clubfoot correction through: i) a kinematic assessment of the creep behavior of three 

common cast materials used during conservative correction, ii) development and 

validation of a benchtop system for the mechanical evaluation of miniature soft tissue 

specimens, and iii) performing a mechanical analysis to model the behavior of medial 

fibrotic mass tissue (MFMT) from children with clubfoot.    

Utilizing a model to simulate clubfoot correction, creep rotation was found to be 

dependent on cast material with maximum values for plaster-of-Paris (θ ≈ 2.1 deg). 

Reducing cast creep may result in a more efficient correction. Utilizing nylon 

monofilament, the benchtop system was validated against a commercial system (MTS). 

Versatility was demonstrated with quasistatic and viscoelastic protocols performed on 

PTFE tape and rabbit ligament, respectively. Clubfoot MFMT underwent a quasistatic 

and viscoelastic protocol, including requisite preconditioning as well as stress relaxation. 

Major findings include high specimen variability, less relaxation than reported for normal 

deltoid ligaments, and estimated QLV model parameters with R
2
 > 0.8 for 16 specimens. 

Results from this research provide mechanical insight into the correction process that 

may lead to individualized, evidence-based clubfoot care. Future directions include in 

vivo analysis of tissue properties and mechanical-genetic correlation.   
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CHAPTER 1: INTRODUCTION 

1.1 Statement of Problem 

Clubfoot is a congenital deformity of the lower extremity, occurring in 

approximately 1 in 1000 births (Dobbs et al., 2009; Parker et al., 2009; Roye, Hyman and 

Roye, 2004; Roye and Roye, 2002; Shabtai, Specht and Herzenberg, 2014; Wallander, 

2010; Zhang et al., 2014). It presents with equinovarus of the hindfoot, as well as cavus 

and adduction of the midfoot, due to bone displacement and malformation, as well as soft 

tissue abnormalities (Dobbs et al., 2009; Morcuende, 2006; Roye, Hyman and Roye, 

2004). Morphological studies remark on thickening of soft tissue and describe a fibrous 

mass encapsulating the medial and posterior side of the foot, resulting in reduction in 

movement and elasticity of the tissue (Aurell et al., 2002; Fukuhara, Schollmeier and 

Uhthoff, 1994; Hersh, 1967; Ippolito and Ponseti, 1980; Sano et al., 1998; Turco, 1971; 

Windisch et al., 2007). The Ponseti method is a widely accepted conservative treatment 

that uses weekly manipulation and castings to progressively elongate the soft tissue and 

correct the positions of the bones of the clubfoot (Dobbs et al., 2009; Morcuende et al., 

2005; Ponseti, 2000; Ponseti and Morcuende, 2004). Although this technique is highly 

successful, there are still concerns in the variability in outcomes, resistance to treatment, 

and risk of relapse. This pathology has a strong tendency to relapse, possibly due to 

treatment incompliance and the nature of deformity (Ponseti, 2002). Although various 

casting materials have been qualitatively studied in conjunction with the Ponseti method, 

the mechanical performance of these materials during treatment has yet to be assessed 

(Brewster et al., 2008; Coss and Hennrikus, 1996; Ng, Lam and Cheng, 2010; Pittner et 
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al., 2008). In addition, little is known about the material properties and mechanical 

behavior of the soft tissue exposed to treatment. 

The purpose of this research is to investigate the biomechanics of conservative 

clubfoot correction. This will be completed by: i) conducting a kinematic assessment of 

the creep behavior of three common cast materials used during conservative correction, 

ii) developing and validating a benchtop system for the mechanical evaluation of 

miniature soft tissue specimens, and iii) performing a mechanical analysis to model the 

behavior of medial fibrotic mass tissue (MFMT) from children with clubfoot. The results 

from this study will provide mechanical insight into the correction process that may lead 

to improved patient care. 

1.2 Clubfoot Pathology and Morphology 

 Congenital talipes equinovarus, or 

clubfoot, affects 130,000 to 200,000 

newborns every year worldwide (Owen et al., 

2012). This deformity may present as 

secondary to other disorders, such as those 

neuromuscular in nature, or as idiopathic. 

The etiology of idiopathic clubfoot is not well 

understood and may have multiple factors 

(Dobbs et al., 2009; Roye, Hyman and Roye, 

2004; Wallander, 2010; Zhang et al., 2014). 

The condition varies in severity and is characterized by an equinovarus hindfoot 

deformity, as well as cavus and adduction of the midfoot (Figure 1-1 A) (Aurell et al., 

Figure 1-1: Clubfoot Deformity. A) 

Clubfoot presentation. ("Selected 

Pediatric Conditions," 2010)  B) 

Transverse section of right clubfoot 

shows tibionavicular ligament (TN) to 

be very thick and short (Ippolito and 

Ponseti, 1980). 
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2002; Dobbs et al., 2009; Ippolito, 1995; Morcuende, 2006; Roye, Hyman and Roye, 

2004; Roye and Roye, 2002). Not only are the bones displaced, but alterations in the soft 

tissue are observed (Figure 1-1 B). Histological studies have noted a thick, fibrotic mass 

encapsulating the medial and posterior side of the clubfoot, which may affect success of 

treatment (Aurell et al., 2002; Fukuhara, Schollmeier and Uhthoff, 1994; Hersh, 1967; 

Ippolito and Ponseti, 1980; Sano et al., 1998; Turco, 1971; Windisch et al., 2007). Hersh 

described a disc-like fibrous mass between the medial end of the navicular and the medial 

malleolus. Turco expressed that the pathological contractures of the deltoid and spring 

ligaments, talonavicular capsule, and posterior tibialis tendon bind the navicular, 

sustentaculum tali and medial malleolus. The effect of this abnormally occurring tissue, 

termed the medial fibrotic mass tissue (MFMT) by our group, on the success of 

conservative treatment is unknown. 

1.3 Clubfoot Treatment and Relapse 

Treatment typically is 

performed within the first month of 

birth and can include surgical or 

conservative interventions. Within 

the last few decades, the Ponseti 

method, developed by Dr. Ignacius 

Ponseti, has become the standard 

conservative clubfoot correction 

(Dobbs et al., 2009; Ponseti and 

Figure 1-2: Phases of Ponseti Method, 

represented by casts of the left clubfoot (Ponseti 

and Campos, 1972) 
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Campos, 1972; Ponseti and Morcuende, 2004). This treatment involves weekly 

manipulation and plaster casting of the clubfoot to progressively re-position the foot 

towards normal form. Although this treatment is widely accepted and successful, relapses 

of the deformity do occur. In cases of resistance to conservative treatment, the clubfoot is 

corrected surgically. Results from previous studies have indicated the potential success of 

the Ponseti method with the use of cast materials other than plaster of Paris (Brewster et 

al., 2008; Coss and Hennrikus, 1996; Ng, Lam and Cheng, 2010; Pittner et al., 2008). 

Cast the comfort level of the patient, but also the efficacy of the technique. A 

biomechanical characterization of clinical casting materials when applied to correct 

pathological clubfoot has not been performed. There are no clinical guidelines for 

clubfoot correction based upon mechanical response of commonly used casting materials. 

Untreated or under-corrected clubfoot can result in abnormal gait, pain, and further foot 

deformity.  

Clubfoot has a strong tendency to relapse, especially the hindfoot equinus and 

varus deformities, regardless of treatment method (Ponseti, 2002). Relapse is dependent 

on both treatment compliance as well as the nature of the clubfoot deformity. 

Contractures of the soft tissue, such as those comprising the MFMT, may hinder 

treatment. To date, research on clubfoot structure has focused on this tissue pathogenesis 

and morphology (Fukuhara, Schollmeier and Uhthoff, 1994; Ippolito, 1995; Ippolito and 

Ponseti, 1980; Ponseti and Campos, 1972; Sano et al., 1998). However, few studies have 

investigated the mechanics of these tissues, nor have longer term strategies for the 

treatment of severe clubfoot been based upon these principles (Hattori et al., 2007). 

Mechanical tests can provide information on material properties and time-dependent 
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(viscoelastic) behavior of the soft tissue as it responds to treatment. The ultrastructure and 

mechanical behavior of the fibrotic mass must be characterized in order to understand the 

deformation it undergoes during conservative correction. 

1.4 Current Conservative Clubfoot Treatment 

Early conservative strategies of clubfoot correction, such as forceful 

manipulations or manipulations that correct individual components of the deformity, have 

resulted in incomplete corrections or additional complications (Dobbs et al., 2009; 

Herzenberg, Radler and Bor, 2002; Ippolito et al., 2003; Richards et al., 2008). However, 

within the last half century, more successful, non-invasive treatments have been 

developed, such as the French Functional Method and the Ponseti method (Dobbs et al., 

2009; Faulks and Richards, 2009; Ponseti, 2000; Richards et al., 2008).    

The French Functional Method is a non-operative method of correction that 

requires daily manipulations of the clubfoot by a physiotherapist and immobilization with 

elastic and non-elastic adhesive tape. Success rate for this strategy is reported to be 74% 

(Cassis and Torres-Gomez, 2009; Dobbs et al., 2009; Richards et al., 2008), however, it 

is time consuming, as this treatment is 

performed daily by the physician and 

parents until the child is walking.     

The Ponseti method involves a 

series of manipulations and castings 

followed by brace application, and often a 

percutaneous Achilles tenotomy, to 

Figure 1-3: Denis-Browne brace.  To be 

worn 23 hours per day for at least a year to 

prevent relapse.(Ponseti, 2000) 
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progressively obtain the correct position of the foot (Dobbs et al., 2009; Morcuende, 

2006; Morcuende et al., 2005; Ponseti and Campos, 1972; Ponseti and Morcuende, 

2004). Average treatment length is about five weeks, although, it varies depending on the 

severity of the deformity. Following casting, the patient is required to wear a foot 

abduction brace, such as the Denis-Browne brace, 23 hours a day for at least a year to 

prevent relapse. Investigators have reported high success rates, above 80%, using the 

Ponseti method as a treatment for clubfoot (Abdelgawad et al., 2007; Docker et al., 2007; 

Laaveg and Ponseti, 1980; Ponseti and Morcuende, 2004; Zionts et al., 2010). Treatment 

success is typically based on qualitative assessments using severity scores (Dimeglio et 

al., 1995; Dyer and Davis, 2006; Flynn, Donohoe and Mackenzie, 1998; Scher, 2004) and 

visual analysis of the affected foot (Cassis and Torres-Gomez, 2009; Graf et al., 2012; 

Smith et al., 2013). Although the Ponseti method is regarded as the standard of practice 

for clubfoot correction, not all clubfeet respond to this treatment. In addition, some 

patients experience relapse of the deformity. This is due to not only compliance issues, 

but the nature of the deformity as well. Unfortunately, it is still unclear as to how the 

etiology and nature of the abnormal tissues in the clubfoot affect the success of treatment. 

 The historical standard for clubfoot immobilization has been plaster of Paris 

(Dobbs et al., 2009). It has been praised for its moldability and patient comfort for serial 

casting purposes. However, it can be heavy, takes a long time to dry completely, and 

requires soaking for several hours or a cast saw to remove, risking skin injury. 

Alternative cast materials, such as fiberglass, used in conjunction with the Ponseti 

method have been proposed (Brewster et al., 2008; Coss and Hennrikus, 1996; Ng, Lam 

and Cheng, 2010; Pittner et al., 2008; Zmurko, Belkoff and Herzenberg, 1997). Recent 
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studies have examined the effect of using other orthopaedic cast materials on the efficacy 

of the Ponseti method, however, conclusions were unclear. Pittner et al. reported lower 

severity scores for patients treated using plaster of Paris than for those treated with semi-

rigid fiberglass, however, satisfaction ratings favored the latter. Coss et al. found that 

parents preferred semi-rigid fiberglass over plaster of Paris, as well, due to its ease of 

removal, durability, and performance. In addition, results of using semi-rigid fiberglass 

from Brewster et al. were comparable to those of previous studies using plaster of Paris. 

Efficacy based on mechanical behavior of the cast materials has not been addressed. 

Material selection could affect not only the comfort level of the patient, but also 

treatment outcomes and duration. 

1.5 Cast Materials in Orthopaedics 

 Three common cast materials utilized in orthopaedics are plaster of Paris, rigid 

fiberglass, and semi-rigid fiberglass. Although studies have qualitatively examined casts 

used in the Ponseti method, the appropriate casting material has not been identified based 

on mechanical properties. Over the last few decades, studies have been conducted to 

determine the mechanical properties and advantages of different cast materials, as well as 

to identify the advantages of using one material over another (Berman and Parks, 1990; 

Callahan et al., 1986; Davids et al., 1997; Deshpande and Deshpande, 2005; Martin et al., 

1988; Mihalko, Beaudoin and Krause, 1989; Philbin and Gittins, 1999; Rowley et al., 

1985; Schmidt, Somerset and Porter, 1973; Zmurko, Belkoff and Herzenberg, 1997). 

Several metrics have been investigated to define material properties, including stiffness, 

ultimate strength, and yield strength, based on tests applying short durations of 

compression, tension and bending. These metrics were examined after the recommended 
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Figure 1-4: Ligament structure. (Galloway, Lalley 

and Shearn, 2013) 

curing time for weight bearing and at high loads. Several studies found plaster of Paris to 

be stiffer, yet less strong, than synthetic cast materials. Few studies have examined the 

time dependent behavior of these materials, however, it has not been modeled (Davids et 

al., 1997; Deshpande and Deshpande, 2005; Mihalko, Beaudoin and Krause, 1989). 

Mihalko et al. attributed different regions of elasticity to the individual materials in the 

plaster of Paris cast, hard plaster and elastic gauze. Investigations of pressure response on 

different cast materials concluded that these materials do exude a viscoelastic behavior 

(Davids et al., 1997; Deshpande and Deshpande, 2005). However, none of these tests 

were based on models that adequately represent clubfoot correction. Corrective casts used 

with the Ponseti method are applied across a joint and are subjected to complex loads for 

up to seven days. These previous models do not account for the permanent deformation 

that occurs under prolonged, low level loading conditions, or creep.  

1.6 Characterization of Clubfoot Soft Tissue 

Ligaments are 

connective tissue that link 

bones to bones, and act as 

passive joint stabilizers 

(Frank, 2004; Martin, Burr 

and Sharkey, 1998; 

Winkelstein, 2013). The 

mechanical behavior of 

ligaments is influenced by 
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the tissue’s composition and structure, which consists of densely packed aligned type I 

collagen fibers (70% of dry weight) in an amorphous extracellular matrix of 

proteoglycan, glycosaminoglycan (20%-30% dry weight), and water (Figure 1.4) (70% 

wet weight) (Elliott et al., 2003; Frank, 2004; Oza, Vanderby and Lakes, 2006; Wang, 

Guo and Li, 2012; Winkelstein, 2013). Orientation of the collagen fiber bundles in 

typically developing ligaments is along the principal axis of stress (Frank, 2004; Jung, 

Fisher and Woo, 2009; Martin, Burr and Sharkey, 1998; Nordin and Frankel, 2012; 

Winkelstein, 2013). 

 Studies describing the pathology have focused on morphology and pathogenesis 

(Aurell et al., 2002; Fukuhara, Schollmeier and Uhthoff, 1994; Ponseti and Campos, 

1972; Sano et al., 1998), however, they have yet to give a quantifiable depiction of the 

clubfoot connective tissue. Ippolito and Ponseti showed shortened and thicker than 

normal medial ligaments. These findings were supported by those of Aurell, who used 

ultrasound to measure the increased thickness of the medial soft tissue. Histological and 

immunohistochemical studies have found medial soft tissue of clubfeet to have 

disorganized arrangement of collagen fibers (Fukuhara, Schollmeier and Uhthoff, 1994; 

Ippolito and Ponseti, 1980; Sano et al., 1998). An immunohistochemical study by Sano et 

al. found the ligamentous cells to be arranged haphazardly with varying nuclei shapes. 

Findings from Fukahara et al. included disruption of collagen fiber orientation, 

fragmented bundles, irregular fascicles, and densely packed collagen fibers.   

 Little is known about the material properties and mechanical behavior of the soft 

tissue in the clubfoot. Hattori in 2007 examined elasticity of medial, posterior and lateral  



10 

 

specimens of clubfoot hindfoot soft tissue (deltoid and calcaneofibular ligaments and 

capsular tissue) using scanning acoustic microscopy (Hattori et al., 2007). This 

technology measures the tissue sound speed at the microscopic level. A relationship 

exists between speed of sound and elastic modulus, density and Poisson’s ratio. Medial 

tissue had reportedly lower sound speed, therefore, lower elastic modulus values than its 

lateral tissue counterparts. However, the Poisson’s ratio of these tissues was unknown 

and the values of the modulus were not able to be calculated. In addition, no studies have 

investigated the viscoelastic behavior of clubfoot soft tissue and its effect on conservative 

treatment. 

The lack of information regarding the time- and history- dependent behavior of 

cast materials and of the MFMT of the clubfoot necessitates the current study to 

biomechanically characterize clubfoot treatment. 

1.7 Time-Dependent Mechanical Testing and Analysis 

Viscoelasticity is the time-dependent stress and strain behavior of a material. 

When subjected to a low-level constant load or stress for a prolonged period of time, a 

material will experience a phenomenon called creep (Figure 1-5B). When elongated and 

held at a constant and small displacement or strain for a prolonged period of time, the 

material is said to undergo stress relaxation (Figure 1-5A), Another phenomena of 

viscoelasticity is called hysteresis, which occurs during the loading and unloading of a 

material, and represents the energy dissipated as heat during deformation and recovery 

phases (Figure 1-5C). For ligaments, it has been hypothesized that these phenomenon are 

due to molecular reorganization and interaction between collagen and proteoglycans 
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(Elliott et al., 2003; Frank, 2004; Purslow, Wess and Hukins, 1998; Woo, Johnson and 

Smith, 1993).     

Viscoelasticity can be linear and dependent on time, or nonlinear and dependent 

on both time and stress or strain. For a linear viscoelastic material, strain is proportional 

to stress, e.g. at any given time during creep, the strain ε resulting from a stress cσ equals 

the constant c times the strain resulting from σ [i.e., 𝜀(𝑡𝑖, 𝑐𝜎) =  𝑐𝜀(𝑡𝑖, 𝜎)]. Alternatively, 

the stress-strain relationship for nonlinear viscoelastic materials does not follow this 

trend. Linearity can be determined using an isochronous stress vs. strain plot, where 

stress and strain are plotted for a given time. Mathematical models have been developed 

to describe both types of behavior (Abramowitch and Woo, 2004; Oza, Vanderby and 

Lakes, 2006; Woo, Johnson and Smith, 1993; Woo, 2005).  

Figure 1-5: Phenomenon of viscoelasticity (Tanaka and van Eijden, 2003). 
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The most common model used for ligament behavior characterization is the quasi-

linear viscoelastic model presented by Fung and has been used by many investigators to 

model ligaments and tendons (Abramowitch and Woo, 2004; Abramowitch et al., 2003; 

Fung et al., 1972; Funk et al., 2000; Oza, Vanderby and Lakes, 2006; Woo, Johnson and 

Smith, 1993; Woo, 2005). Quasi-linear viscoelasticity (QLV) is a special type of 

nonlinear superposition for which time and stress dependence are separable (Fung et al., 

1972). For this case, the creep compliance or relaxation modulus is a product of time 

dependent and stress or strain dependent functions. If 𝜀(𝑡) is the time dependent strain, 

𝜎(𝑡) is the time dependent stress, 𝐽(̅t) is the reduced creep function, and 𝐺̅(𝑡) is the 

reduced relaxation function (Eqs. 1.1 and 1.2), 

Creep:   𝜀(𝑡) =  𝐽(̅𝑡)𝜀𝑒(𝜎)        ( 1.1 ) 

Stress Relaxation: 𝜎(𝑡) =  𝐺̅(𝑡)𝜎𝑒(𝜀).         ( 1.2 ) 

The elastic responses, 𝜎𝑒(𝜀) and 𝜀𝑒(𝜎), represent the maximum stress and strain in 

response to an instantaneous step input of strain 𝜀 and stress 𝜎, respectively. The reduced 

creep and relaxation functions represent the time-dependent stress and strain responses 

normalized by the stress and strain at the time of the step input, respectively [i.e., 

𝐽(̅𝑡) =  
𝜀(𝑡)

𝜀𝑜
, 𝐽(̅0+) = 1; 𝐺̅(𝑡) =

𝜎(𝑡)

𝜎𝑜
, 𝐺̅(0+) = 1.] Assuming the validity of the 

Boltzmann superposition principle, for a general strain history, the stress at time t, 𝜎(𝑡), 

takes the form of the convolution integral:  

𝜎(𝑡) =  ∫ 𝐺̅(𝑡 − 𝜏)
𝜕𝜎𝑒(𝜀)

𝜕𝜀

𝜕𝜀

𝜕𝜏
𝜕𝜏

𝑡

−𝑡

.                                                           ( 1.3 ) 

 The overall height of the relaxation curve is representative of the purely strain dependent 

elastic nonlinearity, while time dependence manifests itself in the shape of the curve. 

Time dependent behavior is the same for creep curves regardless of stress level and 



13 

 

relaxation curves for any level of strain. For soft tissue whose stress-strain relationship is 

not very sensitive to strain rate, the relaxation function can be expressed by the equation 

proposed by Fung (Eq. 1.4) (Abramowitch and Woo, 2004; Fung et al., 1972) and used to 

define specific material coefficients:   

𝐺̅(𝑡) =  
1 + 𝐶 (𝐸1 (

𝑡
𝜏2

) − 𝐸1 (
𝑡
𝜏1

)]

1 + 𝐶𝑙𝑛 (
𝜏2

𝜏1
)

,                                                           (1.4) 

where 𝐸1(𝑦) =  ∫
𝑒−𝑧

𝑧
𝑑𝑧

∞

𝑦
 is the exponential integral. Parameters 𝐶, 𝜏1, and 𝜏2 are 

material coefficients, where C determines the magnitude of viscous effects and is related 

to the percentage of relaxation, while 𝜏1, and 𝜏2 govern initial and late relaxation 

(Abramowitch et al., 2004). A more generalized function for relaxation is the decaying 

exponential function (Eq 1.5) (Funk et al., 2000; Thornton et al., 1997; Toms et al.; Wills, 

Picton and Davies, 1972):  

𝐺(𝑡) = 𝐺1𝑒
−𝝀1𝑡 + 𝐺2𝑒

−𝝀2𝑡 + 𝐺5𝑒
−𝝀3𝑡,                                                       (1.5) 

 where G1-3 are material coefficients, while  λ1-3 are rates representing exponential decay 

constants and related to exponential the time constant [λ = 1/τ]. If A and B are material 

coefficients, the elastic response 𝜎𝑒(𝜀) can be described using the exponential 

approximation (Eq. 1.6), 

𝜎𝑒(𝜀) = 𝐴(𝑒𝐵𝜀 − 1).                                                                                       (1.6) 

Physically, parameter B represents the rate of change of the slope of the stress-strain 

curve and the product AB represents the initial slope of the curve (Abramowitch et al., 

2004). The effect of QLV and decaying exponential parameter variation can be seen the 

stress relaxation curves in Figure 1-6. Parameter A has a linear effect on the peak and 

equilibrium stresses, while parameter B affects these values nonlinearly (Winkelstein, 
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2013). Variations in G1 and λ1 have a linear and nonlinear effect on the relaxation rate, 

respectively. G2 contributes linearly to the peak stress, while λ2 influences the late 

relaxation behavior. G3 and λ3 have minimal influence over the relaxation behavior, linearly 

and nonlinearly. 

To determine these parameters from reduced relaxation function 𝐺(𝑡) and elastic 

response, 𝜎𝑒(𝜀), curve-fitting is performed on the experimental data. Two methods are 

commonly utilized in literature: 1) instantaneous step assumption (Butler et al., 2004; 

Funk et al., 2000; Thornton et al., 1997) and 2) strain history approach (Abramowitch and 

Woo, 2004; Moon et al., 2006). The first assumes an instantaneous step input of the stress 

or load, therefore the initial rise is ignored and the relaxation function G(t) is calculated 

Figure 1-6: Effect of parameter variation on stress relaxation curves. Parameters 

include those from the decaying exponential function (G1-3 , λ1-3) and elastic response 

A, B).  For each subplot, all parameters except the parameter indicated on the plot are 

kept constant. 
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defining the time of peak force response as t = 0. This requires higher strain rates to 

minimize the rise time. To find A and B, elastic response from the stress-strain response 

during the ramping portion or approximated with the stress-strain isochrones at peak 

stress values of various strain magnitudes can be fitted with Eq. 1.6 (Abramowitch and 

Woo, 2004; Funk et al., 2000). The strain history approach, developed by Abramowitch 

and Woo (Abramowitch and Woo, 2004), takes into account the ramping phase of testing 

and assumes a constant strain rate γ during that time from 0<t<t0. In this method, the 

equation for reduced relaxation function (Eqs. 1.4 or 1.5) and the equation for elastic 

response (Eq. 1.6) are substituted into Eq. 1.3. For the decaying exponential function of 

relaxation, this takes the form: 

𝜎(0 ≤ 𝑡 ≤ 𝑡0) = 𝐴𝐵𝛾 ∫ {𝐺1𝑒
−𝝀1𝑡 + 𝐺2𝑒

−𝝀2𝑡 + 𝐺3𝑒
−𝝀3𝑡}𝑒𝐵𝛾𝜏 𝜕𝜏

𝑡

0

      (1.7) 

𝜎(𝑡 > 𝑡0) = 𝐴𝐵𝛾 ∫ {𝐺1𝑒
−𝝀1𝑡 + 𝐺2𝑒

−𝝀2𝑡 + 𝐺3𝑒
−𝝀3𝑡}𝑒𝐵𝛾𝜏 𝜕𝜏.

𝑡0

0

           (1.8) 

This method takes into account the relaxation that occurs during the ramping; therefore 

the estimates of the constants may be different between the two methods (Abramowitch 

and Woo, 2004; Dortmans, Sauren and Rousseau, 1984). 

1.8 Hypotheses and Specific Aims 

The goal of this study was to biomechanically characterize conservative clubfoot 

correction in order to aid in the development of improved treatment strategies for affected 

children. The objectives of this dissertation are to: i) evaluate creep behavior of three 

common cast materials occurring during simulated clubfoot correction based on the 

Ponseti Method and ii) characterize the mechanical behavior of medial fibrotic mass 

tissue from children with resistant or recurring clubfoot. The results of this study will be 
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useful in identifying a more appropriate material to be used in conservative treatment. 

Mechanical insight into the abnormal clubfoot tissue may assist in developing new 

corrective approaches. It is hypothesized that: 

1. Creep responses of three cast materials undergoing simulated clubfoot 

correction for minimum and maximum joint stiffness are pairwise the same. 

2. Tissue material properties and stress relaxation behavior of medial fibrotic 

mass tissue from clubfoot patients undergoing corrective surgery vary 

between specimens and differ from those of normal medial foot ligaments. 

To achieve the study objectives, the following specific aims were accomplished: 

1.  Quantify and compare the creep response of the cast-foot system as a 

function of resistive joint stiffness. 

a. Develop a casting technique to be used in accordance with the Ponseti 

method. 

b. Design and build a mechanical test system to be used to simulate 

conservative clubfoot correction. 

c. Develop and employ a two segment, three-dimensional motion 

analysis protocol to calculate joint (Euler) angles. 

d. Statistically analyze and model kinematic data using a 2-way 

ANOVA, post-hoc pairwise comparison with Tukey adjustment, and 

curve fitting. 

2. A) Develop and validate a soft tissue testing system for uniaxial material 

experimentation, and B) demonstrate system versatility via the testing of 

synthetic and biological specimens. 
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a. Develop structure and control program for a benchtop, portable 

mechanical system for the evaluation of miniature soft tissue 

specimens. 

b. Calibrate the system via a voltage-to-force correlation. 

c. Perform comparative uniaxial tensile tests on nylon monofilament 

using the custom-made machine and a commercially available material 

testing system. 

d. Statistically analyze elastic modulus to address system and machine 

validity. 

e. Conduct quasistatic and viscoelastic tests on PTFE tape and rabbit 

knee ligaments, respectively, to assess versatility. 

 

3.  Obtain material properties and model the behavior of the clubfoot MFMT in 

response to Ponseti method-based stress relaxation protocol. 

a. Perform a Ponseti method-based stress relaxation protocol on medial 

fibrotic mass tissue from pediatric clubfoot patients. 

b. Compute preconditioning hysteresis area, stiffness, elastic modulus, 

and reduced relaxation for each specimen. 

c. Assess the linearity of the stress relaxation behavior of the tissue via 

quasi-linear viscoelasticity. 

d. Statistically analyze the mechanical properties and stress relaxation 

model of the tissue between specimens and against reported values for 

normal medial ankle ligaments. 



18 

 

 

  



19 

 

CHAPTER 2: CAST MATERIAL ASSESSMENT 

This chapter details a quantitative evaluation of the response of three common 

cast materials during simulated conservative clubfoot correction. The creep rotation of 

three commonly used cast materials was monitored through the application of an 

experimental foot model simulating the second phase of clubfoot correction. Low and 

high constant torques were applied to the model to represent ankle joint stiffness 

severities. A version of this chapter was previously published in Journal of Engineering 

in Medicine (Cohen et al., 2013) and as an IEEE EMBS conference short paper (Cohen et 

al., 2012). 

2.1 Introduction 

Idiopathic clubfoot is a congenital deformity of the lower extremity, with a 

prevalence of one to six in 1000 births (Dobbs et al., 2009; Morcuende, 2006; Owen et 

al., 2012; Parker et al., 2009; Shabtai, Specht and Herzenberg, 2014; Terrazas-Lafargue 

et al., 2007). The Ponseti method is a mainstay conservative treatment technique that is 

widely accepted and practiced today (Dobbs et al., 2009; Morcuende, 2006; Ponseti and 

Campos, 1972; Richards et al., 2008; Roye, Hyman and Roye, 2004). It relies on 

manipulation and casting of the foot performed weekly for on average of five weeks, 

depending on deformity severity. Clubfoot correction by use of the Ponseti method has 

been shown to be successful in progressive correction of the foot (Abdelgawad et al., 

2007; Brewster et al., 2008; Herzenberg, Radler and Bor, 2002; Laaveg and Ponseti, 

1980; Morcuende, 2006; Radler et al., 2007; Zionts et al., 2010). 
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The historical standard for clubfoot immobilization has been plaster of Paris 

(POP) (Dobbs et al., 2009; Laaveg and Ponseti, 1980; Pittner et al., 2008; Ponseti and 

Campos, 1972). It has been praised for its moldability and patient comfort for serial 

casting purposes. However, it can be heavy, takes a long time to dry completely, and 

requires soaking for several hours or a cast saw to remove it, risking skin injury. Material 

selection could affect not only the comfort level of the patient, but also treatment 

outcomes and duration (Pittner et al., 2008). Alternative cast materials used in 

conjunction with the Ponseti method have been considered (Brewster et al., 2008; Coss 

and Hennrikus, 1996; Pittner et al., 2008; Zmurko, Belkoff and Herzenberg, 1997). Coss 

et al. found that parents preferred semi-rigid fiberglass (SRF) over POP due to its ease of 

removal, durability, and performance (Coss and Hennrikus, 1996).   

 Over the last few decades, studies have been conducted to determine the 

mechanical properties and advantages of different cast materials, as well as to identify the 

advantages of using one material over another (Berman and Parks, 1990; Callahan et al., 

1986; Davids et al., 1997; Deshpande and Deshpande, 2005; Martin et al., 1988; 

Mihalko, Beaudoin and Krause, 1989; Philbin and Gittins, 1999; Rowley et al., 1985; 

Schmidt, Somerset and Porter, 1973; Zmurko, Belkoff and Herzenberg, 1997). Several 

metrics have been investigated to define material properties, including stiffness, ultimate 

strength, and yield strength, based on tests applying short durations of compression, 

tension, and bending. However, these tests were based on models that do not adequately 

represent the clinical application. Corrective casts used with the Ponseti method are 

applied across a joint and are subjected to complex load for up to seven days. These 

previous models do not account for the permanent cast deformation that occurs under 
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prolonged, low level loading conditions, or creep. In a recent study performed by our 

group, differences in performance were seen between SRF and rigid fiberglass (RF) casts 

that were monitored on a custom-made clubfoot correction model (Cohen et al., 2012). 

POP has yet to be examined in this manner, and models addressing the linearity of the 

viscoelastic behavior of these cast materials have not been investigated. Further insight 

regarding the biomechanics of Ponseti cast correction will require continued modeling 

efforts (Zmurko, Belkoff and Herzenberg, 1997). A better understanding of the cast creep 

behavior may influence the duration and efficacy of clubfoot treatment. 

 The purpose of this study was to assess the ability of three common cast materials 

to hold the foot in position. The objectives addressed in this study were 1) to quantify 

creep of POP during Ponseti correction under two different corrective joint load 

conditions, 2) to assess the viscoelastic linearity of the limb-cast composite, and 3) to 

compare the results of the POP behavior test to those of synthetic cast materials. Cast 

creep was evaluated through application of an experimental foot model with an 

articulation acting in the transverse plane. Low and high torques were applied through the 

transverse plane to the model during the setting process and beyond as measured using 

three-dimensional motion capture technology. Cast creep was monitored by tracking the 

motion of the internal “foot” structure of the model. 

2.2 Materials and Methods 

2.2.1 Device Design 

A quasi-static cast testing device (QSCTD) was built to model pediatric clubfoot 

correction with long leg casting (Figure 2-1). Anatomic segments were constructed from 
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Figure 2-1: Representation of quasistatic cast 

testing device. 

1-inch diameter PVC couplings 

(Dura Plastic Products, Beaumont, 

CA). A stainless steel hinge (¼-

inch diameter pin, 3-11/32 inch 

leaf length) (McMaster-Carr, 

Illinois, USA) was cemented into 

the foot and shank segments. This 

hinge represented a single axis of 

correction about which the cast 

creep behavior was evaluated. Two joint stiffness conditions were simulated by the 

application of a constant torque through a weighted cable. These values represented the 

minimum and maximum corrective torques required to sufficiently abduct the foot of a 

Ponseti teaching model (MD Orthopaedics; Wayland, IA) to neutral position. Details of 

the torque acquisition protocol can be found in section 2.2.2. 

A triad of 7-mm diameter Infra-Red-light-Emitting-Diode (IRED) markers 

(Northern Digital Inc., Ontario Canada) was placed at each end of the device. The distal 

triad was situated at the same distance from the axis of rotation as the load application. It 

was secured in place with a metal rod through the shell of the PVC coupling with 

cyanoacrylate and bone cement. The proximal triad was formed by securing two markers 

at the ends of a thin metal rod that poked through the shell of the fixed PVC segment. 

The third marker was position with the same method, at an angle to the aforementioned 

rod. All markers faced an Optotrak Measurement System (0.01 mm resolution; 0.1 mm 
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3D accuracy) (Northern Digital Inc., Ontario Canada) in order to monitor three-

dimensional motion during testing.  

2.2.2 Torque Acquisition 

The constant torque values used in this study were acquired through the use of a 

pre-treated pediatric clubfoot training model (MD Orthopaedics; Wayland, IA). Two 

experienced orthopaedic surgeons (HA and PAS, Shriners Hospitals for Children®, 

Chicago, IL) simulated the Ponseti method of correction on the training tool. A force 

scale and calipers were used to measure the force applied to the model and the lever arm, 

the distance from the head of the talus to the point of load application, respectively.  

Seven trials in total were recorded and the minimum and maximum torques equated to 

0.45 Nm and 0.75 Nm respectively. 

2.2.3 Cast Materials 

The cast materials in this study included plaster of Paris (BSN Medical; Charlotte, 

NC), rigid fiberglass (3M™; Parsippany, NJ), and semi-rigid fiberglass (3M™; 

Parsippany, NJ) (Table 2-1). In accordance to standard casting practices, a single layer of 

cast padding (3M™; Parsippany, NJ) was wrapped around the device. Casting materials 

were supplied by the Orthopaedic Department at Shriners Hospitals for Children® in 

Chicago, IL.  
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Table 2-1: Casting materials and specifications. 

Material Brand Name Manuf. Size 
Water 

Temp 
Layers 

Setting 

Time 

Plaster of 

Paris 

Extra Fast Setting 

Specialist® Plaster 

Bandage 

BSN 

Medical 

2 in x 

3 yrds 
75

o
 F 4 2-4 min 

Semi-

Rigid 

Fiberglass 

3M™ Scotchcast™ 

Soft Cast 
3M™ 

2 in x 

4 yrds 
75

o
 F 4 3-4 min 

Rigid 

Fiberglass 

3M™ Scotchcast™ 

Plus Enhancing 

Performance 

Casting Tape 

3M™ 
2in x 

4 yrds 
75

o
 F 4 3-4 min 

Padding 
3M™ Synthetic 

Cast Padding 
3M™ 

2 in x 

4 yrds 
N/A 1 N/A 

 

2.2.4 Cast Testing Protocol 

Per vendor instructions, room temperature water was used for cast soaking. A 

latex sleeve, filled with two cotton balls, was placed loosely around the joint and secured 

to the two segments with rubber bands to 

protect the hinge from the padding and cast 

material. The device was held in static position 

with a stopper during the set-up and setting 

time. The torque (minimum or maximum value) 

was applied prior to application of padding and 

cast. A single layer of padding was wrapped, 

with 50% overlap, around the device, 

enveloping both segments, beginning at the 

point of load application on the distal segment. 

The device was casted by a trained 
Figure 2-2: Cast testing device set-

up. 
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investigator with each material based on the Ponseti method (9), standard casting 

practices, and manufacturers’ recommendations. The cast material was soaked in the 

room temperature water until all air bubbles escape from the roll. For plaster of Paris, the 

roll was lightly squeezed to remove excess water. For synthetic material, removal of 

excess water was not performed. Four layers of the cast were wound around the device, 

with 50% overlap and along the same length as the padding (Figure 2-2). Molding and 

contouring was performed to ensure a proper fit and adhesion. Timing began at the 

initiation of casting to monitor the setting time and data acquisition intervals. 

The distal segment was unfixed at three minutes forty-five seconds after the start 

of cast application. Data acquisition began four minutes after the start of cast application, 

for a period of ten minutes at a sampling frequency of 1 Hz. Two more ten minute 

intervals were collected beginning at eighteen minutes and sixty minutes into the trial. 

Five trials were completed for each cast material per torque for a total of thirty trials in 

this study.    

2.2.5 Coordinate System Set-up 

The coordinate systems of the foot and the shank-thigh segments were oriented 

with the z-axis pointing up, the y-axis pointing to the subject’s left, and the x-axis 

pointing forward (Figure 2-1). The origin of the distal segment was taken as the midpoint 

of the line between markers 1 and 2. The y-axis was defined as the vector from the origin 

pointing in the direction of marker 2. The z-axis was defined as the normal to the plane 

created by the vector from the origin in the direction of marker 3 and the y-axis. The x-

axis was calculated as the normal to the plane created by the y-axis and the z-axis. The 

origin of the proximal segment was taken as the midpoint of the line between markers 4 



26 

 

and 5. The y-axis was the vector from the origin pointing in the direction of marker 5. 

The z-axis was defined as the normal to the plane created by the vector from the origin in 

the direction of marker 6 and the y-axis. The x-axis will be calculated as the normal to the 

plane created by the y-axis and the z-axis. 

2.2.6 Analytical Methods 

The motion data from each trial were analyzed in a custom-written program in 

Matlab (MathWorks, Natick, MA), and Euler angles and translation were computed 

throughout testing. The Euler angle sequence, Z-Y-X, were used to describe the joint 

movement of the distal (foot) segment with respect to the proximal (shank-thigh) 

segment. The z-axis was assumed to align with the axis of the hinge. Creep rotation about 

the z-axis was calculated as: 

∆𝜃(𝑡)  =  𝜃(𝑡)  −  𝜃𝜊 ,                                                                                      (2.1) 

where 𝜃(𝑡) is the angle at time 𝑡, 𝜃𝜊 is the angle at time 𝑡𝜊, and 𝑡 is the time interval in 

seconds starting at 𝑡𝜊(elapsed time = 66 min). Creep rotation values were compared at the 

end of each trial and at the end of each interval. The creep rotation versus time data was 

𝑃𝑜 =  
𝑀4 +  𝑀5

2
 

𝑌𝑃 =  
𝑀5 −  𝑃𝑜

 𝑀5 −  𝑃𝑜 
 

𝑍𝑃 =
𝑀6 −  𝑃𝑜

 𝑀6 −  𝑃𝑜 
 𝑥 𝑌𝑃 

Proximal Segment 

𝑋𝑃 =  𝑌𝑃 x 𝑍𝑃  

Figure 2-3: Coordinate system set-up and equations. 
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𝑌𝐷 =  
𝑀2 −  𝐷𝑜

 𝑀2 −  𝐷𝑜 
 

𝑍𝐷 =
𝑀3 −  𝐷𝑜

 𝑀3 −  𝐷𝑜 
 𝑥 𝑌𝐷 

𝑋𝐷 =  𝑌𝐷 x 𝑍𝐷 

Distal Segment 
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curve-fitted using a nonlinear least squares formulation. Predicted values were calculated 

from the best-fit model at times of 20 minutes, 70 minutes, 72 hours, 5 days, and 7days.   

To further explore the behavior of the limb-cast composite, the quasi-linear 

viscoelasticity model (QLV), proposed by Fung (Fung et al., 1972), was used to assess 

stress and time dependencies of the creep (Eq. 2.2). 

𝜀(𝑡, 𝜎) = 𝐽(̅𝑡)𝜀𝑒(𝜎),                                                                                        (2.2) 

where 𝜀(𝑡, 𝜎) is the creep strain at time t under stress σ, 𝜀𝑒(𝜎) is the instantaneous elastic 

response and 𝐽(̅𝑡) is the reduced creep compliance function representing the time-

dependent strain response normalized by the strain at the time of the step input of stress. 

From torsional deformation theory, shear strain (γ) is proportional to the radius 

(𝑟) and length (𝐿) of a circular rod, as in Eq. 2.3: 

𝛾 =
𝑟𝜃

𝐿
,                                                                                                               (2.3) 

where θ is the rotation angle. Assuming equal radii and lengths across trials, it was 

possible to relate shear strain across groups in the form of rotation. Substituting Eq. 2.3 

into Eq. 2.2, the relationship between creep strain and creep compliance became: 

𝜃𝑐(𝑡, σ) =  𝐽(̅𝑡) ∗ 𝜃𝑒(σ),                                                                                 (2.4) 

where 𝜃𝑐(𝑡, 𝜎) is the creep shear strain represented by the rotation at time t under shear 

stress condition σ, and 𝜃𝑒(σ) is the elastic response at σ. The rotation data from each trial 

was normalized with the instantaneous elastic strain response to calculate the reduced 

creep function. Curve fitting was performed on the reduced creep function from trials of 

all three cast materials using nonlinear least squares formulation. 

Statistical analysis was performed using R (www.r-project.org). The distribution 

of residuals of the creep rotation, creep compliance, and parameter data were tested using 
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the Shapiro-Wilk test. Cast material and torque were the factors explored via one- and 

two-way ANOVA models and Tukey Honest Significance Difference tests. A Kruskal-

Wallis one-way ANOVA were performed on data not normally distributed. Significance 

level was defined as p < 0.05. This statistical approach was determined in conjunction 

with the project biostatistician. 

2.3 Results 

Translational and rotational kinematic data were computed from the recorded 

marker positions for all trials and used to determine creep. The resultant translational 

displacement between the segments was less than 0.05 mm for each of the cast materials  

under either torque. Creep rotation about the axis of the hinge (z-axis) of the POP, SRF, 

and RF trials corresponds with forefoot adduction (Figure 2-4). Figure 2-4 presents the 

mean and banded standard deviation of the experimental creep responses for the three 

cast materials tested during the three recorded time intervals.   

The mean creep rotation was calculated for the total trial and per interval (Table 

2-2). Comparing all three cast materials, the greatest amount of creep rotation was 

experienced by the POP. Within the first ten minutes of the hour long creep trial, all three 

cast materials underwent at least 65% of the total creep experienced. A two-way ANOVA 

found material type to significantly affect the total and interval creep rotation, while the 

effect of torque was negligible (Table 2-3). 
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A 

B 

Figure 2-4: Mean and standard deviation of creep rotation for POP, SRF, and RF 

under A) low and B) high torques. Interval 1: 4 – 14 minutes; Interval 2: 18 – 28 

minutes; Interval 3: 60 – 70 minutes. 
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Table 2-2: Creep rotation. Mean ± standard deviation creep rotation in each interval and 

total creep rotation about the axis of correction (z) of 3 cast materials under 2 torque 

conditions during simulated clubfoot correction. Interval 1: 4 – 14 minutes; Interval 2: 18 

- 28 minutes; Interval 3: 60 – 70 minutes. 

Cast 

Material 

Plaster of 

Paris 

Semi-rigid 

Fiberglass 

Rigid 

Fiberglass 

Torque Low High Low High Low High 

Interval 1 

(deg) 

1.7  

± 0.4 

1.6  

± 0.4 

0.6  

± 0.2 

0.6  

± 0.2 

0.2  

± 0.1 

0.4  

± 0.2 

Interval 2 

(deg) 

0.1  

± 0.03 

0.1  

± 0.01 

0.07  

± 0.02 

0.08  

± 0.02 

0.03  

± 0.02 

0.3  

± 0.02 

Interval 3 

(deg) 

0.01  

± 0.001 

0.02  

± 0.01 

0.02  

± 0.008 

0.02  

± 0.01 

0.008  

± 0.008 

0.007 

± 0.007 

Total  

(deg) 

2.1  

± 0.4 

2.0  

± 0.4 

0.9  

± 0.3 

0.8  

± 0.3 

0.3  

± 0.2 

0.5  

± 0.2 

 

 

Table 2-3: Table of statistics. Significance p–values are from the 2-way ANOVA and 

Tukey tests performed on the overall creep model for the total trial and the creep rotation 

seen during each interval. Intervals: (1): 4–14 min; (2): 18–28 min; (3): 60–70 min. 

*p<0.05. 

  Material Torque Interaction 

  p p P 

Total  < 0.0001*
 

0.85 0.4 

 POP – SRF < 0.0001*   

 POP – RF < 0.0001*   

 SRF – RF 0.01*   

Interval 1 < 0.0001*
 

0.87 0.3 

 POP – SRF < 0.0001*   

 POP –  RF <0.0001*   

 SRF –  RF 0.13   

Interval 2 < 0.0001* 0.55 0.86 

 POP – SRF < 0.0001*   

 POP – RF < 0.0001*   

 SRF – RF < 0.0001*   

Interval 3 0.0005* 0.88 0.58 

 POP – SRF 0.16   

 POP – RF 0.036*   

 SRF – RF 0.0003*   
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 Mathematical models of the creep rotation behavior of each cast material are 

presented in Figure 2-5(A-B). The responses of the cast materials were best described 

using a decaying exponential equation, 

𝐶(𝑡) = 𝐴1𝑒
−𝑏1𝑡 + 𝐶1𝑒

−𝑑1𝑡 + 𝐸1                                                                   (2.5) 

where 𝐶(𝑡) is the creep rotation response, t is the time (in seconds), and A1, b1, C1, d1 and 

E1 are parameters. Parameter values were significantly different between cast materials, 

however not across torque (Table 2-4). From these models, the mean amount of creep 

rotations was calculated for each material at 20 minutes, 70 minutes, 72 hours, five days, 

and seven days (Figure 2-6A). These predicted values were significantly different 

between cast materials. The percent of the seven day creep rotation at 70 minutes is 99% 

for the POP under both torques, 94% and 98% for the SRF under low and high torque, 

respectively, and 99% for the RF under both torques.   

Figure 2-5: Mathematical models of creep. Experimental and model fit creep rotation 

curves (A, B) and creep compliance curves (C, D) of POP, SRF, and RF under A,C) low 

and B,D) high torques. (𝐶(𝑡) = 𝐴1𝑒
−𝑏1𝑡 + 𝐶1𝑒

−𝑑1𝑡 + 𝐸1 and 𝐽(𝑡) =  𝐴2𝑒
−𝑏2𝑡 +

 𝐶2𝑒
−𝑑2𝑡 + 𝐸2)   

A B 

C D 
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 Trials curves of the creep function, 𝐽(𝑡), shown in Figure 2-5(C-D), were fit with 

a five parameter exponential equation: 

𝐽(𝑡) =  𝐴2𝑒−𝑏2𝑡 + 𝐶2𝑒
−𝑑2𝑡 + 𝐸2                                                             (2.6) 

 

where 𝐽(𝑡) is the reduced creep function, t is equal to time (in seconds), and A2, b2, C2, d2 

and E2 are parameters. Significant differences were not found across torque, however all 

parameters except A2 showed differences between the synthetic casts (Table 2-5). For 

values of 𝐽(𝑡), differences between cast materials are not seen during the trial length, 

however, extended out, significant differences are seen between the synthetic materials 

(Figure 2-6B). 
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Table 2-4: Parameters and R2 values of creep rotation model 𝑪(𝒕) = 𝑨𝟏𝒆−𝒃𝟏𝒕 +
𝑪𝟏𝒆−𝒅𝟏𝒕 + 𝑬𝟏. Significant p–values are from Tukey tests of normal parameter data and 

Kruskal-Wallis tests of non-normal parameter data across cast materials. 

Material Torque A1 b1 C1 d1 E1 R
2
 

POP 

Low 

-0.959 0.0113 -0.6233 0.001469 2.018 0.9954 

-1.094 0.03366 -0.9318 0.001532 2.225 0.9978 

-1.03 0.01186 -0.6737 0.001265 1.804 0.9983 

-0.7796 0.01357 -0.8761 0.001177 1.736 0.9993 

-1.608 0.009426 -0.8679 0.001406 2.613 0.9991 

High 

-0.8816 0.009919 -0.7119 0.001138 1.691 0.9990 

-1.338 0.01267 -0.8969 0.001629 2.383 0.9968 

-1.191 0.01154 -0.7552 0.001162 2.057 0.9991 

-1.097 0.01169 -0.8478 0.001336 2.094 0.9986 

-0.6427 0.01138 -0.7964 0.001145 1.494 0.9997 

SRF 

Low 

-0.5742 0.01165 -0.458 0.000648 1.161 0.9980 

-0.4523 0.009642 -0.5942 0.000724 1.107 0.9980 

-0.2903 0.009605 -0.5252 0.000769 0.8401 0.9994 

-0.1967 0.01183 -0.3908 0.000317 0.6032 0.9988 

-0.29 0.01177 -0.4204 0.000695 0.7449 0.9989 

High 

-0.4843 0.01012 -0.6256 0.000772 1.18 0.9992 

-0.2945 0.01139 -0.4448 0.000762 0.7773 0.9988 

-0.4725 0.009771 -0.5495 0.000763 1.086 0.9986 

-0.1799 0.01026 -0.2916 0.000781 0.4907 0.9987 

-0.2835 0.01161 -0.3896 0.000904 0.7095 0.9988 

RF 

Low 

-0.2071 0.01728 -0.4178 0.000867 0.6406 0.9992 

-0.2101 0.0154 -0.2005 0.001198 0.4385 0.9971 

-0.1076 0.02352 -0.07158 0.001189 0.1836 0.9878 

-0.1313 0.02053 -0.1636 0.001141 0.3065 0.9940 

0.01371 0.04286 -0.1268 0.000956 0.1252 0.9965 

High 

-0.2753 0.01673 -0.2901 0.001285 0.5927 0.9982 

-0.4026 0.01759 -0.3352 0.001288 0.8036 0.9977 

-0.2207 0.02355 -0.1267 0.00135 0.3591 0.9955 

-0.2068 0.02314 -0.1203 0.001367 0.3515 0.9942 

-0.261 0.02465 -0.3151 0.002165 0.5948 0.9979 

p – values 

Tukey 

Test 

POP - SRF < 0.0001* - < 0.0001* - < 0.0001*  

POP - RF < 0.0001* - < 0.0001* - < 0.0001*  

SRF - RF 0.21 - 0.0001* - 0.0056*  

Kruskal 

- Wallis 

POP - SRF - 0.56 - < 0.0001* -  

POP - RF - 0.012* - 0.88 -  

SRF - RF - 0.001* - < 0.0001* -  
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Table 2-5: Parameters and R
2
 values of reduced creep function 𝑱(𝒕) =  𝑨𝟐𝒆−𝒃𝟐𝒕 +

 𝑪𝟐𝒆−𝒅𝟐𝒕 + 𝑬𝟐.  Significant p-values are from non-parametric Kruskal-Wallis tests 

across cast materials. * p < 0.05. 

Material Torque A2 b2 C2 d2 E2 R
2 

POP 

Low 

-0.1122 0.03014 -0.08489 0.002098 1.196 .9948 

-0.2651 0.0448 -0.1925 0.001584 1.448 .9987 

-0.04441 0.01404 -0.02898 0.001341 1.073 .9988 

-0.05534 0.01597 -0.0591 0.001211 1.114 .9994 

-0.1814 0.0111 -0.1048 0.001522 1.287 .9992 

High 

-0.04861 0.01193 -0.03925 0.001208 1.088 .9990 

-0.4475 0.0159 -0.3122 0.001772 1.758 .9982 

-0.04179 0.01345 -0.02627 0.001228 1.068 .9991 

-0.1117 0.01468 -0.08551 0.001427 1.197 .9987 

-0.1265 0.01303 -0.1516 0.001174 1.278 .9996 

SRF 

Low 

-0.3039 0.0162 -0.2184 0.000745 1.525 .9975 

-0.3573 0.01224 -0.4521 0.00078 1.811 .9984 

-0.05489 0.01114 -0.0962 0.000793 1.151 .9995 

-0.126 0.01324 -0.2317 0.000333 1.358 .9990 

-0.05661 0.01412 -0.07666 0.000725 1.133 .9990 

High 

-0.1054 0.01272 -0.129 0.00082 1.235 .9990 

-0.08494 0.01397 -0.1207 0.000795 1.205 .9989 

-0.2128 0.01233 -0.2384 0.000822 1.452 .9987 

-0.05965 0.01228 -0.09249 0.000811 1.152 .9990 

-0.1306 0.01428 -0.1695 0.000942 1.3 .9990 

RF 

Low 

-0.1367 0.01956 -0.2581 0.000877 1.393 .9994 

-0.0667 0.01886 -0.05934 0.001245 1.126 .9982 

-0.1079 0.02541 -0.06857 0.001204 1.174 .9951 

-0.00261 0.003875 -0.04319 0.000894 1.045 .9941 

-0.02629 0.02348 -0.03035 0.001158 1.056 .9981 

High 

-0.07369 0.01954 -0.07295 0.001316 1.146 .9989 

-0.05222 0.02089 -0.04296 0.001328 1.095 .9986 

-0.05302 0.02585 -0.02898 0.001375 1.081 .9983 

-0.1624 0.02785 -0.08719 0.001424 1.247 .9975 

-0.05347 0.02802 -0.06088 0.0022 1.113 .9990 

p – values 

Kruskal 

- Wallis 

POP – SRF 0.55 0.23 0.06 0.0002* 0.17  

POP – RF 0.26 0.10 0.47 0.20 0.23  

SRF – RF 0.06 0.002* 0.002* 0.0003* 0.01*  
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2.4 Discussion 

The current work presents the evaluation of creep response of POP and two 

synthetic cast materials using a novel experimental set-up to simulate conservative 

Figure 2-6: Parameterics of predicted model parameters. A) Mean and standard 

deviation of predicted values of creep rotation, C(t), of Pop, SRF, RF, under low and 

high torque conditions at 20 min, 70 min, 72 h, 5 days, and 7 days. *p < 0.0001, **p  < 

0.01, ***p = 0.006. B) Median and interquartile range of predicted values of reduced 

creep compliance, J(t), of Pop, SRF, RF, under low and high torque conditions at 20 min, 

70 min, 72 h, 5 days, and 7 days. *p = 0.04, **p = 0.01.  
 

 

A 

B 
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clubfoot correction under a constant torque (Cohen et al., 2012). The study resulted in 

creep rotation responses of less than 2 degrees for all cast materials, and was considered 

minimal by surgical co-authors (PAS, HA). The findings indicated that the most creep 

occurs in the POP, then the SRF, and then the RF, regardless of the torque level. In 

addition, the effect of the two torque levels on creep compliance curves was negligible, 

suggesting quasi-linear viscoelastic material behavior. Outcomes of this experiment 

include the creep dependence on cast material and independence on torque at low levels. 

Clinically, this could indicate that severity of deformity may not affect the performance 

of the cast material. 

The current study shows the behavior of the material under low loads while it is 

curing (hardening), however, many earlier studies examining mechanical properties of 

these cast materials looked at the material properties after the recommended curing time 

for weight bearing and at higher loads (Callahan et al., 1986; Martin et al., 1988; 

Mihalko, Beaudoin and Krause, 1989; Rowley et al., 1985). As a result, their conclusions 

were of the ultimate and yield behaviors of the materials, and may differ from the 

findings of this investigation. Several of these studies have found POP to be stiffer, yet 

less strong, than synthetic cast materials. In Mihalko et al., two regions of linear elasticity 

were seen, the first attributed to the hard plaster and the second attributed to the elastic 

gauze. In this study, creep rate was highest in the beginning of the trial, and then 

plateaued within the last time interval, indicating that the behavior of the gauze was seen 

initially, and the stiffness of the plaster became more dominant over time. This could 

indicate that a portion of the creep rotation seen is related to the material setting 

properties. Schmidt et al. and Berman et al. analyzed optimal mechanical properties of 
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POP and synthetic casts, respectively, with respect to time and water content (Berman 

and Parks, 1990; Schmidt, Somerset and Porter, 1973). Schmidt et al. found that 72 hours 

of drying and 21% water content produced the optimal mechanical properties of POP, 

while Berman et al. found that synthetic cast material had reached 75% of its 5 day 

strength within an hour of drying. In this study, it is predicted with an exponential model 

that at 72 hours, creep rotation response of the POP plateaus and by the end of the trial, at 

least 70% of the creep rotation response is reached by the synthetic casts.   

The results of this study differ slightly from the pressure-volume study conducted 

by Deshpande et al., as that study showed the SRF to be most compliant (Deshpande and 

Deshpande, 2005). However, the findings do correspond with those of both Deshpande et 

al. and Davids et al., in that RF was the most rigid of all the cast materials tested and that 

all the cast materials exhibited viscoelastic behavior (Davids et al., 1997; Deshpande and 

Deshpande, 2005). Results in these studies were determined by gauging the pressure 

change when infusing measured volumes of fluid into bladders that are surrounded by 

cast material. The current study modeled a different clinical application. These 

discrepancies can be attributed to not only dryness of the material, but also the complex 

combination of motion, padding, and/or multilayering effect that were based on the 

standard clinical procedure (Ponseti method) that was applied.  

Studies examining the use of different orthopaedic casting materials have resulted 

in unclear conclusions as to which material is best for clubfoot treatment based on patient 

satisfaction and efficacy (Pittner et al., 2008; Zmurko, Belkoff and Herzenberg, 1997). 

Zmurko et al. found that although his tests showed that SRF was best used with non-rigid 

immobilization, one of the authors found it to be sufficiently rigid in the correction of 
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clubfoot and metatarsus adductus. Pittner et al. found that in clinical trials, the clubfeet 

corrected with either POP or SRF both resulted in a 95% overall correction rate with the 

addition of percutaneous tendoachilles lengthening. Those feet treated with SRF casts had 

statistically significant lower Dimeglio-Bensahel scores at the completion of non-

operative manipulation, however, patient satisfaction in terms of convenience, cast 

weight, and cast durability was higher for this material. In a study comparing parent 

satisfaction with POP and SRF used during serial casting, Coss et al. found that parents 

preferred the SRF based on its ease of removal, durability, and performance (Coss and 

Hennrikus, 1996). In their study though, the authors did not correlate each cast material 

in regard to their efficacy. Similarly, Brewster et al., using SRF, and Kin-Wah Ng et al., 

using fiberglass material, published their favorable clinical results (Brewster et al., 2008; 

Ng, Lam and Cheng, 2010). 

In the current study, an internal torque, representative of joint stiffness, supplied 

the driving force on the cast after the recommended setting time, which is clinically 

relevant to the conservative clubfoot treatment procedure. The forces being applied to the 

cast during treatment were significantly lower than those seen at yield, meeting the 

constraints of the creep phenomena. At the initial application of the cast material, the 

force on the cast is at its greatest. Over time, the force imposed by the clubfoot on the 

cast would decrease due to stress relaxation of the soft tissue in the foot and ankle. In 

addition, after 20 minutes, creep values surpassed 88%, 70%, and 77% of the predicted 

seven day creep experienced by the POP, SRF, and RF, respectively. Therefore, the 

decaying exponential function is an adequate model of the creep rotation curve. The 

results of the statistics on the parameters of this function indicated that the response was 
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different between cast materials. Further analysis into the parameters showed that 

parameters b and d affect the rate of change in displacement, especially seen in the initial 

slope during interval 1. 

 Just as with the creep rotation curves, the reduced creep function was fitted with 

an exponential function. The materials were modeled as quasi-linear viscoelastic, 

meaning that the ratio of creep to elastic response is the same under different loads. To 

further verify this behavior, additional tests at a range of load levels would need to be 

performed. The reduced creep function J(t) was found to be different between SRF and 

RF, which could support the differences found in the displacement data. Parameter d2 of 

the SRF proved to be different from that of the other casts, which may explain the 

difference in curvature. Furthermore, when reviewing J(t) at different time points, it was 

seen that within the trial time frame, the values for the three materials did not differ 

significantly. However, over time, the values diverged. 

Some limitations are present in this examination. This study models rigid bodies 

that are connected by a single, revolute hinge joint. While the ankle-subtalar complex is 

not a simple revolute joint, the model does best represent the second, most prominent 

phase of clubfoot correction by addressing the transverse plane adduction. In addition, the 

cast materials’ responses to the simulated joint stiffness may be a function of the number 

of layers used in the construction of the cast. The effect of the number of layers of cast 

material was not addressed in this study; however, this protocol was consistent with 

clinical standards and the Ponseti protocol. It was assumed in this study that the radii and 

lengths were the same across trials and materials, however, only the number of layers of 

material were monitored. If these measurements were inconsistent, they would have to be 
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factored into the shear strain equation. Error may also be attributed to bending in the PVC 

tubing of the model, as it was the motion of the tubing that was tracked. However, 

experimental bending tests and theoretical analysis indicated that the amount of angular 

deflection would be less than 1% of the total creep experienced by any of the cast 

materials. The effectiveness of the cast material also depends on the surgeon`s skill at 

molding. The moldability of the cast material and its significance on the ability to apply 

the cast material and its influence on the efficacy of clubfoot treatment is not addressed in 

this model. To date, there have been no studies that specifically address moldability. 

The three cast materials selected for this study are all used clinically. Clinical 

selection includes a number of considerations, including availability of the material, cost 

effectiveness, patient comfort and physician preference. POP is currently the material of 

choice in developing countries due to cost and availability advantages. Further 

understanding of the mechanics of cast behavior, as defined in this study, may improve 

future strategies for clubfoot care and correction. 
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CHAPTER 3: DESIGN AND VALIDATION OF A BENCHTOP TESTING SYSTEM 

FOR MINATURE SOFT TISSUE SPECIMENS 

This chapter details the design and validation of a benchtop testing system for the 

evaluation of miniature soft tissue specimens. To validate the constructed system and 

control program, nylon monofilament material properties were obtained and compared 

with results from a commercially available system and reported values. Results of the 

study indicated that the system accurately measures force and displacement of miniature 

samples. Versatility was demonstrated via the quasistatic testing of PTFE tape, as well as 

the viscoelastic testing of rabbit knee ligament. A version of this chapter has been 

submitted for publication in the Journal of Engineering in Medicine. 

3.1 Introduction 

 The tissue mechanics of ligaments obtained during pediatric orthopaedic 

procedures may be analyzed to advance biomechanical understanding of tissue behavior 

to improve clinical strategies and treatment approaches. Pediatric soft tissues are small, 

which may affect the ease of testing when using mechanical techniques (Woo, Ohland 

and Weiss, 1990; Woo et al., 1986). The purpose of this research was to develop and 

validate a new mechanical testing device to resolve deficiencies in current technologies 

while seeking to improve clinical insight into pediatric orthopaedic disabilities. 

Mechanical methods of obtaining properties and behavior of materials involve the 

monitoring of forces and displacements during the application of loading conditions. 

Traditionally, machine hardware consists of force transducers, actuators, gripping 

mechanisms, and software to control the synchronization of monitoring devices and 

storage of the key outputs. The machines may be capable of performing quasistatic or 
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dynamic tests, such as cyclic loading, ultimate strength, and time-dependent stress and 

strain tests. These evaluations support characterization of material properties and 

behaviors, including, but not limited to, elastic modulus, ultimate strength, and 

viscoelastic behavior. Such parameters provide mechanical insight used to predict 

material behavior, and are particularly valuable in engineering design. 

An important application of mechanical materials testing is the characterization of 

biological tissue. Extensive research has been conducted on the relationships between the 

biomechanical function and mechanical properties of hard and soft tissue, including bone, 

cartilage, tendons, and ligaments, from cadaveric, adult, and animal donors (Albert et al., 

2013; Albert, Jameson and Harris, 2013; Currey, 2012; Johnson et al., 1994; Jung, Fisher 

and Woo, 2009; Moon et al., 2006; Smith, Livesay and Woo, 1993; Woo, Johnson and 

Smith, 1993; Woo et al., 1986). Investigations characterizing ligaments have been largely 

performed on adult animal and human specimens, and only limited information is 

available on pediatric ligaments (Abramowitch et al., 2004; Butler et al., 2004; Oza, 

Vanderby and Lakes, 2006; Woo et al., 1987; Woo et al., 1986; Woo et al., 1990). 

Ligament specimens obtained from pediatric patients undergoing routine orthopaedic 

surgeries can be used for material characterization. The disparities between normal and 

pathological specimens can be quantified to gain clinical insight into the mechanisms and 

progression of orthopaedic disorders. Results of material characterization could be 

applied to injury analysis, prediction and prevention, treatment strategies for pediatric 

orthopaedic deformities and disorders, as well as evaluation of physiologic changes 

during growth and development. 
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To evaluate tissue, special considerations need to be made to accommodate the 

physical properties of the specimen. Pediatric surgical specimens are inherently small in 

size, resulting in a smaller grip area, lower aspect ratio, possible slippage, malalignment, 

and stress concentrations. Animal studies assessing the effect of age on the mechanical 

properties of ligaments found smaller cross-sectional areas in immature animals as 

compared to that of mature animals (Woo, Ohland and Weiss, 1990; Woo et al., 1986). 

Proper protocol includes maintaining physiologically representative conditions, e.g., 

temperature and hydration, during testing and ensuring that the attachment mechanisms 

are compatible with the viscous nature of the biological material (Jung, Fisher and Woo, 

2009; Weiss and Paulos, 1999; Woo, Johnson and Smith, 1993; Woo et al., 1987).  

Commercially available machines capable of miniature specimen testing in a 

laboratory environment tend to be relatively expensive. Such systems are typically more 

complex than required by the application, and may require substantial preparation and 

configuration time. The size and weight of these devices may preclude installation in 

more convenient clinical settings, where portability is desired. Key specifications, such as 

stroke length, sampling frequency, and test space adjustability are often not designed for 

pediatric specimens (Bose Corporation; Illinois Tool Works Inc.; MTS). Additional 

accessories, such as specialty grips and strain measurement configurations, may also be 

required to test biological specimens, adding to the overall cost of the system.  

This study was done to design, develop, and validate a portable, benchtop 

Pediatric Tissue Evaluation System (PedsTES). The versatile, low cost system was 

designed to accommodate a range of pediatric specimen shapes and sizes, while 

providing simplified operation, and alterable programmed loading conditions. The 
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objective was to provide clinicians and researchers with the capability to obtain accurate, 

quantitative assessments of tissues extracted during surgical procedures. This paper: 1) 

describes the electromechanical design process and development of a testing protocol for 

the unique requirements of pediatric ligaments, 2) evaluates the accuracy of the system 

against a validated mechanical test machine commonly used in biological materials 

testing through nylon monofilament characterization, and 3) demonstrates the versatility 

of the system by characterizing exemplar synthetic and biological materials. 

3.2 Materials and Method 

 The testing apparatus was designed to perform uniaxial tensile tests, including 

those with quasistatic and viscoelastic conditions, on miniature soft tissue specimens of 

an approximate length and width of 1 cm and 2 mm, respectively. Setup and validation of 

the machine included calibrating the voltage/force relationship and validating load and 

displacement measurement.  

3.2.1 Design of Soft Tissue Uniaxial Testing Machine 

 PedsTES was designed to perform uniaxial tensile tests, including quasistatic and 

viscoelastic simulations, on a variety of materials including miniature soft tissue 

specimens. Setup and validation of the machine included calibration of the voltage/force 

relationship and validation of the load and displacement measurement. The system, 

controlled by a custom-written NI LabView VI (National Instruments, Austin, TX) 

(Figure A-2), was configured to synchronize the acquisition of motion data, video, and 

force data under a variety of load, position, and time constructs (Figure 3-1). Motion data 

was derived from the position of a high-precision linear actuator (M230.25, Physik 
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Instrumente, Karlsruhe, Germany) at a sampling rate of 100 Hz. The actuator, powered 

Figure 3-1: A) Mechanical schematic of the PedsTES design and B) flowchart 

of the control system. The actuator, load cell, and camera are synchronized to 

acquire position, force, and video during programmable loading conditions to 

simulate in vivo mechanics.   
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by a DC gear motor and controlled by a PI Mercury controller (C-863.10, Physik 

Instrumente, Karlsruhe, Germany) and PIMotionMove2.8.0.3 software (Physik 

Instrumente, Karlsruhe, Germany), consists of an integrated rotary encoder with a 

resolution of 0.05 microns and has a travel range of 25 mm. Force data was derived from 

voltage output from a 111.2 N capacity load cell (MDB – 25, Ultra Precision Load Cell, 

Transducer Techniques, Temecula, CA) at a sampling rate of 1000 Hz. A differential 

amplifier/signal conditioner module (TMO-2, Transducer Techniques, Temecula, CA) 

provided balance and gain controls, as well as a bridge to a USB Multifunctional Data 

Acquisition Board (USB-6211, National Instruments, Austin, TX). Video was recorded 

using a DV camcorder (Z60, Canon, Tokyo, Japan) at a rate of 30 frames per second. A 

Light-Emitting-Diode (LED) circuit, in the view of the camcorder and wired to the DAQ 

board, will act as an event indicator. The entire construct was supported by a structure of 

T-slotted aluminum beams (1545 series, 80/20® Inc., Colombia City, IN). The platform 

provided rigid support while allowing for adjustability in three directions. The line of 

action was positioned in the vertical direction, with the actuator placed superior to the 

load cell and the grips. Vibration was also monitored using a Modified Mercalli Intensity 

Scale (Vibration Meter v1.4.5, Smart Tools Co, 2014) to minimize extraneous input. The 

load capacity of the system was limited to 70 N by the linear actuator.  

In order to improve the versatility of the system, interchangeable grips were 

developed in two different designs to allow both filament and tissue material to be 

attached (Figure 3-2). The filament grips were constructed from steel components in a 

hook design that attached to the load cell and platform. The design allows filament 

samples to be attached by cyanoacrylate adhesive. The second grip design consists of two 
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stainless-steel jaws, furrowed to provide increased friction to prevent sample slippage. 

Grip design was based upon a previously validated design for larger soft tissue specimens 

(Feola et al., 2011; Moalli et al., 2005) scaled appropriately to account for the expected 

pediatric soft tissue specimen size (10 mm x 1.5 mm x 1.5 mm). A combination of 

compression of the jaws and cyanoacrylate adhesive allows the assembly to adequately 

hold the samples in place during testing (Figure 3-2). 

The cost of the hardware, including the grips, was approximately $6,000. This 

does not include the cost of NI LabVIEW software. 

3.2.2 Instrument Calibration Protocol 

 Calibration focused on acquiring voltage to mass and force relationships. 

Manufacturer recommended calibration was performed prior to the following protocol 

(appendix). The machine was progressively loaded then unloaded with weights, from 

unloaded grips (0 g) to 1250 g at 50 g increments. Under no load, the voltage of the 

amplifier/conditioner, outputted by a connected multimeter, was zeroed by adjusting the 

Figure 3-2: Grip designs. A) Grips for monofilament testing. Grips for testing of 

miniature soft tissue specimens in B) open position and C) closed position. 
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balance potentiometer. For each following increment, the weight was applied and 

allowed to stabilize. The resulting voltage from the load cell was read at a sampling 

frequency of 100 Hz and then averaged over five seconds using a LabView VI. This 

protocol was performed twice. The voltage-to-force relationship was determined using a 

linear regression model relating the mean voltage for each trial to its corresponding mass 

and force. In operation, the system was calibrated prior to each test and allowed force 

outputs to be obtained from the load cell. Total time for pre-testing calibration was 

approximately 5 minutes.   

3.2.3 Instrument Validation 

Nylon monofilament was used for the instrumentation validation portion of this 

study. Polymers and ligaments both exhibit viscoelastic behavior, which can be readily 

characterized using mechanical testing methods. Thirty specimens of nylon monofilament 

were obtained from a single roll of line (Sufix® Elite™ Hi-Vis Yellow Monofilament, 

Rapala VMC Corporation, Helsinki, Finland). The specimens were rated for a minimum 

tensile strength of 6 lbs. (26.7N) by the manufacturer, which exceeded the expected load 

range for low load soft tissue testing.  

 A uniaxial tensile test-to-failure protocol, based on ASTM D638 ("Astm D638-

14, Standard Test Method for Tensile Properties of Plastics," 2014), was performed on 

each specimen using the PedsTES and an MTS Criterion™ (C43.104, MTS System 

Corporation, Eden Prairie, MN, USA) system. The monofilament attachment was used 

for this protocol on both machines. Each specimen was secured with compression and 

cyanoacrylate, which was allowed to dry for at least 5 minutes. After zeroing the load 

cell, each specimen was loaded to a gauge length load of 0.5 N. The gauge length and 
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diameter of the specimen were measured using digital calipers. Load-to-failure tests were 

conducted at a constant elongation rate of 10 mm/min, corresponding to a mean strain 

rate of 0.25 %/s for both systems. Force, position, and video were recorded during each 

PedsTES trial at sampling frequencies of 1000 Hz, 100 Hz, and 30 fps, respectively, with 

force and position recorded at 50 Hz during each MTS trial. Strain was calculated using 

the position data (d) of the actuator and gauge length (lo) of the specimen [i.e., ∆𝑑/𝑙𝑜]. 

Engineering stress was calculated using the force transducer output (P) and circular 

cross-sectional area (CSA) of the specimen [i.e., P/CSA; CSA = πr
2
]. Computed values of 

the elastic modulus were compared across machines using a Mann-Whitney U test with a 

significance level of 0.05. A nonparametric method was chosen due to the rejection of the 

normality assumption based on the Wilks-Shapiro test. Descriptive statistics, including 

median and range, were reported.   

3.2.4 Demonstration of Versatility 

 PedsTES was designed to adapt to a variety of constraints and conditions, 

depending on the material characteristics and protocol requirements. Versatility was 

demonstrated through a series of tests on different materials, including those of a 

synthetic and biological composition.  

3.2.4.1 Load-to-Failure Test of Polytetrafluoroethylene (PTFE) tape  

 Uniaxial tensile loading was performed on specimens of PTFE tape (CSA =12.7 

mm x 0.089 mm, length = 71.3 ± 1.9 mm) using the PedsTES and MTS machines and 

following a protocol similar to that used on the nylon monofilament. A threaded design 

was utilized to connect the ends of the specimen to the grips of the machines. 
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3.2.4.2 Testing of biological tissue 

Medial collateral ligament (MCL) (n = 3) and lateral collateral ligament (LCL) (n 

= 4) from four fresh-frozen, farm-raised, food-grade rabbits (lapine) (Krinkeys Farms) 

specimens underwent preconditioning, stress relaxation, and load-to-failure protocols 

(Duenwald, Vanderby and Lakes, 2010; Moon et al., 2006). The CSA of each ligament 

was reshaped using a custom-made tissue slicer, created from two 0.009 inch single edge 

razor blades and a metal spacer of approximately 1.5 mm thickness, to represent the 

dimensions of pediatric ligamentous tissue (CSA = 1.5 mm x 1.5 mm). Specimens were 

refrozen in saline at a temperature of -29
o
C until testing. 

 To prepare for testing, specimens were thawed and hydrated in phosphate-

buffered saline (PBS) solution at 37
o
C for 30 minutes in a custom-fabricated 

environmental chamber. After such time, the width and thickness were measured using 

digital calipers at each end and midsubstance, as well as the length. Each specimen was 

secured between stainless-steel jaws through compression and cyanoacrylate adhesive 

(Figure 3-2B) and adjusted along x-, y-, and z-axes (Figure 3-1A) to ensure alignment. 

The tissue was marked with skin marker ink at the grips and at mid-substance for 

reference.  

 Each specimen underwent preloading, preconditioning, stress relaxation, and 

load-to-failure protocols. Dimensions were measured at a preload of 0.5 N, the preload 

position. During preconditioning, loading was cycled between 0.5 N and 2.5 N for 20 

cycles. Under the stress relaxation protocol, each specimen was: 1) elongated to lengths 

corresponding to forces between 2 N and 10 N at 2 N increments, 2) held at the length for 

100 seconds, 3) unloaded to the preload position, and 4) allowed to recover for 3 minutes. 
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A load-to-failure was then performed. The specimen was hydrated with PBS solution 

between test phases. Loading and unloading occurred at a constant rate of 10 mm/min.  

 Force, position, and time data were used to quantify the tissue response to each 

protocol. To describe stress relaxation behavior of ligament specimens, the Quasi-Linear 

Viscoelastic (QLV) theory (Eqs. 1 and 2) (Abramowitch and Woo, 2004; Fung, 1993) 

was applied to the stress relaxation test output. 

𝜎(𝑡, 𝜀) = 𝐺̅(𝑡)𝜎𝑒(𝜀)                                                                                        (3.1) 

where 𝜎(𝑡, 𝜀) is the stress relaxation at time t under strain 𝜀, 𝜎𝑒(𝜀) is the instantaneous 

elastic response, and 𝐺̅(𝑡) is the reduced stress relaxation function representing the time-

dependent stress response normalized by the stress at the time of the step input of strain 

[i.e., 𝐺̅(𝑡) =
𝜎(𝑡)

𝜎𝑜
, 𝐺̅(0+) = 1].  

3.3 Results 

3.3.1 Calibration 

Calibration results, shown in Figure 3-3, indicated a linear relationship between 

the force and voltage output with a slope of 10.9 N/V. 
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3.3.2 Validation 

Pilot testing of multiple nylon samples revealed repeatable stiffness 

measurements within samples obtained from the same batch of material. Based on these 

results, this material was found to be suitable for the validation protocol. Stress versus 

strain data for the monofilament specimens are presented in Figure 4. Results indicated 

that the elastic modulus values between the machines were not significantly different and 

fell within the reported ranges for the material (Box; Gere and Timoshenko, 1997) (Table 

3-1). 

 
 

Figure 3-3: Instrument calibration. Force (N) versus voltage (V) calibration 

curve, displaying experimental data and linear model. 
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Table 3-1: Instrument validation results. Median (range) of elastic modulus values of 

nylon monofilament loaded using the PedsTES and MTS devices. α = 0.05 

Machine Elastic Modulus (GPa)  Median (range) 

PedsTES 3.36 (1.35 - 3.79) 

MTS 3.53 (2.52 - 4.03) 

p 0.1465 

Typical values for nylon 2 – 4(Box; Gere and Timoshenko, 1997) 

 

 

 

 

Figure 3-4: Instrument validation curves. Median, maximum, and minimum stress 

versus strain curves of nylon monofilament obtained with the PedsTES and MTS 

machines. 
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3.3.3 Demonstration of Versatility 

3.3.3.1 Load-to-Failure Test of Polytetrafluoroethylene (PTFE) tape.  

 A representation of the force and displacement results of this test on PTFE 

specimens is presented in Figure 3-5.  

 

 

3.3.3.2 Testing of biological tissue.  

 Results from a representative MCL are illustrated in Figure 3-6. Preconditioning 

cycles converged after 20 cycles. Figure 3-6A illustrates the force versus displacement 

data obtained during the load-to-failure protocol.  

Figure 3-5: PTFE force vs displacement. Representative results of force versus 

displacement for the PTFE specimens undergoing a load-to-failure test using the 

PedsTES and MTS machines. 
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 A representative specimen response to the stress relaxation protocol is presented 

in Figure 3-6B. A generalized decaying exponential function was fitted to each curve in 

the following form: 

𝐺̅(𝑡) =  𝐴1𝑒
−𝐴2𝑡 + 𝐴3𝑒−𝐴4𝑡 + 𝐴5                                                                (3.2) 

where t is time in seconds and 𝐴1 … … 𝐴5 are constant coefficients. 

Figure 3-6: Results from representative rabbit MCL. For a representative MCL 

specimen: A) Force versus displacement during load to failure. B) Multiple reduced 

relaxation functions, G(t), versus time for a single specimen undergoing the stress 

relaxation protocol are depicted. A fitted generalized decaying exponential function is 

represented. 

 

 

3.4 Discussion 

The purpose of this study was to: 1) describe the design and development of the 

PedsTES, a benchtop evaluation system for pediatric tissue specimens, 2) validate the 

mechanical testing capability of the system, and 3) illustrate the versatility of the system 

through the characterization of synthetic and biological tissue. Validation results of this 

study provide evidence to support the use of this machine for material characterization, 

including that of miniature pediatric soft tissue. This system resolves the key deficiencies 

of previous commercial devices by simplifying the protocol, reducing device cost, and 

enhancing the versatility.  

B A 



56 

 

 Mechanical systems and test methods are typically used to characterize material 

properties and behaviors through the measurement of force, displacement, and other 

parameters while exposed to standardized loading conditions (Jung, Fisher and Woo, 

2009; Weiss and Paulos, 1999). The PedsTES accomplishes this through a mechanical 

framework, which supports a linear actuator, a load cell, and a gripping mechanism. The 

control system synchronizes the acquisition of force, position, and video data from these 

components. In addition, it provides a means to program multiple test protocols by 

controlling position and monitoring force output, using either forward- or feedback-based 

control. The adaptability of the machine to accept different grip designs has been 

demonstrated. The design supports a variety of materials of different physical 

characteristics and composition, including those of synthetic and biological makeups. The 

overall system provides a compact, versatile, and cost-effective alternative to 

commercially available products. 

 Currently available material test machines typically are designed to accommodate 

a wide variety of materials and thus are less adept at testing miniature tissue samples in a 

cost-conscious environment. A sample of available devices with relevant specifications is 

provided in Table 3-2. The cost of these machines can range from $30,000 to more than 

$100,000 depending on capabilities, as well as additionally purchased accessories (Bose 

Corporation; Illinois Toll Works Inc.; MTS). Many of these systems also have size and  
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Table 3-2: Comparison of features of PedsTES to those of applicable commercially 

available mechanical test machines. 

 
Mass 

(kg) 

Dimensions 

(mm x mm 

x mm) 

Force 

Sampling 

Frequency 

(Hz) 

Vertical 

Test 

Space 

(mm) 

Dynamic 

Stoke 

(mm) 

Max 

Force 

(N) 

PedsTES 11 
470 x 305 

x 432 
1000 380 25 111 

MTS 

Acumen™ 
159 

1511 x 679 

x 485 
>100 26 – 603 70 850 

Bose 

ElectroForc

e® 3100 

18 
500 x 300 x 

178 
100 178 5 22 

Instron 3342 38 
900 x 382 x 

500 
NA 651 482 500 

 

 

weight specifications, reducing or even eliminating portability and versatility. The 

PedsTES uses similar components to these systems and compares favorably in 

specifications most relevant to small specimen testing (Table 3-2).  

Calibration and validation of the system provided quantitative evidence of its 

accuracy. Monofilament validation showed no significant difference between the 

detection capabilities of the PedsTES and exemplar machine. Values of elastic modulus 

from both machines were within range of the reported nylon material properties (Box; 

Gere and Timoshenko, 1997). Pilot testing of nylon monofilament from multiple batches 

produced varying results, which may account for variations in inter-sample performance. 

To reduce this effect on the validation analysis, a single batch was used, with the samples 

being selected randomly. 

The testing protocol developed for the PedsTES takes into account typical 

strategies used to secure materials to mechanical testing machines in industrial and 
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biomedical applications, with additional consideration paid to the unique aspects of 

miniature ligamentous tissue. The system can accept various attachment methods for 

monofilament and tissue, including specialized grip designs. To provide a physiologically 

accurate environment for maintenance of tissue properties, tissue was equilibrated to 

37°C and hydrated regularly (Jung, Fisher and Woo, 2009). The system does not fully 

incorporate an environmental chamber, although one could be added to the existing 

design. Additional aspects of the mechanical testing of biological tissue testing include 

the prerequisite preconditioning of the specimen, performed via cyclic loading. In the 

current system, a delay artifact of 500 ms exists between loading and unloading, which 

may produce an error in hysteresis area calculation. Future work will focus on enhancing 

this algorithm. 

 This study of the PedsTES demonstrated its capabilities as a portable and cost-

effective alternative to commercial machines. The lack of statistically significant 

differences between the force reporting of the PedsTES and MTS validates the use of the 

new system as an accurate tool for small specimen material testing. This validation did 

not address grip design performance with respect to tissue specimens. Future work will 

explore grip design alternatives for specific tissue applications, which can range from 

cryogenic fixtures to the use of adhesives and grip face sculpting. 

3.5 Conclusion 

The PedsTES, a small benchtop test system, was designed and validated for the 

mechanical characterization of materials, including miniature pediatric tissue specimens. 

This study demonstrated the versatility of the system through pilot testing of synthetic 

and biological materials under quasistatic and viscoelastic loading conditions. The system 
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design compared favorably to commercial alternatives, particularly with respect to the 

ability to support miniature specimens. Analysis of nylon monofilament revealed no 

statistical difference in the resulting elastic modulus measures when compared to a 

standard system. Pilot testing revealed that the PedsTES is capable of accommodating a 

range of materials. 
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CHAPTER 4: BIOMECHANICAL MODELING OF MEDIAL FIBROTIC TISSUE OF 

THE CLUBFOOT 

This chapter details the biomechanical analysis of clubfoot soft tissue, with the 

intention of obtaining insight into the mechanical properties and viscoelastic nature of 

this tissue. This research utilized the PedsTES to evaluate 16 surgically obtained medial 

fibrotic mass tissue samples from assenting pediatric patients undergoing routine clubfoot 

corrective surgery. Quasistatic and viscoelastic protocols, based on clinical conditions of 

conservative treatment, were performed to obtain structural (stiffness) and material 

(tangent modulus) properties, as well as preconditioning convergence and stress 

relaxation behavior.   

4.1 Introduction 

Clubfoot is a congenital deformity of the lower extremity, characterized by bone 

malformation and displacement, as well as alteration in the connective tissue of the foot. 

The condition varies in severity (Dimeglio et al., 1995; Dyer and Davis, 2006) and is 

characterized by an equinovarus hindfoot deformity, as well as cavus and adduction of 

the midfoot (Dobbs et al., 2009; Morcuende, 2006; Roye, Hyman and Roye, 2004). 

Histological studies have noted a thick, fibrotic mass encapsulating the medial and 

posterior side of the clubfoot, which may affect treatment outcomes (Aurell et al., 2002; 

Fukuhara, Schollmeier and Uhthoff, 1994; Hersh, 1967; Ippolito and Ponseti, 1980; Sano 

et al., 1998; Turco, 1971; Windisch et al., 2007). Equinus, restraint of the foot in 

plantarflexion, and adduction and inversion of the navicular and calcaneus are commonly 

seen in clubfoot. This results from the tautness and increased cross-sectional dimensions 
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of the medial and posterior ankle. Conservative treatment promotes eventual return of the 

navicular, calcaneus and cuboid to normal position through lengthening of the ligaments. 

Conservative treatment, such as the Ponseti method, consists of weekly 

manipulation and casting, followed by bracing, in order to reposition the affected foot. 

Throughout each phase of the Ponseti method, the foot is manipulated and then held at a 

constant position for up to 7 days (Cohen et al., 2013; Dobbs et al., 2009; Ponseti, 2000; 

Ponseti, 2002; Ponseti and Campos, 1972; Terrazas-Lafargue et al., 2007) translating to a 

constant elongation (stress relaxation) of the soft tissue of the medial and posterior 

aspects of the clubfoot. Manipulation, or cyclic loading, is performed to precondition the 

tissues for correction. 

Few studies have investigated the mechanics of these tissues, nor have longer 

term strategies for the treatment of severe clubfoot been based upon these principles 

(Hattori et al., 2007). Hattori in 2007 examined the relative elasticity of medial, posterior 

and lateral specimens of clubfoot hindfoot soft tissue (deltoid ligament, calcaneofibular 

ligament, and capsular tissue) using scanning acoustic microscopy. Mechanical tests can 

provide information on structural and material properties, as well as time-dependent 

(viscoelastic) behavior of the soft tissue as it responds to treatment.  

 The purpose of this study was to examine the mechanical properties and 

viscoelastic behavior of the clubfoot medial fibrotic mass tissue (MFMT). Miniature 

samples of tissue underwent preconditioning and stress relaxation protocols based on 

conservative clubfoot treatment conditions. Insight into the mechanical nature of this soft 

tissue may aid in improvement of conservative treatment strategies as well as prescription 

of treatment and prediction of outcomes. 
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4.2  Materials and Methods 

4.2.1 Specimen Selection 

Twenty-six medial fibrotic mass tissue (MFMT) specimens were collected in 

total. Seven specimens were harvested at Shriners Hospitals for Children® in Chicago 

(SHC), IL from 6 IRB approved assenting pediatric clubfoot patients undergoing routine 

surgical correction for resistant or recurring clubfoot. The origin of the MFMT was 

marked by surgical ink and/or suture. Specimens were placed in 0.9% saline solution 

filled specimen containers and fresh frozen at a temperature of -85
o
C. Nineteen 

specimens of MFMT were also be obtained from 15 assenting surgical clubfoot patients, 

with the same age and pathology requirements as above, from Ortopedia Infantil at 

Fundación Clínica Infantil Club Noel in Cali, Colombia (CC), care of Dr. Luis Fernando 

Caicedo. The origin of these specimens were marked with surgical ink and/or suture, 

fresh frozen, and shipped from Cali, Colombia to Marquette University in dry ice via 

DHL. All specimens were stored at Marquette University at a temperature of -29
o
C until 

testing. For the samples originating from Shriners Hospitals for Children – Chicago, this 

study was approved by the Institutional Review Boards of Rush University Medical 

Center and Marquette University (#10101309 Rush University Medical Center; #HR-

2167 Marquette University). Tissue samples originating from Fundación Clínica Infantil 

Club Noel (Cali, Colombia) were de-identified and did not meet the regulatory definition 

of “human subject.”   

 For mechanical testing, specimens were included if they met a length requirement 

of at least 7 mm. Two specimens from the SHC sample and 6 specimens from CC were 



63 

 

excluded from mechanical testing, but saved for histological analysis (not included in this 

study). Thus, a total of 19 specimens underwent mechanical testing.      

4.2.2 MFMT Preparation 

The MFMT specimens were prepared similarly to the tissue preparation protocol 

described in section 3.2.4.2. Each specimen was inspected and qualitatively assessed to 

ascertain a ligamentous area of interest. A tissue cutter was used to section each specimen 

longitudinally into 3 segments, the middle ligamentous segment having a width of 

approximately 1.5 mm (Figure 4-1). The two lateral sections were marked with histopath 

marking dye, secured in mesh inserts and cassettes, and placed in formalin to be saved for 

histologic analysis (not part of this study). The middle section was designated for 

mechanical testing.   

Figure 4-1: Specimen Preparation. Tissue cutter consisting of 2 razor blades and 

spacer, used to section the tissue into 3 segments. 
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Prior to mechanical testing, each specimen 

was placed in a specimen container filled with PBS 

solution, then placed in a water bath heated to 37
o
C 

for at least 30 minutes. After such time, the width and 

thickness were measured using digital calipers at each 

end and midsubstance, as well as the length, of the 

ungripped specimen.   

Each specimen was placed and secured 

between the custom-made stainless steel grips with 

compression and cyanoacrylate (Figure 4-2). The 

assembly was then anchored to the test machine. 

Adjustments along the x- and z-axes and about the y-

axis were made to ensure proper alignment. The 

tissue was marked with skin marker ink at the grips 

and at midsubtance for optical monitoring.  

4.2.3 Mechanical Testing Protocol 

 The PedsTES, previously described in chapter 3, was used in the mechanical 

testing of the MFMT specimens. The system calibration was checked prior to testing each 

specimen, as described in section 3.2.2. The voltage-to-force relationship was 

implemented in the control program. 

 The following protocol is based on the methods described previously in section 

3.2.4.2. Each specimen underwent preloading, preconditioning, stress relaxation, and 

load-to-failure phases of testing, during which time force, position, and video data were 

Figure 4-2: Tissue attachment 

grips. Grips use friction, 

compression, and cyanoacrylate 

to secure the tissue in place. 

Adjustments can be made along 

the x-, y-, and z-axes, as well as 

about the y-axis. 

y 

z x 
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acquired. The tissue was subjected to a preload of 0.5 N and the position of the actuator 

was recorded as the preload position. Following measurement of the dimensions, the 

specimen was preconditioned between 0.5 N and 2 N for 20 cycles. Stress relaxation was 

performed to strain levels corresponding to loads between 2 N and 5 N at 0.5N 

increments, followed by loads between 6 N and 10 N at 2 N increments, or until tissue 

failure. The constant strain was applied for 100 seconds. The strain was removed at a 

constant rate by sending the actuator to the preload position. The specimen was allowed 

to recover for 3 minutes between each stress relaxation trial. A load-to-failure test was 

performed following the stress relaxation protocol. The specimen was sprayed with 

heated PBS solution between test phases and during the recovery period to keep the tissue 

hydrated.  

 All loading and unloading occurred at a constant rate of 10 mm/min. Force, 

position, and video data were recorded at sampling frequencies of 1000 Hz, 100 Hz, and 

30 frames per second, respectively. Following the load-to-failure phase, the specimen 

was removed from the grips, secured in a cassette, and placed in formalin to histological 

analysis (not part of this study). 

4.2.4 Analytical Methods 

4.2.4.1 Structural and Material Properties 

Structural and material properties, including stiffness and tangent modulus, were 

calculated for each specimen. Tissue stiffness was estimated from the slope of the linear 

region of the load-to-failure force versus displacement data. Stress and strain were 

computed using the values of CSA and length of the preloaded specimen. The slope of 
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the linear region of the stress versus strain curve was used to determine the tangent 

modulus. The stiffness and tangent modulus were compared across specimens as well as 

compared to those values of normal cadaveric adult ankle ligaments (deltoid ligament) 

reported in literature (Butler et al., 2004; Funk et al., 2000). Median and ranges were 

reported for both properties. 

4.2.4.2 Viscoelastic Behavior 

 The viscoelastic behavior of the ligaments was evaluated during the 

preconditioning and stress relaxation phases of testing. The stored energy (i.e., area 

between the loading and unloading curves) of each preconditioning loop was calculated 

to assess the decrease in hysteretic effect. A Shapiro-Wilks test was performed to 

determine normality (α= 0.05). Lack of normality in several of the cycles necessitated the 

use of a Friedman non-parametric test of significance (α= 0.05) and post-hoc analysis to 

identify differences between cycles. 

 The QLV model(Abramowitch and Woo, 2004; Fung, 1993; Fung et al., 1972; 

Funk et al., 2000; Toms et al., 2002), as described in section 1.7, was utilized to 

characterize the stress relaxation behavior exhibited by the MFMT specimens (Eqs. 4.1 – 

4.7). Briefly, this theory assumes that the stress relaxation behavior of soft tissue can be 

expressed by the convolution integral:  

 𝜎(𝑡, 𝜀) = 𝐺̅(𝑡)𝜎𝑒(𝜀)                                                                                   (4.1) 

where 𝜎(𝑡, 𝜀) is the stress at time t under strain 𝜀, 𝜎𝑒(𝜀) is the instantaneous elastic 

response, and 𝐺̅(𝑡) is the reduced relaxation function representing the time-dependent 

stress response normalized by the stress at the time of the step input of strain [i.e., 𝐺̅(𝑡) =
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𝜎(𝑡)

𝜎𝑜
, 𝐺̅(0+) = 1]. Assuming the Boltzmann superposition principle is valid, for a general 

strain history, the stress at time t takes the form:  

𝜎(𝑡) =  ∫ 𝐺̅(𝑡 − 𝜏)
𝜕𝜎𝑒(𝜀)

𝜕𝜀

𝜕𝜀

𝜕𝜏
𝜕𝜏

𝑡

−𝑡

.                                                             (4.2) 

 Two approaches were used in the determination the coefficients of the reduced 

relaxation function 𝐺̅(𝑡) and the elastic response 𝜎𝑒(𝜀). To assess the linearity of the 

stress relaxation behavior exhibited by each specimen, the reduced relaxation curves were 

modeled with a decaying exponential function (Toms et al., 2002; Wills, Picton and 

Davies, 1972) consisting of 2 exponential terms and 6 coefficients (Eq. 4.3) using a 

nonlinear least squares algorithm. Goodness-of-fit was assessed via adjusted R
2
. In 

addition, 𝐺̅(𝑡) data were averaged for each specimen across trials, and then fitted with 

Eq. 4.3 to acquire parameter values of the averaged curves. A goodness-of-fit test was 

performed between the averaged fit model and each trial.  

𝐺(𝑡) = 𝐺1𝑒
−𝝀1𝑡 + 𝐺2𝑒

−𝝀2𝑡 + 𝐺5𝑒
−𝝀3𝑡                                                        (4.3) 

 The elastic response  𝜎𝑒(𝜀) was approximated by curve-fitting the stress versus 

strain isochrones at t = 0 from the stress relaxation curves to Eq. 4.4. Adjusted coefficient 

of determination, adjusted R
2
, was used to measure goodness-of-fit. The slope of the 

initial elastic response, AB, was calculated for each specimen and trial. 

𝜎𝑒(𝜀) = 𝐴(𝑒𝐵𝜀 − 1)                                                                                        (4.4) 

 The strain history approach (Abramowitch and Woo, 2004) accommodates for a 

ramp load with a constant, finite strain rate γ to strain level ε at time t0, where t0 is the 

time at peak load. By substituting Eqs. 4.3 and 4.4 into Eq. 4.2, the corresponding stress 

rise from 0<t<t0 can be written as: 
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 𝜎(0 ≤ 𝑡 ≤ 𝑡0) = 𝐴𝐵𝛾 ∫ {𝐺1𝑒
−𝝀1𝑡 + 𝐺2𝑒

−𝝀2𝑡 + 𝐺3𝑒
−𝝀3𝑡}𝑒𝐵𝛾𝜏 𝜕𝜏

𝑡

0
       (4.5) 

while the subsequent stress relaxation 𝜎(𝑡) from t0 to t∞ can be written as: 

𝜎(𝑡 > 𝑡0) = 𝐴𝐵𝛾 ∫ {𝐺1𝑒−𝝀1𝑡 + 𝐺2𝑒−𝝀2𝑡 + 𝐺3𝑒−𝝀3𝑡}𝑒𝐵𝛾𝜏 𝜕𝜏.
𝑡0

0

                       (4.6) 

(See appendix B for analytical integration.) To determine the coefficients A, B, G1-3, and 

𝜆 1-3, a nonlinear optimization algorithm of the sum of squares difference was performed 

on the experimental stress relaxation data for each curve of each specimen (Eq. 4.7) 

(Abramowitch and Woo, 2004). 

min𝐴,𝐵,𝐺1−3𝝀1−3, ∑ [𝜎𝑖
𝑒𝑥𝑝(𝑡𝑖) − 𝜎𝑖

𝑚𝑜𝑑𝑒𝑙(𝑡𝑖)]
2

+
𝑡0
𝑡𝑖=0 ∑ [𝜎𝑗

𝑒𝑥𝑝(𝑡𝑗) − 𝜎𝑗
𝑚𝑜𝑑𝑒𝑙(𝑡𝑗)]

2
.𝑡∞

𝑡𝑗=𝑡0
   (4.7)  

 For both techniques, the goodness of fit for each curve was measured by adjusted 

R
2
. A Lilliefors test was utilized to assess normality of the parameters. Failing normality, 

a nonparametric Wilcoxon rank sum test was performed to assess the difference in 

parameter values between approaches. An exploratory analysis was performed on strain 

history approach parameters A and B. Linear mixed regression modeling was utilized. 

 Percent relaxation and the time to reach that value was calculated from the 

reduced relaxation data. To gain additional insight into the initial relaxation behavior, 

80% of these values were computed for each specimen. Mean and standard deviation 

were computed for the sample population. 

4.3 Results 

4.3.1 Specimen Demographics  

 Nineteen MFMT specimens harvested from assenting clubfoot patients 

undergoing routine corrective surgery underwent mechanical testing, of which, 19 were 



69 

 

pre-loaded, 13 underwent preconditioning, 16 underwent the stress relaxation protocol, 

and 18 were loaded to failure. Of the 16 stress relaxed specimens, 3 were unable to be 

preconditioned to the 2 N prescribed level in the protocol and underwent stress relaxation 

trials at loads lower than 2 N. An additional 5 specimens completed a portion of the 

prescribed relaxation protocol, while 8 specimens completed the entire protocol. 

Demographics were collected for patient medical records by the collaborating 

hospitals and de-identified information was provided. This information included age, 

gender, affected extremity(s), height, weight, idiopathic or secondary, treatment history, 

Diméglio severity (summary in Table 4-1, full demographics in appendix Table A-1).     

 

Table 4-1: Patient demographics. Demographics of patients whose specimens 

underwent mechanical testing. *Height was only obtained from SHC patients. 

**Treatment history: none indicates no previous casting or surgical treatment; casting 

represents serial casting with no percutaneous Achilles tenotomy; Ponseti indicates full 

Ponseti method used, including casting and tenotomy; surgery indicates that surgical 

procedures (posterior release, Achilles lengthening, comprehensive release, etc), prior to 

the excise surgery, were performed on the patient. A complete list is included in the 

demographic table in appendix Table A-1. 

Demographic Mean ± SD 

Age (months) 41.1 ± 25.3 

Gender (M/F) 12/3 

Height (mm)* 1173.1 ± 132.1 

Weight (kg) 14.4 ± 6.2 

Bilateral/Unilateral 10/5 

Affected Side (L/R) 9/6 

Idiopathic/Secondary 8/7 

Diméglio Severity 3.3 ± 0.72 

Treatment history (None/Casting/Ponseti/Prior 

Surgery)** 
1/5/9/5 
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 Specimen gross appearance ranged from white to pink, with areas of dense 

connective tissue as well as friable sections. Mean dimensions of the specimens are 

reported in Table 4-2. These values correspond to those measured at the pre-load of 0.5N.   

 

Table 4-2: Specimen dimensions. Table of specimen dimensions measured at pre-load 

of 0.5N. 

 
Length 

(mm) 

Width 

(mm) 

Thickness 

(mm) 

Aspect Ratio 

(mm/mm) 

Cross-Sectional 

Area (mm x mm) 

C1 9.01 1.65 1.51 5.46 2.49 

C11 9.31 1.27 2.15 7.33 2.73 

C12 7.72 1.42 2.06 5.44 2.93 

C13 12.38 1.25 2.96 9.90 3.70 

C15 7.56 3.64 1.50 2.08 5.46 

C2B 8.30 1.87 2.66 4.44 4.97 

C3 6.82 2.18 3.28 3.13 7.15 

C4.1 9.73 2.48 2.15 3.92 5.32 

C4.2 9.05 2.93 1.75 3.09 5.10 

C6 9.37 2.65 2.57 3.53 6.82 

C7.2 8.65 1.69 2.02 5.12 3.41 

C8R 8.07 1.42 2.88 5.70 4.07 

C9 5.47 1.78 2.26 3.07 4.02 

SC1 7.06 2.37 1.41 2.97 3.34 

SC3 7.99 2.73 1.81 2.93 4.94 

SC6 11.14 1.85 0.79 6.02 1.46 

SC7 5.79 1.47 1.45 3.94 2.13 

SC8 9.53 2.37 1.82 4.02 4.31 

Mean 

± std 
8.4 ± 2.1 2.05 ±0.6 2.0 ± 0.7 4.4 ± 1.9 4.0 ± 1.4 

 

 



71 

 

4.3.2 Structural and Material Properties 

 Data from a representative MFMT specimen loaded to failure is illustrated in 

Figure 4-3 (For figures of all specimen data, see appendix Figure A-1). A high degree of 

variability in the stress-strain response was observed among the samples. Strain rates for 

all samples undergoing load-to failure are presented in Table 4-3. Strain energy values for 

all load-to-failure specimens are presented in Table 4-4. 

 

 
 

 

 

 

 

 

 

 

Figure 4-3: Representative MFMT specimen loaded to failure. 
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Table 4-3: Load-to-failure outcomes. Median load-to-failure strain rates for each 

specimen (%/s). Area under load-to-failure curves to peak load (energy absorbed (Nmm) 

and strain energy density (MPa)), stiffness (N/mm), tangent modulus (MPa), peak force 

(N) and stress (MPa) with corresponding displacement (mm) and strain (mm/mm) values. 

Sp.: specimen id 

Sp. 

Strain 

Rate 

(%/s) 

Energy 

Absorbed 

(Nmm) 

Strain 

Energy 

Density 

(MPa) 

Stiff. 

(N/mm) 

Mod. 

(MPa) 

Disp. 

(mm) 

Strain 

(mm/m

m) 

Force 

(N) 

Stress 

(MPa) 

C1 1.84 407.83 64.75 0.99 3.55 8.27 0.92 1.46 0.58 

C11 1.78 1420.33 80.38 3.34 11.40 3.95 0.42 4.28 1.57 

C12 2.15 424.65 197.65 11.93 31.49 3.49 0.45 11.90 4.07 

C13 1.34 695.39 55.98 0.73 2.46 9.87 0.80 1.12 0.30 

C15 2.20 1298.76 484.61 13.63 18.97 4.37 0.58 29.19 5.36 

C2B 4.65 853.15 27.12 8.90 6.37 1.02 0.29 7.82 1.57 

C3 2.44 1235.35 282.33 7.80 7.43 5.10 0.75 11.00 1.54 

C4.1 1.71 308.43 20.87 2.74 5.00 1.77 0.18 2.94 0.55 

C4.2 1.84 562.79 16.84 0.72 1.27 5.00 0.55 0.86 0.17 

C6 1.75 68.88 56.66 6.52 10.48 2.61 0.28 4.97 0.85 

C7.2 1.93 1021.70 199.57 6.56 16.59 2.78 0.32 26.82 7.86 

C8R 2.06 437.11 120.01 11.75 23.28 2.89 0.36 9.99 2.45 

C9 3.02 936.55 22.04 6.40 8.71 1.45 0.27 3.97 0.99 

S1 2.36 943.52 235.42 20.99 43.02 3.38 0.48 16.59 4.82 

S3 2.08 897.43 153.45 11.64 18.82 2.82 0.35 11.53 2.33 

S6 1.49 229.54 29.93 1.00 7.77 5.21 0.47 1.12 0.76 

S7 2.84 985.77 70.47 6.56 18.12 2.30 0.39 7.25 3.41 

S8 1.74 848.25 74.61 2.50 5.53 4.84 0.51 3.13 0.73 

Median 2.06 850.70 72.54 6.54 9.60 3.43 0.44 6.11 1.55 

Min 1.34 68.88 16.84 0.72 1.27 1.02 0.18 0.86 0.17 

Max 4.65 1420.36 484.61 20.99 43.02 9.87 0.92 29.19 7.86 

 

4.3.3 Viscoelastic Response 

 Preconditioning results of a representative MFMT specimen are shown in Figure 

4-4. Strain rates for all samples undergoing preconditioning were found to have a median 
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value of 2.02 %/s (1.67 - 2.89 %/s) (Full results in appendix Tables A-2, A-3). Analysis 

of the preconditioning loops revealed a decreasing trend in hysteresis area from the force-

displacement data and stress-strain data for all specimens, with significant difference 

between cycles 2 and 20 (p<<0.0001). Post-hoc analysis indicated that convergence was 

reached at cycle 8 (p = 0.55).   

 

Figure 4-4: Preconditioning outcomes. Plot of area of hysteresis vs. cycle number 

for each specimen. 
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 Stress relaxation results of a representative MFMT specimen are shown in Figure 

4-5. Strain rates for all samples undergoing stress relaxation were found to have a median 

value of 1.99 %/s (1.48- 3.00 %/s) (Table 4-4, Full results in appendix Table A-4). Stress 

relaxation hold time was approximately 100s, during which time, the mean percent of 

relaxation equated to 71% (Table 4-5, Full results in appendix Table A-5). Relaxation 

reached 80% of the total relaxation by 31 seconds on average. 

 

Table 4-4: Stress relaxation strain rates. Median (min/max) and per specimen stress-

relaxation strain rate (%/s) undergoing stress-relaxation. 

Specimen  % Strain Rate (%/s) 

C1 1.84 

C11 1.78 

C12 2.15 

C15 2.20 

C3 2.44 

C4.1 1.70 

C4.2 1.84 

C6 1.77 

C7.2 1.93 

C8R 2.06 

C9 3.01 

S1 2.35 

S3 2.08 

S6 1.48 

S7 2.82 

S8 1.74 

Median 1.99 

Min 1.48 

Max 3.01 
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Figure 4-5: Representative MFMT specimen stress relaxation curves. A) Stress vs. 

strain curves from 0<t<t0 of the stress relaxation data (elastic response) for each trial.  B) 

Stress vs. time curves from t>t0 of the stress relaxation data for each trial during the 

stress relaxation protocol. Each trial represents a different load condition and 

corresponding strain level. Color gradient signifies individual trials, paired across plots A 

and B. 

A 

B 
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Table 4-5: Reduced relaxation outcomes. Columns 1-2: Mean and standard deviation 

of stress relaxation duration and percent total relaxation. Columns 3-4: Mean and 

standard deviation of time to reach 80% of the total percent of relaxation experienced by 

specimens. ATTL refers to the anterior tibiotalar ligament. Values of % relaxation were 

reported by Butler et al.(Butler et al., 2004). 

 Time (s) % Relaxation Time (s) to 80% 

of Relaxation  

80% of Relaxation 

Mean 100.27 70.96 31.61 76.75 

Std 3.25 7.25 7.04 5.79 

ATTL(Butler 

et al., 2004) 

180 66 N/A N/A 

 

 Figure 4 -6 illustrates the reduced relaxation results of a representative specimen 

while utilizing the instantaneous step assumption method to determine model parameters 

(R
2
 > 0.90). Comparison of mean parameter models to experimental data produced 

goodness-of-fit values greater than 0.90, though for specimen S8, R
2 

= 0.8043 (Figure 4-7 

and 4-8, Table4-6). 

 

Figure 4-6: Reduced relaxation curves for each stress relaxation from a 

representative MFMT specimen.  Experimental reduced relaxation curves regressed to 

t = 0 and predicted models for each curve fitting equation 𝐺(𝑡) = 𝐺1𝑒
−𝜆1𝑡 + 𝐺2𝑒

−𝜆2𝑡 +
𝐺5𝑒

−𝜆3𝑡.  
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Table 4-6: Parameters of averaged reduced relaxation curves for each specimen. 

Averaged trials were fitted with a 3-term, 6-parameter decaying exponential function. R
2
 

values > 0.90 for each specimen, except for 1 specimen (R
2
 = 0.8043). 

Specimen 

ID 
G1 λ1 G2 λ2 G3 λ3 R

2 

C1 0.1554 0.0650 0.6835 0.00104 0.1353 0.4628 0.9871 

C11 0.2510 0.1163 0.6904 0.00104 0.0586 31771.5 0.9159 

C12 0.1182 0.0608 0.7254 0.00081 0.1208 0.5529 0.9892 

C15 0.0850 0.0559 0.8205 0.00063 0.0699 0.4505 0.9943 

C3 0.1203 0.0905 0.8105 0.00098 0.0692 24985 0.9720 

C4.2 0.1675 0.0755 0.5787 0.00147 0.2069 0.5673 0.9945 

C6 0.1295 0.1153 0.7982 0.0015 0.0723 17022.2 0.9055 

C7.2 0.0829 0.0566 0.8045 0.00059 0.0772 0.4716 0.9950 

C8R 0.1096 0.0681 0.7646 0.00082 0.0886 0.6382 0.9941 

C9 0.1044 0.0719 0.7622 0.00096 0.0970 0.6277 0.9947 

S1 0.1364 0.0504 0.7045 0.00055 0.1104 0.5620 0.9467 

S3 0.0913 0.0477 0.7983 0.00047 0.0806 0.4652 0.9856 

S7 0.0935 0.0540 0.8078 0.00054 0.0725 0.4603 0.9931 

S8 0.1790 0.0851 0.7045 0.00096 0.1423 2.0035 0.8043 

 

 

 

Figure 4-7: Average predicted reduced relaxation function G(t) for each specimen. 
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 Elastic response isochronal plots of 10 specimens, which had 4 or more stress 

relaxation trials, are presented in Figure 4-9. Fitted curves illustrate a nonlinear elastic 

response with corresponding adjusted R
2 

values greater than 0.82.  

Figure 4-8: Experimental and average predicted reduced relaxation curves.  Red 

curve represents average model fit.  Blue curves correspond to experimental data for a 

representative specimen. 
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Table 4-7: Estimated parameters for isochronal data. Parameters A and B from the 

elastic response function (Eq. 4.6), as well as the slope AB. Values of goodness of fit, 

adjusted R
2
 , were determined to be greater than 0.80. ATTL refers to anterior tibiotalar 

ligament. Values were obtained from Funk et al. (Funk et al., 2000). *AB calculated from 

presented A and B values; R
2
 presented not adjusted. 

Specimen ID A B AB adj R
2
 

C1 0.0457 3.1445 0.1438 0.9493 

C12 0.6645 4.6191 3.0693 0.8380 

C15 0.5057 4.5597 2.3059 0.8244 

C3 0.1919 3.0557 0.5862 0.9858 

C6 0.3226 6.2445 2.0142 0.9490 

C7.2 1.4793 11.1529 16.4984 0.9918 

C8R 0.8314 3.8321 3.1859 0.9679 

S1 0.0480 12.6008 0.6052 0.9068 

S3 0.388 5.6657 2.1983 0.9875 

S7 2.8251 2.1074 5.9536 0.9527 

ATTL(Funk et 

al., 2000) 
2.06 20.11 *41.42 *0.989 

 

 Figure 4-9: Isochronal stress vs. strain plots. Data points represent stress vs. strain data 

at peak stress for each trial for 10 specimens. A nonlinear exponential regression model 

characterizes the elastic response. σ
e
 (ε)=A(e

Bε
-1). 

C1 C12 C15 C3 C6 

C7.2 C8R  S1 S3 S7 
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 Models produced using the strain history approach, illustrated in Figure 4-10, 

resulted in quality fit with median R
2
 values falling above 0.80 (Table 4-8).   

 

A Wilcoxon rank sum test comparing the parameters describing the relaxation 

behavior from the instantaneous step assumption and strain history approaches found that 

no significant difference existed between the two methods (p = 0.72, 0.41,0.43, 0.99, 

0.67, 0.18). 

 

 

 

 

 Figure 4-10:  Experimental stress relaxation curves and predicted models using 

the strain history approach (Eqs. 4.5 and 4.6). 
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Table 4-8: Non-parametric statics of parameters predicted using the strain history 

approach. Median, minimum and maximum (median (min-max)) values of parameters 

from Eq.s 5 and 6, and corresponding goodness of fit measure R
2
. 

Sample A B G1 λ1 G2 λ2 G3 λ3 R
2
 

C1 0.00012 10.26406 1.48039 0.00196 2.02331 0.35633 -0.76452 8.74859 0.9819 

 (0.00004- (7.45999- (1.32743- (0.00095- (1.34622- (0.18594- (-1.10933- (7.82714- (0.9484- 

 0.00063) 12.10726) 1.73851) 0.00293) 2.16485) 0.47022) -0.56988) 10.36393) 0.9855) 

C11 0.00670 9.67274 0.48887 0.05164 2.49491 0.00317 7.54646 1.15821 0.9382 
 (0.00460- (0.19776- (-5.57273- (-0.01859- (0.10873- (0.00074- (-4.36512- (0.13481- (0.7874- 

 12.67741) 12.59581) 10.16717) 11.10217) 6.22109) 0.06441) 27.54591) 1.45005) 0.9879) 

C12 0.00065 17.17159 0.51791 1.14505 3.67431 0.00202 -2.28127 4.51574 0.9827 
 (0.00005- (4.71880- (-25.22275- (0.00156- (-1.24707- (0.00089- (-20.59833- (0.11061- (0.9580- 

 2.82093) 32.02773) 15.00623) 59.51847) 78.74783) 0.74382) 1.01740) 12.86800) 0.9968) 

C15 0.00736 14.09487 1.31838 0.22478 1.57155 0.00156 3.33675 6.38628 0.9853 

 (0.00033- (0.07188- (-19.00813- (-0.00929- (-0.03031- (0.00121- (-3.25674- (0.61377- (0.6810- 
 25.48234) 18.48531) 9.94075) 15.03544) 54.87198) 0.09792) 48.77389) 20.30042) 0.9950) 

C3 0.00473 8.16576 2.25642 0.00151 0.92361 0.03696 -0.00285 6.16877 0.9920 

 (0.00022- (3.13020- (0.07684- (-0.01101- (0.02862- (-0.01254- (-74.30358- (1.35636- (0.9787- 
 1.37778) 10.65132) 4.90289) 0.11184) 27.97244) 0.72423) 2.41342) 8.88007) 0.9973) 

C4.1 5.61663 0.54965 6.56468 0.41895 0.05687 0.00147 7.80686 1.27800 0.9831 

 (0.00051- (0.09748- (0.03341- (-0.02080- (-0.00473- (-0.00134- (-68.00355- (1.25123- (0.9759- 

 11.81644) 19.67305) 17.90498) 3.66913) 4.96817) 0.00223) 17.68369) 19.62453) 0.9935) 

C4.2 0.00232 9.92858 2.60210 0.08863 -1.09822 0.50051 -5.65545 4.17405 0.8667 

 (0.00052- (6.88333- (0.33482- (0.00238- (-3.08727- (0.00207- (-15.55563- (-0.00297- (0.7644- 

 0.00412) 12.97383) 4.86938) 0.17489) 0.89084) 0.99896) 4.24473) 8.35106) 0.9690) 

C6 11.00379 0.10925 2.54033 0.46881 -0.01512 0.00176 23.82321 2.06399 0.9744 

 (0.00023- (0.03328- (-9.06343- (-0.00185- (-0.78618- (0.00160- (-4.57728- (1.46789- (0.9004- 

 33.13981) 18.53473) 18.04605) 14.15344) 82.02436) 0.44680) 64.13155) 15.10165) 0.9918) 

C7.2 15.88557 0.11754) 6.48861 0.30029 -0.04160 0.00109 15.82172 0.79623 0.9825 
 (1.77203- (0.01720- (0.01384- (0.04747- (-5.38639- (0.00086- (4.29057- (0.03759- (0.9796- 

 41.24520) 90.84832) 109.46703) 0.98784) 0.08726) 0.00201) 41.09350) 793.82618) 0.9924) 

C8R 0.00138 14.19210 0.24239 0.63611 10.20853) 0.00195 1.82258 4.01226 0.9591 
 (0.00025- (0.05577- (-24.33013- (-0.01288- (-0.01696- (0.00105- (-4.52711- (0.76330- (0.4118- 

 45.10097) 20.46950) 6.44998) 96.66530) 47.53381) 0.12396) 18.58009) 13.86490) 0.9881) 

C9 0.90196 5.73858 1.79160 0.13741 1.35665 0.00049 1.40850 0.09759 0.9431 

 (0.01449- (2.71860- (1.70264- (0.07646- (-0.49228- (-0.00014- (0.93343- (-0.01146- (0.8931- 
 1.78943) 8.75856) 1.88056) 0.19835) 3.20559) 0.00111) 1.88357) 0.20664) 0.9932) 

S1 0.00018 22.11762 0.00053 3.05274 18.40242 0.00213 -0.00110 5.44140 0.9753 

 (0.00010- (0.00882- (-13.24591- (-0.02942- (0.00032- (0.00183- (-13.78532- (1.71092- (0.8476- 
 75.39844) 24.85561) 3.19079) 34.60109) 31.97089) 0.00401) 57.16292) 16.54156) 0.9934) 

S3 0.02184 11.68310 1.10098 0.67589 4.70712 0.00135 3.04349 1.87613 0.9791 

 (0.00067- (0.10374- (-25.19651- (-0.04409- (-0.00996- (0.00057- (-15.49962- (0.04423- (0.9370- 

 35.59262) 16.90056) 8.01172) 67.34742) 44.03848) 0.20353) 14.90118) 8.86973) 0.9915) 

S6 0.00165 15.81671 2.64993 -0.00168 2.53171 0.05971 -0.82959 15.08064 0.9820 

 (0.00002- (0.05163- (2.05771- (-0.00457- (0.64105- (-0.00043- (-3.86496- (0.12688- (0.7570- 

 1.78208) 19.16061) 7.00937) 0.00103) 2.85752) 6.66243) 2.90092) 38.52563) 0.9974) 

S7 27.95603 0.12527 1.94910 0.60398 -0.01823 0.00118 16.93758 1.79412 0.9801 
 (0.02312- (0.07581- (0.00497- (0.05689- (-0.09801- (0.00056- (-1.71371- (0.47687- (0.9766- 

 45.97881) 12.34290) 3.29368) 0.67212) 5.74752) 0.00135) 35.25312) 17.77365) 0.9962) 

S8 0.00634 12.09807 0.83659 0.17619 1.10911 0.00097 -0.54483 1.32515 0.9653 
 (0.00083- (0.04585- (0.15206- (-0.00222- (-0.01600- (-0.00019- (-25.88837- (1.08680- (0.8641- 

 48.20424) 15.34396) 19.40831) 0.81634) 38.65181) 0.00169) 17.83617) 10.74736) 0.9939) 
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 Exploratory analysis of the parameters estimated by the strain history approach 

focused on the relationship between the slope AB and load conditions (Additional 

analysis in Appendix B). For example, Figure 4-11 contains the elastic response 

parameters AB vs. stress level. The plot shows two distinct groups in the data with 

different regression models. Further analysis of A and B revealed a nonlinear relationship 

between ln(A) and ln(B) (Figure 4-12). Linear regression analysis indicates that ln(B) is a 

significant predictor of ln(A) (p <<0.0001).  

Figure 4-11: Exploratory analysis of AB vs. peak stress.  Elastic response parameters 

AB values plotted against peak stress level.  Linear model fit for two groups.  Red group: 

A values >1, Blue group: A values <1. 
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Figure 4-12: Plot of ln(A) vs. ln (B). Parameters A and B computed from 

strain history approach.  Linear model regression fit and analysis output. 

A >1 

A <1 
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4.4 Discussion 

 The current work presents an initial investigation of the mechanical behavior of 

the medial fibrotic mass tissue from pediatric clubfoot patients. Results from this study 

indicate that the structural and material properties vary between specimens. Findings 

from the instantaneous step assumption analysis of stress relaxation suggest a quasi-linear 

viscoelastic tissue behavior. Specimens saw preconditioning convergence begin after 8 

cycles. Through isochronal assessment, elastic response of the tissue was found to be 

nonlinear in nature. In addition, specimens relaxed by approximately 30% during after 

100s of hold. Findings from this research may aid in the improvement of conservative 

corrective strategies, such as accelerated protocols, as well as provide insight for the 

prediction of treatment outcomes.  

 Specimens were harvested from pediatric clubfoot patients undergoing corrective 

surgery for resistant or recurring deformity. A limited number of specimens were able to 

be obtained as the Ponseti method has become the gold standard of care for clubfoot 

correction(Zionts et al., 2010). Patients’ demographics showed that 80% were male, 

which highlights the 3:1 male:female gender trend for clubfoot(Roye, Hyman and Roye, 

2004). The mean Diméglio severity score was 3.3, indicating a relatively high degree of 

clubfoot severity in the sample population. This suggests that higher severity scores may 

be correlated with surgical necessity for better treatment outcomes or improved intensive 

non-invasive protocols. There was substantial variability in the age and prior treatment 

history. Age of the patient may have an effect on the variability in mechanical test results 

(Woo, Ohland and Weiss, 1990; Woo et al., 1986). Results from these studies on 

mechanical properties of rabbit ligament as a function of age found that hysteresis area, 
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tensile strength and energy absorption increase with maturation. In addition, it was noted 

that stiffness and elastic modulus were significantly lower for ligaments from immature 

donors as compared to those of matured specimens(Haut, 1983; Woo, Ohland and Weiss, 

1990; Woo et al., 1986). Future analysis will address age as a factor of mechanical 

response variability. 

A total of 26 specimens from two clinical institutions were recruited for this 

study. From this group, 10 specimens were unable to be mechanically tested due to length 

limitations. Guidelines for material testing suggest samples to have an aspect ratio (length 

divided by width) of at least 10, though for biological tissue, an aspect ratio of 4 is 

acceptable (Haut, 1986; Jung, Fisher and Woo, 2009; Schechtman and Bader, 1997). 

Studies investigating the effect of aspect ratio on mechanical testing responses of material 

found that increasing the aspect ratio increased specimen stiffness, while decreasing 

elongation(Carew et al., 2003; Haut, 1986; Schechtman and Bader, 1997). The mean 

aspect ratio of the MFMT specimens was 4.4 ± 1.9 mm/mm, though consideration and 

care was taken when segmenting and preparing the specimens for testing. Length was 

especially important with regard to gripping to ensure enough surface area was clamped 

and slippage was minimized. Slippage was also monitored via video capture during the 

trials. 

Testing was performed at a displacement rate of 0.1667 mm/s (10mm/min) for all 

trials. However, due to variability in length, strain rates varied between specimens, as 

reported in the section 4.3 (Table 4-4). Strain rates were consistent across trials for each 

specimen, and ranged between 1.34 %/s and 4.65 %/s during load-to-failure testing. 

Studies investigating the effect of strain rate on the mechanical properties of tendons and 
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ligaments have reported that increasing strain rate increased elastic modulus slightly, as 

well as increased failure loads and strains, though bone is more susceptible to this 

relationship (Woo et al., 1990). Preliminary analysis of the effect of strain rate on the 

material properties (modulus, strain energy density) obtained from the quasistatic 

protocol showed an increasing trend. Further analysis and testing of a larger sample size 

is needed to assess this effect. 

Following pre-loading of the tissue, specimens were exposed to 20 

preconditioning loading and unloading cycles. Preconditioning is typically performed 

during the testing of soft tissue to bring the tissue sample to a steady state, where 

mechanical response will be more repeatable. This occurs due to changes in the structure 

of the tissue, including collagen fiber alignment and rearrangement, as well as 

microstructural alterations (Elliott et al., 2003; Frank, 2004; Miller et al., 2012; Purslow, 

Wess and Hukins, 1998; Woo, Johnson and Smith, 1993). Hysteresis represents the 

dissipation of energy stored in the material during preconditioning cycles and can be 

calculated from the area between the loading and unloading components in the 

preconditioning stress-strain curve. Analysis of hysteresis response indicated 

convergence began at 8 cycles for the MFMT specimens, and therefore, the tissue had 

reached steady state. Additionally, this illustrates the need to adequately manipulate or 

“prep” the clubfoot prior to casting the foot in order to stretch the medial soft tissue. 

Artifact was present in this phase of testing, as the test protocol included a 500 ms delay 

between loading and unloading. Further research is needed to study the effects of cycles 

and duration of preconditioning on the outcome of clubfoot treatment. 
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The stress relaxation protocol was utilized in this study in an effort to simulate 

conditions of the Ponseti Method (Section 2). To model stress relaxation, two equations 

were implemented. From t = 0 sec to ti, where ti is the time at which the prescribed load 

level for the trial was reached, Eq. 3 was used to model the elastic response of the curve. 

Reduced relaxation data, the normalized stress relaxation behavior, was taken from ti to 

the end of the trial. The specimens were held at a constant elongation for approximately 

100s. In a research study investigating the required duration for assessing ligament 

viscoelasticity, Manley, Jr. et al. found that viscoelasticity tests performed for at least 100 

s produced similar accuracy in the viscoelastic behavior to those performed for at least 

1000 s (Manley et al.). At this length of trial, the proportional relaxation reached a mean 

value of 71% ± 7.25 %, which was less relaxation than what was reported by Butler et al. 

for normal cadaveric medial ankle ligaments (66%, 64%, and 69%) and for lateral ankle 

ligaments (65%, 67%, 57%, 56%, 65%) (Butler et al., 2004). This may relate to changes 

the mechanisms that govern viscoelastic behavior in the clubfoot tissue, e.g. molecular 

structure and collagen and proteoglycan interaction in the MFMT tissue. Further analysis 

into the relationship between the tissue microstructure and mechanical behavior is 

necessary. 

Stress relaxation parameters were derived via two optimization methods, the 

instantaneous step assumption method and the strain history approach, as described by 

Abramowitch and Woo (Abramowitch and Woo, 2004). No significant difference was 

found between the parameter values of each technique. Results from Abramowitch 

suggested that the difference in parameter values between the two methods could be due 
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to the absence of the relaxation occurring during ramping.  Therefore, depending on the 

method used, the function predicted may result in greater relaxation (strain history).  

Preliminary exploratory analysis of the parameters of the elastic response, as 

computed with the strain history approach, revealed two trends. First, two groups of 

values were found among parameter A, estimates above and below 1. This may be due to 

variability between specimens and/or potential microdamage in the specimen during the 

protocol. It was found that this trend affected most specimens. Also, as seen in Figure 4-

12, the slopes of the two models for these groups are different. For trials where A< 1, the 

slope is approximately zero with respect to stress. Therefore, for those values of AB of 

the same specimen where A < 1, the slope, AB, is independent of stress level. However, 

for the second cluster of trials, A > 1 and the model fit has an increasing slope with 

respect to stress level. This could indicate stiffening with respect to stress. The second 

trend shows a decreasing nonlinear relationship between the natural log of A and natural 

log of B, where when A > 1, B < 1 and when A < 1, B >1. Therefore, trials fitted with 

values of A >1 have a more linear elastic response, while trials with parameter A < 1 have 

a more nonlinear elastic response (Abramowitch and Woo, 2004). Initial parameter 

estimates during the parameter optimization process may have reached a local minimum 

instead of a global minimum. To clear this as a potential error, multiple optimization 

iterations were performed with different starting values, producing the same parameters.  

Quasistatic tests were performed on each specimen in order to investigate 

structural and material properties following stress relaxation. Analysis of this data 

revealed a high degree of variability between subjects in terms of the strain energy of the 

load-to-failure curves, as well as the peak load conditions. This may be due to fatigue or 
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yielding occurring from the previous stress relaxation tests, dimensional differences, or 

structural differences in the tissue. Median strain energy equated to 850.7 Nmm, and is 

comparable to earlier studies investigating medial ankle ligament properties. Butler et al. 

investigated the mechanical response of 8 ligaments from 8 fresh-frozen, geriatric 

cadaveric ankle specimens at low loads (Butler et al., 2004). The medial ligaments, 

including the deltoid ligaments, were found to be thicker than those of the lateral aspect 

of the ankle. Future quasistatic research on clubfoot could include higher load testing for 

the identification of yield stresses and permanent deformation. 

Test conditions and external factors may have impacted the outcomes from this 

study. Mechanical properties of ligaments are sensitive to temperature and hydration. 

Studies have shown that major alterations in water content can alter viscoelastic behavior, 

such as in cyclic relaxation tests (Haut and Haut, 1997; Thornton, Shrive and Frank, 

2001) Atkinson et al. found that high water content in human patella tendon resulted in 

faster and more relaxation (Atkinson, Ewers and Haut, 1999). For this study, the protocol 

called for hydrating the tissue throughout testing via a PBS solution spray. Any reduction 

in water content through evaporation could have decreased the amount of relaxation. 

Studies have investigated the effect of temperature on viscoelastic properties (Woo et al., 

1987). Woo et al. found that temperature had an inverse relationship with area of 

hysteresis, i.e. higher temperatures resulted in smaller areas of hysteresis. In addition, 

lower temperatures resulted in less relaxation. Temperature was monitored throughout 

testing for the current study and air temperature averaged around 25
o
C. Consequently, the 

amount of relaxation experienced by the MFMT specimens may have been less than what 

would have occurred at a higher physiologic temperature. The aforementioned 
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complications and limitations give rise to the need for an in vivo investigation of the 

mechanobiological response of the clubfoot tissue. 

4.5 Conclusion 

The purpose of this study was to mechanically characterize medial fibrotic mass 

tissue of the resistant and relapsing clubfoot in order to ascertain its behavior in response 

to conservative correction conditions. Limited information is available regarding the 

mechanical properties and viscoelastic behavior of the abnormal tissue. The mechanical 

nature of the soft tissue of the clubfoot may be a factor affecting the success of 

conservative treatment. Preliminary findings showed that MFMT specimens experienced 

less relaxation than that of normal deltoid ligaments of an older demographic in a given 

time period. Future work will assess the relationship between clubfoot tissue 

ultrastructure and mechanical behavior. MFMT specimens used in the current study are 

undergoing histological analysis to address fiber orientation and ultrastructure 

organization. As the Ponseti method of casting is theoretically a long-term stress 

relaxation protocol, assessing the tissue within physiologic conditions may provide a 

more accurate representation of the changes to the tissue over a longer period of time. An 

in vivo investigation of the medial ligaments of the clubfoot would yield not only the 

mechanical response of the tissue, but also an interaction with the biological response of 

adaptation.  
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CHAPTER 5: CONCLUSION 

Improved knowledge of clubfoot and clubfoot treatment has the potential to affect 

and improve the lives of over 200,000 children worldwide each year. As technology 

improves, researchers have the tools to investigate the disorder in further detail and 

advance the state of clinical care. Global awareness and outreach for communities 

lacking the resources for proper treatment can extend the clinical impact of this research 

to those who truly need it most. With the advent of conservative treatment, specifically 

the Ponseti Method, surgical interventions have been limited to those who have the most 

severe deformity or recurrence. However, due to the time, logistics, and follow-up, 

conservative treatment can be a cumbersome and long term strategy. This effect is 

compounded for global communities where there may be more geographical limitations 

to care. In order to improve the efficacy and time efficiency of conservative treatment, a 

series of research studies was conducted to gain more insight into the biomechanical 

effects of the treatments, clubfoot soft tissue, and casting methodology. 

The purpose of this dissertation was to investigate the biomechanics of 

conservative clubfoot treatment. The first research study (Chapter 2) executed a 

comprehensive analysis of the kinematic behavior of three common casting materials 

used in the progressive casting protocol of the Ponseti Method. The second research 

study (Chapter 3) developed and validated a benchtop material test system for the 

evaluation of miniature soft tissue specimens. The third research study (Chapter 4) 

utilized the material test system in order to perform quasistatic and viscoelastic protocols 

on medial fibrotic mass tissue obtained during surgery from pediatric clubfoot patients. 

The outputs of this investigation led to the mathematical modeling of the stress relaxation 
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behavior of this tissue. This research provides insight into the mechanical response of the 

deformity to conservative treatment. This may lead to innovative approaches focused on 

improved treatment efficacy and efficiency. 

5.1 Summary of Findings 

 The hypotheses outlined in section 1.5 were verified via the specific aims of each 

research study. Through the use of a clubfoot correction model and motion analysis, the 

creep behavior of several casting materials was quantified. This analysis revealed 

minimal overall creep rotation for the three cast materials (< 2.0 deg), yet identified semi-

rigid fiberglass to be a suitable alternative to plaster-of-Paris, as it resisted deformation 

earlier in the drying process. In addition, tests at different levels of torque failed to have 

significantly different results; therefore, the inherent nature of the material may not be 

susceptible to deformity stiffness and severity levels. Modeling of the viscoelastic nature 

of the cast material provided boundary conditions caused by the treatment. This could 

potentially be useful in simulation of in vivo tissue behavior based on external motion and 

musculoskeletal models. In addition, the behavior may provide a model or guideline for 

future devices or apparatuses used during conservative clubfoot treatment.  

 The investigation into the mechanical behavior required the development and 

validation of a benchtop and portable mechanical test system capable of handling 

miniature material specimens, including but not limited to those of a biological nature. 

Requirements for the system included an adjustable mechanical framework, grips for 

miniature specimens, electromechanical control, as well as software programmed 

interface. A comprehensive analysis of the system with synthetic and biological materials 
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validated the system’s ability to detect force and position and demonstrated its versatility, 

respectively. 

Finally, medial fibrotic mass tissue specimens from pediatric patients undergoing 

routine surgical clubfoot correction were characterized utilizing quasistatic and 

viscoelastic protocols. Results of this study allowed for the parameterization of a model 

of stress relaxation that can be used to describe tissue response to conditions of 

conservative correction. Interspecimen variability was found to be present and it is 

suggested that this may contribute to difficulties in evaluating this tissue in vitro. The 

preconditioning phase of the viscoelastic protocol allowed the tissue to reach a hysteretic 

equilibrium beginning at 8 cycles (p > 0.05). This finding may establish a minimum 

threshold for pre-casting manipulation. The stress relaxation protocol performed at 

several load levels on the MFMT permitted analysis of the linearity of the tissue 

behavior. As the standard model for ligament behavior, the quasi-linear viscoelastic 

model was implemented. Utilizing two different approaches, parameters quantifying the 

reduced relaxation behavior and elastic response were determined. Based on the 

instantaneous step assumption approach, the reduced relaxation function G(t) was found 

to be independent of strain level with R
2
 values greater than 0.90, when comparing the 

averaged model with individual strain levels. The elastic response parameters A and B 

were determined via a nonlinear regression of the isochronous stress-strain curve for each 

specimen (adjusted R
2
 > 0.82). The strain history approach, developed by Abramowitch 

and Woo (Abramowitch and Woo, 2004), was used simultaneously calculate the 

parameters of the reduced relaxation function and elastic response. The parameters 

determined by the two approaches were not significantly different, though the strain 
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history approach takes into account the relaxation due to the ramping phase. While this is 

the first attempt at mechanically characterizing the MFMT, findings showed similar but 

less relaxation than did normal deltoid ligaments (Butler et al., 2004). In regards to elastic 

response, the influence of stress level on the slope AB, as determined via the strain 

history approach, depended on the value of A. Finally, the nonlinear relationship of ln(A) 

and ln(B) revealed a significant correlation and inverse relationship. 

 This research is the first step in understanding how and why the clubfoot responds 

to conservative correction. Findings from this analysis of tissue behavior may provide 

clinicians and researchers with a mechanical starting point for the future of clubfoot 

treatment.   

5.2 Limitations and Future Directions 

The research presented in this dissertation represents a novel introduction into the 

material mechanics of clubfoot soft tissue and conservative correction. The analysis of 

miniature soft tissue samples surgically extracted during routine corrective procedures 

may supply the clinical and therapeutic community with underlying mechanical insight 

for the future improvement of clubfoot correction. With a quantitative assessment of 

clubfoot correction via creep analysis, it may be possible to combine these findings to 

model patient specific responses to treatment. With the understanding of these conditions, 

new methods and materials could be utilized to more effectively and efficiently treat 

clubfoot.  

The next focus beyond the mechanical aspects of the clubfoot tissue is to ascertain 

the biological correlation with the tissue mechanics. The initial step is to assess the 

statistical correlation of tissue ultrastructure with the findings of the present study, and 
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then evaluate connections to genetics. With the advent of fluoroscopy, ultrasound, and 

elastography, future directions could potentially address limitations brought on by the 

simulation set-up of the casting study, and the in vitro conditions of the clubfoot tissue 

mechanical evaluation. Fluoroscopy would allow for the merging of these two research 

topics by providing an internal view of the musculoskeletal system in vivo and allow 

correlation of mechanical tissue properties with functional behavior. Ultrasound and 

elastography are safe and non-invasive means to detect tissue structure, as well as 

material properties and behavior. The outcomes of the mechano-ultrastructure correlation 

could allow for clinical determination of treatment response at the tissue level. Both these 

techniques could provide a mechanobiological analysis of the tissue in response to 

conservative treatment, which would include: 1) casting during the Ponseti method; 2) 

immobilization in the Denis-Browne brace; and 3) pre-casting manipulation (cyclic 

loading). This assessment could pilot future correction strategies, devices, and therapy.  

  

 

 

  



96 

 

 BIBLIOGRAPHY 

Abdelgawad, A.A., et al. "Treatment of Idiopathic Clubfoot Using the Ponseti Method: 

Minimum 2-Year Follow-Up." Journal of Pediatric Orthopaedics B 16.2 (2007): 

98-105. Print. 

Abramowitch, S.D., and S.L. Woo. "An Improved Method to Analyze the Stress 

Relaxation of Ligaments Following a Finite Ramp Time Based on the Quasi-

Linear Viscoelastic Theory." Journal of Biomechanical Engineering 126.1 

(2004): 92-7. Print. 

Abramowitch, S.D., et al. "An Evaluation of the Quasi-Linear Viscoelastic Properties of 

the Healing Medial Collateral Ligament in a Goat Model." Annals of Biomedical 

Engineering 32.3 (2004): 329-35. Print. 

Abramowitch, S.D., et al. “The Healing Medial Collateral Ligament Following a 

Combined Anterior Cruciate and Medial Collateral Ligament Injury—a 

Biomechanical Study in a Goat Model.” Journal of Orthopaedic Research 21.6 ( 

2003): 1124-30. Print. 

Albert, C., et al. "Bone Properties by Nanoindentation in Mild and Severe Osteogenesis 

Imperfecta." Clinical Biomechanics (Bristol, Avon) 28.1 (2013): 110-6. Print. 

Albert, C.I., J. Jameson, and G. Harris. "Design and Validation of Bending Test Method 

for Characterization of Miniature Pediatric Cortical Bone Specimens." 

Proceedings of the Institution of Mechanical Engineering, Part H:Juornal of 

Engineering in Medicine 227.2 (2013): 105-13. Print. 

"Astm D638-14, Standard Test Method for Tensile Properties of Plastics." West 

Conshohocken, PA: ASTM International, 2014. Print. 

Atkinson, T.S., B.J. Ewers, and R.C. Haut. "The Tensile and Stress Relaxation Responses 

of Human Patellar Tendon Varies with Specimen Cross-Sectional Area." Journal 

of Biomechanics 32.9 (1999): 907-14. Print. 

Aurell, Y., et al. "Ultrasound Anatomy in the Neonatal Clubfoot." European Radiology 

12.10 (2002): 2509-17. Print. 



97 

 

Berman, A.T., and B.G. Parks. "A Comparison of the Mechanical Properties of 

Fiberglass Cast Materials and Their Clinical Relevance." Journal of Orthopaedic 

Trauma 4.1 (1990): 85-92. Print. 

Box, T.E.T. "Tensile Modulus - Modulus of Elasticity or Young's Modulus - for Some 

Common Materials". 7/24/15. <http://www.engineeringtoolbox.com/young-

modulus-d_417.html>. 

Brewster, M.B.S., et al. "Ponseti Casting: A New Soft Option." Journal of Bone and 

Joint Surgery – British Volume 90-B.11 (2008): 1512-15. Print. 

Butler, A.M., et al. "Mechanical Response of Ankle Ligaments at Low Loads." Foot & 

Ankle International 25.1 (2004): 8-12. Print. 

Callahan, D.J., et al. "A Comparative Study of Synthetic Cast Material Strength." 

Orthopedics 9.5 (1986): 679-81. Print. 

Carew, E.O., et al. "Effect of Specimen Size and Aspect Ratio on the Tensile Properties 

of Porcine Aortic Valve Tissues." Annals of Biomedical Engineering 31.5 (2003): 

526-35. Print. 

Cassis, N., and A. Torres-Gomez. "Treatment Options for Clubfoot: An Update." 

Pediatric Health 3.5 (2009): 473-78. Print. 

Creep Evaluation of (Orthotic) Cast Materials During Simulated Clubfoot Correction. 

Engineering in Medicine and Biology Society (EMBC), 2012 Annual 

International Conference of the IEEE. Aug. 28 2012-Sept. 1 2012 2012. Print. 

Cohen, T.L., et al. "Evaluation of Cast Creep Occurring During Simulated Clubfoot 

Correction." Proceedings of the Institution of Mechanical Engineering, Part 

H:Juornal of Engineering in Medicine 227.8 (2013): 919-27. Print. 

Coss, H.S., and W.L. Hennrikus. "Parent Satisfaction Comparing Two Bandage Materials 

Used During Serial Casting in Infants." Foot & Ankle International 17.8 (1996): 

483-6. Print. 

"Cure Clubfoot". 11/29/15 2015. <https://cure.org/clubfoot/>. 



98 

 

Currey, J. "The Structure and Mechanics of Bone." Journal of Materials Science 47.1 

(2012): 41-54. Print. 

Davids, J.R., et al. "Skin Surface Pressure beneath an above-the-Knee Cast: Plaster Casts 

Compared with Fiberglass Casts." Journal of Bone and Joint Surgery -  American 

Volume 79.4 (1997): 565-9. Print. 

Deshpande, S.V., and S.V. Deshpande. "An Experimental Study of Pressure-Volume 

Dynamics of Casting Materials." Injury 36.9 (2005): 1067-74. Print. 

Dimeglio, A., et al. "Classification of Clubfoot." Journal of Pediatric Orthopaedics B 4.2 

(1995): 129-36. Print. 

Dobbs, M.B., et al. "Update on Clubfoot: Etiology and Treatment." Clinical 

Orthopaedics and Related Research 467.5 (2009): 1146-53. Print. 

Docker, C.E., et al. "Ponseti Treatment in the Management of Clubfoot Deformity - a 

Continuing Role for Paediatric Orthopaedic Services in Secondary Care Centres." 

Annals of the Royal College of Surgeons of England 89.5 (2007): 510-2. Print. 

Dortmans, L.J., A.A. Sauren, and E.P. Rousseau. "Parameter Estimation Using the Quasi-

Linear Viscoelastic Model Proposed by Fung." Journal of Biomechanical 

Engineering 106.3 (1984): 198-203. Print. 

Duenwald, S.E., R. Vanderby, Jr., and R.S. Lakes. "Stress Relaxation and Recovery in 

Tendon and Ligament: Experiment and Modeling." Biorheology 47.1 (2010): 1-

14. Print. 

Dyer, P.J., and N. Davis. "The Role of the Pirani Scoring System in the Management of 

Club Foot by the Ponseti Method." Journal of Bone and Joint Surgery - British 

Volume 88.8 (2006): 1082-4. Print. 

Elliott, D.M., et al. "Effect of Altered Matrix Proteins on Quasilinear Viscoelastic 

Properties in Transgenic Mouse Tail Tendons." Annals of Biomedical 

Engineering 31.5 (2003): 599-605. Print. 

Faulks, S., and B.S. Richards. "Clubfoot Treatment: Ponseti and French Functional 

Methods Are Equally Effective." Clinical Orthopaedics and Related Research 

467.5 (2009): 1278-82. Print. 



99 

 

Feola, A., et al. "Impact of Pregnancy and Vaginal Delivery on the Passive and Active 

Mechanics of the Rat Vagina." Annals of Biomedical Engineering 39.1 (2011): 

549-58. Print. 

Flynn, J.M.M.D., M.P.T. Donohoe, and W.G.M.D. Mackenzie. "An Independent 

Assessment of Two Clubfoot-Classification Systems." Journal of Pediatric 

Orthopaedics May/June 18.3 (1998): 323-27. Print. 

Frank, C.B. "Ligament Structure, Physiology and Function." Journal of Musculoskeletal 

Neuronal Interaction 4.2 (2004): 199-201. Print. 

Fukuhara, K., G. Schollmeier, and H. Uhthoff. "The Pathogenesis of Club Foot. A 

Histomorphometric and Immunohistochemical Study of Fetuses." Journal of Bone 

and Joint Surgery – British Volume 76-B.3 (1994): 450-57. Print. 

Fung, Y.C. Biomechanics : Mechanical Properties of Living Tissues. 2nd ed. New York: 

Springer-Verlag, 1993. Print. 

Fung, Y.C., et al. Biomechanics, Its Foundations and Objectives. Englewood Cliffs, N.J.,: 

Prentice-Hall, 1972. Print. 

Funk, J.R., et al. "Linear and Quasi-Linear Viscoelastic Characterization of Ankle 

Ligaments." Journal of Biomechanical Engineering 122.1 (2000): 15-22. Print. 

Galloway, M.T., A.L. Lalley, and J.T. Shearn. "The Role of Mechanical Loading in 

Tendon Development, Maintenance, Injury, and Repair."  Journal of Bone and 

Joint Surgery 95.17 (2013): 1620-28. Print. 

Gere, J.M., and S.P. Timoshenko. Mechanics of Materials. PWS Pub Co., 1997. p. 

889.Print. 

Graf, A., et al. "Comprehensive Review of the Functional Outcome Evaluation of 

Clubfoot Treatment: A Preferred Methodology." Journal of Pediatric 

Orthopaedics B 21.1 (2012): 20-7. Print. 

Bose Corporation - ElectroForce Systems Group. ElectroForce® 3100 Test Instrument. 

MN, USA: Bose Corporation. 



100 

 

Hattori, K.a., et al. "Measurement of Soft Tissue Elasticity in the Congenital Clubfoot 

Using Scanning Acoustic Microscope." Journal of Pediatric Orthopaedics B 16.5 

(2007): 357-62. Print. 

Haut, R.C. "Age-Dependent Influence of Strain Rate on the Tensile Failure of Rat-Tail 

Tendon." Journal of Biomechanical Engineering 105.3 (1983): 296-9. Print. 

---. "The Influence of Specimen Length on the Tensile Failure Properties of Tendon 

Collagen." Journal of Biomechanics 19.11 (1986): 951-5. Print. 

Haut, T.L., and R.C. Haut. "The State of Tissue Hydration Determines the Strain-Rate-

Sensitive Stiffness of Human Patellar Tendon." Journal of Biomechanics 30.1 

(1997): 79-81. Print. 

Hersh, A. "The Role of Surgery in the Treatment of Club Feet." Journal of Bone & Joint 

Surgery - American Volume 49.8 (1967): 1684-96. Print. 

Herzenberg, J.E., C. Radler, and N. Bor. "Ponseti Versus Traditional Methods of Casting 

for Idiopathic Clubfoot." Journal of Pediatric Orthopedics 22.4 (2002): 517-21. 

Print. 

Illinois Tool Works Inc. Instron® 3340 Series Single Column Model. USA: Illinois Tool 

Works Inc.. 

Ippolito, E. "Update on Pathologic Anatomy of Clubfoot." Journal of Pediatric 

Orthopaedics B 4.1 (1995): 17-24. Print. 

Ippolito, E., et al. "Long-Term Comparative Results in Patients with Congenital Clubfoot 

Treated with Two Different Protocols." Journal of Bone and Joint Surgery – 

American Volume 85-A.7 (2003): 1286-94. Print. 

Ippolito, E., and I.V. Ponseti. "Congenital Club Foot in the Human Fetus. A Histological 

Study." Journal of Bone and Joint Surgery – American Volume 62.1 (1980): 8-22. 

Print. 

Johnson, G.A., et al. "Tensile and Viscoelastic Properties of Human Patellar Tendon." 

Journal of Orthopaedic Research 12.6 (1994): 796-803. Print. 



101 

 

Jung, H.J., M.B. Fisher, and S.L. Woo. "Role of Biomechanics in the Understanding of 

Normal, Injured, and Healing Ligaments and Tendons." Sports Medicine, 

Arthroscopy, Rehabilitation, Therapy and Technology 1.1 (2009): 9. Print. 

Laaveg, S.J., and I.V. Ponseti. "Long-Term Results of Treatment of Congenital Club 

Foot." Journal of Bone & Joint Surgery - American Volume 62.1 (1980): 23-31. 

Print. 

Manley, E., et al. Required Test Duration for Group Comparisons in Ligament 

Viscoelasticity: A Statistical Approach: IOS Press. Print. 

Martin, P.J., et al. "A Comparative Evaluation of Modern Fracture Casting Materials." 

Engineering in Medicine 17.2 (1988): 63-70. Print. 

Martin, R.B., D.B. Burr, and N.A. Sharkey. Skeletal Tissue Mechanics. New York: 

Springer, 1998. Print. 

Mihalko, W.M., A.J. Beaudoin, and W.R. Krause. "Mechanical Properties and Material 

Characteristics of Orthopaedic Casting Material." Journal of Orthopaedic Trauma 

3.1 (1989): 57-63. Print. 

Miller, K.S., et al. "Examining Differences in Local Collagen Fiber Crimp Frequency 

Throughout Mechanical Testing in a Developmental Mouse Supraspinatus 

Tendon Model." Journal of Biomechanical Engineering 134.4 (2012): 041004-04. 

Print. 

Moalli, P.A., et al. "A Rat Model to Study the Structural Properties of the Vagina and Its 

Supportive Tissues." Amerocan Journal of Obstetrics and Gynecology 192.1 

(2005): 80-8. Print. 

Moon, D.K., et al. "The Effects of Refreezing on the Viscoelastic and Tensile Properties 

of Ligaments." Journal of Biomechanics 39.6 (2006): 1153-7. Print. 

Morcuende, J.A. "Congenital Idiopathic Clubfoot: Prevention of Late Deformity and 

Disability by Conservative Treatment with the Ponseti Technique." Pediatric 

Annals 35.2 (2006): 128-30, 32-6. Print. 

Morcuende, J.A.M.D.P., et al. "Results of an Accelerated Ponseti Protocol for Clubfoot." 

Journal of Pediatric Orthopaedics September/October 25.5 (2005): 623-26. Print. 



102 

 

MTS. Acumen™ Electrodynamic Test Systems. USA: MTS Corporation.. 

Ng, B.K., T.P. Lam, and J.C. Cheng. "Treatment of Severe Clubfoot with Manipulation 

Using Synthetic Cast Material and a Foam-Casting Platform: A Preliminary 

Report." Journal of Pediatric Orthopaedics B 19.2 (2010): 164-70. Print. 

Nordin, M., and V.H. Frankel. Basic Biomechanics of the Musculoskeletal System. 4th ed. 

Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins, 2012. Print. 

Owen, R.M., et al. "A Collaborative Public Health Approach to Clubfoot Intervention in 

10 Low-Income and Middle-Income Countries: 2-Year Outcomes and Lessons 

Learnt." Journal of Pediatric Orthopaedics B 21.4 (2012): 361-5. Print. 

Oza, A.L., R. Vanderby, and R.S. Lakes. "Creep and Relaxation in Ligament: Theory, 

Methods, and Experiment." Mechanics of Biological Tissue. Eds. Holzapfel, G.A. 

and R.W. Ogden. Berlin: Springer, 2006. 379-97. Print. 

Parker, S.E., et al. "Multistate Study of the Epidemiology of Clubfoot." Birth Defects 

Research Part A: Clinical and Molecular Teratology 85.11 (2009): 897-904. 

Print. 

Philbin, T.M., and M.E. Gittins. "Hybrid Casts: A Comparison of Different Casting 

Materials." Journal of the American Osteopathic Association 99.6 (1999): 311-2. 

Print. 

Pittner, D.E., et al. "Treatment of Clubfoot with the Ponseti Method: A Comparison of 

Casting Materials." Journal of Pediatric Orthopedics 28.2 (2008): 250-3. Print. 

"Ponseti International". What is Clubfoot? - clubfoot facts and information. 11/29/15 

2015. <http://www.ponseti.info/what-is-clubfoot.html>. 

Ponseti, I.V. "Clubfoot Management." Journal of Pediatric Orthopedics 20.6 (2000): 

699-700. Print. 

Ponseti, I.V "Relapsing Clubfoot: Causes, Prevention, and Treatment." Iowa Orthopaedic 

Journal 22 (2002): 55-6. Print. 

http://www.ponseti.info/what-is-clubfoot.html%3e


103 

 

Ponseti, I.V., and J. Campos. "Observations on Pathogenesis and Treatment of 

Congenital Clubfoot." Clinical Orthopaedics and Related Research 84 (1972): 

50-60. Print. 

Ponseti, I.V., and J.A. Morcuende. "Current Management of Idiopathic Clubfoot 

Questionnaire: A Multicenter Study." Journal of Pediatric Orthopedics 24.4 

(2004): 448. Print. 

Purslow, P.P., T.J. Wess, and D.W. Hukins. "Collagen Orientation and Molecular 

Spacing During Creep and Stress-Relaxation in Soft Connective Tissues." Journal 

of Experimental Biology 201.Pt 1 (1998): 135-42. Print. 

Radler, C., et al. "Radiographic Evaluation of Idiopathic Clubfeet Undergoing Ponseti 

Treatment." Journal of Bone and Joint Surgery – American Volume  89.6 (2007): 

1177-83. Print. 

Richards, B.S., et al. "A Comparison of Two Nonoperative Methods of Idiopathic 

Clubfoot Correction: The Ponseti Method and the French Functional 

(Physiotherapy) Method Journal of Bone and Joint Surgery – American Volume  

90.11 (2008): 2313-21. Print. 

Rowley, D.I., et al. "The Comparative Properties of Plaster of Paris and Plaster of Paris 

Substitutes." Archives of Orthopaedic and Trauma Surgery 103.6 (1985): 402-07. 

Print. 

Roye, B.D., J. Hyman, and D.P. Roye, Jr. "Congenital Idiopathic Talipes Equinovarus." 

Pediatrics in Review 25.4 (2004): 124-30. Print. 

Roye, D.P., Jr., and B.D. Roye. "Idiopathic Congenital Talipes Equinovarus." Journal of 

the American Academy of Orthopaedic Surgeons 10.4 (2002): 239-48. Print. 

Sano, H., et al. "Pathogenesis of Soft-Tissue Contracture in Club Foot." Journal of Bone 

and Joint Surgery –British Volume 80.4 (1998): 641-4. Print. 

Schechtman, H., and D.L. Bader. "In Vitro Fatigue of Human Tendons." Journal of 

Biomechanics 30.8 (1997): 829-35. Print. 



104 

 

Scher, D.M. "Predicting the Need for Tenotomy in the Ponseti Method for Correction of 

Clubfeet." Journal of Pediatric Orthopaedics July/August 24.4 (2004): 349-52. 

Print. 

Schmidt, V.E., J.H. Somerset, and R.E. Porter. "Mechanical Properties of Orthopedic 

Plaster Bandages." Journal of Biomechanics 6.2 (1973): 173-76, IN5, 77-85. 

Print. 

Selected Pediatric Conditions. OrthopaedicsOne Clerkship. In: OrthopaedicsOne - The 

Orthopaedic Knowledge Network. Created Nov 27, 2010 17:46. Last modified 

Jan 05, 2011 13:26 ver.11. Retrieved 2015-12-02, from 

http://www.orthopaedicsone.com/x/JQbMAg. 

Shabtai, L., S.C. Specht, and J.E. Herzenberg. "Worldwide Spread of the Ponseti Method 

for Clubfoot." World Journal of Orthopaedics 5.5 (2014): 585-90. Print. 

Smith, B.A., G.A. Livesay, and S.L. Woo. "Biology and Biomechanics of the Anterior 

Cruciate Ligament." Clinics in Sports Medicine 12.4 (1993): 637-70. Print. 

Smith, P.A., et al. "Long-Term Results of Comprehensive Clubfoot Release Versus the 

Ponseti Method: Which Is Better?" Clinical Orthopaedics and Related Research  

(2013). Print. 

Tanaka, E., and T. van Eijden. "Biomechanical Behavior of the Temporomandibular Joint 

Disc." Critical Reviews in Oral Biology & Medicine 14.2 (2003): 138-50. Print. 

Terrazas-Lafargue, G., et al. "Effect of Cast Removal Timing in the Correction of 

Idiopathic Clubfoot by the Ponseti Method." Iowa Orthopaedic Journal 27 

(2007): 24-7. Print. 

Thornton, G.M., et al. "Ligament Creep Cannot Be Predicted from Stress Relaxation at 

Low Stress: A Biomechanical Study of the Rabbit Medial Collateral Ligament." 

Journal of Orthopaedic Research 15.5 (1997): 652-6. Print. 

Thornton, G.M., N.G. Shrive, and C.B. Frank. "Altering Ligament Water Content Affects 

Ligament Pre-Stress and Creep Behaviour." Journal of Orthopaedic Research 

19.5 (2001): 845-51. Print. 



105 

 

Toms, S.R., et al. "Quasi-Linear Viscoelastic Behavior of the Human Periodontal 

Ligament." Journal of  Biomechanics 35.10 (2002): 1411-5. Print. 

Turco, V.J. "Surgical Correction of the Resistant Club Foot. One-Stage Posteromedial 

Release with Internal Fixation: A Preliminary Report." Journal of Bone and Joint 

Surgery – American Volume 53.3 (1971): 477-97. Print. 

Wallander, H.M. "Congenital Clubfoot. Aspects on Epidemiology, Residual Deformity 

and Patient Reported Outcome." Acta Orthopaedica Supplementum 81.339 

(2010): 1-25. Print. 

Wang, J.H., Q. Guo, and B. Li. "Tendon Biomechanics and Mechanobiology--a 

Minireview of Basic Concepts and Recent Advancements." Journal of Hand 

Therapy 25.2 (2012): 133-40; quiz 41. Print. 

Weiss, J.A., and L.E. Paulos. "Mechanical Testing of Ligament Fixation Devices." 

Techniques in Orthopaedics 14.1 (1999): 14-21. Print. 

Wills, D.J., D.C.A. Picton, and W.I.R. Davies. "An Investigation of the Viscoelastic 

Properties of the Periodontium in Monkeys." Journal of Periodontal Research 7.1 

(1972): 42-51. Print. 

Windisch, G., et al. "Anatomical Study for an Updated Comprehension of Clubfoot. Part 

Ii: Ligaments, Tendons and Muscles." Journal of Children’s Orthopaedics 1.1 

(2007): 79-85. Print. 

Winkelstein, B.A. Orthopaedic Biomechanics. Boca Raton, FL: CRC Press, 2013. Print. 

Woo, S.L., G.A. Johnson, and B.A. Smith. "Mathematical Modeling of Ligaments and 

Tendons." Journal of Biomechanical Engineering 115.4B (1993): 468-73. Print. 

Woo, S.L., Lee T.Q., Abramowitch, S.D., Gilbert, T.W. "Structure and Function of 

Ligaments and Tendons." Basic Orthopaedic Biomechanics & Mechano-Biology. 

Ed. Mow, V.C., Huiskes, R. 3rd Ed. ed. Philadelphia, PA: Lippincott Williams & 

Wilkins, 2005. 301-42. Print. 

Woo, S.L., et al. "Temperature Dependent Behavior of the Canine Medial Collateral 

Ligament." Journal of Biomechanical Engineering 109.1 (1987): 68-71. Print. 



106 

 

Woo, S.L., K.J. Ohland, and J.A. Weiss. "Aging and Sex-Related Changes in the 

Biomechanical Properties of the Rabbit Medial Collateral Ligament." 

Mechanisms in Ageing and Development 56.2 (1990): 129-42. Print. 

Woo, S.L., et al. "Tensile Properties of the Medial Collateral Ligament as a Function of 

Age." Journal of Orthopaedic Research 4.2 (1986): 133-41. Print. 

Woo, S.L., et al. "The Effects of Strain Rate on the Properties of the Medial Collateral 

Ligament in Skeletally Immature and Mature Rabbits: A Biomechanical and 

Histological Study." Journal of Orthopaedic Research 8.5 (1990): 712-21. Print. 

Zhang, T.X., et al. "Genome-Wide Association Study Identifies New Disease Loci for 

Isolated Clubfoot." Journal of Medical Genetics 51.5 (2014): 334-9. Print. 

Zionts, L.E., et al. "Has the Rate of Extensive Surgery to Treat Idiopathic Clubfoot 

Declined in the United States?" Journal of Bone & Joint Surgery - American 

Volume 92.4 (2010): 882-9. Print. 

Zmurko, M.G., S.M. Belkoff, and J.E. Herzenberg. "Mechanical Evaluation of a Soft 

Cast Material." Orthopedics 20.8 (1997): 693-8. Print. 

 

 

 

  



107 

 

APPENDIX A: MFMT TESTING AND MODELING OUTPUTS 

Table A-1: Patient/specimen demographics. Age (months), affected side (left 

(L)/right(R)), bilateral (B)/unilateral (U), gender (male (M)/female (F)), height (mm), 

weight (kg), idiopathic (yes (Y)/no (N)), Dimèglio severity score (1-4), previous 

treatment (none, casting, Ponseti method (with percutaneous Achilles tenotomy), 

surgery).  

Sp 
Age 

(mths) 

Side 

(L/R) 
B/U 

Gender  

(M/F) 

Height 

(mm) 

Weight 

(kg)* 
Idiop Severity Treatment 

S1 83 L B M 1230.88 22 Y 3 Casting/Surgery 

S3 51 L U F 1143.00 20.6 Y 4 Ponseti/Surgery 

S6 72 R B M 1310.64 26 Y 3 Casting/Surgery 

S7 84 L B M 1219.20 25 Y 3 Casting/Surgery 

S8 36 R U M 962.00 17.2 N
a
  2 Ponseti/Surgery 

C1 12 R B M NA 8 N
b 

4 Ponseti 

C2B NA NA NA NA NA NA NA NA NA 

C3 38 L U M NA 13 Y 3 Casting 

C4.1 48 R U F NA 12 N
c
  4 Casting 

C4.2 48 R U F NA 12 N
c
  4 Casting 

C6 31 L B M NA 11.4 Y 3 Ponseti 

C7.2 19 R B M NA 11.3 N
d
 3 Ponseti 

C8R NA NA NA NA NA NA NA NA NA 

C9 19 R B M NA 9 N
e
 4 Ponseti 

C11 60 L B M NA 10 N
f
 4 None 

C12 19 L U M NA 7.8 N
g
 2 OR 3 Ponseti 

C13 14 L B F NA 9 Y 3 Ponseti 

C15 31 L B M NA 13 Y 3 Ponseti 

*Weight only reported by Shriner’s Hospitals for Children – Chicago. 
a
Myelomeningocele and Neuromuscular Clubfoot 

b
Bilateral Arthrogypotic Clubfoot with absent toenail plates 

c
Same patient, Right Arthrogypotic Clubfoot, Hand Congenital Band Syndrome 

d
Moebius Syndrome, Hand Congenital Band Syndrome 

e
Bilateral Arthrogypotic Clubfoot 

f
Bilateral Arthrogypotic Clubfoot 

g
Left Idiopathic Clubfoot, Preacial Hand Polydactyl 



108 

 

Table A-2: Preconditioning strain rates. Median 

preconditioning strain rate for each specimen 

undergoing preconditioning 

Specimen 

# 

Displacement 

Rate (mm/s) 

Strain Rate 

(mm/mm/s) 

% 

Strain 

Rate 

C11 0.164516 0.017671 1.767086 

C12 0.15621 0.020235 2.023452 

C15 0.161999 0.021428 2.142841 

C3 0.162679 0.023871 2.387077 

C4.1 0.163188 0.01678 1.678022 

C6 0.160348 0.017122 1.7122 

C7.2 0.147483 0.017101 1.710141 

C8R 0.160459 0.019881 1.988096 

C9 0.157908 0.028868 2.886796 

S1 0.16146 0.022866 2.28664 

S3 0.163069 0.020407 2.040662 

S7 0.15975 0.027187 2.718693 

S8 0.16221 0.017021 1.702099 

Median 0.16146 0.020235 2.023452 

Min 0.147483 0.01678 1.678022 

Max 0.164516 0.028868 2.886796 
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Table A-3: Preconditioning areas of hysteresis. Areas of hysteresis for 13 specimens 

undergoing 20 preconditioning cycles. A) Values represent areas (Nmm) calculated from 

the force-displacement preconditioning data. B) Values represent areas (MPa) calculated 

from stress-strain preconditioning data.  

A Specimen 

Cycles C11 C12 C15 C3 C4.1 C6 C7.2 C8R C9 S1 S3 S7 S8 

1 2.80E-01 1.94E-01 1.08E-01 4.98E-01 2.56E-01 2.22E-01 2.99E-02 2.20E-01 8.34E-02 6.11E-01 2.73E-01 1.05E-01 2.13E-01 

2 1.17E-01 7.81E-02 6.32E-02 1.50E-01 1.00E-01 7.18E-02 1.03E-02 8.45E-02 5.59E-02 8.90E-02 6.58E-02 5.74E-02 7.91E-02 

3 9.09E-02 1.20E-01 5.33E-02 1.35E-01 7.84E-02 5.03E-02 4.26E-03 7.27E-02 4.21E-02 7.52E-02 5.51E-02 4.06E-02 5.31E-02 

4 7.47E-02 5.20E-02 4.40E-02 1.24E-01 6.83E-02 4.48E-02 3.54E-03 8.24E-02 3.87E-02 6.26E-02 3.38E-02 3.29E-02 4.95E-02 

5 7.89E-02 3.26E-02 4.50E-02 1.21E-01 6.77E-02 3.50E-02 1.56E-03 6.17E-02 3.69E-02 4.03E-02 4.09E-02 2.92E-02 4.53E-02 

6 5.98E-02 3.40E-02 3.69E-02 1.73E-01 5.67E-02 3.94E-02 2.72E-03 6.36E-02 3.69E-02 3.88E-02 2.68E-02 2.81E-02 4.44E-02 

7 6.41E-02 3.26E-02 3.13E-02 1.51E-01 5.15E-02 2.68E-02 1.13E-03 6.01E-02 2.56E-02 4.39E-02 3.81E-02 2.83E-02 4.49E-02 

8 5.86E-02 2.98E-02 3.35E-02 1.20E-01 5.55E-02 2.71E-02 -2.37E-03 5.81E-02 3.20E-02 4.03E-02 2.19E-02 2.51E-02 3.88E-02 

9 5.89E-02 2.39E-02 3.05E-02 8.81E-02 5.21E-02 3.65E-02 8.14E-04 4.19E-02 2.61E-02 2.81E-02 3.05E-02 2.19E-02 4.75E-02 

10 5.46E-02 2.21E-02 2.97E-02 8.87E-02 5.55E-02 3.21E-02 -3.02E-04 5.15E-02 2.72E-02 2.96E-02 2.66E-02 2.71E-02 4.43E-02 

11 5.47E-02 1.74E-02 2.95E-02 8.42E-02 5.12E-02 2.03E-02 -1.06E-03 3.48E-02 3.09E-02 4.18E-02 3.12E-02 2.45E-02 4.24E-02 

12 4.37E-02 2.20E-02 3.33E-02 8.27E-02 4.27E-02 2.20E-02 -1.72E-03 2.56E-02 2.59E-02 2.28E-02 2.05E-02 2.67E-02 4.25E-02 

13 5.22E-02 1.49E-02 2.66E-02 7.68E-02 5.30E-02 2.37E-02 -1.67E-03 3.03E-02 2.30E-02 3.06E-02 2.80E-02 2.22E-02 4.32E-02 

14 5.16E-02 2.16E-02 2.55E-02 7.06E-02 4.49E-02 2.89E-02 -2.52E-04 3.09E-02 2.58E-02 1.61E-02 2.72E-02 3.29E-02 4.38E-02 

15 3.64E-02 2.46E-02 2.74E-02 6.22E-02 4.30E-02 1.35E-02 -2.35E-03 2.04E-02 2.11E-02 2.83E-02 2.48E-02 2.44E-02 4.91E-02 

16 5.32E-02 5.96E-03 2.83E-02 5.56E-02 4.77E-02 2.14E-02 -2.08E-03 2.09E-02 2.54E-02 2.76E-02 2.25E-02 2.93E-02 3.23E-02 

17 4.84E-02 1.67E-02 2.20E-02 6.47E-02 4.54E-02 2.04E-02 -3.50E-03 1.96E-02 2.02E-02 1.40E-02 1.93E-02 2.50E-02 3.67E-02 

18 4.20E-02 1.61E-02 2.07E-02 6.42E-02 5.04E-02 1.99E-02 -2.43E-03 2.40E-02 2.44E-02 3.41E-02 2.93E-02 3.06E-02 4.13E-02 

19 4.38E-02 2.09E-02 2.32E-02 4.71E-02 3.80E-02 2.58E-02 -1.66E-03 1.71E-02 1.90E-02 1.72E-02 2.14E-02 2.08E-02 4.35E-02 

20 4.61E-02 1.60E-02 1.95E-02 6.61E-02 4.41E-02 1.64E-02 -2.89E-03 1.98E-02 2.35E-02 4.16E-02 2.95E-02 2.51E-02 2.38E-02 

 

mean 7.05E-02 3.98E-02 3.66E-02 1.16E-01 6.51E-02 3.99E-02 1.60E-03 5.20E-02 3.22E-02 6.66E-02 4.33E-02 3.29E-02 5.29E-02 

std 5.29E-02 4.47E-02 2.02E-02 9.69E-02 4.72E-02 4.49E-02 7.41E-03 4.54E-02 1.50E-02 1.29E-01 5.53E-02 1.89E-02 3.91E-02 

me 5.46E-02 2.30E-02 3.01E-02 8.61E-02 5.18E-02 2.69E-02 -6.81E-04 3.84E-02 2.60E-02 3.65E-02 2.86E-02 2.76E-02 4.41E-02 

max 2.80E-01 1.94E-01 1.08E-01 4.98E-01 2.56E-01 2.22E-01 2.99E-02 2.20E-01 8.34E-02 6.11E-01 2.73E-01 1.05E-01 2.13E-01 

min 3.64E-02 5.96E-03 1.95E-02 4.71E-02 3.80E-02 1.35E-02 -3.50E-03 1.71E-02 1.90E-02 1.40E-02 1.93E-02 2.08E-02 2.38E-02 

C1-20 2.34E-01 1.78E-01 8.89E-02 4.32E-01 2.12E-01 2.06E-01 3.28E-02 2.01E-01 5.99E-02 5.69E-01 2.44E-01 8.04E-02 1.89E-01 

C2-20 7.07E-02 6.21E-02 4.37E-02 8.37E-02 5.60E-02 5.54E-02 1.32E-02 6.47E-02 3.24E-02 4.74E-02 3.63E-02 3.23E-02 5.53E-02 
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Table A-3: Preconditioning areas of hysteresis. Areas of hysteresis for 13 specimens 

undergoing 20 preconditioning cycles. A) Values represent areas calculated from the 

force-displacement preconditioning data. B) Values represent areas calculated from 

stress-strain preconditioning data. 

B Specimen 

Cycles C11 C12 C15 C3 C4.1 C6 C7.2 C8R C9 S1 S3 S7 S8 

1 1.10E-02 8.61E-03 2.64E-03 1.02E-02 4.95E-03 4.07E-03 1.02E-03 6.71E-03 3.79E-03 2.51E-02 6.92E-03 8.44E-03 5.20E-03 

2 4.60E-03 3.46E-03 1.54E-03 3.07E-03 1.94E-03 1.32E-03 3.50E-04 2.57E-03 2.54E-03 3.66E-03 1.67E-03 4.59E-03 1.93E-03 

3 3.58E-03 5.33E-03 1.30E-03 2.78E-03 1.52E-03 9.22E-04 1.45E-04 2.21E-03 1.91E-03 3.09E-03 1.39E-03 3.25E-03 1.30E-03 

4 2.94E-03 2.30E-03 1.07E-03 2.54E-03 1.32E-03 8.21E-04 1.20E-04 2.51E-03 1.76E-03 2.57E-03 8.55E-04 2.63E-03 1.21E-03 

5 3.10E-03 1.44E-03 1.10E-03 2.48E-03 1.31E-03 6.42E-04 5.30E-05 1.88E-03 1.68E-03 1.66E-03 1.04E-03 2.34E-03 1.10E-03 

6 2.35E-03 1.51E-03 8.98E-04 3.56E-03 1.10E-03 7.21E-04 9.24E-05 1.94E-03 1.68E-03 1.60E-03 6.78E-04 2.25E-03 1.08E-03 

7 2.52E-03 1.44E-03 7.63E-04 3.09E-03 9.96E-04 4.90E-04 3.84E-05 1.83E-03 1.16E-03 1.80E-03 9.66E-04 2.26E-03 1.10E-03 

8 2.31E-03 1.32E-03 8.16E-04 2.47E-03 1.07E-03 4.96E-04 -8.07E-05 1.77E-03 1.45E-03 1.66E-03 5.55E-04 2.01E-03 9.46E-04 

9 2.32E-03 1.06E-03 7.44E-04 1.81E-03 1.01E-03 6.69E-04 2.77E-05 1.28E-03 1.19E-03 1.16E-03 7.72E-04 1.76E-03 1.16E-03 

10 2.15E-03 9.80E-04 7.24E-04 1.82E-03 1.07E-03 5.88E-04 -1.03E-05 1.57E-03 1.24E-03 1.22E-03 6.74E-04 2.17E-03 1.08E-03 

11 2.15E-03 7.69E-04 7.18E-04 1.73E-03 9.89E-04 3.73E-04 -3.60E-05 1.06E-03 1.40E-03 1.72E-03 7.91E-04 1.96E-03 1.03E-03 

12 1.72E-03 9.75E-04 8.10E-04 1.70E-03 8.25E-04 4.02E-04 -5.83E-05 7.79E-04 1.18E-03 9.37E-04 5.18E-04 2.14E-03 1.04E-03 

13 2.05E-03 6.62E-04 6.49E-04 1.58E-03 1.02E-03 4.34E-04 -5.69E-05 9.22E-04 1.05E-03 1.26E-03 7.08E-04 1.78E-03 1.05E-03 

14 2.03E-03 9.57E-04 6.21E-04 1.45E-03 8.69E-04 5.30E-04 -8.58E-06 9.39E-04 1.17E-03 6.61E-04 6.89E-04 2.63E-03 1.07E-03 

15 1.43E-03 1.09E-03 6.68E-04 1.28E-03 8.31E-04 2.47E-04 -7.99E-05 6.20E-04 9.58E-04 1.16E-03 6.29E-04 1.95E-03 1.20E-03 

16 2.09E-03 2.64E-04 6.89E-04 1.14E-03 9.22E-04 3.93E-04 -7.06E-05 6.35E-04 1.16E-03 1.13E-03 5.71E-04 2.35E-03 7.87E-04 

17 1.90E-03 7.41E-04 5.36E-04 1.33E-03 8.78E-04 3.74E-04 -1.19E-04 5.98E-04 9.20E-04 5.74E-04 4.88E-04 2.00E-03 8.94E-04 

18 1.65E-03 7.15E-04 5.04E-04 1.32E-03 9.74E-04 3.64E-04 -8.24E-05 7.30E-04 1.11E-03 1.40E-03 7.42E-04 2.45E-03 1.01E-03 

19 1.72E-03 9.24E-04 5.66E-04 9.67E-04 7.35E-04 4.73E-04 -5.63E-05 5.20E-04 8.62E-04 7.06E-04 5.42E-04 1.66E-03 1.06E-03 

20 1.81E-03 7.08E-04 4.75E-04 1.36E-03 8.53E-04 3.00E-04 -9.81E-05 6.04E-04 1.07E-03 1.71E-03 7.48E-04 2.01E-03 5.80E-04 

 

mean 2.77E-03 1.76E-03 8.91E-04 2.38E-03 1.26E-03 7.31E-04 5.42E-05 1.58E-03 1.46E-03 2.74E-03 1.10E-03 2.63E-03 1.29E-03 

std 2.08E-03 1.98E-03 4.92E-04 1.99E-03 9.13E-04 8.24E-04 2.52E-04 1.38E-03 6.81E-04 5.32E-03 1.40E-03 1.51E-03 9.53E-04 

med 2.15E-03 1.02E-03 7.34E-04 1.77E-03 1.00E-03 4.93E-04 -2.31E-05 1.17E-03 1.18E-03 1.50E-03 7.25E-04 2.21E-03 1.07E-03 

max 1.10E-02 8.61E-03 2.64E-03 1.02E-02 4.95E-03 4.07E-03 1.02E-03 6.71E-03 3.79E-03 2.51E-02 6.92E-03 8.44E-03 5.20E-03 

min 1.43E-03 2.64E-04 4.75E-04 9.67E-04 7.35E-04 2.47E-04 -1.19E-04 5.20E-04 8.62E-04 5.74E-04 4.88E-04 1.66E-03 5.80E-04 

C1-20 9.21E-03 7.90E-03 2.17E-03 8.86E-03 4.10E-03 3.77E-03 1.11E-03 6.10E-03 2.72E-03 2.34E-02 6.17E-03 6.43E-03 4.62E-03 

C2-20 2.78E-03 2.75E-03 1.06E-03 1.72E-03 1.08E-03 1.02E-03 4.48E-04 1.97E-03 1.47E-03 1.95E-03 9.19E-04 2.58E-03 1.35E-03 



111 

 

 

 

 

 

 

 

 

Figure A-1:Load-to-failure curves. A) force vs. displacement, B) stress vs. strain 
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Table A-4: Stress relaxation strain rates. Median (min/max) and per-trial stress-

relaxation strain rate for each specimen undergoing stress-relaxation 

Specimen 

# 

Strain Rate 

(mm/mm/s) 

% 

Strain 

Rate 

Median strain rate for each individual trial (%/s) 

C1 0.01841 1.841022 1.84 1.84 1.84 1.84        

C11 0.017825 1.782509 1.77 1.78 1.78 1.78        

C12 0.021507 2.150682 2.125 2.15 2.15 2.15 2.155 2.15 2.15 2.15 2.155 2.15  

C15 0.021968 2.196839 2.19 2.20 2.20 2.19 2.20 2.20 2.20 2.20    

C3 0.024397 2.439658 2.41 2.43 2.44 2.43 2.45 2.45 2.44 2.44 2.43 2.43  

C4.1 0.017032 1.703246 1.70 2.70 1.71         

C4.2 0.018353 1.835251 1.83 1.835          

C6 0.01773 1.773026 1.76 1.76 1.77 1.77 1.78 1.78 1.79 1.78 1.77   

C7.2 0.019252 1.925184 1.88 1.92 1.92 1.93 1.93 1.93 1.92 1.93 1.92 1.925  

C8R 0.020588 2.05877 2.045 2.05 2.06 2.06 2.06 2.06 2.06 2.06 2.06 2.06  

C9 0.030054 3.005356 2.99 3.02          

S1 0.023545 2.354549 2.32 2.35 2.36 2.36 2.35 2.35 2.36 2.35 2.35 2.35 
2.3

55 

S3 0.020816 2.081594 2.08 2.08 2.08 2.08 2.08 2.08 2.08 2.08 2.08 2.08  

S6 0.014832 1.483212 1.49 1.48 1.48         

S7 0.028178 2.817752 2.81 2.81 2.81 2.82 2.81 2.82 2.84 2.84    

S8 0.017437 1.743716 1.74 1.75 1.74 1.74 1.74 1.74      

Median 0.01992 1.991977            

Min 0.014832 1.483212            

Max 0.030054 3.005356            
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Table A-5: Stress Relaxation Outcomes. Percent relaxation, 80% of relaxation, and 

corresponding time (s) for each trial, as well as mean and standard deviation. *Outliers 

based on 3std. 

Specimen Time (s) % Relaxation Time (s) to 

80% of Relaxation 

80% of  

Relaxation 

C1 181.68* 62.38* 54.63 0.70 

C1 99.96 64.55 29.59 0.72 

C1 99.95 63.02 29.78 0.71 

C1 99.96 53.69 26.32 0.63 

C11 99.95 75.41 27.63 0.81 

C11 99.98 64.07 23.24 0.71 

C11 100.00 59.51 19.98 0.68 

C11 174.60* 49.33* 22.98 0.59 

C12 99.95 71.53 39.08 0.77 

C12 99.98 57.16 25.97 0.66 

C12 99.96 60.36 26.63 0.68 

C12 99.97 64.37 25.24 0.72 

C12 99.97 66.88 26.09 0.74 

C12 99.97 69.75 28.63 0.76 

C12 99.97 71.58 24.38 0.77 

C12 99.98 68.64 22.04 0.75 

C12 99.98 68.93 22.25 0.75 

C12 99.97 71.40 24.69 0.77 

C15 99.95 78.29 42.22 0.83 

C15 99.95 74.43 37.82 0.80 

C15 99.96 74.19 37.28 0.79 

C15 99.96 73.79 32.50 0.79 

C15 99.97 77.40 33.61 0.82 

C15 99.96 79.45 32.01 0.84 

C15 99.97 79.62 32.11 0.84 

C15 99.96 80.16 32.87 0.84 

C3 99.95 79.31 46.30 0.83 

C3 99.95 72.96 38.19 0.78 

C3 99.96 73.76 38.43 0.79 

C3 98.71 74.71 36.54 0.80 

C3 99.96 73.71 37.85 0.79 

C3 99.97 74.22 36.47 0.79 

C3 99.96 74.40 36.71 0.80 

C3 99.97 72.65 32.19 0.78 

C3 99.97 70.42 27.02 0.76 

C3 99.98 72.66 26.45 0.78 

C4.1 99.95 83.36 44.37 0.87 
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C4.1 99.95 74.49 26.76 0.80 

C4.1 7.30* 53.92* 4.12* 0.63* 

C4.2 100.01 50.76 22.80 0.61 

C4.2 133.06 47.90 27.56 0.58 

C6 99.96 76.40 49.27 0.81 

C6 99.96 69.36 34.30 0.76 

C6 99.98 68.56 32.37 0.75 

C6 99.96 68.52 32.50 0.75 

C6 99.96 69.70 32.18 0.76 

C6 99.97 70.50 32.74 0.76 

C6 99.96 71.33 32.73 0.77 

C6 99.97 68.69 44.57 0.75 

C6* 99.97 55.64 85.97* 0.65* 

C7.2 99.96 77.38 38.82 0.82 

C7.2 99.96 72.73 31.96 0.78 

C7.2 99.97 74.23 31.71 0.79 

C7.2 99.96 74.39 32.55 0.80 

C7.2 99.97 75.22 27.06 0.80 

C7.2 99.96 76.01 30.97 0.81 

C7.2 99.96 77.45 29.83 0.82 

C7.2 99.96 77.29 29.40 0.82 

C7.2 99.99 75.69 28.18 0.81 

C7.2 99.96 76.71 31.26 0.81 

C8R 99.94 75.18 36.71 0.80 

C8R 100.02 67.69 30.35 0.74 

C8R 99.97 62.41 28.78 0.70 

C8R 99.97 67.18 32.17 0.74 

C8R 99.97 71.01 31.93 0.77 

C8R 99.97 73.26 23.26 0.79 

C8R 99.96 75.64 30.26 0.81 

C8R 99.97 72.86 25.23 0.78 

C8R 99.97 70.59 25.47 0.76 

C8R 99.97 70.32 24.69 0.76 

C9 99.96 75.50 39.28 0.81 

C9 99.98 63.13 25.07 0.71 

S1 99.97 71.02 47.09 0.77 

S1 99.98 65.71 23.89 0.73 

S1 99.95 66.51 24.96 0.73 

S1 99.96 67.07 20.92 0.74 

S1 99.96 69.01 23.55 0.75 

S1 99.97 68.51 21.86 0.75 
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S1 99.97 64.98 19.83 0.72 

S1 99.97 67.57 24.64 0.74 

S1 99.97 61.56 27.09 0.69 

S1 99.97 64.89 25.87 0.72 

S1 99.97 67.46 30.08 0.74 

S3 99.95 84.02 48.58 0.87 

S3 99.95 78.51 33.15 0.83 

S3 99.94 77.92 32.21 0.82 

S3 99.96 76.26 30.87 0.81 

S3 99.94 74.73 29.92 0.80 

S3 99.95 75.02 30.02 0.80 

S3 99.96 75.81 29.25 0.81 

S3 99.97 73.95 28.21 0.79 

S3 99.98 71.24 29.47 0.77 

S3 99.97 75.00 27.79 0.80 

S6 3.56* 85.06* 2.65* 0.88* 

S6 99.96 64.97 35.40 0.72 

S6 99.98 59.40 30.67 0.68 

S7 99.96 82.10 45.65 0.86 

S7 99.96 74.93 32.25 0.80 

S7 99.95 74.82 30.98 0.80 

S7 99.95 75.93 33.70 0.81 

S7 99.96 76.56 31.96 0.81 

S7 99.96 75.70 28.24 0.81 

S7 99.96 77.21 30.55 0.82 

S7 99.98 75.65 31.92 0.81 

S8 99.94 81.08 42.04 0.85 

S8 99.96 42.61 4.42* 0.54* 

S8 99.99 63.59 35.41 0.71 

S8 219.65* 46.07* 30.62 0.57 

S8 193.42* 70.96* 52.55 0.77 

S8 99.96 74.24 36.55 0.80 

Mean 100.27 70.96 31.61 0.77 

Std. 3.25 7.25 7.04 0.06 
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Table A-6: Parametric statistics of parameters predicted using the strain history 

approach. Mean and standard deviation (mean (std)) values of parameters from Eqs. 5 

and 6, and corresponding goodness of fit measure R
2
.   

Sample A B G1 λ1 G2 λ2 G3 λ3 R2 

C1 0.0002 10.0238 1.5067 0.0019 1.8894 0.3422 -0.8021 8.9221 0.9744 

 (0.0003) (1.9789) (0.1709) (0.0008) (0.3744) (0.1183) (0.2339) (1.0921) (0.0175) 

C11 3.1739 8.0348 1.3930 2.7967 2.8299 0.0179 9.5684 0.9753 0.9129 
 (6.3357) (5.8482) (6.5156) (5.5372) (2.6932) (0.0311) (14.9075) (0.5775) (0.0871) 

C12 0.2917 18.6266 -2.4927 7.2654 18.7085 0.0761 -4.9720 5.7165 0.9818 

 (0.8891) (8.1183) (10.8591) (18.4422) (29.4181) (0.2346) (7.3761) (4.0788) (0.0111) 

C15 5.6072 9.7837 0.2781 2.1029 12.4498 0.0220 9.5491 7.5729 0.9474 
 (9.1443) (8.1226) (8.3997) (5.2336) (21.8975) (0.0377) (16.7470) (6.9798) (0.1081) 

C3 0.1417 7.8500 2.2421 0.0185 4.4144 0.1315 -10.7459 5.7997 0.9903 

 (0.4343) (1.9720) (1.2283) (0.0401) (8.7216) (0.2267) (23.3556) (2.1833) (0.0058) 

C4.1 5.8112 6.7734 8.1677 1.3558 1.6734 0.0008 -14.1710 7.3846 0.9842 

 (5.9104) (11.1737) (9.0430) (2.0155) (2.8535) (0.0019) (46.8812) (10.6001) (0.0089) 

C4.2 0.0023 9.9286 2.6021 0.0886 -1.0982 0.5005 -5.6554 4.1740 0.8667 

 (0.0025) (4.3066) (3.2064) (0.1220) (2.8130) (0.7049) (14.0010) (5.9072) (0.1446) 

C6 10.6132 8.0677 3.3118 1.8011 12.9190 0.0595 21.3831 5.7235 0.9694 

 (11.9643) (9.4814) (7.2072) (4.6379) (27.7566) (0.1473) (21.8929) (5.1444) (0.0272) 

C7.2 17.9533 9.2096 16.5375 0.3914 -0.6469 0.0012 18.3126 79.9924 0.9833 

 (12.7888) (28.6850) (32.9840) (0.3306) (1.6811) (0.0003) (12.1870) (250.8160) (0.0036) 

C8R 8.0842 11.7284 -3.8514 13.3959 18.0939 0.0141 3.9788 5.5407 0.9115 

 (16.3781) (8.6509) (9.7750) (29.9334) (19.6619) (0.0386) (8.0810) (4.9741) (0.1762) 

C9 0.9020 5.7386 1.7916 0.1374 1.3567 0.0005 1.4085 0.0976 0.9431 

 (1.2551) (4.2709) (0.1258) (0.0862) (2.6148) (0.0009) (0.6719) (0.1542) (0.0708) 

S1 7.1288 20.1780 -2.2541 8.5464 17.8820 0.0023 2.7807 5.5549 0.9657 

 (22.6606) (6.8815) (5.1336) (11.7213) (10.6697) (0.0006) (18.8552) (4.0181) (0.0397) 

S3 9.1321 8.6264 -2.0246 9.3131 11.1942 0.0215 1.7012 3.2925 0.9767 

 (14.3481) (7.1637) (9.0941) (21.4580) (15.1670) (0.0640) (10.1664) (2.9094) (0.0150) 

S6 0.5946 11.6763 3.9057 -0.0017 2.0101 2.2406 -0.5979 17.9110 0.9121 

 (1.0284) (10.2052) (2.7041) (0.0028) (1.1968) (3.8296) (3.3889) (19.3552) (0.1345) 

S7 23.6442 3.0207 1.7517 0.4636 0.6983 0.0011 14.1633 3.5921 0.9833 

 (19.3812) (4.8064) (1.0014) (0.2509) (2.0405) (0.0003) (13.0860) (5.7493) (0.0067) 

S8 10.0987 8.9550 4.4586 0.3207 7.1517 0.0009 -0.6397 4.2681 0.9469 

 (19.3124) (7.0725) (7.5469) (0.3604) (15.4407) (0.0007) (14.9043) (4.6828) (0.0507) 
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APPENDIX B: ANALYTICAL INTEGRATION OF QUASI-LINEAR 

VISCOELASTIC MODEL 

𝜎(𝑡)

=  ∫ 𝐺̅(𝑡 − 𝜏)
𝜕𝜎𝑒(𝜀)

𝜕𝜀

𝜕𝜀

𝜕𝜏
𝜕𝜏

𝑡

−𝑡

                                                                                            (B. 1) 

𝐺(𝑡) = 𝐺1𝑒
−𝝀1𝑡 + 𝐺2𝑒

−𝝀2𝑡 + 𝐺5𝑒
−𝝀3𝑡                                                                                  (B. 2)  

𝜎𝑒(𝜀) = 𝐴(𝑒𝐵𝜀 − 1)                                                                                                                  (B. 3)  

𝜕𝜎𝑒(𝜀)

𝜕𝜀
= 𝐴𝐵𝑒𝐵𝜀                                                                                            (B.4) 

0 ≤ 𝑡 ≤ 𝑡0 :  
𝜕𝜀

𝜕𝜏
= 𝛾                                                   (B.5) 

𝑡 > 𝑡0 :  
𝜕𝜀

𝜕𝜏
= 0                                        (B.6) 

𝜎(0 ≤ 𝑡 ≤ 𝑡0) = 𝐴𝐵𝛾 ∫ {𝐺1𝑒
−𝝀1(𝑡−𝜏) + 𝐺2𝑒

−𝝀2(𝑡−𝜏) + 𝐺3𝑒−𝝀3(𝑡−𝜏)}𝑒𝐵𝛾𝜏 𝜕𝜏
𝑡

0
             (B. 7)  

= 𝐴𝐵𝛾 [
𝐺1𝑒

−𝝀1𝑡𝑒(𝝀1+𝐵𝛾)𝜏

𝝀1 + 𝐵𝛾
+

𝐺2𝑒−𝝀2𝑡𝑒(𝝀2+𝐵𝛾)𝜏

𝝀2 + 𝐵𝛾

+
𝐺3𝑒

−𝝀3𝑡𝑒(𝝀3+𝐵𝛾)𝜏

𝝀3 + 𝐵𝛾
]
0

𝑡

                                                         (B. 8) 

= 𝐴𝐵𝛾 [
𝐺1𝑒

−𝝀1𝑡𝑒(𝝀1+𝐵𝛾)𝑡

𝝀1 + 𝐵𝛾
+

𝐺2𝑒
−𝝀2𝑡𝑒(𝝀2+𝐵𝛾)𝑡

𝝀2 + 𝐵𝛾
+

𝐺3𝑒
−𝝀3𝑡𝑒(𝝀3+𝐵𝛾)𝑡

𝝀3 + 𝐵𝛾
]

− 𝐴𝐵𝛾 [
𝐺1𝑒

−𝝀1𝑡

𝝀1 + 𝐵𝛾
+

𝐺2𝑒
−𝝀2𝑡

𝝀2 + 𝐵𝛾
+

𝐺3𝑒
−𝝀3𝑡

𝝀3 + 𝐵𝛾
]                       (B. 9) 

= 𝐴𝐵𝛾 [
𝐺1𝑒

𝐵𝛾𝑡

𝝀1 + 𝐵𝛾
+

𝐺2𝑒
𝐵𝛾𝑡

𝝀2 + 𝐵𝛾
+

𝐺3𝑒
𝐵𝛾𝑡

𝝀3 + 𝐵𝛾
]

− 𝐴𝐵𝛾 [
𝐺1𝑒

−𝝀1𝑡

𝝀1 + 𝐵𝛾
+

𝐺2𝑒
−𝝀2𝑡

𝝀2 + 𝐵𝛾
+

𝐺3𝑒
−𝝀3𝑡

𝝀3 + 𝐵𝛾
]                    (B. 10) 

𝜎(𝑡 > 𝑡0) = 𝐴𝐵𝛾 ∫ {𝐺1𝑒
−𝝀1(𝑡−𝜏) + 𝐺2𝑒

−𝝀2(𝑡−𝜏) + 𝐺3𝑒
−𝝀3(𝑡−𝜏)}𝑒𝐵𝛾𝜏 𝜕𝜏

𝑡0

0
                (B. 11)  
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= 𝐴𝐵𝛾 [
𝐺1𝑒

−𝝀1𝑡𝑒(𝝀1+𝐵𝛾)𝜏

𝝀1 + 𝐵𝛾
+

𝐺2𝑒−𝝀2𝑡𝑒(𝝀2+𝐵𝛾)𝜏

𝝀2 + 𝐵𝛾

+
𝐺3𝑒

−𝝀3𝑡𝑒(𝝀3+𝐵𝛾)𝜏

𝝀3 + 𝐵𝛾
]
0

𝑡0

                                                    (B. 12) 

= 𝐴𝐵𝛾 [
𝐺1𝑒

−𝝀1𝑡𝑒(𝝀1+𝐵𝛾)𝑡0

𝝀1 + 𝐵𝛾
+

𝐺2𝑒
−𝝀2𝑡𝑒(𝝀2+𝐵𝛾)𝑡0

𝝀2 + 𝐵𝛾
+

𝐺3𝑒−𝝀3𝑡𝑒(𝝀3+𝐵𝛾)𝑡0

𝝀3 + 𝐵𝛾
]

− 𝐴𝐵𝛾 [
𝐺1𝑒

−𝝀1𝑡

𝝀1 + 𝐵𝛾
+

𝐺2𝑒
−𝝀2𝑡

𝝀2 + 𝐵𝛾
+

𝐺3𝑒
−𝝀3𝑡

𝝀3 + 𝐵𝛾
]                    (B. 13) 
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APPENDIX C: QLV STATISTICAL EXPLORATION 

 

 
 

 

Figure B-1: Values of Parameter A vs. Force Level.  Values of parameter A calculated 

from the elastic response data fitted with the equation 𝜎𝑒(𝜀) = 𝐴(𝑒𝐵𝑡 − 1). 
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Figure B-2: Values of Parameter A vs. Force Level.  R output of linear mixed model and 

likelihood ratio test. 
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Figure B-3: Values of Parameter B vs. Force Level.  Values of parameter B calculated 

from the elastic response data fitted with the equation 𝜎𝑒(𝜀) = 𝐴(𝑒𝐵𝑡 − 1). 



122 

 

 

Figure B-4: Values of Parameter B vs. Force Level.  R output of linear mixed model and 

likelihood ratio test. 
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Figure B-5: Values of Parameter A vs. Displacement Level.  Values of parameter A 

calculated from the elastic response data fitted with the equation 𝜎𝑒(𝜀) = 𝐴(𝑒𝐵𝑡 − 1). 
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Figure B-6: Values of Parameter A vs. Displacement Level.  R output of linear 

mixed model and likelihood ratio test. 
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Figure B-7: Values of Parameter B vs. Displacement Level.  Values of parameter B 

calculated from the elastic response data fitted with the equation 𝜎𝑒(𝜀) = 𝐴(𝑒𝐵𝑡 − 1).  
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Figure B-8: Values of Parameter B vs. Displacement Level.  R output of linear 

mixed model and likelihood ratio test. 
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Figure B-9: Values of Parameter A vs. Severity Level.  Values of parameter A calculated 

from the elastic response data fitted with the equation 𝜎𝑒(𝜀) = 𝐴(𝑒𝐵𝑡 − 1). 



128 

 

 

 

Figure B-10: Values of Parameter A vs. Severity Level.  R output of linear 

mixed model and likelihood ratio test. 
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Figure B-11: Values of Parameter B vs. Severity Level.  Values of parameter B 

calculated from the elastic response data fitted with the equation 𝜎𝑒(𝜀) = 𝐴(𝑒𝐵𝑡 − 1). 
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Figure B-12: Values of Parameter B vs. Severity Level.  R output of linear mixed model 

and likelihood ratio test. 
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APPENDIX D: TISSUE TESTING DEVICE PROTOCOL 

Tissue Preparation: 

1. Tissue sizing: A tissue cutter constructed from two 0.009 in single edge razor 

blades and a metal spacer of a 1.5 mm thickness, is used to size the tissue to an 

approximately 1.5 mm x 1.5 mm cross sectional area (figures below).   

 

 

a. Clamp one end of tissue with hemostat 

b. Lay ligament flat on cutting surface 

c. Press edge of cutting tool along length of tissue 

d. Drag cutting tool (with force) down the length of the tissue 

e. Separate sections of specimen 

f. Cut to length (approx. 1 cm) with scalpel  

g. Store in freezer in 0.9% saline solution until testing 

2. Tissue testing preparation: 

a. Remove sized specimen from freezer 

b. Fill reservoir with 5 gallons of distilled water 

c. Turn on pump and plug in temperature controller.  Set to 37
o
C. 

d. Fill specimen container half way with 0.9% phosphate buffered saline 

solution  

e. Place specimen container in reservoir and thaw at a temperature of 37
o
C 

for 30 minutes  
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Test Space Preparation: 

1. Clean off cutting board, table, hardware (bolts, nuts, springs), test fixture, tissue 

applicator, tools, and scalpel with alcohol wipes 

2. Remove gauze pad from individual wrapper and cut in half.  One half is to be 

used with sprayer; the other to be used during tissue/grip setup. 

3. Check to make sure nuts can be easily fastened on bolts (use socket head wrench, 

regular, wrench, and Allen wrench) 

4. Have video calibration ruler available 

5. Remove PBS solution filled spray bottle from heated reservoir just prior to testing 

Grip Preparation: 

1. Clean off grip surfaces with alcohol wipes to remove oils and debris 

2. Cut and secure rectangular sections of paper, sized to fit between grip holes, to the 

roughened grip surface using double-sided tape (figure below) 

 
3. Cut and secure 2 rectangular sections of paper to the smooth upper surface of one 

face of the upper and lower grip assembly, using double-sided tape (figure above) 

4. Place these grip components in the grip fixture (figure below) 

Top row: Roughened surface 

extruded 

Bottom row: Depressed roughened 

surface 
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Tissue Clamping Protocol: (spray with heated PBS solution periodically to keep tissue 

hydrated) 

1. Remove tissue from PBS solution and place, centered, on “I” shaped applicator, 

with at least 2 mm of overhang at each end of the specimen  

2. Using the applicator, place the specimen on the grip surfaces so that the body is in 

line with the middle slot and ends of the specimen sit on the papered surface 

3. Apply a small bead of cyanoacrylate on each end of the specimen, careful to keep 

the glue from reaching the grip edge 

4. Insert 10-24 bolts, from underneath the fixture, into the two holes of the top grip 

and hold in place 

5. Carefully slide the corresponding grip component into position, sandwiching the 

specimen between the two grip components 

6. Place a spring around each bolt, then secure in place with a nut 

7. Repeat steps 4, 5 and 6 for the bottom grip 

8. Carefully torque each nut using a socket wrench head and Allen wrench until 

there is no space between the spring coils.  Alternate between each nut/bolt, 

rotating the nut a little at a time. 

9. Carefully remove the top and bottom grip assemblies, being mindful to keep the 

specimen tensionless 

10. Holding the grips in alignment, clamp the assemblies in place with a quick grip 

clamp in the position shown in the figure 
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11. Place and secure the bottom grip to the bottom test fixture with bolt, socket head 

facing out 

12.  Using the Command.VI program, lower the actuator to insert the top test fixture 

lip into the slot of the top grip assembly (a few mm increments at a time).  The 

clamp may need to be removed to properly mate these pieces. 

13. Secure top grip in place with a bolt, socket head facing out 

14. Tighten the clamping nut/bolts, alternating sides, to remove as much space 

between grip components as possible 

15. Loosen the bolts of the base of the bottom grip fixture to align the specimen in the 

x, y and z axes (see figure).  Secure the bottom fixture. 

16. Change the velocity of the actuator to 0.166667 mm/s and move the actuator up to 

remove 95% of the slack in the specimen 

17. Using a thin tipped brush and skin marker ink, apply a horizontal line at the grip 

tissue interfaces and at the mid line of the specimen 

18. Rehydrate tissue. 

  



135 

 

APPENDIX E: TEST PROGRAM SETUP 

1. Turn on computer, power strip, and signal conditioner 

2. Open Matlab 2013a  

3. Open PIMikroMove® Software 

a. Select C-863 controller and connect 

b. Select M230.25 stage, assign, and connect 

c. Select Positive reference button and follow directions (moves actuator 

down to furthest point (25 mm)) 

d. Close PIMikroMove® Software 

4. Open Mercury_GCS_Configuration_Setup_a.VI found in 

C:\Users\1375COHENT\Documents\LabVIEW Data 

a. Under Interface Settings 

i. Select RS-232 from pull-down menu 

ii. Select COM1 from portnumber pull-down menu 

iii. Select 115200 from Baudrate pull-down menu 

b. Under Referencing Mode 

i. Select Reference mode ON 

c. Under Move Settings 

i. Select All axes YES 

ii. Select Switch servo on YES 

iii. Select Limit switch selection POSITIVE (FPL) 

iv. Select Move to Middle NO 

d. RUN VI 

5. Open Vis found in  C:\Users\1375COHENT\Documents\LabVIEW Data: 

a. Tester Events Working11-17.VI 

b. Command.VI 

c. LEDrefresh.VI 

d. Deletevid.VI 

e. Deletetask.VI 

6. Attach grips (unweighted) 
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7. Calibrate transducer (separate instructions)  

8. Attach specimen to grips 

9. Measure voltage with multimeter, record, and calculate weight of specimen 

10. Recalibrate transducer to tare transducer 

11. For First Run 

a. Press Initialize? pushbutton = TRUE 

b. Under Data Storage, input position, force, and video file paths and file 

names in the folder C:\Users\1375COHENT\Documents\LabVIEW 

Data\test\Validation(date) 

i. Position files have file extension .lvm 

ii. Force files have file extension .tdms 

iii. Video files have file extension .avi 

c. Under Sampling Rates: 

i. Force sampling rate = 1000 (Hz) 

ii. Position sampling rate = 100 (Hz) 

iii. Video FPT (frames per trigger) = Inf 

d. Input Actuator Velocity spec = .16667(mm/s) 

i. Max = 1.5 mm/s 

ii. Current = .5 mm/s 

e. Under Testing: 

i. Save as SP_a.__ 

ii. Select “Gauge Length” in EVENT pull down menu 

iii. Input Force Threshold in newtons = __ (N) 

iv. Input Displacement in mm = _____ (mm) 

f. Start VI 

12. For subsequent runs: 

a. Deselect Initialize? push button = FALSE 

b. Repeat steps 2b and 6c for setting up data storage and sampling rates 

c. Under Testing: 

i. For Preconditioning: 

1. Save as SP__b.__ 
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2. Select “Force Precondition” in Event pull down menu 

3. Input Displacement in mm = ___ (mm) 

4. Input number of cycles to complete = ____ cycles 

ii. For Stress Relaxation: 

1. Save as SP__c.__ 

2. Select “Stress Relaxation” in Event pull down menu 

3. Input Displacement in mm = ____ (mm) 

4. Input Force Threshold in Newtons = ___ (N) 

5. Input Time in seconds = ____ (s) 

iii. For Move: 

1. Select “Move” in Event pull down menu 

2. Input Displacement in mm = ____ (mm) 

d. Start VI 

e. For load to failure – use Gauge Length 

13. If program, actuator, data collection, etc. needs to be stopped, press STOP and 

stop the VI.  (Refresh LED) 

14. To view TDMS files  

a. Open ViewTDMS.VI 

b. Select correct file path 

c. Run VI 
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APPENDIX F: LABVIEW VIS 

 

Figure D-1: Main Control VI Front Panel of PedsTES. 
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Figure D-2: Main control VI block diagram of PedsTES.  
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Figure D-3: Force acquisition subVI of PedsTES.  Front panel and block diagram. 
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Figure D-4: Position acquisition subVI of PedsTES. Front panel and 

block diagram  
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Figure D-5: DAQ setup subVI of PedsTES. Icon, front panel, and block 

diagram.  SubVI includes scale to convert volts to Newtons, intake of analog 

data, and output of digital signal.  
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Figure D-4: Force control subVI of PedsTES.  Icon, front panel, and bloc diagram.  

SubVI sets force threshold and sends signal to actuator to move a desired 

displacement until force value is reached.  
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Figure D-5: Displacement control subVI of PedsTES.  Icon, front panel, and block 

diagram.  SubVI allows user to input desired displacement and sends command to 

actuator to move. 
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Figure D-6: Preconditioning subVI of PedsTES.  Icon and front panel.  SubVI 

uses force control to perform preconditioning.  Force and number of cycles are user 

inputs. 
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Figure D-8: Stress relaxation control subVI of PedsTES. Icon, front panel, and 

block diagram.  SubVI sends signal to actuator to move until force threshold is 

reached, then held in position for desired time.  
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Figure D-9: LED control subVI of PedsTES.  Icon, front panel, 

and block diagram.  SubVI used to turn on and off LED to 

indicate when test is running.  
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APPENDIX G: CLUBFOOT RESEARCH: A POEM 

Imagine your 1 of 200,000 newborns and your foot is in a cast, 

because in utero your foot turned in and down as time passed. 

 

Around your displaced bones in an abnormal fusion of tissue; 

Restricting movement, so short and stiff, a major part of the issue. 

 

An uncorrected clubfoot could lead to limits and pain in your future, 

but which treatment to pick, conservative or with a suture. 

 

Now stuck in a cast from week to week, your foot changes position. 

Add a year or so with a brace, the Ponseti method has corrected your condition. 

 

Cast materials are in abundance as either synthetic or plaster, 

But which material will hold your foot in place; which will fix you faster. 

 

A simulated clubfoot treatment was built to run the test. 

Three types of cast materials were tested to see which performed the best. 

 

They experienced minimal rotation; therefore each one could be used. 

Longer time to weight-bearing, or some correction you will lose. 

 

That abnormal soft tissue around your ankle could hinder your outcome. 

Insight into its behavior could lead to improved strategies in years to come. 

 

To find out how this tissue would respond to loads and time conditions, 

A mechanical test machine was built to test clubfoot specimens removed by clinicians. 

 

An actuator, load cell, and camera were all synchronized to record. 

Fishing line and rabbit ligament validated this system that labs could afford. 

 

The clubfoot tissue was harvested and testing with this machine. 

Cyclic loading and stress relaxation data, now what does it mean? 

 

Another piece of the puzzle lies within the organization of its structure.  

Is it different from normal ligaments; do the fibers direct all over? 

 

The tissue mechanics and structure vary from patient to patient. 

We can use this knowledge to better identify a shorter precise treatment. 
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