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ABSTRACT 
EXAMINING MECHANISM OF TOXICITY OF COPPER  

OXIDE NANOPARTICLES TO SACCHAROMYCES  
CEREVISIAE AND CAENORHABDITIS  

ELEGANS 
 
 
 

Michael J. Mashock, B.S. 

Marquette University, 2016 

 

Copper oxide nanoparticles (CuO NPs) are an up and coming technology 
increasingly being used in industrial and consumer applications and thus may pose risk 
to humans and the environment. In the present study, the toxic effects of CuO NPs were 
studied with two model organisms Saccharomyces cerevisiae and Caenorhabditis 
elegans.  

 
The role of released Cu ions during dissolution of CuO NPs in growth media 

were studied with freshly suspended, aged NPs, and the released Cu2+ fraction. 
Exposures to the different Cu treatments showed significant inhibition of S. cerevisiae 
cellular metabolic activity. Inhibition from the NPs was inversely proportional to size and 
was not fully explained by the released Cu ions. S. cerevisiae cultures grown under 
respiring conditions demonstrated greater metabolic sensitivity when exposed to CuO 
NPs compared to cultures undergoing fermentation. The cellular response to both CuO 
NPs and released Cu ions on gene expression was analyzed via microarray analysis 
after an acute exposure. It was observed that both copper exposures resulted in an 
increase in carbohydrate storage, a decrease in protein production, protein misfolding, 
increased membrane permeability, and cell cycle arrest.  Cells exposed to NPs up-
regulated genes related to oxidative phosphorylation but also may be inducing cell cycle 
arrest by a different mechanism than that observed with released Cu ions.  

 
The effect of CuO NPs on C. elegans was examined by using several 

toxicological endpoints. The CuO NPs displayed a more inhibitory effect, compared to 
copper sulfate, on nematode reproduction, feeding, and development. We investigated 
the effects of copper oxide nanoparticles and copper sulfate on neuronal health, a 
known tissue vulnerable to heavy metal toxicity. In transgenic C. elegans with neurons 
expressing a green fluorescent protein reporter, neuronal degeneration was observed in 
up to 10% of the population after copper oxide nanoparticle exposure. Additionally, 
nematode mutant strains containing gene knockouts in the divalent-metal transporters 
smf-1 and smf-2 showed increased tolerance to copper exposure. These results lend 
credence to the hypothesis that some toxicological effects to eukaryotic organisms from 
copper oxide nanoparticle exposure may be due to properties specific to the 
nanoparticles and not solely from the released copper ions.
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CHAPTER 1 

INTRODUCTION 
 
 
 
1.1 Relevance of copper oxide nanoparticle research 

 

 The novel properties of nanoparticles (NPs), characterized by their small size and 

unique physical and chemical properties, have led to a drastic increase in the 

incorporation of NPs into commercial products. Nanotechnology is expected to become 

a $1.5 trillion market by 2016 [1]. In this context, nanotechnology is already being 

discussed as a key technology for the 21st century [2]. Metal oxide (MeO) NPs, such as 

those made from copper oxide (CuO), zinc oxide (ZnO), and titanium dioxide (TiO2), are 

a type of nanomaterial commonly employed in consumer products including sunscreen, 

food preservatives, clothing, electronics, transistors, polymers, medicines, and 

pesticides. CuO NPs are one of the top four most produced MeO NPs and have uses in 

gas sensors, batteries, solar cells, catalytic processes (fuels), and even wound 

dressings [3]. The increased use of NPs will predictably lead to accidental introduction 

into the environment via consumer use or manufacturing. Therefore, the potential of 

nanoparticles to affect human health and the environment is of significant concern [4].  

 

1.2 Complexity of studying copper oxide nanoparticle toxicity 

Studying the toxicity of NPs is complex as nanoparticles have physicochemical 

traits that are different from their bulk chemicals including chemical composition, size 

distribution, shape, crystal structure, surface area, and surface charge. The NPs 

chemical and physical properties can vary between production methods but can even 

vary between separate batches produced by the same manufacturer. As such, the 

relationships between NPs toxicity and their physicochemical properties are important to 
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understand [5] but are currently understudied [6]. Smaller NPs tend to induce greater 

toxicity compared to larger NPs and thus it appears that a size-dependent mechanism 

may enhance NPs toxicity [7, 8].  

 A number of publications have detailed the toxicity of CuO NPs to multiple species 

of bacteria, yeast [9], annelids [10], and human cells [9]. A number of factors have been 

suggested to influence NPs toxicity including particle size [7], solubility [11], organic 

material present in the test media [12], and aggregation [13]. Therefore, defining the 

primary cause of toxicity from CuO NPs, that of the nanoparticle itself or the released 

Cuf ions, is frequently difficult and the ultimate cause of toxicity can remain elusive [14]. 

For MeO NPs, the dissolution of metal ions from the NP must be carefully measured as 

it has been suggested to be the primary toxic mechanism of silver (Ag) NPs [15] as well 

as zinc oxide (ZnO) NPs [16]. Several studies suggest the soluble ions released from 

NPs to be the sole source of MeO NPs toxicity [10, 17]. Other studies conclude that the 

CuO nanoparticle component itself also contributes to the observed inhibitory effects on 

important cellular functions [18, 19].  

 

1.3 Copper as a micronutrient and as a toxin 

  Copper ions are an important micronutrient for Saccharomyces cerevisiae as 

these ions have distinct redox state wherein electrons can be donated or received [20]. 

This redox chemistry allows copper ions to be used in a multitude of necessary 

biological functions including oxidative stress defense, catecholamine biosynthesis, 

copper and iron homeostasis, and oxidative phosphorylation [10]. Alterations in the 

amount of bioavailable Cu+ (in excess or in deficiency) can result in severe effects on 

these biological functions.  

 The potential to induce redox reactions can result in increased prevalence of 
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oxidative stress due to the increased generation of reactive oxygen species (ROS) [21]. 

Cu+ is frequently found to produce hydroxyl radicals, which can cause lipid peroxidation 

in organelle membranes, oxidation of crucial proteins, and damage to both DNA and 

RNA [22]. Oxidative stress is an outcome of copper toxicity as the increase in ROS can 

result in depletion of protective antioxidant molecules [23]. Predki et al observed damage 

to proteins by the displacement of metal ions in the catalytic sites with Cu+ ions [24, 25]. 

Cu+ ions are crucial to cells but must be kept at balanced concentrations such that this 

redox-active metal won’t interfere with intracellular functions and biochemical reactions 

[26].  

 The effects of CuO NPs in comparison to the bulk and ionic forms of copper are 

contradictory regarding the most toxic form of copper (ionic or nanoparticle) [27-30]. For 

example, the observed toxicity to aquatic organisms from CuO NPs exposure is 

observed to be caused by the released Cu ions [31]. In a study of the effect of CuO on 

duckweed, it was observed that a strong toxic effect was mediated by the 

nanoparticulate structure [32]. The major cause for increased toxicity of CuO NPs 

compared to bulk CuO particles was suggested to be the higher uptake rate of CuO NPs 

[32]. NPs are frequently more toxic than their bulk and ionic counterparts due to the 

large surface area to volume ration, which is suggested to result in greater number of 

reactive groups on the particle surface [33, 34] [35]. Different forms of the same metal 

can trigger different mechanisms of toxicity as Midander et al [8] observed CuO NPs to 

cause DNA damage while the released Cu2+ ions did not. I predict that several NPs 

characteristics will have varying degrees of impact on toxicity, supporting the need for 

detailed characterization of the NP physicochemical properties. 

1.4 Copper oxide nanoparticle can induce oxidative stress 
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 The NPs structure itself can also influence ROS production as the additional 

surface-reactive groups on the NPs surface act as active sites for interactions with 

molecular dioxygen. The interaction of oxygen with the NPs may lead to formation of 

superoxide radicals (O2
−), hydrogen peroxide (H2O2), and hydroxyl radicals (OH·) [35]. 

ROS molecules are endogenously produced in cells as signaling molecules and 

metabolic byproducts [36, 37] and in normal conditions are neutralized by antioxidant 

enzymes. However, under conditions of excess ROS production the dynamic redox 

equilibrium is changed and can lead to toxicological outcomes [1, 38]. CuO NPs have 

been shown to induce oxidative stress in human cell cultures, aquatic organisms, 

bacteria and yeast [30, 39-43]. For CuO NPs, the release of Cu ions contributes to ROS 

generation and thus complicates mechanistic investigations [1]. 

 

1.5 Copper oxide nanoparticle internalization has been linked to toxicity 

A number of toxicological studies suggest the internalization of NPs to be an 

important factoring in causing toxic effects [31]. The primary mechanism of NPs uptake 

has been shown to be facilitated via energy-dependent endocytosis in a number of 

human cell types including brain, cervical, and lung cancer cell lines [44, 45]. The 

internalization of CuO NPs into the cells of alga Microcystis aeruginosa was confirmed 

by TEM analysis [31]. Endocytosis was suggested as the primary mechanism for CuO 

NP uptake in the human cell line A549 [30]. In Saccharomyces cerevisiae, internalization 

of iron oxide (Fe2O3) aggregates and ‘quantum dot-glucose’ conjugates through 

endocytosis has been suggested [46, 47] but not confirmed. Currently there is no data 

are available to confirm CuO internalization in S. cerevisiae. Critical issues such as the 

relationship of NP size, surface charge, and aggregation and agglomeration can all 
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affect internalization. The confirmation of internalization of NPs is difficult as direct 

visualization via TEM is a methodology not accessible to all researchers. 

 

1.6 Observation of copper toxicity in the single cell model organism Saccharomyces 
cerevisiae 
 

S. cerevisiae is a promising unicellular eukaryotic model organism for the 

toxicological evaluation of NPs as the cellular structure and functional organization of 

NPs have many similarities to higher-level organisms. S. cerevisiae a well understood 

eukaryotic single cell organism with a short generation time, traceable genetics and the 

availability of systematic genome-wide mutant collections [48].  S. cerevisiae has been 

employed for toxicological evaluations of heavy metals, anti-cancer drugs and herbicides 

[49], fullerenes [50, 51], as well as nanomaterials (ZnO, CuO, TiO2, FeO2, [46, 52, 53] 

and cesium oxide (CeO2) [50]. Previous studies involving CuO NPs exposure to S. 

cerevisiae mutant strains reported growth inhibition that was induced primarily through 

the action of released Cu ions [19]. This study also observed different mechanisms of 

growth inhibition as exposures performed in water suggest the Cu ions were the sole 

source of inhibition, whereas exposures in growth media indicated an effect from 

sources beyond the released Cu ions [19].  

The molecular mechanism of several copper-related diseases can be observed 

using yeast as several mammal cells (liver, heart, intestine, and pancreas) contain 

proteins with high homology to yeast Cu homeostasis proteins, e.g., human high-affinity 

copper transporters Ctr1p (hCTR1)p and Ctr3p (hCTR3) [24]. Wilson’s disease is a 

human disease shown to be linked to a defective Cu+ transporter protein. This defective 

Cu+ transporter in Wilson’s disease has a high degree of homology with the Ccc2p in 

yeast, which is a Cu+-transporting ATPase required for Cu+ exocytosis [54]. S. cerevisiae 

is employed as a model for oxidative stress and ageing [55]. Additionally, several human 
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genes involved in the metabolism of metals have functionally homologous genes in 

yeast, making S. cerevisiae a model for understanding the impact of NPs on cellular 

copper homeostasis [56].  

 

1.7 Pathways for copper homeostasis in Saccharomyces cerevisiae 

The copper ion homeostasis mechanisms of S. cerevisiae, including Cu+ uptake, 

distribution, and detoxification, are well defined and understood [57]. This network of 

genes in yeast responsible for establishing copper homeostasis is described in (Figure 

1). Transcription factors Ace1p and Mac1p are responsive to Cu+ levels and induce 

transcriptional regulation, in either Cu+ excess or starvation, respectively [58]. The 

dynamic reaction to the environment via Ace1p or Mac1p, results in the induction or 

inhibition of a variety of genes associated with Cu+ detoxification or Cu+ import, 

respectively [57]. The transcription factor Mac1p regulates the ferric and cupric 

reductases Fre1 and Fre7 whilst Aft1p transcriptionally regulates the four FRE genes 

Fre2-Fre6 [59].  

In S. cerevisiae, the uptake of Cu+ begins with Cu2+ becoming reduced to Cu+ by 

the Cu2+ reductases Fre1 and Fre7 after which the Cu+ ions will be internalized by the 

high affinity Cu+ transporters Ctr1 and Ctr3 [60] . Several low affinity uptake systems 

have also been identified [24] which are encoded by the divalent metal ion transporters 

Fet4, Smf1/2, and Ctr2 genes [61-63]. After internalization, several Cu+ chaperones 

deliver Cu+ to the mitochondria and secretory pathway through the actions of the Cu+ 

metallochaperones Cox17p and Atx1p, respectively [24]. The enzyme key to respiration, 

cytochrome oxidase C, requires Cu+ to function, which is incorporated via the 

mitochondrial COX protein and is mediated by the copper binding proteins Sco1 and 

Sco2 [64]. The Cu+ chaperone for superoxide dismutase, (CCS1), enables Cu+ 

incorporation into superoxide dismutase 1 (SOD1), an enzyme crucial for appropriate 
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response to oxidative stress [65]. Several cytoplasmic proteins are responsible for 

binding free Cu+ within the cytoplasm, such as the metallothioneines Crs5p and Cup1-1p 

that are upregulated via Ace1p to bind additional free ions within the cytoplasm [57].  

 

 

 

 

 

 
1.8 Observation of copper toxicity in the multicellular model organism Caenorhabditis 
elegans 
 

Caenorhabditis elegans (C. elegans) is employed as a model organism in many 

studies because of its small size, short lifespan, rapid maturation time, defined anatomy, 

and translucent body. Nematodes are a relevant environmental model as they 

decompose organic material within soil [66]. Excess levels of copper in C. elegans have 

resulted in decreases in reproduction [67, 68] and egg-laying [69]. Toxicity from copper 

Figure 1. S. cerevisiae proteins involved in copper homeostasis pathway (an 
original figure, generated by Michael Mashock and Dan Van Blarcom). 
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has led to changes in nematode cuticle structure and changes in chemotaxis behavior 

[69].  

Neuronal health can be assayed with C. elegans as they have relatively conserved 

complex biochemical pathways compared with mammalian species. A number of genes 

associated with neurological disorders, including Alzheimer’s Disease (AD), have 

homologs in C. elegans [70]. Excess copper has been associated with several 

neurological disorders including prion diseases, amyotrophic lateral sclerosis, and 

Parkinson’s Disease (PD) [71]. However, there is a lack of studies addressing whether 

CuO NPs induce neurodegeneration in C. elegans. Damage or loss of dopaminergic 

(DA) neurons can occur if cells do not keep Cu ions under tight regulation [72]. Heavy 

metals, such as manganese, copper, cadmium, lead, and mercury, have been shown to 

affect neurons by depleting cellular energy, usually by decreasing mitochondrial function 

or activating the necrosis and apoptosis pathways [72]. Exposure to heavy metals has 

also been associated with extracellular oxidation of neurons that results in ROS 

generation and consequent lipid peroxidation [72].  

 

1.9 Dissertation goals 

 The objective of this study is to further understand the underlying mechanisms of 

CuO NPs toxicity in both S. cerevisiae and C. elegans. This study operates on the 

following hypotheses: 

1. The released copper ions from the copper oxide nanoparticles are a major 

source of the nanoparticles inhibitory effects on cellular and organismal 

functions.  

2. Copper oxide nanoparticle inhibition is in part due to an effect from the 

nanoparticle structural component. 
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3. Exposure of yeast with copper oxide nanoparticles will result in gene induction 

different than those genes induced or reduced after released copper ion 

exposure. 

4. The genetic differences between laboratory adapted nematode strains and wild 

nematode strains will influence their sensitivity to copper exposure. 
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CHAPTER 2 

COPPER OXIDE NANOPARTICLES INHIBIT THE METABOLIC ACTIVITY OF 
Saccharomyces cerevisiae 

 
 
 
2.1 Abstract 
 
 The interaction of CuO NPs with complex media and the impact on cell 

metabolism when exposed to sublethal concentrations are largely unknown. In the 

present study, the short-term effects of two different size manufactured CuO NPs on 

metabolic activity of Saccharomyces cerevisiae were studied. The role of released Cu2+ 

during dissolution of NPs in the growth media and the CuO nanostructure were 

considered. Characterization showed that the 28 nm and 64 nm CuO NPs used in the 

present study have different primary diameter, similar hydrodynamic diameter, and 

significantly different concentrations of dissolved Cu2+ ions in the growth media released 

from the same initial NPs mass. Exposures to CuO NPs or the released Cu2+ fraction, at 

doses that do not have impact on cell viability, showed significant inhibition on S. 

cerevisiae cellular metabolic activity. A greater CuO NP effect on the metabolic activity 

of S. cerevisiae growth under respiring conditions was observed. Under the tested 

conditions the observed metabolic inhibition from the nanoparticles was not fully 

explained by the released copper ions from the NPs.  

 

2.2 Introduction 

 The acute toxicity of copper oxide nanoparticles (CuO NPs) has been studied in 

algae [73], bacteria [74], yeast [75, 76], protozoa [77], crustacean [78], and fish [79] 

species. The extensively used unicellular eukaryotic model organism, Saccharomyces 

cerevisiae, has similar cellular structure and functional organization to those of higher-

level organisms [76] making it ideal in toxicity studies for nanoparticles. Copper 
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cytotoxicity and impact on cellular functions is of intrinsic interest. The adverse 

consequences of defective Cu homeostasis (Wilson’s disease and Menke’s syndrome in 

humans) or of changes in external copper concentration are well documented [80]. 

There is limited information of how dissimilarities in nanoparticles characteristics, 

different exposure conditions, and differences in the metabolic and cell cycle stage of S. 

cerevisiae cultures impact the toxicity metrics. For example, differential copper 

resistance has been associated with cell cycle stage and ageing in yeast [81]. 

Additionally, environmental factors such as ionic strength, pH, and the presence of 

organic material have an impact on how nanoparticles entering the environment would 

react in solution [82].  

 CuO NPs have been shown to both dissolve [75, 77] and aggregate [79] within 

solution depending on the conditions within the medium. Some studies have indicated 

that the acute toxicity observed is due to the release of copper ions from the 

nanoparticles [73, 77]. However, other studies suggest the presence of nanoparticle-

specific effects [75, 83]. Kasemets et al [76] suggests that the observed CuO NP toxicity 

to S. cerevisiae was due to a cell surface localized increase in released Cu ions causing 

an increase in uptake. The authors also suggested in a separate study that the released 

Cu2+ from the CuO NPs could explain approximately half of the toxicity and structure 

component-related oxidative stress was the mechanism of toxicity [75]. These results 

demonstrate that the toxicity of NPs toward organisms is challenging to predict because 

of the difficulty of adequately linking the nano-material properties in a directly 

proportional relationship to the toxic mechanisms, thus further investigation remains 

necessary [84].     

 The current study investigates the impact of organic molecules-rich growth media 

on CuO nanoparticle dissolution, aggregation, and copper bioavailability on cellular 

metabolic activity of S. cerevisiae. Cells were exposed to two CuO NPs with identical 



12 
 

copper oxide composition but different primary particle size (Figure 2), crystal lattice 

structure, and dissolution rate/amount of released Cu2+ after incubation in the growth 

medium. These CuO NPs were applied as either fresh suspensions or aged NPs in the 

culture medium. To distinguish between the role of Cu2+ ions released from the NPs and 

the nanospecific effect, parallel exposures were carried out with the released Cu2+ 

fraction in the media from CuO NPs and the NP suspensions. Experiments performed in 

organic-rich media can represent the diverse and dynamic surroundings which may be 

encountered with accidental introduction of nanoparticles into the environment [17], 

thereby stressing the role of media on the cell-nanoparticle interactions. 

 

 

 

 

 

2.3 Material and Methods 

2.3.1 Saccharomyces cerevisiae strains and cultivation conditions 

 Saccharomyces cerevisiae W303-1A wild type (MATa: leu2-3,112 trp1-1 can1-

100 ura3-1 ade2-1 his3-11,15) was a kind gift of Dr. Rosemary Stuart (Marquette 

Figure 2. Scanning electron micrographs to observe the primary diameter of the 
copper oxide nanoparticles. The 28.4 nm (A) and 64 nm (B) copper oxide 
nanoparticles employed in this study. 
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University, WI).  The strain was maintained on YP agar plates (pH 6.6) containing 1% 

yeast extract (Amresco), 2% Bacto peptone (Difco laboratories) and 2% of the 

respective carbon source at 30oC overnight. To prepare starter cultures single colonies 

from the respective master plates were transferred in 5 ml YP media with ethanol, 

galactose, or dextrose as carbon source and grown overnight at 30oC, 250 rpm in order 

to culture the cells under respiratory, respiratory/fermentative, or fermentative 

metabolism, respectively. YP media with dextrose or ethanol as a carbon source were 

employed to examine the influence of different types of metabolism (fermentation vs. 

respiration) on S. cerevisiae sensitivity to copper treatments while YP with galactose 

(YP-gal, fermentation/respiratory metabolism) was employed for all other experiments 

throughout the present study.  S. cerevisiae experimental cultures were started from the 

overnight cultures. The turbidity of the cell culture was measured via absorbance at 600 

nm using a spectrophotometer (Molecular Devices) and diluted with sterile YP media 

with respective carbon source to an OD600 0.1. The cultures were grown until OD600 0.3 

was reached (approximately 4.0x106 Colony Forming Units, CFU mL-1 determined by 

dilutions and plating on YP-galactose plates with colony counting after 72 hours at 30oC 

incubation). Exposure to tested chemicals was performed in 96-well black with clear 

bottom, polystyrene plates (Costar) at 30oC with continuous shaking at 250 rpm. This 

concentration of cells was consistently used in all toxicity assays. 

 

2.3.2 Nanoparticle physicochemical characterization 

 NPs diameter and morphology. Bare, uncoated CuO NPs were purchased from 

Meliorum Technologies (28 nm CuO NPs) or Sigma Aldrich (64 nm CuO NPs).  

Transmission electron microscopy (TEM) was employed to characterize both CuO NPs 

morphology and primary particle diameter. Diluted CuO NPs suspensions in water or 

YP-gal media were deposited onto formvar coated copper 200 mesh grids and allowed 
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to settle for 10 min prior to removal of the excess liquid. TEM imaging was performed on 

a Hitachi H9000NAR Analytical High Resolution Transmission Electron Microscope, 300 

KeV (dpr) and the primary particle diameters were assessed using ImageJ image 

processing and analysis software.  Briefly, the measuring tool was employed, after 

altering the scale to nanometers, in order to assess dimensions of 100 individual NPs of 

both 28 nm and 64 nm CuO NPs in 15 or more images. Measurement of NPs diameter 

was performed only when well-defined individual nanoparticles could be observed.  TEM 

micrographs of gold nanoparticles at established dimensions were analyzed in identical 

fashion with ImageJ to confirm validity of measurements (data not shown). 

 NPs dispersion. A stock solution of CuO NPs (8,000 mg/L) was prepared in 

sterile deionized H2O and dispersed by using a 450 W probe sonicator (Branson Digital 

Sonifer) at 20% amplitude for 5 min on ice with pulsing on for 20 sec and off for 20 sec. 

The stock solutions were stored in dark at ambient temperature.  

After 5 min dispersion, different volumes of the CuO NPs stock solution were aseptically 

added to yeast cultures (in YP medium containing different carbon source) to achieve 

different exposure concentrations. 

 NPs hydrodynamic diameter and zeta potential. To determine the average 

hydrodynamic diameters of CuO NPs agglomerates, NPs were diluted to 40 mg/L in 

sterile double distilled water (sterile) or YP-gal growth medium and injected using a 

sterile syringe into the viewing chamber of NS500 platform (Nanosight Ltd) equipped 

with a 640-nm laser. All measurements were taken at room temperature. Average 

diameters and standard deviations were measured using the Nanoparticle Tracking 

Analysis (NTA) 2.0 Build 127 analytical software for real-time dynamic nanoparticle 

visualization and measurement. The samples, in the respective solution, were measured 

for 30 sec with manual shutter and gain adjustments and six measurements of the same 

sample were performed for all of the respective time points. Although Nanosight has a 
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minimum limit of detection of 10 nm, the smaller CuO NPs employed in the present 

study have an average primary particle diameter, as measured by TEM, of 28 nm.   

 However, it should be noted that any populations of CuO nanoparticles or 

agglomerations smaller than 10 nm would not be detected by this analysis. To exclude 

artifacts from organic components within media, analysis of YP growth media without 

addition of CuO NPs was performed and run in batch processing as five separate runs to 

avoid introducing additional artifacts from altering fluidic flow. The data were combined 

and averaged to provide background intensity data which was then used to exclude 

organic matter from conflicting with the NPs/organic matter agglomeration 

measurements. This exclusion was accomplished through the use of the ‘intensity 

comparison’ tool in the NTA 2.0 build software which allows the user to establish 

intensity values as a cutoff for the minimal intensity necessary to be incorporated in the 

sample analysis. To determine Zeta potentials of CuO NPs in YP media, NPs in solution, 

at 69.5 mg Cu/L, were pipetted into Folded Capillary Cells (Malvern Instruments) and 

Zeta potential was measured using a Zetasizer Nano-ZS (Malvern Instruments). 

 

2.3.3 NPs aging in the growth media.   

 Note that S. cerevisiae has a high copper tolerance, up to 480 mg/L CuO NPs for 

12 hours of exposure in YP media without observing lethal effects (data not shown).  In 

the current study, sub-lethal nanoparticle concentrations in the range of 40 – 240 mg 

Cu/L were employed in 1.5 hour exposure scenario to study the NPs effect on S. 

cerevisiae cell metabolism. To explore media component-NPs interactions, CuO NPs 

were dispersed into YP-galactose media as described above to 40, 80, or 240 mg/L 

initial mass in 4 mL volume in 15 mL polypropylene disposable centrifuge tubes (VWR). 

The NPs solutions were covered to prevent light exposure and placed at 30oC in a table-

top incubator at 250 rpm for 24 hour.  A 2 mL aliquot of the ‘aged’ NPs were 
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ultracentrifuged at 45,000xg for 30 min (Optima MAX-E Ultracentrifuge) and supernatant 

was then removed and used as released fraction.  The CuO NPs pellet was 

resuspended in sterile YP- galactose media and used as aged NPs in fresh media.  The 

remaining 2 mL of aged NPs in released fraction was used as an additional treatment.  

Fresh suspensions of CuO NPs were prepared by diluting stock solution (8,000 mg/L) to 

40, 80, and 240 mg/L and immediately added to cell suspensions for exposure. 

 In cases of NPs exposure with Cu2+ chelation, ethylenediaminetetraacetic acid 

(EDTA) in final concentration of 0.5 mM was added to CuO NPs or the released ionic 

copper fraction in YP- gal medium and incubated at 30oC for 1 hour prior to the addition 

of S. cerevisiae cells. The S. cerevisiae cells used as the untreated control were pelleted 

and resuspended in growth media which was also supplemented with EDTA. 

 

2.3.4 NPs dissolution   

 To define the amount of Cu2+ ions released from CuO NPs in the growth media, 

aliquots of each NPs suspension in YP-gal medium were collected immediately after 

dispersion in the media, after 1.5 hour, or 24 hours incubation at 30oC with shaking (250 

rpm) and ultracentrifuged (45,000 g for 30 mins) to remove cells and suspended CuO 

NPs. Aliquots were stored at 4oC (up to one week) until Zincon analysis was performed. 

The Cu2+ ion concentration was measured using Zincon assay as described by [85] with 

modifications described herein. Prior to analysis, supernatants were examined for NPs 

presence using NTA and concluded that NPs were not detectable.  

 Nanoparticles with a diameter less than 10 nm were not detected due to the limit 

of detection by NTA but may be present. However even if a small NP fraction of <10 nm 

is present, experiments indicate that Zincon dye does not interact directly with CuO NPs 

(data not shown). Measurement of Cu2+ within the supernatant was performed on a 

Spectra Max® M2e spectrophotometer (Molecular Devices) using Zincon reagent (MP 
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Biochemicals).  All samples were diluted in Tris-HCl buffer (20 µM, pH 7.2) containing 

Zincon (40 µM).  A standard curve with Cu2+ (0 - 2.4 mg/L) was prepared from CuSO4 in 

the same buffer.  Samples were incubated at room temperature for 10 min and 

absorbance was measured at 615 nm. The relationship between absorbance at 615 nm 

and the known concentration of Cu2+ standard served to determine Cu2+ ion 

concentration. To observe the influence of organic material and anions, identical 

experiments were performed in double distilled water. To remove the pH as a potential 

variable, distilled water was adjusted to pH 6.4, identical to the growth media.  All 

measurements were performed in triplicate.  

 To define the amount of total Cu released from CuO NPs in the growth media, 

aliquots of previously ultracentrifuged supernatant were digested with equal volume 70% 

(w/v) Nitric acid (HNO3) at 65oC for 2 hour and stored in acid-washed glass vials at 4oC 

for no more than 1 week. Samples were then further diluted to 2% HNO3 with sterile 

water, containing 0.5% HCL, prior to sample analysis using an ICP-MS system (7700x 

ICP-MS with autosampler, Agilent Technologies).  ICP-MS detects total copper 

regardless of copper ion species, copper in strong-association with organic material, or 

copper in the form of nano-solids.  

 

2.3.5 Cell viability spot assay 

 Overnight cultures of S. cerevisiae in YP-gal media were diluted to OD600 0.1 and 

150 µL of the cell suspensions were aliquoted to 0.6 mL in a 96-deep-well plate. Cell 

suspensions were mixed with 150 µL of CuO NPs and CuSO4 solutions in YP-gal media. 

Plates were covered loosely with aluminum foil and incubated at 30oC for 24 hours with 

shaking at 250 rpm.  Cells were then serially diluted in PBS buffer (pH 7.2) and 2 uL of 

the cell solutions were spotted onto YP-gal agar plates in triplicate.  The formation of 
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colonies was visually examined after 72 hours of incubation at 30oC and was compared 

to colony formation of untreated cells.   

 

2.3.6 Metabolic activity assay  

 The inhibitory effects of CuO NPs were determined by quantifying cellular 

metabolic activity using AlamarBlue (aB, Invitrogen), a cell-permeable redox-sensitive 

dye that turns from a non-fluorescent blue color to a highly fluorescent pink color upon 

reduction by metabolically active cells.  Fluorescence detection of the reduced aB signal 

was performed in a Spectra Max® M2e spectrophotometer (Molecular Devices Inc.). 

 The metabolic activity assay was performed according to the following protocol: 

Copper treatments were generated by adding CuSO4, or released Cu2+ fraction from 

NPs, or dispersed CuO NPs into YP-galactose media to achieve 300 uL volume at 

desired concentration. Freshly inoculated cultures of S. cerevisiae in YP-gal  media were 

incubated at 30oC for 3-4 hours until OD600 0.3 was reached, centrifuged at 4,000 rpm for 

2 min, supernatant removed, and cell pellets were then resuspended with YP-galactose  

media containing different copper treatment. Each experimental treatment was amended 

with 10% (v/v) AlamarBlue dye to achieve a final volume of 330 µL, which was then 

aliquoted to three separate wells to a final volume of 100 µL per well in a 96-well plate 

(Costar polystyrene flat bottom, non-treated, black sided, clear bottom).  Cell free YP-

galactose media was added to cell free control wells for background subtraction. Plates 

were covered with aluminum foil to prevent light exposure and incubated at 30oC, with 

shaking at 250 rpm for 1.5 hour up to 4 hours.  Fluorescence was recorded at 

550/585nm excitation/emission with a 570 nm cutoff every 5 min at 1.5 hour and 4 

hours. Cellular metabolic rate was determined by employing SpectraMax software to 

calculate rate of fluorescence at the linear portion of each curve.  Each respective 
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treatment was performed in triplicate wells and the results were averaged per well.  Data 

are mean of three independent experiments  range of values. 

 

2.3.7 Preparing released fraction exposure scenario 

 Copper oxide nanoparticles were less inhibitory to yeast metabolism compared to 

CuSO4 (Figure 3). When CuSO4 was used to mimic the released Cu2+ from CuO NPs, 

less metabolic inhibition was observed compared to exposure with the actual released 

fraction from NPs. This observation of soluble Cu salt treatments not being an adequate 

mimic of NPs-released Cu ion treatment has also been reported in other studies [17]. 

Only after incubation of CuSO4 in YP-gal (to simulate the Cu ions released from CuO 

NPs) was the metabolic inhibition more similar to the metabolic inhibition observed with 

released Cu treatments (Figure 4). Instead of aged CuSO4, the released copper ion-

containing supernatant from the CuO NPs was used in the subsequent experiments 

 

 

 

 

Figure 3. Comparison of IC50 values of metabolic activity rate for 28 nm and 64 
nm copper oxide nanoparticles. Red lines indicate IC50 value for respective copper 
exposure scenarios. 
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to better represent the nature of the soluble copper within the YP-galactose media. To 

characterize the released copper from CuO in the growth media, total copper was 

measured with ICP-MS.  Cu2+ is a dominant fraction in the ‘released copper only’ 

exposure scenario as the concentration of total copper, as measured with ICP-MS, was 

not significantly different than Cu2+ ions concentrations, as measured with zincon assay 

(Figure 5).   

 

2.3.8 Statistical analysis 

 For all data, significant difference between samples was determined using pair-

wise comparisons performed by Student’s t-test (after confirming normal distribution) 

and p<0.05 were considered significant. IC50 toxicity values after 1.5 hour, i.e. 

concentration of chemical which reduced cell metabolic activity by 50%, were compared 

to the control and their confidence intervals (95%) were compared using Log-normal 

model in the Excel macro REGTOX [86].  

 

 

 

Figure 4.  The influence of copper ions, from copper sulfate as well as released 
from CuO NPs, on S. cerevisiae metabolism. 28 nm CuO NPs and CuSO4 were 
added to sterile YP-galactose media for 24 hours and then diluted to 0.2 - 3.2 
mg Cu2+/L and inhibition of metabolic activity was assayed after 1.5 hour 
exposure.  Significant difference (p<0.05) is indicated by asterisks. 
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2.4 Results 

2.4.1 Copper oxide nanoparticle characterization 

 Copper oxide (CuO) nanoparticles (NPs) from two different commercial sources 

were characterized for primary NP diameter and morphology by TEM (Figure 6 E-H). 

The Meliorum CuO NPs have an average primary particle diameter of 28.4 nm, herein 

referred to as 28 nm CuO NPs, while the Sigma CuO NPs had an average primary 

particle diameter of 64.2 nm, herein 64 nm CuO NPs (Figure 6G and 6H). The 28 nm 

CuO NPs displayed a rough surface, spherical shape, and a uniform size distribution 

(large black arrows, Figure 6E and 6F). TEM imaging of the 64 nm CuO NPs showed 

 

 

 

 

 

 

 

 

Figure 5.  Characterization of the copper ions within the released from the 
copper oxide nanoparticles when incubated in growth media. CuO 
nanoparticle released fraction contains predominantly a population of Cu2+ 
ions.  28 nm CuO nanoparticles were aged for 24 hours in sterile YP growth 
media, nanoparticles were removed from solution by ultracentrifugation, and 
supernatant was then assayed for total copper (solid bars) or Cu2+ ions 
(stripped bars).  There was no statistically significant difference between the 
total Cu and Cu2+ concentrations for 40, 80, and 240 mg/L treatments (p 
value 0.053, 0.061, and 0.098, respectively). 
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different morphologies with both small spherical particles and large irregular crystals 

being observed in the same sample (Figure 6G). The 28 nm and 64 nm CuO NPs 

exhibited purity of >99.8 % as reported by the manufacturers and determined by ICP-MS 

analysis (data not shown). High resolution TEM (HR-TEM, Figure 6F) images displayed 

a distance of 2.4 Å between parallel lattice fringes (parallel to solid black lines with small 

arrows) in the 28 nm CuO NPs, consistent to the spacing of the (2 0 0) crystal planes of 

CuO. The HR-TEM images of 64 nm CuO NPs had parallel lattice fringe spacing of 5.1 Ǻ 

(Figure 6H) consistent with the interlayer separation of the (1 0 0) crystal plane of CuO. 

 Hydrodynamic diameter and zeta potential were measured to determine the 

propensity of the 28 nm and 64 nm CuO NP to form aggregates or agglomerates (Figure 

6, Table 1). Both CuO NPs form similarly sized aggregates when suspended in double 

distilled water (sterile, Figure 6A, 6B) and similarly sized agglomerates when suspended 

in YP-galactose growth medium (Figure 6C, 6D).  The CuO NPs suspended in water had 

significantly smaller hydrodynamic diameter compared to NPs suspended in growth 

media (p<0.05) at pH 6.4. While the pH was the same, the ionic strength was 

significantly higher within YP media compared to water (data not shown). Both increased 

ionic strength and organic matter have been implicated in increased nanoparticle 

dissolution [82, 87] which may partially explain the increased dissolution observed in YP 

media compared to water.  The 28 nm CuO NPs had a smaller average hydrodynamic 

diameter (p<0.05) when suspended in water (94 nm) compared to the diameter range 

observed in YP-galactose medium (214.1 nm) and in both cases were smaller than the 

64 nm CuO NPs (146.3 nm in water and 246.9 nm in YP-galactose, Figure 6, Table 1). 

All particles had low zeta potential values (-5.6 to -14.5 mV, Table 1) indicating 
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substantial instability and a high potential to form agglomerates in the growth media. 

Suspensions from both NPs did not alter the pH of the YP-galactose culture medium up 

to 24 hours of incubation (data not shown). 

 

 

 

Figure 6. The primary diameters and average hydrodynamic diameters of the 28 
nm and 64 nm copper oxide nanoparticles in growth media. The two types of 
copper oxide nanoparticles have similar agglomeration in culture medium but 
different primary particle diameter and crystalline structures. The hydrodynamic 
size distribution was performed in sterile water (A, B) and YP-galactose (C, D) 
using NTA. TEM images of the CuO NPs indicate rough surfaces (indicated by 
large arrows) and show the primary diameter of the particles is different from that 
suggested by the manufacturers (E-H). High resolution TEM images for 28 nm (F) 
and 64 nm (H) CuO NPs.  The different lattice fringe width is highlighted for easier 
observation by parallel lines with small arrows.   
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2.4.2 Copper oxide nanoparticle dissolution  

 For nanomaterials, metal ion release is a critical physical parameter and as such 

NPs dissolution has been suggested to be just as important as surface dependent 

effects regarding potential toxicity of nanomaterials [88]. In our study, the culture media, 

YP-galactose, led to enhanced CuO NPs dissolution compared to water while the 

smaller 28 nm CuO NPs exhibited greater dissolution than the 64 nm CuO NPs. We 

observed that distilled water (pH 6.4) had no effect on NPs dissolution for most of the  

exposure doses employed (Table 1) except under prolonged incubation (25.5 hour) with 

higher initial mass of 64 nm particles. The 28 nm freshly resuspended CuO NPs showed 

higher release of Cu2+ in the YP-galactose medium in comparison to the Cu2+ released 

from the same initial mass of freshly resuspended 64 nm CuO NPs (Table 1). The 28 nm 

CuO NPs suspended in YP-galactose medium displayed up to 21.8% reduction of the 

initial particle mass after 4 hours, while the 64 nm CuO displayed significantly less 

particle mass loss (2%, p<0.01).  The increased CuO NPs dissolution in YP-galactose  is 

in agreement with previous reports indicating enhanced CuO NPs dissolution in culture 

media containing amino acid-rich components, such as tryptone and yeast extract, in 

comparison to dissolution in water [17, 89].  

 To observe the effects of prolonged media interactions with CuO NPs on 

dissolution, the 28 nm and 64 nm CuO NPs were suspended in YP-galactose medium 

for 24h at 30°C followed by separation of the remaining CuO solids (“aged” NPs) from 

the media (“released” Cu2+). Aged 28 nm CuO NPs were pelleted and resuspended in 

fresh YP-galactose media resulting in significantly greater (p<0.05) Cu2+ release 

compared to fresh suspensions of CuO NPs (Table 1). The opposite trend was observed 
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for aged 64 nm CuO NPs in fresh media, which released less Cu2+ into YP-galactose 

compared to fresh suspensions of 64 nm CuO NPs (at 80 and 240 mg/L, Table 1).

 Both CuO NPs used in the present study have different primary nanoparticle 

diameter and different crystal structure (determined by HR-TEM, Figure 2), similar 

hydrodynamic diameter (NTA, Figure 6), and released significantly different amounts of 

Cu2+ into the growth media from the same initial NPs mass (Table 1).  

 

2.4.3 Copper oxide nanoparticles inhibit S. cerevisiae metabolism 

 The potential cytotoxicity of two different commercially available CuO NPs to S. 

cerevisiae was evaluated using a cell viability spot assay and cellular metabolic activity 

was assayed by alamarBlue (aB) fluorescence. After 1.5 hour and 24 hours of exposure 

no significant effects on cell viability were observed for the 28 nm and 64 nm CuO NPs 

up to the highest concentration tested (480 mg/L) (Figure 7). Susceptibility to CuO NPs 

or CuSO4 exposures was greater in cell cultures undergoing respiratory than 

fermentative metabolism (Table 2). The 1.5 hour IC50 values for inhibition of metabolic 

rate of S. cerevisiae W303-1A exposed to 28 nm and 64 nm CuO NPs (fresh 

suspensions) in our study are 306  67 and 467  7 mg/L, respectively, when cultured 

on YP-dextrose.  

 These values are consistent with the range of the previously reported 24 h 

growth inhibition test IC50 for S. cerevisiae BY4741 of 643  52 mg/L CuO NPs in YPD 

medium [76]. S. cerevisiae cells cultured with respiratory carbon sources, including YP- 

ethanol (YPE), were more sensitive to exposures than cells in fermentative conditions 

(p<0.05, Table 2). The metabolic rate IC50 for cells on respiratory carbon sources 

(ethanol and glycerol) are 2 to 5 times lower (p<0.01) compared to exposure to cells 

cultured on YPD (fermentative metabolism). The IC50 for CuSO4 exposure was more than 
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Table 1.  Characterization of copper oxide nanoparticles and their properties when 

suspended in media or water. 

 

Average hydrodynamic diameter (nm) 

Experimental media 1.5ha 5.5h 25.5h 

28 nm copper oxide nanoparticles 

YP-galactose 214 ± 112 184 ± 116 222 ± 141 

YP-ethanol 200 ± 162 225 ± 117 236 ± 129 

water   87 ± 7 191 ± 175 113 ± 82 

64 nm copper oxide nanoparticles 

YP-galactose 240 ± 172 124 ± 48 211 ± 155 

YP-ethanol 346 ± 177 232 ± 182 175 ± 104 

water 144 ± 149 140 ± 90 160 ±  94 

Zeta-potential (mV) 

Experimental media 1.5h 5.5h 25.5h 

28 nm copper oxide nanoparticles 

YP-galactose -14.5 ± 0.5 -10.5 ± 0.2   -7.8 ± 0.3 

YP-ethanol -14.5 ± 0.5 -10.4 ± 0.6   -9.2 ± 0.1 

water -13.9 ± 0.7 -15.2 ± 7.2 -21.2 ± 5.9 

64 nm copper oxide nanoparticles 

YP-galactose -12.8 ± 0.3   -5.6 ± 0.7 -8.6 ± 0.4 

YP-ethanol -12.8 ± 0.3   -9.7 ± 0.3 -8.9 ± 0.8 

water -12.7 ± 0.4 -16.6 ± 6.4  -11 ± 11.1 

Data are mean of 3 replicates of 2 independent experiments ± range of values. a Period 

of time nanoparticles were incubated in media or water. 
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20 times lower compared to the IC50 for both CuO NPs under study. Cells cultured on 

YP-galactose (fermentative/respiratory carbon source) showed similar or slightly higher 

sensitivity to CuO NPs and Cu2+ exposures compared to cells cultured on YP-ethanol. 

YP-galactose was employed in the following experiments because of the higher S. 

cerevisiae w303-1A biomass yield on galactose compared to yield with YP-ethanol (data 

not shown). The metabolic state of S. cerevisiae had an impact on the degree of 

inhibition of metabolic activity by copper exposure.  Regardless of the state of 

metabolism, Cu2 ions (as CuSO4) had greater inhibitory effect than 28 nm CuO NPs 

followed by the 64 nm CuO NPs.  

 

2.4.4 Effect of copper oxide nanoparticle aging on yeast metabolism 

 To unravel the toxic effect of released Cu2+ from that of the CuO NPs, S. 

cerevisiae cells were exposed for 1.5 h to several Cu exposure scenarios: fresh 

suspensions of NPs in YP-galactose media, aged NPs resuspended in fresh media, 

aged NPs within YP-galactose containing the released fraction, or the released fraction 

in YP-galactose without NPs (Figure 8). Among all exposure conditions, 28 nm CuO NPs 

inhibited S. cerevisiae metabolism to a greater extent than 64 nm CuO NPs exposures 

(Figure 8). The increased inhibitory effect of the 28 nm compared to the 64 nm CuO NPs 

is consistent with previous studies which frequently show greater toxicity from NPs with 

smaller primary particle diameter [90, 91].   

 The aged 28 nm and 64 nm CuO NPs within released fraction and the released 

fraction in the absence of CuO NPs were significantly more inhibitory of S. cerevisiae 

metabolic activity (p<0.05) compared to exposure to the fresh suspensions of aged CuO 

NPs in YP-galactose media (excluding 64 nm CuO NPs at 40 mg/L). The higher 

inhibition of metabolic activity of S. cerevisiae were observed in exposure conditions with 

greater amounts of Cu2+. These results suggest that the presence of greater amounts of 
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Table 2. Saccharomyces cerevisiae cell metabolic rate IC50 values in response to 

copper exposure. 

 

IC50  

(mg CuO/L) 
28 nm copper oxide  

nanoparticles 
64 nm copper oxide 

nanoparticles 
Copper 
sulfate 

YP-dextrose 305  67.2 468  27 10.3  2.0 

YP-glycerol 224  30.4 304  38 5.3  2.0 

YP-ethanol 96.0  23 224  52 2.7  0.03 

YP-galactose 88.0  15.2 216  18 2.4  0.5 

Cells were treated for 1.5 hour copper treatments exposure in YP media with selected 
carbon sources. 
 

 

  

  

 

 

 

Figure 7.  The effect of copper exposure on S. cerevisiae viability. Images are 
representative of spot assays performed on agar plates with all carbon sources 
(dextrose, glycerol, and galactose) and at different time of exposure (1.5, 24, 
and 48 hrs).  Cell suspensions were serially diluted and incubated on agar 
plates for 72 hours at 30oC. 
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released Cu ions, including the measured Cu2+ form, had increased toxic effect on S. 

cerevisiae in the presence or absence of CuO NPs compared to freshly resuspended 

CuO NPs, containing lower amounts of Cu2+ (Figure 8). The aged 64 nm CuO NPs after 

resuspension in fresh YP-galactose showed significantly greater metabolic inhibition 

(p<0.01) at initial mass of 80 mg/L compared to 40 mg/L in the presence of similar 

concentrations of released Cu2+ (Table 3 and Figure 8). The observed dose dependent 

effect of aged CuO NPs at similar concentrations of released Cu2+ indicates the 

decrease in metabolic activity observed in aged 64 nm CuO NPs treatment is due to the 

NP component.  

 The difference in metabolic rate inhibition from freshly resuspended and aged 

NPs, and the presence of the released Cu2+ fractions suggest that both the released Cu 

ions as well as the CuO NP component have a role in the observed impact on S. 

cerevisiae metabolism.  

 

2.4.5 Effect of chelating Cu ions in nanoparticle exposure scenarios 

 The CuO NPs employed released Cu ions when suspended in YP-galactose, an 

effect not observed in water (Table 3). Chelation of Cu2+ ions by EDTA addition 

significantly decreased the metabolic inhibition by aged 28 nm CuO NPs within the 

released Cu fraction (p<0.05) and the released Cu fraction in the absence of 28 nm or 

64 nm CuO NPs (p<0.05, p<0.01, respectively, Figure 9). There was no significant 

difference of metabolic activity of S. cerevisiae in the presence of EDTA of freshly 

resuspended and aged 28 nm and 64 nm CuO NPs in fresh YP-galactose media nor the 

aged 64 nm CuO NPs within media containing the released Cu fraction. The observation 

that under low concentrations of Cu2+ present in the NPs exposure scenarios, the 

addition of EDTA caused no significant change in metabolic activity may suggest that the 

toxicity observed was due to the NPs structural component. 
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 Chelation of copper ions with EDTA often resulted in a decrease in inhibition 

(10% to 30% decrease of metabolic inhibition with 28 nm and 64 nm CuO NPs exposure 

scenarios containing the released fraction), though not a complete recovery of cellular 

metabolic activity. This may in part be explained by the copper bioavailability, as the 

chelation of Cu2+ ions may not affect the bioavailability of Cu2+ ions towards S. 

cerevisiae.  A study performed by Li et al [92] with ZnO NPs and Zn2+ ions suggests that 

Figure 8. The inhibition of S. cerevisiae of metabolic activity after treatment 
with 28 nm and 64 nm copper oxide nanoparticles and associated copper 
exposures. Copper oxide nanoparticle effect was assessed using 
AlamarBlue assay at 40 mg/L (A, B), 80 mg/L (C, D) and 240 mg/L (E, F) 
after 1.5 hour exposure. The bar graph represents results expressed as 
percent metabolic activity compared to untreated cells. The line graph 
represents Cu2+ ions released into YP-galactose medium from each 

respective treatment. Results are presented as mean  standard deviation of 
3 independent experiments.  Significant results as compared to the other 
treatments (bar graph, p<0.05) are marked with letters, values with the same 
letter indicate they are not significantly different from one another. Error bars 
represent standard deviation. 
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a decrease in free metal ions does not necessarily result in a subsequent decrease in 

the bioavailable ions that can interact with cells.  

 The chelation of Cu2+ did result in a dramatic reduction in toxicity of several CuO 

NPs exposure scenarios, though not a complete recovery, suggesting that both the 

released Cu ions as well as the CuO NP component have a role in the observed 

inhibition of cellular metabolic activity.  

 

2.5 Discussion 

 The physiochemical properties of nanomaterials, such as aggregation, zeta-

potential, crystal structure, roughness, primary particle size, agglomeration, and 

dissolution, have been shown to be a factor in relation to their potential cytotoxicity [82, 

87, 88]. We examined the impact of CuO NPs with measured differences in primary 

particle size, crystal structure, and rate of dissolution in the growth media on 

Saccharomyces cerevisiae cellular metabolic rate.  

 The commercially available 28 nm and 64 nm CuO nanoparticles used in the 

present study were characterized utilizing Transmission Electron Microscopy (TEM), 

Zetasizer, and Nanosight Tracking Analysis (NTA). TEM has the advantage of providing 

a direct image of particle size and morphology at high resolution (Figure 6). The 28 nm 

CuO NPs appeared as spherical with an average primary particle diameter of 28.4 nm 

with a range from 17.3 nm to 39.5 nm and the 64 nm CuO NPs had irregular shapes with 

a small population of NPs showing spherical shapes with an average particle diameter of 

64.2 nm within a range of 11.7 to 120.7 nm. Catalytic properties, specifically structure-

sensitive reactions usually involving oxygen-oxygen bonds, are dependent on particle 

size [93, 94]. The CuO NPs used in the present study also demonstrated similar rough 

surfaces which has been associated with differences in the amount and identity of 

proteins absorbed on the nanoparticle surface [95]. The 28 nm and 64 nm CuO NPs 
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showed different orientations of crystal planes on the surface of the NPs which may 

have implications in the available catalytic sites, as implicated with TiO2 nanoparticles 

[96, 97]. Both CuO NPs used in the present study had similar low zeta-potentials (Table 

1), indicating the CuO NPs had equal potential to form aggregates and agglomerates in 

the growth media [98].   

 In complement to the TEM, NTA was used to measure particle size in solution in 

real time with the advantage of needing little to no sample preparation (Figure 6). NTA 

permits the measurement of single nanoparticles, aggregates, or agglomerates in 

solution greater than 10 nm in size [99]. Aggregation of CuO NPs, as determined in 

water after sonication, showed greater hydrodynamic diameter in both CuO NPs 

compared to the primary particle size. Aggregation of uncoated, unmodified oxide 

nanoparticles is considered to be an intrinsic property [100, 101]. The lack of dispersal of 

the CuO NPs by sonication suggests either fusion or strong bonding of the primary 

particles or reformation of aggregates after dispersal [100]. Agglomerations consist of 

interactions between NPs, aggregates of NPs, and media components generating 

formation of clumps or clusters of primary particles and organic molecules. The CuO 

NPs within the growth media used in the present study displayed hydrodynamic 

diameters greater than in water and greater than the primary particle diameter, indicating 

formation of agglomerates. The aggregation and agglomeration observed in our study 

has been reported elsewhere for CuO in water [76, 87], yeast growth media [76], in the 

presence of small amounts of organic material [94], and several different natural waters 

[87].  Aggregation and agglomeration are important attributes to measure as they 

decrease the available NP surface area that facilitates interaction with living cells and 

media components. 
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The effect of particle size on dissolution was investigated by comparing Cu2+ ion release 

from 28 nm and 64 nm CuO NPs within double distilled water and the complex biological 

media used in the present study (Table 3). The dissolution of the CuO NPs showed that 

only a small fraction (3.6%) of the CuO NPs dissolute within the 1.5 hour after addition to 

the growth media. After 24 hour within the media, the dissolute concentration of the CuO 

Figure 9. The inhibition of S. cerevisiae metabolic activity after chelating 
copper ions released from copper oxide nanoparticles. The copper oxide 
nanoparticles effect on S. cerevisiae metabolism after 1.5 hour exposure at 40 
mg/L of 28 nm (A) or 64 nm (B) CuO NPs was assessed using AlamarBlue 
assay.  Black bars represent treatment without chelation and grey bars 
represent treatment with the addition of EDTA at 0.5 mM. Data are expressed 
as percent metabolic activity compared to untreated cells.  Error bars represent 
standard deviation of 3 independent experiments. Significant differences 
between treatments without chelation compared to treatment with EDTA are 
indicated with an asterisk (p<0.05). 
 



34 
 

Table 3. The concentrations of Cu2+ ions released from copper oxide nanoparticles in 
growth media over time. 
 

28 nm copper oxide nanoparticles 

 Conc. 
(mg/L) 1.5ha 5.5h 25.5h 

YP-galactose 40 0.95  0.11 2.54  0.15 8.67  1.40 

 80 0.93  0.51 5.35  0.53 22.35  1.7 

 240 6.98  1.0 10.62  0.22 101.1  15.0 

sterile water 40 BDL BDL BDL 

 80 BDL BDL BDL 

 240 BDL BDL BDL 

 
64 nm copper oxide  nanoparticles   

 Conc. 
(mg/L) 1.5h 5.5h 25.5h 

YP-galactose 40 0.34  0.08 0.59  0.07 0.79  0.07 

 80 0.71  0.08 0.83  0.02 1.36  0.03 

 240 1.96  0.06 2.56  0.13 3.66  0.4 

sterile water 40 BDL BDL BDL 

 80 BDL BDL 0.17  0.02 

 240 BDL BDL 0.32  0.04 

Data are mean of 3 replicates of 2 independent experiments  range of values. a Period 
of time nanoparticles were incubated in media or water. BDL = below detection limit of 
Zincon assay (0.24 mg/L). 
 

 

NPs increased to as much as 52.7%. The observed dissolution of Cu2+ from CuO NPs 

was consistent with results reported elsewhere for growth media rich in organic material 

[102, 103]. The 28 nm CuO NPs showed greater dissolution than 64 nm CuO NPs. 

Differences in the amount of Cu ions released from different sized CuO NPs have been 

described elsewhere [17]. The Ostwald-Freundlich equation predicts that as particle size 

decreases the equilibrium solubility of particles increases, therefore, smaller 

nanoparticles would have a greater propensity for dissolution [104]. Factors such as 

surface curvature and roughness, in addition to size, may affect surface area and play a 

role in dissolution of nanoparticles [104]. The size dependent dissolution observed in the 
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present study may be related to the greater surface area with, and particle number of, 

the 28 nm CuO NP compared to 64 nm CuO NP at equal mass [105].  The difference in 

exposed crystal structures of 28 nm and 64 nm CuO NPs on the surface may be leading 

to different surface chemistries with more reaction sites and thus result in different 

amounts of Cu2+ ion release [97].   

 The IC50 for the acute inhibitory effect of CuO nanoparticles and CuSO4 to S. 

cerevisiae metabolic activity were compared (Table 3). The exposure to increasing 

concentrations of CuO NPs and copper salt led to decrease in metabolic activity (Table 

4). When exposure occurred in YP-galactose, Cu salt had significantly greater effect on 

metabolic activity (IC50: 0.96 mg Cu/L) compared with the 28 nm CuO NPs (IC50: 70.3 

mg Cu/L) which were subsequently more toxic than 64 nm CuO NPs (IC50: 172.6 mg 

Cu/L). S. cerevisiae under respiratory conditions were more sensitive to CuO NPs 

exposures compared to fermentative conditions which may implicate respiratory 

metabolism or the mitochondria  in facilitating CuO NPs toxicity, as suggested with gold 

nanoparticles [106], however we have no direct evidence if this is the case.  

 The lower toxic effect of CuO nanoparticles compared to Cu salts has been 

shown in the gram-negative bacteria Escherichia coli [74] and Vibrio fischeri [107], the 

protozoa Tetrahymena thermophila [77], and the freshwater crustacean 

Thamnocephalus platyurus [107]. In our study, S. cerevisiae demonstrated greater 

resistance to the toxicity of the CuO NPs when compared to the reported EC50 of the 

microalgae Pseudokirchneriella subcapitata (0.57 mg Cu/L, [73]) and the crustacean 

Thamnocephalus platyurus (1.7 mg Cu/L, [107]).  However, the range of concentrations 

used is similar to other studies as indicated by similar EC50 found in the protozoa 

Tetrahymena thermophila (127 mg Cu/L, [77]) and the bacteria Bacillus subtillis (48.8 mg 

Cu/L [102]) and Streptococcus aureus (52.5 mg Cu/L [73]) . The observed size 

dependent metabolic inhibition of smaller primary particle size yielding greater toxicity is 
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consistent among metal oxide nanoparticles [17, 90, 108]. The inhibitory effect due to 

differences in primary particle size is confounded by the release of Cu2+ ions through 

dissolution, which is greater in the 28 nm CuO NPs compared to the 64 nm CuO NPs 

which may explain the increase in impact on cellular metabolic activity.  

 To unravel the inhibitory effect of the released soluble Cu and that of the 

structural NPs component, the 28 nm and 64 nm CuO NPs were resuspended in the 

growth media for 24 hour prior to separation of the remaining nanoparticles and the 

released copper ions in solution. S. cerevisiae was then exposed to freshly resuspended 

CuO NPs, the aged CuO NPs within the growth media containing the released Cu2+, the 

aged CuO NPs separated from the released Cu2+, and the growth media containing the 

released Cu ions in the absence of nanoparticles. The 64 nm CuO NPs freshly 

resuspended in growth media, independent of aging, showed increased cellular 

metabolic inhibition with increased NPs mass between 40 and 80 mg/L despite similar 

release of Cu2+ indicating that the increased effect on metabolic activity was due to the 

presence of more nanoparticles. While 28 nm CuO NPs showed a similar increase in 

measured inhibitory effect with greater concentration of NPs at similar concentrations of 

Cu2+ released in the fresh media, the increase was not statistically significant. The 

soluble Cu ions released from CuO NPs did not fully explain the observed toxicity to S. 

cerevisiae, as observed also by [75].   

 Metabolic activity inhibited by CuO NPs was recovered by chelation of copper 

ions with EDTA (Figure 9). The recovered metabolic activity from chelation was more 

dominant in 64 nm CuO NP compared to 28 nm CuO NPs. However, the presence of 

EDTA did not remove the metabolic inhibition of the aged or freshly resuspended NPs in 

media with low amounts of soluble copper indicating that the NPs were the cause of the 

observed effect at the lower dose of exposure. Combined, these results suggest that the 

observed CuO NPs inhibition of S. cerevisiae cell metabolic activity is related to both the 
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nanoparticle, as well as, the released Cu ions. While the 28 nm CuO NPs showed 

greater inhibitory effect compared to 64 nm CuO NPs, this is most likely due to greater 

surface area and number of particles present at the same NPs mass [105]. 

 The observed inhibition of cell metabolic activity rate but not impact on cell 

viability upon exposure up to 480 mg/L CuO NPs suggests that S. cerevisiae might 

utilize a mechanism such as cell cycle arrest, as found in human epithelial A549 cells 

[109], to escape cell death. Cu is a redox active chemical involved in reactions leading to 

oxidative stress in cells. At the same time copper is eliciting antioxidant activity by acting 

as a redox site in superoxide dismutase (SOD1) for dismutating superoxide radicals. S. 

cerevisiae is a great model to study how CuO NPs and the released Cu2+ influence 

these processes and further experimental work needs to be pursued. The specific 

pathways involved in S. cerevisiae response to sublethal concentrations of CuO NPs will 

be further studied by whole genome analyses. 

 

2.6 Conclusion 

 The present study shows that under the tested conditions CuO nanoparticles had 

less effect on S. cerevisiae metabolic activity compared to copper salts, while the 

observed inhibition from the nanoparticles was not fully explained by the released 

copper ions from the dissolving nanoparticles. The presence of a nanoparticle size-

related effect may be related to the different physicochemical characteristics rather than 

only size. The present study also demonstrated a greater CuO NP effect on the 

metabolic activity of S. cerevisiae grown under respiring conditions. Future work in yeast 

should focus on the possible different impacts on metabolic pathways involved in 

respiring and fermenting cells and determine differences in cell response related to the 

nanostructure compared to dissolved soluble metals. 
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Table 4.  The change in rate of metabolism of Saccharomyces cerevisiae cells after 
copper exposure.  
 

28 nm copper oxide nanoparticle exposure scenarios 

 
Conc. 
(mg/L) 

Fresh NPs in 
Fresh Media 

Aged NPs in 
Fresh Media 

Aged NPs in 
Released 
Fraction 

Released 
Fraction 

Without EDTA 40 68.1+/-9.2 66.0+/-3.8 16.7+/-2.9 19.2+/-0.5 

 80 57.6+/-3.2 49.5+/-5.2 13.2+/-2.1 13.8+/-2.6 

 240 9.9+/-5.1 9.3+/-0.6 14.3+/-0.5 13.2+/-1.2 

With EDTAa 40 55.2+/-3.5 79.7+/-7.7 36.4+/-1.5 32.4+/-5.4 

 80 36.0+/-1.1 66.2+/-6.6 13.1+/-1.2 13.9+/-1.3 

 240 5.8+/-0.3 20.3+/-9.3 10.2+/-4.9 14.8+/-3.4 
 
64 nm copper oxide nanoparticle exposure scenarios 

 
Conc. 
(mg/L) 

Fresh NPs 
Fresh Media 

Aged NPs 
Fresh Media 

Aged NPs in 
Released 
Fraction 

Released 
Fraction 

Without EDTA 40 85.8+/-5.6 89.2+/-2.0 70.0+/-13.0 56.3+/-2.1 

 80 71.7+/-6.3 54.9+/-4.1 66.5+/-0.6 52.1+/-6.8 

 240 46.8+/-1.8 49.3+/-6.9 31.7+/-7.8 23.5+/-0.4 

With EDTAa 40 97.2+/-2.6 93.7+/-2.2 101.1+/-12 86.5+/-2.1 

 80 82.3+/-2.9 80.3+/-2.6 79.6+/-2.5 84.9+/-2.5 

 240 60.7+/-5.7 60.8+/-0.3 57.9+/-3.6 61.3+/-2.3 

Results are expressed as percent metabolic activity of S. cerevisiae compared to 
untreated cells. Data are mean of 3 replicates of 2 independent experiments ± range of 
values. a 0.5 mM EDTA added 1 hour prior to addition of cells. NPs = nanoparticles. 
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CHAPTER 3 

COMPARING THE EFFECTS OF COPPER OXIDE NANOPARTICLES TO THAT OF 
THEIR RELEASED COPPER IONS ON Saccharomyces cerevisiae GENE 

EXPRESSION  
 
 
 
3.1 Abstract 

The increasing use of copper oxide nanoparticles (CuO NPs) makes 

occupational and environmental exposure more likely. While the toxic effects of Cu ions 

on the gene expression of the model organism Saccharomyces cerevisiae is well 

studied, the effects of CuO NP on gene expression remain unknown. The mechanism of 

toxicity on S. cerevisiae from CuO NPs treatment remains complex as it may primarily 

be attributed to the released Cu ions but the nanoparticle itself might contribute to the 

previously observed inhibition of cell metabolic activity. To this end, the effect of both 

28.4 nm CuO NPs and the nanoparticle released Cu ions in the growth media on S. 

cerevisiae gene expression was analyzed via microarray analysis.  

After copper treatments a total of 137 genes displayed differential expression 

compared to untreated cells with 108 genes responding to both CuO and released Cu 

ion exposures while 26 genes were only altered compared to untreated after exposure 

with the CuO NPs. It was observed that both copper exposures resulted in an increase 

in carbohydrate storage, a decrease in protein production, protein misfolding, increased 

membrane permeability, and cell cycle arrest.  

Exposure to the CuO NPs resulted in a difference in stress response as cells 

appeared to induce cell cycle arrest via a separate pathway, compared to the Cu ion 

exposure. Scanning electron microscopy revealed the 28.4 nm CuO NPs adsorbed to 

the cell exterior suggesting close proximity of Cu ion release that facilitates membrane 

damage. To the best of the author's knowledge, this is the first work to compare changes 
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in S. cerevisiae gene expression after CuO NPs compared to released Cu ions 

exposure. 

 

3.2 Introduction 

  The incorporation of nanoparticles (NPs) in commercial and consumer goods has 

resulted in a billion dollar industry [1]. The large surface area to size ratio of NPs enable 

them to have useful material properties that may induce harm when these NPs interact 

with cells. Therefore, it is necessary to develop an understanding of the potentials of 

NPs to induce cellular stress response or cause toxicity. A review of many metal oxide 

nanoparticles and their toxicity on several model organisms revealed soluble copper to 

be more toxic to bacteria, algae, and aquatic organisms, while the CuO NPs were more 

toxic to mammalian cells and yeast [2]. The release of Cu ions from CuO NPs makes it 

difficult to differentiate the toxic effects of Cu ions from that of the NPs itself on molecular 

level [3]. To this end, the mechanism of toxicity of CuO NPs continues to remain in 

question with some in support of released Cu ions as the only source of toxicity [3] and 

others propose the NPs structural component may influence nanotoxicity [2, 4, 5].  

A study observing changes in yeast gene regulation after copper sulfate 

exposure observed an increase in expression of genes related to binding free copper 

within the cell [6]. A majority of genes increased in expression were involved in to 

metabolism of methionine, lipid and fatty acids, carbon compounds, and carbohydrates. 

Additionally, many genes induced in expression were involved in the functional 

categories of ‘cellular transport’, ‘cell rescue, defense, and virulence’, and ‘cell cycle and 

DNA processing’ [6]. Copper exposure also resulted in changes in gene regulation 

related to metal ion homeostasis in a separate study [7]. Jin et al. also observed 

changes in regulation of genes coding for proteins involved in metabolism of both 

carbohydrates and fatty acids. Thus, identifying changes in yeast gene regulation after 
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CuO NPs exposure, as well as a separate exposure to the released copper ions, will 

help to further define the causative agent of CuO NPs toxicity as this currently remains in 

question. 

An analysis of Saccharomyces cerevisiae (S. cerevisiae)  transcriptomic 

response to copper and other heavy metals, including cadmium, chromium, and 

mercury, observed a number of genes altered in regulation [7]. Interestingly, copper 

exposed yeast were observed to drastically decrease expression of genes related to 

ribosomal functions and protein production. Exponentially growing yeast spend up to 

50% of cellular energy in ribosome and protein production, therefore limiting this energy 

expenditure would enable that energy to be put into defensive mechanisms to deal with 

stress [7]. Toxic levels of Cu ions may have resulted in cell membrane damage in yeast 

as suggested by the increased expression of cell wall biosynthesis genes [6]. It is 

proposed that reactive oxygen species (ROS) generated from Cu ions may induce lipid 

peroxidation and results in damage to the yeast cell membrane. The induction of several 

ROS scavengers supports the suggestion of oxidative stress from Cu ions causing the 

membrane damage [6]. This ROS generation may in part also be responsible for the 

unfolded protein response suggested by the increased expression of heat shock proteins 

after copper exposure. The changes in S. cerevisiae gene expression observed in a 

separate study after copper sulfate exposure resulted in increased proteasome-related 

genes, suggesting damage to proteins [14]. The other major category of up-regulated 

genes was related to stress response, specifically genes encoding copper 

metallothioneines and other copper binding proteins. 

S. cerevisiae contains several genetic pathways involved in copper homeostasis 

(Figure 1) and has a high degree of similarity to human genes [8]. The cupric reductase 

FRE2 reduces Cu2+ into Cu+, which is then taken into the cell. Several high affinity 

copper transporters, CTR1 and CTR3, are primarily responsible for Cu+ uptake, which 
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are regulated based on the environmental copper concentration [9]. Several cytoplasmic 

proteins bind free Cu+ ions, including the metallothioneines CRS5 and CUP1-1, and are 

regulated via Ace1p in response to an increase in Cu+ cellular levels [10]. The copper 

chaperone for SOD1p, CCS1, incorporates Cu+ into superoxide dismutase 1 (Sod1p), a 

crucial enzyme required for appropriate response to oxidative stress [11]. There are 

several transcription factors that react to Cu levels and induce transcriptional regulation 

in either copper excess (Ace1p) or copper starvation (Mac1p) [12]. The vacuole is 

involved in excess Cu+ ions storage and the transporter CTR2 allows Cu+ transport into 

the cytoplasm [13].  

The present study investigates changes in S. cerevisiae gene expression after 

exposure to CuO NPs, as well as the effect of released Cu ions, to elucidate the CuO 

NPs effect on molecular level. DNA microarrays were employed to analyze the gene 

expression of S. cerevisiae after copper exposures. Pathways of significantly affected 

genes from both CuO NPs and Cu ion leachate treatments were identified and 

compared to differentially expressed genes after CuO NPs treatment.                                                                                                                                                      

 

3.3 Material and methods 

3.3.1 Nanoparticle physicochemical characterization 

NPs diameter and morphology. The copper oxide (CuO NPs) employed in this 

study have already been characterized in a previous study [15] by employing 

transmission electron microcopy (TEM) to establish primary particle size.  

NPs dispersion. A fresh stock of CuO NPs, in sterile deionized water, were 

stored in a dark environment to prevent light exposure (8,000 mg/L). Prior to 

experiments, stock solutions of CuO NPs were sonicated using a Branson Digital Sonifer 

for 5 mins with pulse 30 sec on, 30 sec off and diluted to working concentrations (69.5 

mg Cu/L, the IC50 for yeast respiratory metabolism based on previous study [15]).  
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NPs hydrodynamic diameter and zeta potential. The Nanosight instrument was 

used at room temperature with a 640-nm laser and data was collected as per the 

protocol described in [15]. Average diameter of nanoparticles when suspended in YPG-

medium was determined using the Nanoparticle tracking analysis (NTA) 2.0 Build 127 

analytical software. The Zetasizer Nano-ZS (Malvern Instruments) was used to 

determine the zeta potential of CuO NPs in YPG-medium. 

NPs dissolution. The NPs suspended in medium were removed by centrifugation 

at 14,000 rpm for 30 min followed by filtration (0.1µm Supor® low protein binding syringe 

filter, Acrodisc® PALL Life Sciences) and stored at 4°C until Cu2+ concentrations were 

measured (within 24h-48h) by Zincon assay as described in [15].  

 

3.3.2 Released copper ion treatment procurement and exposure conditions 

 In order to generate the released Cu ion treatment, CuO NPs at 800 mg/L were 

incubated for 24 hr, the suspended NPs were then centrifuged (14,000 rpm 30 min) and 

the supernatant was then filtered (0.1 µM syringe filter, Supor® low protein binding, 

Acrodisc® PALL Life Sciences). The supernatant was assayed using Zincon dye as per 

[15] and determined to contain 200 mg Cu2+/L. This supernatant was considered the 

‘released Cu ion’ treatment stock and was diluted to a working concentration of 0.95 mg 

Cu/L in the cell culture. A concentrated CuO NPs stock (100 mg Cu/L) in sterile double 

distilled water was added to the cell culture to achieve a working concentration of 69.5 

mg Cu2+/L CuO NPs. The S. cerevisiae cell cultures in exponential phase were exposed 

at 75 mL volume in 250 ml glass flasks in triplicate (3 separate 75 mL cultures per 

treatment), and then incubated at 30oC under constant shaking at 250 rpm to keep the 

cells and the NPs suspended. Sterile techniques were employed to sample sub-cultures 

at 0.5, 1, 2, 4, and 8 hours after the initial exposure. Samples were centrifuged (4,000xg 
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for 2 min) followed by flash freezing in liquid nitrogen and immediately stored at -80oC 

until RNA could be extracted.  

 

3.3.3 Saccharomyces cerevisiae strains and cultivation conditions 

 Saccharomyces cerevisiae (S. cerevisiae) W303-1A wild type (M.2ATa: leu2-

3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15) was a kind gift of Dr. Rosemary Stuart 

(Marquette University, WI).  The strain was maintained on YP-galactose agar plates (pH 

6.6) containing 1% yeast extract (AMRESCO), 2% Bacto peptone (Difco laboratories) 

and 2% galactose (AMRESCO). Starter cultures were prepared from the respective 

master plates in 5 ml YP media with galactose as a carbon source (YPG) and grown 

overnight at 30oC, 250 rpm. S. cerevisiae experimental cultures were started from the 

overnight cultures. The turbidity of the cell culture was measured via absorbance at 600 

nm using a spectrophotometer (Molecular Devices) and diluted with sterile YP-galactose 

to an OD600 0.1. The cultures were incubated under the same conditions until exponential 

growth was achieved (OD600 0.3) and cultures were then sequentially exposed to 

different copper treatments.  

 

3.3.4 RNA extraction and subsequent cDNA production 

 The S. cerevisiae cell pellets from all treatment time points were removed from -

80oC storage and placed on ice immediately prior to RNA extraction. The freshly thawed 

cell pellet was homogenized using 0.2 um zirconium oxide beads in a 2 mL polystyrene 

microcentrifuge tube placed inside a Bullet Blender® bead beater (Braintree Scientific, 

Inc) at 4oC. The Bullet Blender® was employed at power level setting 7 for 3 min followed 

by 5 min incubation on ice and another round of bead beating at power level 7 for 3 min. 

The cell lysate was centrifuged at 4,000xg for 2 min and supernatant was transferred to 
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PureLink® spin column cartridge. The PureLink® RNA mini kit (Ambion®, Life 

technologies®) was used as per the manufacturer’s instructions using spin columns and 

table top centrifuge. The extracted RNA was treated with DNase as per the TURBO 

DNA-free™ kit (Ambion®, Life technologies®) instructions. The cDNA was generated by 

using the SuperScript® III First-Strand Synthesis kit with the DNase-treated RNA as per 

product recommendations (Invitrogen™). Briefly, 2 ug of RNA was used in a 20 uL 

reaction volume in a thermocycler and run with the following program: 25oC for 10 min, 

50oC for 30 min, 85oC for 5 min followed by 4oC until placed on ice. RNase H was added 

for 20 min, at room temperature incubation, prior to storage at -20oC. 

 

3.3.5 Scanning electron microscopy specimen preparation 

 To visualize the interaction of CuO NPs with S. cerevisiae cells scanning electron 

microscopy (SEM) analysis was performed. S. cerevisiae cells were treated with 69.5 

mg Cu/L CuO NPs for 1 hour, followed by primary fixation with 2.5% glutaraldehyde in 

PBS overnight at 4oC. Solution containing fixed cells was dropped onto glass slides 

coated in Poly-L-lysine and cells were allowed to settle onto the coated surface. 

Secondary fixation was performed in 1% osmium tetroxide (OsO4) in PBS for 1 hour 

followed by dehydration in sequential stages of ethyl alcohol and double distilled water at 

20%, 40%, 70%, and 100%. Sample drying was performed using Hexamethyldisilazane 

(HMDS; BASF SE) at a 1:1 dilution with 100% ethyl alcohol for 10 min followed by pure 

HMDS solution for 10 min. After drying, glass slides were attached to 15 mm aluminum 

stubs using double-coated carbon tape. The samples were then coated in 6 nm Iridium 

with K500X sputter coater (Quorum Technologies). Imaging was performed with a 

Hitachi S4800 ultra high resolution cold cathode field emission scanning electron 

microscope at 15,000 kV in scanning electron mode. 
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3.3.6 Membrane damage Staining 

To detect changes in cell membrane permeability after treatment with CuO NPs 

and CuSO4, S. cerevisiae cells at 1 mL volume were stained with 5 uL of 1 mg/mL 

propidium iodide solution in DMSO (Biotium), washed, and subsequently stained with 5 

uL of 5 mM calcofluor white M2R (MP Biomedicals). To quantify total cell number, 5 uL 

of 5 mM calcofluor white M2R (MP Biomedicals), dissolved in water, was added to cells. 

Cell solutions were incubated with both dyes at room temperature for 10 mins protected 

from light. After staining, cells were washed twice in water and resuspended in 100 uL 

volume water. The cells were imaged with a Leica inverted microscope (DMI 6000B, 

Leica microsystems with Leica application suite AF). The DAPI filter set was used for 

calcofluor white detection, with an excitation at 405 nm and emission range of 425-475 

nm, the Texas Red filter set was used for propidium iodide detection, with an excitation 

at 561 nm and emission range of 570-620 nm. Images were analyzed using Image-J 

software. 

 

3.3.7 Microarray data analysis 

The microarray was performed at the Genome center of University of Wisconsin 

Madison Biotechnology Center. The Affymetrix CEL files containing the expression data 

for the yeast 2.0 probe set were loaded into R with the Affy package where each chip 

was represented as an array. Background noise correction was performed on each chip 

by employing Affy and using the Robust Multichip Average expression measure. Each 

chip was then normalized to the geometric mean of the expression of housekeeping 

genes (Alg9, Kre1, Taf10, Tfc1, and Ubc6) as suggested by Teste [16]. Normalization to 

the geometric mean of these genes in each chip has been shown to be much more 

accurate than normalization to a single gene in the analysis of microarray data [17]. 
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These correction measures were used to transform the raw expression data into 

corrected, normalized log expression values. 

Annotation data (such as probeID and experimental information) was extracted 

from the CEL files using Bioconductor’s a4 package [18]. This package was also used to 

extract gene name, description of function, ORF, Gene Ontology numbers, and KEGG 

pathways from probe IDs in conjunction with the Affymetrix Yeast 2.0 chipset database, 

available through Bioconductor.  

Linear models were fitted to each chip’s logarithmic expression values with the 

Limma package [19]. A contrast matrix was constructed from the arrays in order to 

compare two different treatments (e.g. untreated and nanoparticle treatments). The 

package was then used to calculate the log2 fold differences in gene expression and the 

probability of differential expression for each probe using an empirical Bayes approach. 

The a4 package was used to adjust the calculated p values in order to account for the 

family wise error rate using the Benjamini Hochberg method and to generate a table of 

the calculated values. 

Genes were considered differentially regulated after copper exposures with 

greater than/less than 1.5/-1.5 Log2 Fold Change (LogFC) and an adjusted p<0.05. 

These genes were further separated into up and down-regulated categories. These 

genes were then submitted to Princeton University’s Gene Ontology Mapper and the 

resulting ontologies were used to observe patters of altered gene expression [20]. 

The probe ID, fold change data, and KEGG pathway number annotations were 

also extracted from the list of differentially expressed genes. Probe IDs were converted 

into Entrez Gene IDs using DAVID, and further converted into KEGG gene numbers on 

their website [21, 22]. The fold change data for each probe in the Yeast 2.0 set 

associated with that KEGG pathway was then submitted to the KEGG pathway mapper 

tool [23].  
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3.4 Results 

3.4.1 Copper oxide nanoparticles and released copper ion exposures affect regulation of 
similar genes  
 
 Changes in yeast gene expression were measured in order to differentiate the 

cellular pathways affected after CuO NPs exposure compared to released Cu ions 

exposure. The released Cu ions treatment contains 0.95 mg Cu2+/L, which is equal to 

what would be released from the CuO NPs treatment after 1 hour (0.95+/-0.05 mg 

Cu2+/L). The microarray expression results were confirmed by using qPCR as an 

independent gene expression profiling method, which was found to have good 

correlation (Table 5). The 1 hour exposure changed the regulation of 132 genes with the 

upregulation of 55 genes and downregulation of 53 genes.  

Most of the differentially regulated genes in response to the copper treatments, 

108 of the total 137 genes, were affected by both CuO NPs (69.5 mg Cu/L) and the 

released Cu ions treatments (0.95 mg Cu2+/L). The up-regulated and down-regulated 

genes with 1.5 log cutoff can be found in Table 6 and Table 7, respectively. Of the 108 

genes altered in regulation after CuO NPs and released Cu ion exposures, 55 genes 

were up-regulated and assigned to 13 pathways (Table 6) and 53 genes in 9 pathways 

were down-regulated (Table 7). 

The effect of CuO NPs exposure on S. cerevisiae cells, based on changes in the 

regulation of genes, is suggested in section 3.4.2 that increased environmental stress is 

occurring. Damage from copper exposure may have resulted in lipid peroxidation (3.4.3), 

increased glycogen and trehalose accumulation (3.4.4), and DNA damage or replication 

stress (3.4.5). The physical interaction of the NPs-media agglomerates with the cell 

surface could result in damage to the cell wall. DNA damage or replication stress can  
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Table 5. Measured changes in regulation of genes, in the form of Log2 fold change, with 

microarray and qPCR methods. 

Log2 Fold 
Change 

Copper oxide 
nanoparticle 

Released copper ions 

Gene Name Microarray qPCR Microarray qPCR 

Hsp30 5.1 5.37 5.9 5.26 

Hxt13 3.7 2.02 2.1 2.04 

Crs5 3.1 2.09 2.4 1.86 

Gad1 2.2 2.23 1.8 1.29 

ctt1 1.7 1.9 1.4 1.67 

Alg9 -0.1 0.08 -0.2 0.09 

Ccs1 -0.4 0.1 -0.3 -0.06 

Ctr2 -0.7 -0.42 -0.6 0.06 

Act1 -2.2 -0.31 -1.4 -0.21 

Clb5 -2.8 -2.3 -2.7 -1.82 

Ctr1 -4.3 -3.25 -3.9 -2.89 

 

 

result in cell cycle arrest through the action of cyclins. Additionally, increase in 

carbohydrate storage molecules, glycogen and trehalose, are related to prolonged cell 

cycle arrest [24]. 

 

3.4.2 Cells respond to copper exposure by altering regulation of genes related to copper 
homeostasis 
 

Exposure to CuO NPs and released Cu ions resulted in numerous gene changes 

associated with the environmental stress response (ESR) pathway. A number of copper 

detoxification genes were changed in regulation after exposure to both CuO NPs and 

released Cu ions. The copper-resistant suppressor protein CRS5 was found to be one of 
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Table 6. S. cerevisiae up-regulated genes and their pathways after copper oxide 

nanoparticle, copper sulfate, or both the nanoparticles and copper sulfate exposures. 

 

 

 
the most up-regulated genes. These copper metallothioneines are considered one of the 

main copper defense molecules [25]. Two genes required for copper import, the ferric 

reductase FRE1 and the high-affinity copper importer CTR1, were significantly down- 

regulated. Proteins involved in glutathione production, related to the response to 

 
 

Copper oxide 

nanoparticle 

specific 

processes 

# of 

genes 

Mutually 

affected 

processes 

# of 

genes 

Released 

copper 

specific 

processes 

# of 

genes 

Cellular processes 2  Cytokinesis 1 Protein sorting 1 

Mercury resistance 1 Meiosis 1 Autophagy 1 

Transporters 2 Membrane 2 Transcription 1 

Signal transduction 3 Protein kinase 

(Signal 

transduction) 

5   

Response to 

Chemical stress 

2 Response to 

stress 

11   

Metabolism 4 Protein folding 

and degradation 

2   

  Signal 

transduction 

1   

  DNA repair 1   

  Glycogenesis 11   

  Transporters 3   

  Transcription 

factors  

3   

  Metabolism 7   

  Unknown 6   

Total number of 

genes affected  

14  54  3 
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Table 7. S. cerevisiae genetic pathways down-regulated in response to copper oxide 
nanoparticle exposure or both the nanoparticles and copper sulfate treatments. 
 

Copper oxide nanoparticle 

specific processes 

# of 

genes 

Mutually affected 

processes 

# of 

genes 

Transportation 1 Membrane 1 

Translation (Ribosome 

biogenesis) 

2  Cell cycle-related  

(Cell cycle) 

2 

Response to chemical stress 1 Peroxisome 1 

Meiosis 1 Ubiquitin mediated 

proteolysis 

1 

Unknown 1 mRNA degradation and  

Ribosome biogenesis 

41 

  Response to stress 2 

  Copper transport 2 

  Diphthamide synthesis 2 

  Unknown 1 

Total number of genes affected 7  53 

Genes were assigned Gene ontology and separated based on whether gene regulation 
was altered by both treatments (shared) or 28.4 nm CuO NPs only. 
 
 
 
 
oxidative stress, were found to be up-regulated including the glutamate decarboxylase 

encoded by GAD1 and the phospholipid hydroperoxide glutathione peroxidase GPX1.  

Cellular signaling was affected as genes related to signaling and transcriptional 

regulation were up-regulated after copper exposure. The protein kinases ‘Mid-two like’ 

MTL1, ‘Viable in Hal3 Sit4 background’ VHS1, the protein kinase KIN82, and ‘yet 

another kinase’ YAK1 were all up-regulated. Several transcription factors were up-

regulated including ‘chromosome instability’ CIN5, ‘expression dependent on Slt2’ 

protein EDS1, heat shock protein-related MGA1, ‘up in starvation’ USV1, and ‘Zinc finger 

protein’ ZNF1. 

 

3.4.3 Copper exposure may be causing damage to cellular proteins 
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A number of genes coding for proteins usually involved in heat stress response were 

differentially up-regulated after both CuO NPs and released Cu ions exposures. These 

heat shock proteins (HSP) were up-regulated, ‘Stress-inducible yeast Mpv17’ protein 

SYM1, and the HSP26 and HSP42, serve as protein chaperones to prevent protein 

misfolding. Several of the highly up-regulated genes were HSP including HSP30, a 

critical regulatory molecule and chaperone protein, and ‘Stationary phase genes’ SPG1 

and SPG4, which are required for high temperature survival (Table 8). The HSP30p is of 

particular importance as this transcription has been shown to be induced in response to 

a multitude of stressors including heat shock, osmostress, weak acid exposure, and 

even glucose limitation [26]. The stress-induced expression of HSP30 has been 

suggested to play an energy conservatory role as it limits unnecessary ATP 

consumption by regulating the activity of the H+-ATPase PMA1p [26]. The transcription 

factor MGA1 is similar to a heat shock transcription factor and was found to be up-

regulated, suggesting damage to proteins may be occurring (Table 8). Protein damage 

may be the result of divalent metal ion replacement or lipid peroxidation from increased 

oxidative species [27, 28]. Increased generation of oxidative stress at the periphery of 

the cell can also result in lipid peroxidation of the cell wall [29].  

 

3.4.4 Copper oxide nanoparticles interact with cell surface and may induce damage to 
cell wall 
 

The interaction of NPs with the S. cerevisiae cell surface may be facilitating 

damage to the cell. SEM imaging of yeast cells after exposure to CuO NPs reveals 

nano-sized particles bound to the yeast cell surface (Figure 10A), which were absent in 

untreated cells (Figure 10B). The NPs agglomerates bound to the cell’s exterior were 
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Table 8.  S. cerevisiae top 10 up-regulated genes in response to both copper sulfate and 

copper oxide nanoparticles.  

Systemic 
name 

Standard 
name 

Log2FC 
CuO 
NP 

Log2FC 
 Cu 
ions 

Adj. 
p value 
CuO NPs 

Adj. 
p value 
Cu ions 

Basic 
description 

YGR249W HSP30 5.13 5.88 0.001 0.003 Stress 
response 
protein 

YEL069C SPG4 3.93 2.68 <0.001 0.003 Required for 
high temp 
survival 

YGL096W MGA1 3.72 4.37 0.009 0.029 Heat shock 
transcription 

factor 

YGR236C HXT13 3.65 2.57 0.001 0.003 Hexose 
transporter 

YEL069C TOS8 3.38 2.95 0.001 0.007 Putative 
transcription 

factor 

YER054C SPG1 3.24 2.1 0.001 0.003 Required for 
high temp 
survival 

YER150W SPI1 2.95 2.75 0.004 0.019 Involved in 
weak acid 
resistance 

YBR147W GIP2 3.15 2.63 0.001 

 

0.004 

 

Involved in 
glycogen 
synthesis 

YGR249W CRS5 3.10 2.45 <0.001 0.003 Cu-binding 
metallothionein 

YEL069C RTC2 3.10 2.61 0.001 0.004 Cationic 
amino acid 
transporter 

 

 
examined using energy-dispersive x-ray spectroscopy (EDS) (Figure 10D). The EDS 

spectrum confirms the presence of copper within the nanoparticle agglomerates 

attached to cell surface (Figure 10E). Damage to the cell wall by the attached NPs at the 

exterior of the cell is suggested by increased expression of genes related to cell wall 
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biosynthesis. The transcription factor USV1 is related to regulation of cell wall 

biosynthesis genes and RTN2, a reticulon-like protein involved in stabilizing membrane 

curvature, were both up-regulated after copper exposure. The gene with the most up-

regulation, HSP30, also acts as an activator for PMA1, which is an H+- ATPase that is 

responsible for ion homeostasis. Changes in ion homeostasis are a frequent problem 

encountered in cells after cell membranes have become permeable from damage. 

To directly examine the effect of Cu exposure on cell membrane integrity, the 

DNA-binding fluorescent dye propidium iodide (PI) was employed. Cells were stained 

with PI after exposure to both CuO NPs and CuSO4 for 4 hours (Figure 11). Cells 

exposed to 28 nm CuO NPs as well as CuSO4 displayed significantly greater fluorescent 

dye intake (p<0.01) compared to untreated yeast. This cell staining data further supports 

membrane damage suggested by the gene expression data. 

 

3.4.5 Cells increase energy reserves by altering ribosome biogenesis and increased 
carbohydrate storage 
 

When cells enter a state of stress, energy is frequently conserved through the 

storage of carbohydrates as well as a decrease in protein synthesis [30]. Several up- 

regulated genes were in response to both CuO NPs and released Cu ions were involved 

in the synthesis and accumulation of the energy storage carbohydrate molecules, 

glycogen and trehalose (Table 9). There were 11 up-regulated genes in the 

glycogenesis pathway including glycogen branching enzymes, glycogen synthases, and 

several subunits of the main trehalose synthase molecule. 

Over 30 genes involved in various stages of protein production were significantly 

down-regulated (Table 10, Table 11), suggesting a decrease in cellular transcription. 

Among these were genes involved in various aspects of protein synthesis including 

mRNA processing, mRNA degradation, 18s rRNA maturation, and 60S ribosome 
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Figure 10. Scanning electron micrographs of S. cerevisiae cells after exposure to 
copper oxide nanoparticles. Scanning electron micrographs depicting yeast cells were 
exposed to 28.4 nm copper oxide nanoparticles and subsequently found to be adsorbed 
to the cell membrane (A, C) which is not observed without the addition of nanoparticles 
(B). To confirm the attached particles are indeed the copper oxide energy-dispersive X-
ray spectroscopy was performed (D) which identified spectrum peaks at locations which 
confirm copper in the attached nanoparticles (E). 

 

 

components. Several of the genes most down-regulated were involved in ribosome 

biogenesis. These ribosome-related down-regulated genes include ‘ribosomal RNA 

processing’ protein RRP36, necessary for early cleavage of 35S pre-rRNA and ‘Brefeldin 

A resistance’ protein BFR2, involved in pre-18S rRNA processing. Additional genes 
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Table 9. Up-regulated S. cerevisiae genes related to the glycogenesis and trehalose 

synthesis pathways.  

 

System 
Name 

Standard 
Name 

Basic description 

YEL011W GLC3 Glycogen branching enzyme 

YDL079C MRK1 Glycogen synthase kinase 3 homolog 

YFR015C GSY1 Glycogen synthase 

YKR058W GLG1 Glycogenin glucosyltransferase 

YFR017C IGD1 Cytoplasmic, inhibits glycogen debranching activity 

YDR074W TPS2 Phosphatase subunit of the trehalose-6-P synthase  

YML100W TSL1 Large subunit of trehalose 6-phsphate synthase complex 

YER054C GIP2 Regulatory subunit of protein phosphatase Glc7p 

YIL045W PIG2 Type-1 protein phosphatase targeting subunit 

YOR178C GAC1 Regulatory subunit for Glc7p type-1 protein phosphatase 

YBR050C REG2 Regulatory subunit of the Glc7p type-1 protein phosphatase 

 

 

include the ‘Exit from G1’ protein EFG1, ‘Translation initiation factor Four A Like’ FAL1, 

‘Lethal with conditional Pap1’ LCP5, and ‘U three protein’ UTP5. The 18S rRNA was not 

the only ribosome component affected as genes coding for components of the 60S 

ribosome were also down-regulated such as nulceolar G-protein NOG2. Other ribosome 

protein RSA4. Genes found to be down-regulated included the ‘Arginine 

methyltransferase-interacting RING finger’ protein AIR1, for RNA processing and 

degradation, and ‘Ribosome assembly’ protein RSA4, used in 60S maturation and 

transport (Table 11). Several RNA helicases dead box proteins DBP2 and DBP7 and the 

and thus is considered a key regulatory molecule for mitotic and meiotic cell up-

regulated genes include the ‘Arx1 little brother’ protein ALB1, ribosome assembly cycle 
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Figure 11. The percent of stained cells, as a measure of membrane damage, after 
exposure to CuO NPs or Cu ions (in the form of copper sulfate). Cells were exposed to 
69.5 mg Cu/L copper oxide for 4 hrs and membrane damage, as measured by intake of 
propidium iodide dye. 
 
 
 

progression [32]. PCL1, another important Pho85 cyclin, was down-regulated after 

copper exposure and is responsible for regulating cell cycle progression by interacting 

with the cyclin-dependent kinase Pho85p [33]. Cell cycle arrest may also be occurring 

through the up-regulation of YLR149C, which can induce cell cycle arrest and often 

increases in abundance in response to DNA replication stress [34]. DEAH-box RNA 

helicase DHR2 were observed to become down-regulated after copper exposure. Genes 

involved in metabolic functions were also up-regulated after exposure to both copper 

exposures including genes involved in pyrimidine, leucine biosynthesis, and the pentose 

phosphate pathway. Metabolite transporters were up-regulated including hexose 

transporter HXT13 and maltose transporter MAL11.  

 

3.4.6 Yeast cells undergo cell cycle arrest in response to copper exposure 
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Genes related to cell cycle progression were changed in regulation including 

Pho85 cyclin PCL1, cyclin B CLB6, and yeast homeobox YOX1, which suggests cells 

are beginning to induce cell cycle arrest (Table 12). Clb6p is an important cyclin 

responsible for activating the cyclin-dependent kinase Cdc28p, which is responsible for a 

variety of cellular functions including transcription, growth, and morphogenesis [31]. 

Cell cycle arrest might explain the observed significant effects on S. cerevisiae 

cell metabolic activity after both CuO NPs and copper sulfate exposures in our previous 

study [15]. The employed copper concentrations significantly inhibited cell metabolism 

but did not affect yeast cell viability, which could be explained by cell cycle arrest.  

 

3.4.7 Copper oxide nanoparticles induce changes in gene regulation not observed after 
released copper ion exposure  
 

To differentiate the effects from the nanoparticle structure from those of the 

released Cu ions, genes that were up or down regulated only in response to CuO NPs 

exposure were organized into pathways and compared to genes regulated after released 

copper ion exposure. Yeast displayed a different response to stress, as observed as 

changes in the regulation of genes, after CuO NPs exposure compared to released Cu 

ions exposure. CuO NPs exposure resulted in 14 up-regulated genes and 7 down-

regulated genes that were not changed in regulation after exposure to released Cu ions. 

Among these are genes encoding several proteins involved in energy production and 

cell cycle progression. 

The CuO NPs exposure resulted in up-regulation of genes in 7 pathways 

including energy production, transporter activity, and amino acid metabolism. Contrary to 

changes in gene regulation from both CuO NPs and released Cu ions, several of the 

genes up-regulated only from CuO NPs exposure were involved in energy production  
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Table 10. The down-regulated S. cerevisiae genes in response to both copper sulfate 
and copper oxide nanoparticles. 
 

Systemic 
name 

Standard 
name 

Log2FC 
CuO NP 

Log2FC 
 Cu ions 

p value 
NPs 

p value 
Cu ions 

Basic 
description 

YPR124W CTR1 -4.34 
 

-3.86 
 

<0.001 
 

0.001 
 

High-affinity Cu 
transporter 

YLR214W FRE1 -4.29 
 

-3.90 
 

<0.001 
 

0.002 
 

Ferric/Cupric 
reductase 

YJR097W JJJ3 -3.44 
 
 

-3.18 
 
 

0.001 
 
 

0.009 
 
 

Involved in 
dipthamide 
synthesis 

YOR287C RRP36 -2.88 
 

-2.29 
 

0.001 
 

0.034 
 

Component of 
90S pre 

YNL289W PCL1 -2.88 
 
 

-3.00 
 
 

0.001 
 
 

0.019 
 
 

Cyclin, regulates 
growth and cell 

cycle 
progression 

YGR109C CLB6 -2.83 
 
 

-2.70 
 
 

0.001 
 
 

0.014 
 
 

Cyclin, involved 
in DNA 

replication 
(Sphase) 

YDR299W BFR2 -2.78 
 

-2.38 
 

0.001 
 

0.004 
 

Component of 
SSU,  90S 

preribosome 

YIL079C AIR1 -2.75 
 

-2.37 
 

0.002 
 

0.014 
 

Component of 
TRAMP 
complex 

YML027W YOX1 -2.60 
 
 

-2.23 
 
 

0.001 
 
 

0.007 
 
 

Homeobox 
transcriptional 

repressor 

YCR072C RSA4 -2.59 
 
 

-2.43 
 
 

0.001 
 
 

0.006 
 
 

 Involved in 
ribosome 

biogenesis 

 

 

instead of energy storage. As an example, the external NADH dehydrogenase NDE2 is 

up-regulated after CuO NPs exposure. This up-regulation of NDE2, the first component 

of the electron transport chain, suggests cells may require additional energy input and 

thus are shifting metabolism towards respiration. This shift in energy requirements may 

also explain the up-regulation of ‘deletion suppressor of mptFive mutation’ DSF1, a 

putative mannitol dehydrogenase.  
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Table 11. S. cerevisiae down-regulated genes involved in protein synthesis and 

ribosome biogenesis.  

  SSU = small subunit processome complex. 

Categories 
Ribosome Biogenesis 

System 
Name 

Standard 
Name 

Basic description 

General Transcription YML113W DAT1 DNA binding protein 

 YBL054W TOD6 PAC motif binding protein 

 YOL080C REX4 Putative RNA exonuclease 

 YKR024C DBP7 Putative ATP-dependent RNA 

helicase (DEAD-box family) 

 YDL167C NRP1 Putative RNA binding protein 

 YMR179W SPT21 Role in transcriptional silencing 

 YCL037C SRO9 RNA-binding protein 

 YOR078W BUD21 Component of small ribosomal 

subunit processosome 

 YBR141C BMT2 Nucleolar rRNA 

methyltransferase 

mRNA processing 

and RNA degradation 

YIL104C SHQ1 Chaperone protein involved in 

pre-rRNA processing 

 YNL299W TRF5 Poly(A) polymerase 

 YNL112W DBP2 ATP-dependent RNA helicase 

 YIL079C AIR1 protein in TRAMP complex 

 YOR359W VTS1 DNA/RNA-binding protein 

Required for 18s 

rRNA maturation 

YKL078W 

  

DHR2 Nucleolar ATP-dependent RNA 

helicase 

 YGR271C-A EFG1 Maturation of 18S rRNA 

 YDR021W FAL1 Maturation of 18S rRNA 

 YER127W LCP5 Maturation of 18S rRNA 

 YHR196W UTP9 18S rRNA pre-processing 

 YDR398W UTP5 Production of 18S rRNA 

 YKL099C UTP11 Production of 18S rRNA 

 YMR093W UTP15 18S rRNA pre-processing 

 YMR014W BUD22 Required for rRNA maturation 

 YJL069C UTP18 SSU protein, pre-18S 

maturation 

Component of 60S 
ribosome 

YHR085W 
 

IPI1 Processes ITS2 sequences 
from 35S pre-RNA 

 YNL182C 
 

IPI3 Processes ITS2 sequences 
from 35S pre-RNA 

 YNR053C NOG2 Putative GTPase  

 YJL122W ALB1 Shuttling pre-60S factor 

 YCR072C RSA4 Involved in maturation and 
transport of pre-60S subunit 
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Table 12. S. cerevisiae regulated genes encoding cyclins of interest. 

 

Standard 
Name 

Log2FC Adj. pValue Complexation induces: 

CuO Cu2+/+ CuO Cu2+/+ 

PCL1* -2.87 -3.00 0.001 0.019 Cell-cycle progression 

PCL2* -1.17 -0.39 0.022 0.52 Cell-cycle progression 

CLN1^ -1.07 -0.98 0.004 0.55 Cell-cycle progression 

CLN2^ -0.95 -0.73 0.006 0.084 Cell-cycle progression 

CLB6^ -2.83 -2.69 0.001 0.014 Activates Cdc28 

PCL8* 1.07 0.69 0.004 0.085 Glycogen accumulation 

PCL10* 0.75 0.70 0.01 0.091 Glycogen accumulation 

PCL5* 2.13 1.36 0.001 0.091 Protein production 

Bold values are associated with exposure to CuO NPs. An (*) indicates relation to Pho85 
regulation and interaction. An (^) indicates association with Cdc28. 
 

  

The suggestion of differential response to stress from CuO NPs exposure 

compared to treatment with released Cu ions culminates in the changes in regulation of 

two cell cycle related genes, XBP1 and MCD1. The XhoI site-binding protein XBP1 was 

up-regulated only from CuO NPs exposure, which is important as this transcriptional 

repressor has been linked to inhibition of 15% of all yeast genes [35]. Up-regulation of 

XBP1 has been linked to cell cycle arrest at G1 phase after the cell encounters stress 

such as DNA damage. The mitotic chromosome dominant protein MCD1 encodes an 

essential subunit of the cohesion complex required for proper sister chromatid cohesion 

during mitosis and meiosis [36]. The MCD1 gene was found to be down-regulated only 

after CuO NPs exposure, which is suggestive of decreased mitosis and meiosis that was 

not observed with released Cu ion exposure. Together the differential expression of 

these cell cycle related proteins suggests cell cycle arrest may be induced by other 

regulatory systems including YLR149C.  
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3.5 Discussion 

3.5.1 Proposed mechanism for S. cerevisiae response to released copper ions and 
copper oxide nanoparticles 
 

A majority of changes in the regulations of genes were observed after both the 

CuO NPs treatment as well as the released Cu ion exposure (Figure 12). The mutually-

changed gene pathways from the two copper exposures are considered an effect 

caused by the Cu ions released from the CuO NPs. The regulation of many of the genes 

is most likely related to the yeast environmental stress response (ESR), which can result 

in over 900 different genes becoming induced or inhibited in order to overcome 

environmental stress [37]. The ESR in yeast induces up-regulation in genes involved in 

scavenging of reactive oxygen species, protein folding and degradation, and DNA-

damage repair [38]. It has been proposed that the up-regulation of ESR genes primarily 

serve a protective role for critical cellular functions [37].  

The Cu ions released from CuO NPs resulted in cellular damage, as suggested 

by increased expression in genes involved in scavenging of reactive oxygen species, 

protein folding and degradation, and DNA-damage repair. A decrease in protein 

production is suggested as many genes related to ribosome biogenesis were decreased 

in regulation. The reduced protein production allows the cells to conserve energy and 

thereby allows cells to more appropriately adapt and respond to the stress. Numerous 

genes involved in glycogenesis were also up-regulated, including glycogen debranching 

enzymes and glycogen synthases. Increased abundance of glycogen and trehalose after 

exposure to stress can establish energy reserves for improved response to stress.  

Alongside the afore mentioned gene changes, multiple genes involved in cell 

cycle progression were changed in regulation after both CuO NPs and released Cu ions 

exposures. 

 



63 
 

 

 

 

Figure 12. Changes in regulation of S. cerevisiae genes after exposure to either copper 
oxide nanoparticles, released copper ions, or both treatments. 
 

 

The observed cell cycle arrest is consistent with previous results [15] wherein a 

significant inhibition of cellular metabolic activity was observed (80% reduction with 208 

mg Cu/L CuO NPs) without any effect on cell viability. The delay of cell cycle 

progression is a defense mechanism employed by S. cerevisiae cells to prevent cell 

death, similarly as was observed after linoleic acid hydroperoxide treatment [39]. The up-

regulation of genes related to glycogen and trehalose storage is further evidence of cell 

cycle arrest as this has been linked with arrest at G1 phase [40]. Cell cycle arrest at G1 

would be in agreement with previous experiments with both CuO NPs and Cu ions 

exposure to human A549 cells in which cell cycle arrest was also observed [41]. 

Exposure of S. cerevisiae to both CuO NPs and released Cu ions may have resulted in 

cell cycle arrest as demonstrated by up-regulation of YLR149C. The gene product of 
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YLR149C induces cell cycle arrest and often increases in abundance in response to 

DNA replication stress [34].  

 Yeast cells that encounter cell cycle arrest may have increased DNA replication 

stress as suggested by Niu et al [34]. DNA replication stress may be occurring after 

copper exposure as indicated by the expression of a number of genes 

‘Phosphoglucomutase’ PGM2, ‘Trehalose synthase long chain’ TSL1, ‘Suppressor of 

Los-1’ SOL4, ‘Restriction of telomere capping’ RTC3, ‘homolog of S. pombe SDS23’ 

SDS24, ‘Reticulon-like’ RTN2, ‘Found in mitochondrial proteome’ FMP16, ‘Heat shock 

protein’ HSP42, ‘Inhibitor of glycogen debranching’ IGD1, as an increase in abundance 

of these genes has previously been suggested to occur in response to DNA replication 

stress [35]. The effect on S. cerevisiae DNA replication from copper exposure was also 

observed in Bayat et al, based on the GreenScreen and comet assays [42], from CuO 

NPs at only 8 mg/L concentration. Prolonged DNA replication stress results in cells 

being more sensitive to further DNA damage and the cell can become arrested leading 

to poor binding of initiation complexes or limited dNTP pools [38].  

Many genes related to ribosome biogenesis were down-regulated after both 

copper treatments (Table 11). A reduction in biogenesis-related genes is frequently 

observed during the ESR wherein almost 70% of the down-regulated genes are involved 

in protein synthesis [37, 43]. This reduces protein levels and conserves energy to allow 

cells to more appropriately adapt and respond to the stressor [44]. Numerous genes 

involved in glycogenesis were up-regulated after exposure to CuO NPs and released 

Cu2+ ions, including glycogen debranching enzymes, glycogen synthase, glycogenin 

glucosyltransferase, and several subunits of the Glc7p phosphatases (Table 10). Recent 

literature suggests yeast cells can increase abundance of glycogen and trehalose 

storage molecules upon exposure to stress in order to have established energy reserves 

for appropriate stress response [45, 46]. Trehalose synthesis was induced as 2 subunits 
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of trehalose-6-p-synthase were also up-regulated, which provides further evidence of an 

increase in carbohydrate levels. Trehalose can assist in osmolyte balance [47] as well as 

to prevent protein misfolding [48] and as such has been found to increase in abundance 

in cells encountering protein damage [30].   

In our study the pyruvate kinase PYK2 was found to be up-regulated after both 

CuO NPs and released Cu ions exposure, suggesting cells may be entering the 

glycolytic shunt. PYK2 maintains control of the relative flux of glycolytic intermediates 

and ATP within yeast cells by regulating the glycogen shunt. The glycogen shunt is a 

process by which cells can couple the metabolism of glycolysis, futile cycling, and the 

synthesis of glycogen and trehalose in order to establish ATP and glycolytic intermediate 

homeostasis in steady-state conditions [45]. It has been proposed by Gasch et al that 

the paradoxical induction of both catabolic and synthetic genes enables the cell to 

rapidly control corresponding enzymes, thereby increasing the ability for the cell to 

regulate its energy reserves [37]. The systems responsible for regulation of both 

glycogen and trehalose have been shown to be very dynamic and capable of swift 

response [48, 49]. The ability to sustain osmotic instability and buffer energy reserves is 

proposed to be regulated by a similar mechanism, which induces the regulation of both 

synthetic and catabolic functions of gene networks.  

Damage to the cell membrane may be occurring as increased membrane 

permeability is suggested by up-regulation of HSP30, which regulates the plasma 

membrane H+-ATPase PMA1. PMA1 is suggested to stay steadily regulated but the 

activity of Pma1p has been found to be increased in order to help maintain intracellular 

homeostasis after a drop in intracellular pH [50]. A drop in intracellular pH has been 

observed to occur after exposure to toxic levels of copper which caused membranes to 

become permeable to ions [51]. The occurrence of membrane permeability is also 

suggested by the increase in expression of the v-SNARE binding protein BTN2, which is 
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involved with specific protein transfer from late endosome to the golgi. The up-regulation 

of BTN2 has been shown to occur in order to counteract changes to vacuolar pH [52], 

observed in yeast after copper toxicity from an increase in membrane permeability [51]. 

The upregulation of BTN2 in our study occurred only in yeast cells exposed to released 

Cu ions. 

Up-regulation was observed in the transcription factor USV1, that specifically 

influences genes involved in cell wall biosynthesis. Further evidence of cell wall 

biosynthesis may be present in the significant up-regulation of the reticulon protein 

RTN2, which acts to stabilize membrane curvature. Previous studies have observed 

increased damage to cellular membranes after copper exposure and thus up-regulation 

of genes involved in cell wall biosynthesis [53]. The membrane damage observed after 

exposure to Cu ions is suggested to occur from ROS induced lipid peroxidation [54, 55]. 

    

3.5.2 Exposure to CuO NPs changed regulation of additional genes  

  Treatment with CuO NPs resulted in a number of genes whose regulation was 

not changed after treatment with released copper ions, suggesting differential stress 

response. These CuO NPs changed gene regulation encoding several critical proteins 

involved in cell cycle progression, environmental information processing, and energy 

production. Treatment with CuO NPs may have affected the metabolism of the yeast 

cells, as suggested by the up-regulation of genes related to oxidative phosphorylation, 

that were not changed after exposure to released Cu ions. The expression of a 

mitochondrial protein that plays the role of Complex I in the electron transport chain, 

NDE2p, was significantly up-regulated after CuO NPs exposure. This result is similar to 

the up-regulation of NADH-dehydrogenase Fe-S protein 4 in the nematode Lumbricus 

rubellus (NDE2p in yeast) after CuO NPs exposure [53]. 
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Additional evidence of altered energy production can be found in the increased 

expression of the PHO85 cyclins PCL8 and PCL10, involved in metabolic regulation via 

the cyclin-dependent protein kinase Pho85p [56]. PHO85p can negatively regulate 

glycogen accumulation by interacting with PCL8/10p [32], which also suggests a shift 

towards energy production. CuO NPs exposure also induced increased expression of 

the PHO85 cyclin PCL5, which interacts with PHO85p to increase cellular protein 

production. GCN4 is a transcription factor involved in decreasing protein production 

under starvation conditions. PHO85p negatively regulates GCN4 through the action of 

PCL5p, which subsequently induces protein production. This suggests a differently 

induced stress response from CuO NPs exposure as no indication of protein production 

occurred after released Cu ions exposure. The shift in energy state and protein 

production suggests that the stress induced by CuO NPs triggers additional stress 

response networks resulting in the need for additional energy via oxidative 

phosphorylation. 

The cell cycle arrest in CuO NPs exposed cells may be induced by a separate 

pathway, i.e. the transcriptional repression from the up-regulated XBP1 and reduced 

DNA replication from down-regulated MCD1. MCD1 is a cell cycle specific gene that 

codes for an essential subunit of the cohesion complex needed for proper sister 

chromatid cohesion during mitosis and meiosis [36]. The decreased expression of MCD1 

after CuO NPs exposure would seriously inhibit progression of the cell cycle from 

improper sister chromatin adhesion. The increased expression of XBP1 would lead to 

the cell cycle inhibition as it is a transcriptional repressor, expressed during stress, which 

is involved in maintaining cells in an arrested state at G1 phase. This transcriptional 

repressor is not normally expressed during logarithmic growth as it is responsible for 

inhibiting up to 15% of all yeast genes [57]. Increased expression of XBP1 has been 

linked to stress from high osmolarity, oxidative stress, excessive heat, and DNA damage 
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and has been shown to inhibit cell cycle progression at G1 [58]. Indication of differential 

stress reaction after CuO NPs exposure is supported by the regulation of genes related 

to cell cycle arrest.   

 

3.6 Conclusion 

 Exposure of S. cerevisiae cells with either CuO NPs or released Cu ions altered 

the regulation of a number of genes related to functions similarly affected by the 

environmental stress response (ESR). Among the genes changed in expression, more 

than half are involved in the ESR and play a protective role by reducing general protein 

production and increasing stress-related protein production. This decrease in protein 

production enables yeast cells to overcome a variety of stressors in order to reestablish 

homeostasis. The response after treating yeast with CuO NPs or released Cu ions was 

down-regulation of ribosome biogenesis and protein biosynthesis and up-regulation of 

glycogen synthesis to reduce cellular energy use. Along with reduction in cellular energy 

use, changes in gene expression suggest yeast may be encountering DNA replication 

stress, damage to cell membranes, and cell cycle arrest. We propose that the cell cycle 

arrest may be induced by the copper ions released from the CuO NPs through the up-

regulation of YLR149C, as well as down-regulation of CLB6 and PCL1 that act in unison 

to induce cell cycle arrest. This is in contrast to exposure with CuO NPs that may be 

inducing cell cycle arrest via the additional up-regulation of XBP1. The observed 

changes in the regulation of genes only after CuO NPs exposure suggests yeast cells 

are experiencing differential stress response compared to exposure with released 

copper ions. It is significant that several mitochondrial proteins involved in energy 

production or oxidative phosphorylation were only up-regulated after exposure to CuO 

NPs.  
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CHAPTER 4: 

 
COPPER OXIDE NANOPARTICLES IMPACT SEVERAL TOXICOLOGICAL 

ENDPOINTS AND CAUSE NEURODEGENERATION IN Caenorhabditis elegans 

 

4.1 Abstract 

Engineered nanoparticles (NPs) are increasingly becoming incorporated into 

technology and consumer products. In 2014, over 300 tons of copper oxide (CuO) NPs 

were manufactured in the United States. The increased production of NPs raises 

concerns regarding the potential introduction into the environment or human exposure. 

The toxicological endpoints of CuO NPs and copper sulfate were quantified in 

Caenorhabditis elegans. A laboratory-adapted C. elegans strain (N2) and three wild 

strains were utilized to examine differences in the toxicological responses of strains with 

diverse genetic backgrounds. All strains exhibited greater sensitivity to CuO 

nanoparticles compared to copper sulfate, as indicated by reduction of average 

population body length and feeding behavior. The reproduction of C. elegans strains was 

significantly reduced only at the highest copper concentration exposures, though still 

more pronounced with CuO NPs compared to copper sulfate treatment.  

In transgenic C. elegans with neurons expressing a GFP reporter protein, 

neuronal degeneration was observed in up to 10% of the population after CuO NPs 

exposure. Nematode mutant strains containing gene knockouts in the divalent-metal 

transporters smf-1 and smf-2 showed increased tolerance to copper exposure, and thus 

implicates both transporters in copper-induced neurodegeneration. These results 

demonstrate greater toxicological effects of CuO NPs compared to exposure with copper 

sulfate on several strains of C. elegans. 
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4.2 Introduction 

Nanoparticles (NPs), particles with at least one dimension less than 100 nm, are 

increasingly employed in commercial products. NPs have high surface area to size 

ratios, which confer unique material properties compared to micron particles with the 

same chemical composition. Copper oxide (CuO) NPs are frequently employed for their 

superconductive properties and as such are found in many different consumer 

electronics including gas sensors, batteries, and solar cells [9]. As manufacturing output 

increases for any material, an associated increase in the risk of accidental exposure to 

humans or introduction into the environment occurs. Consequently, it is important to 

determine the toxicity of these commonly employed NPs to human, aquatic, and 

terrestrial organisms.  

Previous studies have reported several toxicological endpoints of CuO NPs to 

many organisms including bacteria [163], yeast [19], Oligochaeta [27], and human cell 

lines [112]. Defining the mechanism of nanoparticle toxicity is difficult as released metal 

ions might also cause toxicity, making it difficult to define the ultimate cause of toxicity 

[14]. The released copper ions from CuO NPs has been suggested as the sole source of 

toxicity in earthworms, several algae and crustacean species, Escherichia coli, and 

human cell lines [9]. By contrast, other studies suggest the NP component also 

contributes to inhibition of cellular metabolic activity [18] and observed cytotoxicity in 

yeast [19] and plants [164]. 

Nematodes are an environmental model to study NP toxicity as they assist in 

decomposition of organic matter within soil. C. elegans is employed as a model 

organism in many studies because of low culture cost, short lifespan, conserved 

genome, and a translucent body, which enables the use of fluorescently labeled reporter 
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molecules. Although CuO NPs toxic effect on nematodes wasn’t studied extensively 

(except one report), copper ions from copper salts have been shown to be toxic to 

several species including Caenorhabditis elegans [72], Panagrellus redivivus, and 

Pristionchus pacificus [68]. Exposure of C. elegans to toxic levels of copper sulfate was 

observed to reduce brood size and life span while slowing development [67, 165]. It has 

been suggested that the mechanism of heavy metal toxicity in C. elegans can involve 

disruption of the cell membrane or competition and subsequent displacement with other 

necessary cations bound by proteins [166].  

The effect of CuO NPs on C. elegans neurodegeneration is critical to investigate 

as it is a very sensitive and important toxicological endpoint but currently is understudied 

compared to the copper ion effect. C. elegans has been used as a tool to probe for 

mechanisms of numerous neurodegenerative diseases. This use has been exploited to 

study neurodegeneration induced by metals. C. elegans is an excellent model to study 

neuronal health, as it offers ease of genetic manipulation, the ability to fluorescently label 

neuronal subtypes, and the relative simplicity of the nervous system [72] . It is critical for 

cells to maintain strict regulation and control of copper homeostasis for normal 

neurological development [167]. Heavy metals, including Cu2+, have been shown to 

affect neurons by depleting cellular energy through decreased mitochondrial function, 

increased oxidative stress, or activation of the necrosis or apoptosis pathways [72]. 

Exposure to copper, or mercury ions has resulted in morphological changes in dorsal 

and head GABA motor neurons in C. elegans [168]. Disrupted copper homeostasis has 

been associated with several neurological disorders, including prion diseases, 

amyotrophic lateral sclerosis, and Parkinson’s Disease (PD) [71]. Death in the 

dopaminergic neurons is a known consequence of Parkinson’s disease [72]. C. elegans 

has dopaminergic neurons that allow investigation of the effect of CuO NPs on this class 
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of neurons. Damage or loss of these neurons in C. elegans can cause changes in 

behavior and possibly even alter their responses to environmental stimuli [72].  

Numerous studies in the last decade have observed that C. elegans N2 Bristol 

strain, along with a number of other model organisms, have become genetically modified 

from domestication over the many years of culturing in the laboratory [169-171]. Several 

newly derived alleles adapted in the laboratory N2 strain have altered nematode 

physiology and behavior, compared to wild strains, which subsequently affect 

experimental interpretations [172]. Thus, species and strain genetic variability has to be 

considered in toxicological studies. For example, the amphipod Hyalella azteca is a 

commonly used environmental monitoring organism for testing the toxicity of water and 

sediment. A recent study, amongst three laboratory cultures and seven wild populations 

of H. azteca, showed that more than 550-fold variation in sensitivity to pyrethroid 

insecticides exists [173]. When addressing the effects of copper exposure on 

reproduction and life span traits within five populations of brine shrimp (Artemia), the 

environmental component was found to be the major factor for variance in effect [174]. 

Evidence of clonal variation in sensitivity to toxicants is found in a study examining 

several clones of Daphnia magna, isolated from different lakes, in response to the 

fungicide azoxystrobin [175]. These studies highlight the importance of interspecies and 

strain variation in toxicological studies.  

Genomic variation has been observed amongst different wild C. elegans isolates 

from a genome-wide assessment of 202 strains revealing 97 distinct genome-wide 

haplotypes [176]. A recent study has revealed unexpectedly variation in both fertility and 

oocyte function in wild strains of C. elegans upon exposure to high temperature [177]. 

New high-throughput phenotypic assays were recently developed using the COPAS 

BIOSORT large particle nematode sorter. Using these assays and a collection of 

recombinant inbred strains, the quantitative trait loci involved in fecundity and growth 
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under normal growth conditions and after exposure to the herbicide paraquat were 

identified [171]. Thus, the effect of environmental and chemical stressors to C. elegans 

wild strains in comparison to a lab-adapted strain is important to consider [171]. 

The goal of the present study was to evaluate CuO NPs inhibitory effects on the 

model organism C. elegans. In order to explore the influence of genotypic background        

regarding the response to copper challenge, we examined three wild C. elegans isolates 

together with the Bristol N2 laboratory strain. We hypothesized that the established 

dissimilarities in the genotypes of these wild strains will result in differential sensitivity to 

copper when compared to the laboratory-adapted N2 strain. Several toxicological 

endpoints were analyzed via a high-throughput screening process to quantify the effects 

of CuO NPs in comparison to soluble copper salt. Potential physiological effects of CuO 

NPs on C. elegans were investigated also through the use of strains with dopaminergic 

neurons expressing GFP to visualize neuron degeneration after copper exposure. The 

CuO NPs employed showed a detrimental effect on the neuronal degeneration in C. 

elegans. Two genetic knockout mutants of the divalent-metal ion transporters smf-1 and 

smf-2 were employed to investigate if the effect of CuO NPs on C. elegans is SMF 

transporter dependent. To examine the potential effect of copper as stressor, a reporter 

strain with a GFP expression driven by a hsp-16.2 stress inducible promoter was 

examined after CuO NPs and copper sulfate exposure. This work represents one of the 

first to address and quantify CuO NPs effects in C. elegans. 

 

4.3 Materials and Methods  

4.3.1 Caenorhabditis elegans strains and cultivation conditions 

All Caenorhabditis elegans strains were routinely cultured on Nematode Growth 

medium (NGM) plates seeded with the Escherichia coli strain OP50. Strains were 
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transferred twice a week and stored at 20ºC according to the standard method 

previously described by Brenner [178]. Three wild strains and N2 mutants were also 

employed in addition to the N2 wild-type strain. The N2 strain was a kind gift of Dr. R. 

Stuart (Marquette University, Milwaukee, WI, USA). The wild strains CB4856, DL238, 

and JU258 were kind gifts of Dr. E. Andersen (Northwestern University, Evanston, IL, 

USA) and their genetic characteristics were described previously [176]. Strains CB4856 

and DL238 are among the most highly diverged wild strains in the species [176, 179, 

180]. The wild strain, JU258, is more related to N2 strain than the other two wild strains 

but nonetheless divergent [176]. The transgenic strains RJ907 (Pdat-1::GFP; smf-1(eh5)) 

and RJ938 (Pdat-1::GFP; smf-2(gk133)), each containing GFP expression controlled by 

the dat-1 promoter, were kind gifts of Dr. R. Nass (Indiana University School of 

Medicine, Indianapolis, Indiana, USA). The BY250 strain (Pdat-1::GFP; N2 wild-type) was 

a kind gift of Dr. R. Blakely (Vanderbilt University, Nashville, TN, USA). Specifics on the 

construction of these transgenic C. elegans lines can be found in Nass et al [181]. The 

reporter strain KC136 with GFP expression controlled by the heat-shock protein (HSP) 

hsp-16.2 promoter, which was a generous gift of Dr. K. L. Chow (Hong Kong University 

of Science and Technology, Clear Water Bay, Kowloon, Hong Kong) [182]. Nematodes 

were exposed to copper sulfate or CuO NPs for 96 hours in K medium [68] with HB101 

bacterial lysate suspended within the medium to prevent nutrient deprivation [171].  

 

4.3.2 Nanoparticle physicochemical characterization 

[See above 2.3.2, 3.3.1] 

 

4.3.3 High-throughput endpoint assays for nematodes  
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A note: these experiments and any further experiments involving the wild strains 

and the reproduction, feeding, and population body length toxicological endpoints were 

performed by Prof. Erik C. Andersen in the department of molecular biosciences, 

Northwestern University, Evanston. The analysis of these data and the subsequent 

hypotheses and conclusions were generated by myself. 

A Complex Object Parametric Analyzer and Sorter (COPAS) BIOSORT was 

employed to assay the physiological endpoints after 96-hour treatment as per the 

previous protocol described in Andersen et al [171]. Body size was measured as ‘time of 

flight’ while the paralyzed animals passed through the flow cell. Reproduction was 

measured by quantifying the total number of objects that pass through the flow cell. 

These objects are assumed to be nematode progeny with 99.97% accuracy as per the 

support vector machine described previously [171] and were normalized to number of 

adults initially transferred to each well of the 96-well plate. Brood size was considered 

the amount of offspring generated by a nematode within the 96-hour experiment. 

Feeding behavior was assayed as pharyngeal pumping based on red fluorescence 

signal within each nematode after red fluorescent beads (Polysciences) were added to 

the food source. The COPASutils R package was used to process the data [183].  

 

4.3.4 Neuron degeneration and stress induction scoring 

The transgenic reporter strains used (BY250, RJ907, and RJ938) contain a  

green fluorescent protein (GFP) that is expressed under control of the dat-1 promoter 

within dopaminergic neurons. Additionally, the transgenic strain KC136 contains GFP 

reporter which expression is driven by a hsp-16.2 stress inducible promoter. Transgenic 

nematode populations were synchronized using standard alkaline hypochlorite method 
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[184] and allowed to enter L1 stage during overnight incubation. L1 nematodes were 

suspended in 1 mL K medium (supplemented with 5 mg/mL cholesterol and HB101 

bacterial lysate prepared as in Andersen et al [171]) containing the respective copper 

treatment at desired concentration and were incubated at 20°C on a rotational shaker at 

250 rpm for 24 hours. Due to the impermeable nature of the cuticle of C. elegans, a 24 

hour exposure was necessary to observe any effect [185, 186]. After copper exposure, 

animals were gently pelleted at 1,500 rpm for 60 seconds. Supernatant was removed, 

and nematodes were washed twice with K medium (pH 6.5, with no cholesterol or lysate 

added) prior to plating onto K medium agar with OP50 bacteria. After a 72 hour 

recovering period, adult animals were picked onto agar stubs and scored on a 

fluorescent Nikon microscope (Nikon te2000) for any abnormal neuron formation. For 

neuronal degeneration nematodes were considered positive if neurons were malformed 

or completely absent. For stress response, KC136 nematodes were imaged (Leica DMI 

6000B inverted microscope, Leica microsystems with Leica Application Suite AF), and 

GFP expression was measured as voxel volume and normalized to length using 

Metamorph 5.5 software (Molecular devices). Data represent three independent 

experiments and at least 40 nematodes were scored for each treatment.  

 

4.3.5 Statistical Analysis  

Significant differences between strains or treatments were determined using R 

statistical analysis program using the analysis of variance (AOV) followed by Tukey’s 

Honestly Significant Difference (HSD) test. For neurodegeneration, comparisons 

between N2 and the wild strains were considered significantly different when a greater 

than a 10 percentage point difference between the phenotype values were measured 

and a Tukey’s HSD p<0.05. For endpoint analysis, the wild-type laboratory-adapted C. 
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elegans strain N2 had significantly different untransformed, not normalized toxicological 

endpoint values (p<0.04) compared to all three wild strains (CB4856, DL238, and 

JU258). As such, statistical comparisons were made based on data normalized to 

untreated nematodes of the respective strain and represented as percent of untreated. 

 

4.4 Results 

4.4.1 CuO nanoparticles aggregate and release copper  

The amount of ions released from metal oxide NPs depends on the physicochemical 

properties (such as size, surface charge, and crystal structure) and is an important factor 

in the measured toxicity to C. elegans [10]. The copper oxide (CuO) NPs used 

throughout this study have been previously characterized by transmission electron 

microscopy and were observed to be predominantly spherical with a rough surface and 

an average primary particle diameter of 28.4 nm [18] with parallel crystal lattice fringe 

spacing of 2.4 Å. When dispersed in nematode growth medium, the CuO NPs undergo 

changes in the hydrodynamic diameter, reported in Figure 13. The present within K 

medium as well as with other CuO NPs, and thus forming larger and more complex 

aggregates and agglomerates. CuO NPs may be interacting with the bacterial lysate 

components and these agglomerates might be subsequently ingested by the 

nematodes. After suspending the CuO NPs in K medium, the concentration of released 

Cu2+ ion corresponds to 22% of the NPs initial mass after 24 hours incubation and up to 

68% of the NPs initial mass after 96-hours (in K medium pH 6.4, Figure 14). No Cu2+ 

was detected when the CuO NPs were suspended in water (pH 6.5, data not shown), 

suggesting the CuO NPs were not dissolving in water. 
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Figure 13. The hydrodynamic diameter of copper oxide nanoparticles suspended in 
nematode growth medium. The hydrodynamic size distribution was observed 
immediately after suspension of CuO NPs (A), 24 hours after suspension (B), and 96 

hours after suspension (C) at 20C and 250 rpm shaking. Black points and lines 
represent the mean particle concentration (106 per mL) and the error bars in grey 
represent the standard deviation from the mean. The copper oxide nanoparticles 
decrease in average hydrodynamic diameter with time as observed in the left-shift in 
peak indicating a gradual reduction in agglomerate and aggregate size. 

 

 

4.4.2 Nanoparticles have a stronger impact on C. elegans reproduction and 

development compared to released copper ions 

This study addressed the inhibitory effects of CuO NPs on the physiology of 

different Caenorhabditis elegans strains. In addition to N2, three wild strains, JU258, 

CB4856, and DL238, representing diverse genetic backgrounds of C. elegans, were also 

assayed. All C. elegans strains were exposed to copper in the form of CuO NPs or 

copper sulfate at 3.8, 7.9, and 15.9 mg Cu/L for 96 hours. Several endpoints were 

assessed after copper exposures including average population body length as a 

determinate of developmental stages, the brood size as a quantification of reproduction 

success, and fluorescent bead ingestion as a measure of feeding behavior of the 

nematodes (Figure 15, Table S1). Values for each toxicological endpoint were 

normalized to the untreated animals of the same strain, e.g. CB4856 treated with copper 

is normalized to untreated CB4856, and represented as a percentage of the untreated 
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traits (Figure 15). It is important to observe that the CuO NPs suspensions contain 

significantly less Cu2+ (p<0.04, Figure 14) compared to copper sulfate exposures used 

throughout this study (Figure 15, x-axis). The greater sensitivity of C. elegans to CuO 

NPs exposure compared with copper sulfate highlights the importance of an effect 

specific to the CuO NPs.  

The average body length of a nematode population can be considered a 

measure of development as stressors can delay development of nematodes at early L1  

or L2 stages [187]. A nematode population consisting of younger animals would be 

shorter in average body length. A population consisting primarily of adult nematodes or 

L4 animals would be much longer in average body length. Untreated C. elegans N2 

populations had an average body length of 226.4 ± 9.5 µm. 

Treatment with CuO NPs led to a significant decrease in average body length at 

all concentrations compared to untreated animals (p<0.001, Table S1). In contrast, the 

exposed populations displayed decreased average body length at only the highest 

copper sulfate treatment (p<0.001, 15.9 mg Cu/L). Significantly shorter body lengths 

were measured in the C. elegans N2 populations exposed to CuO NPs compared to 

animals exposed to copper sulfate (p<0.015 at all tested concentrations, Table S2).  

Three wild C. elegans strains were also exposed and the population body length 

was analyzed to observe if a genetically broad selection displayed similar trends to CuO 

NPs sensitivity. Indeed, the trend of significantly greater effect (p<0.001) from CuO NPs 

compared to copper sulfate treatment on the average population body length was also 

observed in the three wild strains (7.9 and 15.9 mg Cu/L, Figure 15A and 15B). The wild  

strain average population body length decreased when the populations were exposed to 

moderate concentrations of CuO NPs 7.9 mg Cu/L while copper sulfate exposure  was 

only inhibitory at the highest tested concentration (15.9 mg Cu/L). The wild strains 
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Figure 14. The concentration of copper ions released from copper oxide nanoparticles 
over time into nematode growth. The concentration of Cu2+ released over time was 
determined via zincon colorimetric assay at different time points. Cu2+ ion concentration 
plateaus after 48 hours of nanoparticle incubation in media with a small increase 
thereafter. Error bars represent standard deviation from the mean of three samples. 
 

 

displayed increased resistance to CuO NPs exposure compared to strain N2, as no 

significant reduction in average population body length was observed at the 3.4 mg Cu/L 

treatment (Figure 15B).  

Feeding behavior has been shown to be of particular importance regarding 

nematode physiology and behavior [172]. To observe changes in feeding behavior 

brought about by copper challenge, red fluorescent beads were introduced into the 

nematode growth medium (Figure 15). As the nematodes feed on bacterial lysate they 

also ingest the fluorescent beads, and the amount of relative fluorescence can therefore 

be quantified to represent feeding behavior. Sufficient amount of food as bacterial lysate 

has been supplied to the nematodes during the exposure time to ensure that the 



81 
 

  

Figure 15. The inhibitory effects of copper oxide and copper sulfate on toxicological 
endpoints of C. elegans. The effects on body size (A, B), feeding behavior (C, D), and 
brood size (E, F) were assayed via the COPAS BIOSORT, and raw data were 
normalized to percentage of untreated for each respective strain. Data representing 
endpoint changes after copper sulfate (A, C, E) and copper oxide NPs (B, D, F) 
exposures. Significant differences of data prior to transforming into percentages 
compared to untreated (p<0.05) are designated by the first letter of each strain (N for N2 
strain, C for CB4856 strain, D for DL238 strain, and J for JU258 strain). Results are 
presented as mean of four technical replicates, and error bars represent standard 
deviation.   
 

animals are not starved. The N2 strain showed significant decreases in fluorescent red 

signal at all exposures of CuO NPs compared to untreated animals (Figure 15D) but was 

only significantly affected by copper sulfate at the highest concentration (Table S1, 

Figure 15C). CuO NPs exposure impacted the feeding behavior of N2 strain more, 

measured by a decrease in fluorescence (p<0.001), than copper sulfate exposure alone 

(all concentrations; Table S2).  
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A similar trend of increased sensitivity to CuO NPs was observed when 

assessing feeding behavior in the wild C. elegans strains. These wild nematode strains 

displayed significantly greater reduction in red fluorescent signal (p<0.001) after CuO 

NPs exposure compared to equal molar treatment with copper sulfate (3.8 and 7.9 mg 

Cu/L). However, we also observed some differences in the response to copper of two 

strains when assessing their feeding behavior. Strain JU258 was more resistant to 

copper sulfate exposure (Figure 15C and 15D) while the CB4856 strain was more 

sensitive compared to N2 strain at all concentrations examined (Table S3).  

To test if exposure to CuO NPs have inhibitory effects on C. elegans 

reproduction, the brood size of all studied strains was quantified after 96 hours of 

exposure. The average number of progeny in the untreated N2 nematodes was 192±11, 

similar to results reported by Calafato et al [165]. Exposure to CuO NPs resulted in a 

rather variable decrease in N2 brood size that is not statistically different compared to 

untreated. The number of progeny decreased significantly (p<0.035) only after exposure 

of N2 to the highest concentration of copper sulfate (15.9 mg Cu/L). The wild strains had 

significantly decreased brood size compared to strain N2 at the highest exposure 

concentration of 15.9 mg Cu/L (p<0.015; Table S3), thus indicating that reproduction of 

the three wild strains displayed increased sensitivity to CuO NPs.  

 These measurements of the toxicological endpoints for all studied strains 

collectively indicate a greater sensitivity to CuO NPs compared to copper sulfate despite 

the genetic and phenotypic differences between C. elegans N2 and the wild strains. The 

observed differences in the degree of sensitivity of the wild strains to copper treatment, 

compared to N2 at some toxicological endpoints, requires a more in-depth investigation 

in order to determine the genetic causes.  

 



83 
 

4.4.3 CuO nanoparticles affect nematode neuronal morphology  

The effect of copper exposure on neuronal health was examined using several 

transgenic nematode strains. The neuron morphology of a transgenic C. elegans strain 

with dopaminergic neurons expressing GFP [32] was assayed after exposure to both 

CuO NPs and copper sulfate. In addition, two mutant strains containing knockouts of 

either smf-1 or smf-2 were used to examine whether these metal transporters are 

involved in Cu2+ induced neurodegeneration after exposure to CuO NPs and copper 

sulfate.  

 Neurodegeneration was observed after copper treatment resulting in alterations 

in normal neuronal morphology (depicted in Figure 16A) in the form of absent neurons or 

partially formed (“blebbed”) neurons (Figure 16B and 16C). The neurodegeneration 

observed in treated animals occurred in a dose-dependent manner in 3-10% of the 

population examined (total number of animals examined at each experiment is reported 

in Table S4). Exposure to CuO NPs resulted in a greater amount of neurodegeneration 

(in 6.4% and 10.4% of the scored animals; n=203 and 181, respectively) compared with 

copper sulfate (in 3.2% and 5.3% of the scored animals; n=213 and 266, respectively) at 

equal molar concentrations (3.8 and 7.9 mg Cu/L, Figure 16). After copper exposure, the 

C. elegans transgenic strains smf-1 and smf-2 containing a deletion in divalent metal 

transporter gene homologs displayed neurodegeneration in significantly smaller percent 

of the population compared to wild-type (BY250) (p<0.001 and p<0.021 respectively, 

Figure 16D). Neuron degeneration was absent and not detected in the untreated animals 

for any transgenic strain (Untreated, Figure 16).  

The response of C. elegans to CuO NPs and copper sulfate exposures was 

assayed using reporter strain with GFP expression driven by a heat-shock inducible 

stress promoter (hsp-16.2). Exposure to both CuO NPs and copper sulfate resulted in 
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stress response in C. elegans as indicated by the increased GFP expression of the hsp-

16.2 reporter strain in comparison to untreated nematodes (Figure 17; Table S5). 

Increased GFP expression may be considered organismal stress response from protein 

damage and unfolding as HSP-16.2 is a small heat-shock induced chaperone protein 

and is considered a general stress indicator reacting to temperature and oxidative 

stresses [182]. 

 

4.5 Discussion 

The laboratory-adapted N2 strain and three wild strains were analyzed for copper 

sensitivity using reproduction, feeding behavior, and average population body length as 

toxicological endpoints. We observed an increased sensitivity to CuO NPs exposure 

compared to copper sulfate in all Caenorhabditis elegans strains examined (Figure 15, 

Table S2). The use of wild strains with more genetic variability enabled an initial, 

simplified but more realistic assessment of the toxicological effects of CuO nanoparticles 

on nematodes. The importance of strain variation in toxicological studies has been 

highlighted previously [171, 175, 180]. C. elegans N2 strain has been employed for 

decades in the laboratory, and yet the N2 strain has several phenotypic and genetic 

differences when compared to wild strains [172, 188] [169]. Some known phenotypic 

differences in the N2 strain compared to other C. elegans strains have been linked to 

changes in feeding behavior [172]. The differences in physiology and behavior of wild C. 

elegans strains compared to the N2 strain can include aggregation behavior observed 

during feeding [170], the stage of embryos during egg-laying , and the strength of mating 

ability in males [189]. The wild strain CB4856 used in our study has genomic differences 

averaging a SNPs once every 835 bp [190], yet the CB4856 strain displays greater 

sensitivity to CuO NPs compared to copper sulfate. This increased sensitivity of CB4856 
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Figure 16. Induction of dopaminergic (DA) neuron degeneration in C. elegans from 
copper oxide nanoparticles and soluble copper exposure. Fluorescent images depicting 
healthy DA neurons (A) compared to deformed neurons which were either never formed 
(B) or partially formed (‘beaded’ or ’blebbed’) (C). The bar graph represents neuron 
degeneration, which increases from both copper oxide and copper sulfate treatments 
(D). “Unt” represents untreated C. elegans that showed no observable neuron 
degeneration (n=203). Results are presented as mean of three independent experiments 
with a minimum of 40 nematodes observed per experiment. Significant results as 
compared to untreated (p<0.05) are marked with an asterisks (*). Error bars represent 
standard deviation. 
 

 

feeding behavior could be an example of genetic variance affecting toxicity or could also 

be random chance or due to an environmental factor, thus supporting the need for future 

studies.  

A reduction in the average population body length, i.e. a larger population of 

animals with smaller sizes, was observed after copper exposure, suggesting greater 

portion of the nematodes population is at earlier stages of development. In our study, the 
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Figure 17. Oxidative stress induction, as observed by GFP fluorescence induction 
behind the HSP16-2 promoter, in a transgenic Caenorhabditis elegans strains. 
Treatment with both copper oxide nanoparticles and released Cu ions induced 
significantly increased levels of HSP16-2. Fluorescent images depicting endogenous 
HSP16-2 induction (A) and an increase in the induction of HSP16-2 (B). The bar graph is 
representative of experiments with at least 25 nematodes examined per treatment. The 
graph depicts increased HSP16-2 after both copper oxide nanoparticles and copper 
sulfate at the two highest concentrations employed (C). Significant results as compared 
to untreated (p<0.05) are marked with an asterisks (*). Error bars represent standard 
deviation. 
 

 

of copper sulfate when assaying the C. elegans laboratory-adapted N2 strain average 

population body length. This trend of increased sensitivity to CuO NPs treatment 

compared to copper sulfate was also observed in all three wild strains. An increased 

resistance to the effects of copper in the wild strains could represent the impact of 

altered traits that have changed over time in the laboratory-adapted N2 strain. We 

observed variation in effect among the different C. elegans strains examined, such as a 

significant reduction in body size at 3.9 mg Cu/L in the N2 strain that wasn’t observed in 

the wild strains until 7.9 mg Cu/L.  

The developmental delay of C. elegans is a common physiological response to 

stress and has been observed after exposure to copper sulfate [186], titanium dioxide 
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(TiO2), and zinc oxide (ZnO) NPs [191]. Wu et al observed the ZnO NPs to be more toxic 

than TiO2, which may in part be due to greater metal ion release measured in the ZnO 

NPs suspensions compared to TiO2 NPs [191]. Previous studies have shown that C. 

elegans displayed similar phenotypes, e.g. both growth delay and reduced lifespan, after 

exposure to copper ions from copper salt [165]. Changes in the body lengths of 

individual nematodes have been linked to decreased food intake, as well as effects from 

perturbation of insulin IGF-1 signaling [192]. Subsequently, a portion of the reduced 

average population body length observed in this study might be a consequence from the 

smaller individual body length as a result of diminished feeding. Additionally, a portion of 

the nematode population could be entering the dauer stage after encountering the 

copper stress, further complicating the interpretation of these data. Thus, multiple 

physiological effects triggered by the CuO NPs and copper ion exposures might be 

contributing to the observed C. elegans developmental delay.  

Food ingestion and thereby energy uptake is essential for every animal and 

impairment can decrease survival and fitness. A reduction in red fluorescent bead 

intake, a measure of nematode feeding behavior, has been suggested to be both a 

response to environmental stress through neurotransmitters or changes in pharyngeal 

activity [193]. The feeding behavior endpoint was the most sensitive toxicological 

endpoint as the CuO NPs at every tested concentration displayed a significant effect 

(Table S1). The intake of fluorescent beads of N2 strain was significantly reduced by all 

concentrations of CuO NPs (p<0.001) but only significantly reduced by copper sulfate 

exposure at the highest concentration (p<0.005, Table S1).  

A similar trend of increased sensitivity to CuO NPs compared to copper sulfate 

was observed when assessing feeding behavior in the wild C. elegans strains. Reduced 

feeding in C. elegans is critical because it has been linked to increased sensitivity to 
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stress and a reduction in motility [194]. Food-borne exposure of copper chloride has 

been shown to be the primary, and most toxic, route of exposure in C. elegans [195]. 

CuO NPs ingestion is most likely the point of entry of the NPs in C. elegans in our study, 

because the nematode cuticle has been shown to be generally impermeable to 

chemicals [186]. The ingestion of NPs is a frequent route of exposure in Daphnia 

magna. After exposure to CuO NPs, as well as TiO2 NPs, it was observed that NPs were 

accumulating within the midgut of the Daphnia [196]. Once ingested, pH changes and 

enzymatic activity from the stomach/midgut could result in increased NPs dissolution 

and ion release [197]. An effect on C. elegans feeding behavior has also been observed 

after exposure to other toxins including silver NPs [198], methyl mercury [199], 

salicylate, high heat, and sulfhydryl-reactive compounds. This reduction of feeding may 

in part be a defense mechanism of the animal in order to reduce toxin intake as this has 

been observed after treatment with heavy metals [195].  

Reproduction is a critical endpoint to analyze as it has been shown to be 

sensitive to lower concentrations of chemical stressors compared to concentrations that 

affect C. elegans behavior and viability [166]. However, within our study the observed 

reduction in brood size after 96 hours of exposure to CuO NPs and copper sulfate 

proved to be rather variable, which resulted in no significant difference compared to 

untreated animals (Figure 15E, 15F). The N2 strain reproduction declined with CuO NPs 

exposure but not significantly (Figure 15), while exposure to copper sulfate at the highest 

concentration only had a significant effect on brood size (p<0.035). A decrease in the 

reproductive capabilities of C. elegans, in the form of decreased rate of egg laying or 

decreased embryo survival, has been observed after exposure to fullerene NPs [200] 

and silver NPs [201]. Elevated levels of copper ions have been observed to induce 
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paralysis [194], which may reduce feeding and stress the animal to the point of affecting 

reproduction. 

All of the wild strains exposed to CuO NPs and copper sulfate displayed reduced 

brood size at the highest concentration (15.9 mg Cu/L, Table S3). However, the brood 

size of the three wild strains tested were significantly more reduced after exposure to 

CuO NPs exposure compared to copper sulfate (p<0.013, Table S3). The increased 

effect on reproduction from CuO NPs in the C. elegans wild strains was not observed in 

the laboratory-adapted N2 strain, supporting the use of a genetically broad selection of 

strains for toxin evaluations. 

The potential of CuO NPs to influence the nematode neuronal morphology was 

assayed utilizing transgenic strains of C. elegans with dopaminergic neuron-specific 

proteins tagged with GFP to visualize neuron degeneration after copper exposure. The 

association of Cu ions with neuronal degeneration has been established in C. elegans 

and humans [14, 71]. Transgene expression of genes of interest can provide more 

specific information regarding bioavailability and the phenotype of the NPs effect 

compared to conventional endpoint assessment [168, 181]. The CuO NPs induced 

morphological changes to neurons in a small portion of the C. elegans populations in a 

concentration-dependent manner. The neurodegeneration caused by CuO NPs 

compared to copper sulfate exposure was not statistically different, suggesting the 

released Cu ions may be the sole source of neuron damage (Table S5).  

As the CuO NPs suspensions contained significantly less Cu2+ (p<0.04) 

compared to copper sulfate exposure but caused equal or greater neurodegeneration; 

these data support the greater sensitivity of C. elegans to CuO NPs exposure compared 

with copper sulfate. The concentration of copper sulfate employed in this study were two-

fold greater than the Cu2+ concentration released from the CuO NPs after 24 hour 
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incubation in K medium (Figure 14). It is unlikely that the CuO NPs are being internalized 

into cells of C. elegans to directly interact with neurons. It is probable that the neurons 

are more sensitive to the highly localized and concentrated release of Cu ions from the 

surface of the CuO NPs after being ingested by the animal. Copper treatment of the smf-

1 and smf-2 knockout strains resulted in reduced percent of the population with 

neurodegeneration (Figure 16) and was significantly different when compared to N2 

(p<0.001 and p<0.021, respectively). The observed resistance to copper exposures of 

strains containing smf-1 or smf-2 deletion suggests this transporter may play a role in 

copper-related neurodegeneration. Combined, these data indicate equal effect on 

neuron morphology from exposure to CuO NPs compared to copper sulfate, suggesting 

that this physiological effect of copper toxicity is independent of the copper form, and in 

the case of CuO NPs is most likely due to the released copper ions.  

A transgenic reporter strain for general stress in C. elegans, containing GFP 

expression under control of the hsp-16.2 promoter, was used to observe stress pathway 

induction after a 24 hour copper exposure. Toxicity from copper sulfate exposure has 

been shown to be mediated by HSP-16.2p [72]. Exposure of the reporter strain with CuO 

NPs and copper sulfate at the two highest concentrations (Figure 17) resulted in 

significantly greater GFP expression when compared to untreated nematodes (p<0.01). 

The equal induction of GFP that was observed in the C. elegans population after CuO 

NPs and soluble copper exposures may reflect an equal response of hsp-16.2 mediated 

protection to copper stress. Analogous to the observed effect on neuronal health, the 

similar stress response to CuO NPs compared to copper sulfate suggests the induction 

of hsp-16.2 is due to the released Cu ions and not a NPs specific effect. 
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4.6 Conclusion  

This study describes the physiological effects of copper oxide nanoparticles 

(CuO NPs) to Caenorhabditis elegans N2 and a genetically diverse selection of wild 

nematode strains as observed by inhibitory effects on feeding, reproduction, 

development, and neuron morphology. The results support an increased sensitivity to 

CuO NPs compared to copper sulfate in a genetically broad selection of C. elegans 

strains. CuO NPs sensitivity was a phenotype observed in all C. elegans strains assayed 

despite their different genotypes suggesting this effect is not due to laboratory 

domestication of the N2 strain. Neuronal deformation in similar portion of the C. elegans 

population occurred after exposure with either CuO NPs or copper sulfate at equal molar 

concentrations. Similarly, an equal response of hsp-16.2 mediated protection to copper 

stress was observed in the C. elegans population after CuO NPs and soluble copper 

exposures. This implicates the released Cu ions from CuO NPs as major factor 

contributing to the observed NPs effect on neuronal health and organism stress 

response. 
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CHAPTER 5 

FINAL CONCLUSIONS 
 
 
 
 
5.1 Final conclusions  

This work highlights the role of copper (Cu) ions released from the copper oxide 

nanoparticles (CuO NPs) when they dissolve in certain aqueous media on the observed 

toxicological endpoints in S. cerevisiae and C. elegans. These released Cu ions may be 

important as they can have inhibitory effects similar to those observed after exposure to 

CuO NPs. The present study shows that under the tested conditions CuO NPs had a 

smaller effect on S. cerevisiae metabolic activity compared to equal molar 

concentrations of Cu2+ in the form of copper sulfate or released Cu ions. Yeast 

metabolism was significantly more sensitive to exposure with 28 nm CuO NPs compared 

to exposure with larger 64 nm CuO NPs. Interestingly, the observed inhibition of 

metabolic activity rate from the 28 nm NPs was not completely due to the released Cu 

ions. The addition of the metal chelator EDTA significantly reduced the effect on yeast 

respiratory metabolism with both CuO NPs, but did not completely restored metabolic 

function after 28 nm CuO NPs exposure. Experiments addressing the aging of CuO 

NPs, i.e. prolonged incubation of NPs in sterile growth medium to facilitate interaction 

with media components, resulted in no difference in inhibitory effect when compared to 

freshly resuspended CuO NPs. It was observed that yeast have differential sensitivity 

based on the carbon source employed, with a greater CuO NP effect on metabolic 

activity when yeast were cultured under respiring conditions. This knowledge of 

sensitivity based on the cell metabolic state (respiratory vs. fermentative) may assist 

future studies in further defining the mechanism of CuO NPs inhibition on cell 

metabolism. 
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 The copper ions that were released from the CuO NPs are a major factor for 

molecular effects on the S. cerevisiae cells. Interestingly, the observed inhibition from 

the nanoparticles was not fully explained by the released Cu from the dissolving 

nanoparticles. Treatment with either CuO NPs or released copper ions resulted in 

differential gene expression associated with cell cycle arrest. The copper ions may 

induce damage and result in up-regulation of YLR149C, as well as down-regulation of 

CLB6, PCL1, and other cyclins, which act in unison to halt cell cycle progression. XBP1p 

is a transcriptional repressor expressed during stress and is involved in maintaining cells 

in an arrested state at G1 phase. Exposure with CuO NPs resulted in changes in gene 

regulation that may lead to cell cycle arrest through the up-regulation of XBP1. The CuO 

NPs exposure resulted in up-regulation of several mitochondrial proteins involved in 

energy production and oxidative phosphorylation. In addition, CuO NPs exposure 

resulted in increased PHO85p activity from the up-regulation of regulatory cyclins 

PCL8/10, which was not observed from copper sulfate exposure. The change in 

regulation of genes observed to specifically occur after CuO NPs exposure suggests a 

differential response to stress compared to treatment with released Cu ions. 

  

5.2 Proposed mechanism of copper oxide nanoparticle interactions with S. cerevisiae 
cells 
 
 Within this study, the CuO NPs were observed to adsorb to the exterior of S. 

cerevisiae cells in scanning electron microscopy images. This interaction of the CuO 

NPs with the cell’s exterior surface may be a result of NP-peptide adsorption, as 

previously was proposed by others [19]. The CuO NPs are most likely bound with a 

strong affinity to the cell surface as they are still bound even after electron microscopy 

sample preparation [see section 3.3.4]. Copper might induce oxidative stress within 

close proximity to the cell surface that could result in lipid peroxidation and subsequently 
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damage to the membrane (Figure 18). Damage to the cell exterior (cell wall and 

membrane) is suggested within our study from the increased expression of genes 

involved in cell wall biosynthesis. Increased activity in the plasma membrane ATPase 

(PMA1) was also observed as a response to damage that resulted in increased 

membrane permeability. Experiments with yeast deletion mutants also suggest oxidative 

stress as a driving factor in CuO NPs toxicity, as deletions in oxidative stress defense 

proteins were particularly sensitive to CuO NPs exposure [19].  

The action of the CuO NPs inhibitory effect may be a two stage process, beginning with 

the cell interacting with the copper ions released from the CuO NPs. The first ‘stage’ of 

exposure results in a stronger influence from the released copper ions compared to CuO 

NPs exposure. The second ‘stage’ occurs as the CuO NPs interact with peptides, 

thereby facilitating interaction with the surface of the cell (Figure 18). The NPs are 

continuing to release copper ions while the NPs are within close proximity to the cell 

membrane. This highly localized and concentrated release of Cu ions can induce 

oxidative stress, including hydroxyl radicals, causing lipid peroxidation near the source of 

attachment. This process leads to further damage to the membrane that allows 

internalization of unbound Cu ions as well as any ROS within close proximity.                                                                                                                                                                          

The increased internalization of Cu ions results in cellular damage, as suggested by 

increased expression in genes involved in scavenging of reactive oxygen species, 

protein folding and degradation, and DNA-damage repair. A decrease in protein 

synthesis is suggested as many genes related to ribosome biogenesis were decreased 

in regulation. Reduced protein synthesis allows the cells to conserve energy and thereby 

allows cells to more appropriately adapt and respond to the stress. Numerous genes  
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involved in glycogenesis were also up-regulated, including glycogen debranching 

enzymes and glycogen synthases. Increased abundance of glycogen and trehalose after 

exposure to stress can establish energy reserves for improved response to stress. The 

increased expression of genes related to glycogen and trehalose storage is further 

evidence of cell cycle arrest as this has been linked with arrest at G1 phase.  

There remains further work to be performed regarding the interactions between 

CuO NPs and yeast cells. Future experiments can be conducted that will lend credence 

to the suggestion of cell cycle arrest. It is established that the budding yeast cell cycle at 

G1 phase is strictly linked to the initiation of budding [208]. That is, the degree of 

budding that a cell is undergoing closely corresponds to progression through the cell 

cycle. Therefore, microscopic observation of yeast cells can determine the stage of 

replication that a cell is undergoing. Copper treatment of yeast could result in a shifting 

Figure 18. Proposed mechanism of copper oxide nanoparticle interactions with S. cerevisiae 

cells. 
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in the percent of the yeast population arresting cell cycle progression compared to 

untreated yeast. 

Changes in gene regulation have been suggested based on a single time point 

microarray analysis. Additional qPCR experiments addressing gene changes over time,  

(at 0.5, 1, 2, 4, and 8 hrs) would improve the understanding of the overall effect of CuO 

NPs exposure on yeast cells. DNA and RNA samples from the exposure experiment for 

the microarray analysis are currently available and thus qPCR analysis based on 

specific genes of interest would further evaluate differentially regulated pathways during 

the CuO NPs exposure. Proteins involved in copper homeostasis can be further 

assessed to observe changes over time throughout the length of exposure. Additionally, 

the importance of increased oxidative stress can be addressed by observing changes in 

regulation of genes involved in oxidative stress defense.  

The inquiries into oxidative stress-related damage in yeast after CuO NPs 

exposure can be further examined through the use of ROS-sensitive mutant strains. 

While a number of antioxidant single-gene deletion mutants were assayed within this 

work, double-mutations are often required to obtain responses strong enough to be 

studied. This work has highlighted the critical nature of the released Cu ions regarding 

the toxicity of CuO NPs. One can deduce the internalization of these Cu ions causes a 

portion of the observed toxicity after exposure to CuO NPs. Copper homeostasis within 

yeast is dynamic as the rate of Cu+ uptake, Cu+-binding, and Cu+ export can all be 

controlled individually to maintain homeostatic levels of C+. Thus, in-depth analysis of 

the internal cellular Cu concentration overtime, after varying copper exposure 

concentrations, would facilitate a better appreciation of the relationship between CuO 

NPs and yeast cells. Indeed, the CuO NPs may be becoming internalized into yeast via 

endocytosis. Therefore, establishing cellular Cu concentrations with or without 

endocytosis inhibitors, such as cytochalasin A or nocodazole, could clarify if CuO NPs 
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are becoming internalized. The use of transmission electron microscopy alongside the 

use of smaller and larger diameter CuO NPs exposures, would further support if 

internalization of the CuO NPs may be occurring at certain critical diameters.  

 

5.3 Proposed interactions of copper oxide nanoparticles with nematodes 

This study describes the inhibitory effects of CuO NPs to C. elegans N2 strain, as 

well as in a genetically diverse selection of wild nematode strains. Exposure to CuO NPs 

resulted in inhibitory effects on nematode population body length, feeding behavior, and 

reproduction. In the current study, CuO NPs were found to affect development and 

feeding behavior more than equal molar concentrations of copper sulfate. It is of interest 

to note that feeding behavior was very sensitive toxicological endpoint, as CuO NPs 

exposure at every tested concentration had a significant inhibitory effect. Exposure with 

copper sulfate was significantly less inhibitory towards feeding compared to exposure 

with CuO NPs, suggesting that ingestion of CuO NPs may be occurring. NPs may be 

ingested and subsequently dissolving internally, as was observed with silver NPs 

exposure to C. elegans [202].  

The CuO NPs sensitivity is a strong phenotype as all of the C. elegans strains 

assayed were less sensitive to exposure to copper sulfate. Though the laboratory 

domesticated N2 strain has known differences in both behavior and physiology 

compared to wild strains, all strains assayed displayed increased sensitivity to CuO NPs 

compared to copper sulfate. The CuO NPs affected neuronal health as treatment with 

CuO NPs resulted in dopaminergic neuron degeneration.  This neurodegeneration may 

be occurring via the metal ion transporters SMF-1 and SMF-2, as experiments with 

knockout deletion mutations in smf-1 and smf-2 were less sensitive to copper exposure. 

The CuO NPs were observed to induce neuron degeneration in an equal percent of the 

exposed population of C. elegans compared to the population exposed with copper 
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sulfate at equal molar concentrations. The induction of stress, as measured by hsp 16.2 

expression, was observed to occur equally by the CuO NPs and copper sulfate 

exposures. The damage to neuronal cells and inhibition of reproduction from exposure to 

CuO NPs appears to be related to released Cu ions, as these assays resulted in an 

equal effect from CuO NPs compared to exposure with released Cu ions. This is in 

contrast to effects observed on the feeding and development of C. elegans, which 

appear to be inhibited specifically by the nanoparticles as the CuO NPs exposure was 

more inhibitory than the soluble copper ion exposure. 
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CHAPTER 6 

 

APPENDIX – DETAILED PROTOCOLS AND SUPPLEMENTARY INFORMATION 
 
 
 

6.1 Nematode cultivation protocols 

6.1.1 Caenorhabditis elegans strains and cultivation conditions 

All Caenorhabditis elegans strains were routinely cultured on Nematode Growth 

medium (NGM) plates seeded with the Escherichia coli strain OP50. Strains were 

transferred twice a week and stored at 20ºC according to the standard method 

previously described by Brenner [178]. Three wild strains and N2 mutants were also 

employed in addition to the N2 wild-type strain. The N2 strain was a kind gift of Dr. R. 

Stuart (Marquette University, Milwaukee, WI, USA). The wild strains CB4856, DL238, 

and JU258 were kind gifts of Dr. E. Andersen (Northwestern University, Chicago, IL, 

USA) and their genetic characteristics are detailed in [176]. Strains CB4856 and DL238, 

are considered to differ the most in gene content compared to N2 [179]. The CB4856 

and DL238 strains contain on average 3,613 SNPs which differed from N2 [176]. The 

other wild strain employed, JU258, is also considered dissimilar to N2 strain and is 

further described in [203]. The transgenic strains RJ907 (Pdat-1::GFP; smf-1(eh5)) and 

RJ938 (Pdat-1::GFP; smf-2(gk133)), each containing GFP expression controlled by the 

dat-1 promoter, were kind gifts of Dr. R. Nass (Indiana University School of Medicine, 

Indianapolis, Indiana, USA) . The BY250 strain (Pdat-1::GFP; N2 wild-type) was a kind gift 

of Dr. R. Blakely (Vanderbilt University, Nashville, TN, USA). Specifics on the 

construction of these transgenic C. elegans lines can be found in Nass et al [181]. The 

reporter strain KC136 with GFP expression controlled by the heat shock protein (HSP) 

16.2 promoter (Hsp-16 him-5(el490)), which was a generous gift of Dr. K. L. Chow (Hong 

Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong) 
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[182]. Nematodes were exposed to copper sulfate and CuO NPs for 96 hours in K 

medium with bacterial lysate to prevent nutrient deprivation. 

 

6.1.2 High-throughput endpoint assays of development, brood size, and feeding 
behavior  

A Complex Object Parametric Analyzer and Sorter (COPAS) BIOSORT was 

employed to assay the physiological endpoints after 96 hour treatment as per the 

previous protocol described in Andersen et al [176]. Body size was measured as ‘time of 

flight’ while the paralyzed animals passed through the flow cell. Reproduction was 

measured by quantifying the total number of objects that pass through the flow cell. 

These objects are assumed to be nematode progeny with 99.97% accuracy as per the 

support vector machine described in [176] and were normalized to number of adults 

initially transferred to each well of the 96-well plate. Brood size was considered the 

amount of offspring generated by a nematode within the 96 hour experiment. Feeding 

behavior was assayed as pharyngeal pumping based on red fluorescence signal within 

each nematode after red fluorescent latex beads (Polysciences) were added to the food 

source. The COPASutils R package was used to process the data as per [183].   

 

6.1.3 Dopaminergic neuron degeneration and heat shock protein induction scoring 

The transgenic reporter strains used (BY250, RJ907, and RJ938) contain a 

green fluorescent protein (GFP) that is expressed under control of the dat-1 promoter 

within dopaminergic neurons. Additionally, the transgenic strain KC136 contains GFP 

reporter which expression is driven by a hsp-16.2 stress inducible promoter. Transgenic 

nematode populations were synchronized using standard alkaline hypochlorite method 

[184] and allowed to enter L1 stage during overnight incubation. L1 nematodes were 
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suspended in 1 mL K medium (supplemented with 5 mg/mL cholesterol and HB101 

bacterial lysate) containing the respective copper treatment at desired concentration and 

were incubated at 20°C on a rotational shaker at 250 rpm for 24 hours. Due to the 

impermeable nature of the cuticle of C. elegans, a 24 hour exposure was necessary to 

observe any effect [185, 186]. After copper exposure, animals were gently pelleted at 

1,500xg for 60 seconds. Supernatant was removed, and nematodes were washed twice 

with K medium (pH 6.5, with no cholesterol or lysate added) prior to plating onto K 

medium agar with OP50 bacteria. After 72 hour recovering period, adult worms were 

picked onto agar stubs and scored on a fluorescent Nikon microscope (Nikon te2000) for 

any abnormal neuron formation. For neuronal degeneration nematodes were considered 

positive if neurons were malformed or completely absent. For stress response, KC136 

nematodes were imaged and GFP expression was measured as voxel volume and 

normalized to length using Metamorph 5.5 software (Molecular devices). Data represent 

three independent experiments and at least 40 nematodes were scored for each 

treatment.  

 

6.1.4 Decontamination of C. elegans strains 

 Prepare bleaching solution by adding 25 uL of 1M NaOH and 2 mL of standard 

commercial bleach to 6 mL ddH2O. Mix solution by shaking. Transfer 10 uL of the 

NaOH/bleach solution to the side of a non-contaminated NGM petri, making sure to 

avoid adding bleach solution to the bacterial lawn.  Using a worm pick, transfer 4-6 adult 

nematodes (gravid hermaphrodites) to the NaOH/bleach solution. The adults transferred 

should have eggs; this will be obvious upon observation at increased magnification. The 

NaOH/bleach solution must be present on the surface after the adults are added, if it has 

soaked into the plate another 5-10 uL should be added on top of the adults. The animals 
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should immediately react and thrash for a few seconds and then completely stop 

moving. Gently transfer NGM petri dish to 20oC incubator and incubate overnight. 

Observe the following day to ensure L1 larvae have begun to hatch from the eggs and 

are beginning to crawl on the plate and enter the bacterial lawn. 

 

6.1.5 Cryopreservation of C. elegans strains 

 Protocol adapted from Brenner et al 1977, Genetics 77. Seed several small NGM 

plates and transfer 4-6 adults per plate as per normal strain upkeep protocols. Incubate 

plates for 3-4 days or until food supply is exhausted as starved L1 and L2 animals 

survive the freezing and thawing conditions best. Do not allow more than a day to pass 

once food supply is exhausted or nematodes may enter dauer stage. Label 3 screw cap 

2 mL cryotubes per each stock. Prepare S-basal with cholesterol added at a final 

concentration of 0.1 mg/mL. Use the S-basal media to gently wash the nematodes from 

the plate. Collect the nematodes in a 15 mL centrifuge tube, centrifuge at 1,500xg for 60 

seconds (do not exceed 2,000 rpm as this will damage the worms). Toss supernatant 

and resuspend nematodes in 1.8 mL S-basal media, add 0.6 mL 30% glycerol and mix 

gently by flicking the tube. Aliquot 0.6 mL to each 2 mL cryotube, move cryotubes to 

Styrofoam box which will slow down the freezing process. Move Styrofoam box 

containing cryotubes to -80oC freezer. 

 

6.2 Saccharomyces cerevisiae protocols 

6.2.1 Yeast cultivation and exposure protocols 

 Saccharomyces cerevisiae (S. cerevisiae) W303-1A wild type (MATa: leu2-3,112 

trp1-1 can1-100 ura3-1 ade2-1 his3-11,15) was a kind gift of Dr. Rosemary Stuart 
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(Marquette University, WI).  The strain was maintained on YP agar plates (pH 6.6) 

containing 1% yeast extract (Amresco), 2% Bacto peptone (Difco laboratories) and 2% 

of the respective carbon source at 30oC overnight. To prepare starter cultures single 

colonies from the respective master plates were transferred in 5 ml YP media with 

ethanol, galactose, or dextrose as carbon source and grown overnight at 30oC, 250 rpm 

in order to culture the cells under respiratory, respiratory/fermentative, or fermentative 

metabolism, respectively. 

 S. cerevisiae experimental cultures were started from the overnight cultures. The 

turbidity of the cell culture was measured via absorbance at 600 nm using a 

spectrophotometer (Molecular Devices) and diluted with sterile YP media with respective 

carbon source to an OD600 0.1. The cultures were grown until OD600 0.3 was reached 

(approximately 4.0x106 Colony Forming Units mL-1 determined by dilutions and plating 

on YP-galactose (YP-gal) plates with colony counting after 72 hour at 30oC incubation). 

Exposure to tested chemicals was performed in 96-well black with clear bottom, 

polystyrene plates (Costar) at 30oC with continuous shaking at 250 rpm. This 

concentration of cells was consistently used in all toxicity assays. 

 

6.2.2 Determining cell viability spot assay 

 Overnight cultures of S. cerevisiae in YP-gal media were diluted to OD600 0.1 and 

150 µL of the cell suspensions were aliquoted to 0.6 mL 96-deep-well plate. Cell 

suspensions were mixed with 150 µL of CuO NPs and copper sulfate solutions in YP-gal 

media. Plates were covered loosely with aluminum foil and incubated at 30oC for 24 hour 

with shaking at 250 rpm.  Cells were then serially diluted in PBS buffer (pH 7.2) and 2 uL 

of the cell solutions were spotted onto YP-gal agar plates in triplicate.  The formation of 

colonies was visually examined after 72 hour of incubation at 30oC and was compared to 

colony formation of untreated cells.   
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6.2.3 Cell growth inhibition assay 

 S. cerevisiae experimental cultures were started from the overnight cultures. The 

turbidity of the cell culture was measured via absorbance at 600 nm using a 

spectrophotometer (Molecular Devices) and diluted with sterile YP media with respective 

carbon source to an OD600 0.05. The cultures were grown until OD600 0.2 was reached to 

ensure logarithmic growth was achieved. Experiment is performed in sterile clear 96 well 

clear bottom black plate, plates are sterilized by spraying with 70% ethanol followed by 

60 mins incubation under UV light. Add 200 uL cell suspension into wells as is required 

based on triplicate analysis and dependent upon the number of exposures and 

concentrations to be employed. Plates should have the following controls: untreated (no 

treatment), cell free control (media as a blank for background), kill control (high 

temperature pre-treatment or high concentration of chemical confirmed to kill or inhibit 

growth).  

 Cover the plate with clear hard plastic cover, followed by aluminum foil to prevent 

light exposure. Place plate in a box with a moist paper towel inside to prevent 

dehydration, incubate plate at 30oC for 4 hours or 24 hours dependent on time point of 

interest. After desired time point, use a multi-channel pipette, aliquot 50 uL from the 

plate and add to 250 uL water for a 1:6 dilution, subsequent dilutions can be performed 

for 24 hour experiment as OD will be greater than 1.0. Read plate in spectrophotometer 

at OD600, calculate initial OD prior to dilution to determine reduced growth. Compare 

treatments to untreated control wells and ensure the triplicates are averaged. NOTE: 

The CuO NPs refract visible light and as such will interfere with this type of experiment 

and thus should be avoided or only performed with very low concentrations which must 

also have an additional cell free control with only CuO NPs. 
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6.2.4 Separation of cells from nanoparticles via Nycodenz assay 

 To separate CuO NPs from cell solution, nycodenz solution (30%) should be 

added to a 1.5 mL microcentrifuge tube prior to cell solution addition. Cell solution 

should be gently pipetted onto nycodenz solution and extra effort should be made to not 

perturb the nycodenz solution. Centrifuge at 4,000 xg for 3 mins, observe tube which 

should have an obvious separation of the cell culture medium and the clear nycodenz 

solution with a visible layer of cells suspended in between. If the cells still remain in the 

upper layer, increase speed to 7,000 xg for 5 mins. The CuO NPs should be visibly 

deposited on the side of the tube and should not be suspended in the cell layer. 

Carefully remove the cell layer as well as cell culture medium, if nycodenz solution is 

removed this will not interfere with other protocols. Two additional washes with culture 

medium, phosphate buffered saline, or water to remove any residual nycodenz solution. 

 

6.2.5 Endocytosis inhibition protocol to investigate internalization of nanoparticles 

 S. cerevisiae experimental cultures were started from the overnight cultures. The 

turbidity of the cell culture was measured via absorbance at 600 nm using a 

spectrophotometer (Molecular Devices) and diluted with sterile YP media with respective 

carbon source to an OD600 0.1. The cultures were grown until OD600 0.3 was reached to 

ensure logarithmic growth was achieved. Endocytosis inhibitors were added to the 

following working concentrations: Chlorpromazine HCl 14 uM, Cytochalasin D 1 ug/uL, 

Dynasore 80 uM, and Nocodazole 20 uM. Incubate inhibitors for 20 mins at 30oC, 

cultures are now ready for NPs exposure. The NPs inhibitory effect can now be analyzed 

via alamar blue, propidium iodide staining, growth inhibition, or other assay. 

 The following controls should also be run alongside experiments: inhibitor control 

(no NPs exposure), untreated control (no NPs exposure, no inhibitor), warm treatment 

control (30oC incubation, NPs exposure, no inhibitor), cold treatment control (4oC 
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incubation, NPs exposure, no inhibitor). Note: for the cold and warm treatment control, 

cultures should be pre-incubated for 20 mins prior to addition of NPs. The cold control 

should limit active endocytosis \without chemical endocytosis inhibitor.  

 

6.2.6 Determination of Intracellular and membrane-bound copper 

To determine the total Cu content of yeast cells after CuO and copper sulfate 

treatment, 0.5 mL of cell culture were removed and gently added on top of 0.4 mL 80% 

(w/v) Nycodenz solution (Progen Biotechnik GmbH, Heidelberg, Germany) and 

centrifuged at 4,000g for 5 minutes.  The cellular fraction was removed and added to 1.0 

mL PBS (pH 7.2). These solutions were then centrifuged at 8,000xg for 5 minutes, 

supernatant removed and cell pellet was washed twice in 1 mL PBS containing 20 mg L-

1 EDTA and washed once with 1 mL PBS containing 20 mg L-1 Bathocuprionedisulfonic 

acid disodium salt (Sigma-Aldrich) to remove any residual membrane bound copper.  A 

final wash with 1 mL PBS was performed and cell pellet re-suspended in 200 µL PBS. A 

10 µL aliquot of cells was collected for cell count with a hemocytometer.  The cell 

solutions were digested with equal volume 70% (w/v) HNO3 at 65oC for 2h and stored at 

4oC. Samples for ICP-MS analysis were further diluted to 2% HNO3 with ddH2O, 

containing 0.5% HCL, prior to sample analysis using an ICP-MS system (7700x ICP-MS 

with autosampler, Agilent Technologies, Santa Clara, CA).   

 

6.2.7 Scanning electron microscopy specimen preparation 

 To observe interaction of S. cerevisiae cells and CuO NPs, scanning electron 

microscopy (SEM) analysis was performed after exposure. S. cerevisiae was treated 

with 69.5 mg Cu/L CuO NPs for 1 hour, followed by primary fixation with 2.5% 

glutaraldehyde in PBS overnight at 4oC. Solution containing fixed cells was dropped onto 

glass slides coated in Poly-L-lysine and cells were allowed to settle onto the coated 
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surface. Secondary fixation was performed in 1% Osmium tetroxide (OsO4) in PBS for 1 

hour followed by dehydration in sequential stages of ethyl alcohol and double distilled 

water at 20%, 40%, 70%, and 100%. Sample drying was performed using 

Hexamethyldisilazane (HMDS; BASF SE) at a 1:1 dilution with 100% ethyl alcohol for 10 

mins followed by pure HMDS solution for 10 mins. After drying, glass slides were 

attached to 15 mm aluminum stubs using double-coated carbon tape. The samples were 

then coated in 6 nm Iridium with K500X sputter coater (Quorum Technologies).  

 

6.2.8 RNA extraction and subsequent cDNA production 

 The S. cerevisiae cell pellets from all treatment time points were removed from -

80oC storage and placed on ice immediately prior to RNA extraction. The freshly thawed 

cell pellet was homogenized using 0.2 um zirconium oxide beads in a 2 mL polystyrene 

microcentrifuge tube placed inside a Bullet Blender® bead beater (Braintree Scientific, 

Inc) at 4oC. The Bullet Blender® was employed at power level setting 7 for 3 mins 

followed by 5 mins incubation on ice and another round of bead beating at power level 7 

for 3 mins. The cell lysate was centrifuged at 4,000xg for 2 mins and supernatant was 

transferred to PureLink® spin column cartridge. The PureLink® RNA mini kit (ambion®, 

Life technologies®) was used as per instructions using spin columns and table top 

centrifuge. The extracted RNA was treated with DNase as per the TURBO DNA-free™ 

kit (ambion®, Life technologies®) instructions. The cDNA was generated by using the 

SuperScript® III First-Strand Synthesis kit with the DNase-treated RNA as per product 

recommendations (Invitrogen™). Briefly, 2 ug of RNA was used in a 20 uL reaction 

volume in a thermocycler and run with the following program: 25oC for 10 mins, 50oC for 

30 mins, 85oC for 5 mins followed by 4oC until placed on ice. RNase H was added for 20 

mins prior to storage at -20oC. 
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6.2.9 Microarray data analysis and related statistical techniques 

The microarray was performed at the Genome center of Wisconsin at the 

University of Madison Biotechnology Center. The Affymetrix CEL files containing the 

expression data for the yeast 2.0 probe set were loaded into R with the Affy package 

where each chip was represented as an array. Background noise correction was 

performed on each chip by employing Affy and using the Robust Multichip Average 

expression measure. Each chip was then normalized to the geometric mean of the 

expression of housekeeping genes recently analyzed and confirmed as appropriate 

(ALG9, KRE1, TAF10, TFC1, and UBC6) [121]. Normalization to the geometric mean of 

these genes in each chip has been shown to be much more accurate than normalization 

to a single gene in the analysis of microarray data [122]. These correction measures 

were used to transform the raw expression data into corrected, normalized log 

expression values. 

Annotation data (such as probeID and experimental information) was extracted 

from the CEL files using Bioconductor’s a4 package [123]. This package was also used 

to extract gene name, description of function, ORF, Gene Ontology numbers, and KEGG 

pathways from probe IDs in conjunction with the Affymetrix Yeast 2.0 chipset database, 

available through Bioconductor.  

Linear models were fitted to each chip’s log expression values with the Limma 

package [124]. A contrast matrix was constructed from the arrays in order to compare 

two different treatments (e.g. untreated and nanoparticle treatments). The package was 

then used to calculate the log two fold differences in gene expression and the probability 

of differential expression for each probe using an empirical Bayes approach. The a4 

package was used to adjust the calculated p values in order to account for the family 

wise error rate using the Benjamini Hochberg method and to generate a table of the 

calculated values. 
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Genes were considered significantly altered in expression after copper exposure 

with greater than/less than 1.5/-1.5 Log2 Fold Change (LogFC) and an adjusted p<0.05. 

We chose a 1.5 LogFC cutoff, e.g. 3 fold difference compared to the untreated cell 

cultures [18]. These genes were further separated into up and down-regulated 

categories. These genes were then submitted to Princeton University’s Gene Ontology 

Mapper and the resulting ontologies were used to observe patters of altered gene 

expression [125]. 

The probe ID, fold change data, and KEGG pathway number annotations were 

also extracted from the list of differentially expressed genes. Probe IDs were converted 

into Entrez Gene IDs using DAVID, and further converted into KEGG gene numbers on 

their website [126, 127]. The fold change data for each probe in the Yeast 2.0 set 

associated with that KEGG pathway was then submitted to the KEGG pathway mapper 

tool [128].  

 

6.2.10 Determining oxygen consumption of yeast using Seahorse Flux analyzer 

The Seahorse XF96 was equilibrated at 30°C for 4 hours prior to experiment. 

Yeast at 1 x 105 cells/mL (OD600 0.3) were added to each well of the XF96 plate at a 

volume of 160 µl in YP-gal; as well as CuO NPs, menadione, oligomycin, FCCP, and 

Antimycin A which were added to wells at specified time points throughout experiment. 

The XF plate, each well containing enough yeast to completely cover the bottom, was 

centrifuged for 1 min at 1,000 rpm in a swinging bucket rotor (Eppendorff, CA 5810R) 

followed by addition of 140 µl of substrate containing 1 × MAS was added to each well. 

Fresh stock solutions of Oligomycin, FCCP, and antimycin A were made in DMSO. The 

cartridge was calibrated by the XF machine, and following calibration the XF plate with 

yeast attached to the bottom was introduced into the machine. The injections for electron 
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flow experiment were prepared as follows: Port A, Oligomycin; Port B, FCCP; Port C, 

Antimycin A. The final concentrations were 10 ug/mL Oligomycin, 10 mM FCCP and 10 

µM Antimycin A. Throughout experiment the a 1 min/1 min/2 mins time period was 

employed for the mix/wait/measure cycles at every read point for a total of 5 mins per 

read. Experimental reads were as follows: 5 basal reads, introduction of copper 

treatment with 5 reads post exposure, Oligomycin injection followed by 5 reads, FCCP 

injection followed by 3 reads, and Antimycin A injection followed by 4 reads. 

 

6.2.11 Determining oxygen consumption of yeast using Clark electrode 

 Yeast were suspended at 1 x 107 CFU/mL (OD600 0.3) in a YP media with 

galactose as a carbon source. The consumption of oxygen was assayed in a 300 uL 

volume using the Digital Model 10 clark electrode (Rank Brothers, LTD) to determine the 

rate of oxygen consumption within the chamber. The silver electrode is prepared for 

measurement by removing any oxide layer present by gently scrubbing with ascorbate 

using water and a cotton swab. An PTFE Teflon membrane was placed over the silver 

electrode at the base of the chamber, in such a way as to prevent air bubbles, prior to 

fully assembling the chamber. The ‘Stir’ function was employed at speed 7 with a 

magnetic glass stir bar within the chamber to ensure cells remained in suspension at 

room temperature. Water was added to chamber and measurements taken while 

adjusting sensitivity to attain 99.9 ± 1.0 as the output for 2 min to ensure steady state of 

gradual decline in oxygen (<2% over 5 mins) indicating membrane covering electrode 

remains intact. This cell free oxygen consumption was treated as background and 

removed from sample reads. Cells with or without treatment were added to chamber and 

read for 5 mins, followed by 2 additional reads after re-introducing O2 into the chamber 

using a pipetter.  
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6.3 Fluorescence staining protocols 

6.3.1 Determining membrane damage with propidium iodide staining 

To detect changes in cell membrane permeability due to treatment with CuO NPs 

or copper sulfate, S. cerevisiae cells at 1 mL volume were stained with 5 uL of 1 mg/mL 

propidium iodide solution. To quantify total cells, 5 uL of 5 mM calcofluor white M2R, 

dissolved in water, was added to cells. Cell solutions were incubated with dye at room 

temperature for 10 mins protected from light. After staining, cells were washed twice in 

PBS (pH 7.2), re-suspended in glucose-HEPES (GH, pH 7.0) buffer with 4% 

formaldehyde (v/v) and fixed at room temperature for 10 mins. Fixed cells were 

centrifuged at 10,000xg for 5 mins and re-suspended in 30 uL of GH. The cells were 

stored at 4°C until imaging with a confocal microscope (Nikon Eclipse Ti, Nikon 

Instruments Inc.; Tokyo, Japan).  

Cells in YP-gal media were exposed to CuO NPs or copper sulfate for 1 hour, 4 

hour or 24 hours at 30oC shaking with (250 rpm). After CuO NPs and copper sulfate 

treatments cells were then stained with propidium iodide (Biotium) and calcofluor white 

(MP Biomedicals) according to above procedure. The DAPI filter set was used for 

calcofluor white detection, with an excitation at 405 nm and emission range of 425-475 

nm, the texas red filter set was used for propidium iodide detection, with an excitation at 

561 nm and emission range of 570-620 nm. Images were analyzed using Image-J 

software. 

 

6.3.2 Quantifying oxidative stress by reactive oxygen species staining  

Intracellular ROS levels were determined using both Dihydroethidium (DHE) and 

Dihydrorhodamine 123 (DHR123) dyes (Sigma-Aldrich, St. Loius, MO).  DHE is a cell 

permeable dye which can become oxygenated upon interaction with various ROS from 
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hydroethidium to ethidium, resulting in cells with fluorescent red observable at 

excitation/emission at 480 and 567 nm, respectively. DHR123 is a cell permeable dye 

which becomes reduced to rhodamine 123 (RH123) a red fluorescent chemical upon 

interaction with peroxynitrates and other ROS.  The RH123 becomes localized to the 

mitochondria after reduction and is observable with excitation/emission wavelengths of 

500 and 536 nm, respectively.  Cells were exposed to Cu treatments, centrifuged, 

washed with YP media, and then resuspended in PBS (pH 7.2) for staining.  Cells were 

stained with DHE and DHR123 at a final concentration of 1 ug mL-1 and 1.25 ug mL-1, 

respectively, in PBS (pH 7.2) for 2 hour at room temperature post exposure.  After 

staining cells were washed once with PBS and resuspended in 100 uL PBS and 

observed with fluorescent microscope immediately.  

 

6.3.3 Quantifying metabolic activity via the alamar blue assay  

 The inhibitory effects of CuO NPs were determined by quantifying cellular 

metabolic activity using alamarBlue (aB, Invitrogen), a cell-permeable redox-sensitive 

dye that turns from a non-fluorescent blue color to a highly fluorescent pink color upon 

reduction by metabolically active cells.  Fluorescence detection of the reduced aB signal 

was performed in a Spectra Max® M2e spectrophotometer (Molecular Devices Inc.). 

 The metabolic activity assay was performed according to the following protocol: 

copper treatments were generated by adding copper sulfate, or released Cu2+ fraction 

from NPs, or dispersed CuO NPs into YP-gal media to achieve 300 uL volume at desired 

concentration.  Freshly inoculated cultures of S. cerevisiae in YP-Gal media were 

incubated at 30oC for 3-4 hour until OD600 0.3 was reached, centrifuged at 4,000 rpm for 

2 min, supernatant removed, and cell pellets were then resuspended with YP-Gal media 

containing different copper treatment. Each experimental treatment was amended with 

10% (v/v) alamarBlue dye to achieve a final volume of 330 µL, which was then aliquoted 
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to 3 separate wells to a final volume of 100 µL per well in a 96-well plate (Costar 

polystyrene flat bottom, non-treated, black sided, clear bottom).  Cell free YP-Gal media 

was added to cell free control wells for background subtraction. Plates were covered 

with aluminum foil to prevent light exposure and incubated at 30oC, with shaking at 250 

rpm for 1.5 hour.  Fluorescence was recorded at 550/585nm excitation/emission with a 

570 nm cutoff every 5 min for 1.5 hour. Cellular metabolic rate was determined by 

employing SpectraMax software to calculate rate of fluorescence at the linear portion of 

each curve.  Each respective treatment was performed in triplicate wells and the results 

were averaged per well.  Data are mean of three independent experiments  range of 

values. 

 

6.4 Copper oxide nanoparticle protocols 

6.4.1 Determining nanoparticle primary particle diameter and morphology using electron 

microscopy 

 Transmission electron microscopy (TEM) was employed to characterize both 

CuO NPs morphology and primary particle diameter.  Diluted CuO NPs suspensions in 

water or YP-gal media were deposited onto formvar coated copper 200 mesh grids and 

allowed to settle for 10 min prior to removal of the excess liquid. TEM imaging was 

performed on a Hitachi H9000NAR Analytical High Resolution Transmission Electron 

Microscope, 300 KeV (dpr) and the primary particle diameters were assessed using 

ImageJ image processing and analysis software.  Briefly, the measuring tool was 

employed, after altering the scale to nanometers, in order to assess dimensions of 100 

individual NPs of both 28 nm and 64 nm CuO NPs in 15 or more images. Measurement 

of NPs diameter was performed only when well-defined individual nanoparticles could be 

observed.  TEM micrographs of gold nanoparticles at established dimensions were 
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analyzed in identical fashion with ImageJ to confirm validity of measurements (data not 

shown). 

 

6.4.2 Nanoparticle dispersion protocol 

A stock solution of CuO NPs (8,000 mg L-1) was prepared in sterile ddH2O and 

dispersed by using a 450 W probe sonicator (Branson Digital Sonifer; Danbury, CT) for 5 

minutes on ice at 20% amplitude, pulse on for 20 sec and off for 20 sec. The pulse was 

employed in order to limit ROS formation or overheating of NPs suspension. After 

dispersion different volumes of the CuO NPs stock solution was aseptically added to the 

yeast cultures to achieve predetermined concentrations of CuO NPs for cell exposure. 

 

6.4.3 Nanoparticle hydrodynamic diameter from agglomeration and aggregation 

  To determine the average hydrodynamic diameters of CuO NPs agglomerates, 

NPs were diluted to 40 mg/L in sterile double distilled water (ddH2O) or growth medium 

(YP-gal) and injected using a sterile syringe into the viewing chamber of NS500 platform 

(Nanosight Ltd) equipped with a 640-nm laser. All measurements were taken at room 

temperature. Average diameters and standard deviations were measured using the 

Nanoparticle Tracking Analysis (NTA) 2.0 Build 127 analytical software for real-time 

dynamic nanoparticle visualization and measurement. The samples were measured for 

30 sec with manual shutter and gain adjustments and six measurements of the same 

sample were performed for all of the respective time points. Although Nanosight has a 

minimum limit of detection of 10 nm, the smaller CuO NPs employed in the present 

study have an average primary particle diameter, as measured by TEM, of 28 nm.  

However, it should be noted that any populations of CuO nanoparticles or 

agglomerations smaller than 10 nm would not be detected by NTA. To exclude artifacts 
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from organic components within media, analysis of YP growth media without addition of 

CuO NPs was performed and run in batch processing as 5 separate runs to avoid 

introducing additional artifacts from altering fluidic flow.  

 The data were combined and averaged to provide background intensity data 

which was then used to exclude organic matter from conflicting with the NPs/organic 

matter agglomeration measurements. This exclusion was accomplished through the use 

of the ‘intensity comparison’ tool in the NTA 2.0 Build software which allows the user to 

establish intensity values as a cutoff for the minimal intensity necessary to be 

incorporated in the sample analysis. To determine Zeta potentials of CuO NPs in YP-gal 

media, NPs in solution were pipetted into Folded Capillary Cells (Malvern Instruments) 

and Zeta potential was measured using a Zetasizer Nano-ZS (Malvern Instruments). 

 

6.4.4 Nanoparticle aging and preparation for media-NPs interaction assay 

To explore media component-NPs interactions, CuO NPs were dispersed into YP 

media as described above to 40, 80, or 240 mg L-1 concentration in 4 mL volume in 15 

mL polypropylene disposable centrifuge tubes (VWR).  The NPs solutions were covered 

to prevent light exposure and placed at 30oC in a table top incubator at 250 rpm for 24 

hour.  A 2 mL aliquot of the ‘aged’ NPs were centrifuged at 14,000 rpm for 30 mins and 

supernatant was then removed and used as released fraction.  The CuO NPs pellet was 

resuspended in sterile YP-gal media and used as aged NPs in fresh media.  The 

remaining 2 mL of aged NPs in released fraction was used as an additional treatment.  

Fresh suspensions of CuO NPs were prepared by diluting stock to 40, 80, and 240 mg L-

1 and immediately adding to cell suspensions. 
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6.4.5 Quantifying copper ions via the zincon colorimetric assay and ICP-MS 

 To define the amount of Cu2+ ions released from CuO NPs in the growth media, 

aliquots of each NPs suspension in YP-gal medium were collected immediately after 

dispersion in the media, after 1.5 hour, or 24 hour incubation at 30oC with shaking (250 

rpm) and ultracentrifuged (45,000 g for 30 mins) to remove cells and suspended CuO 

NPs. Aliquots were stored at 4oC (up to one week) until Zincon analysis was performed. 

The Cu2+ ion concentration was measured using Zincon assay as described by Sabel et 

al [85] with modifications described herein.  Prior to analysis, supernatants were 

examined for NPs presence using NTA and concluded that NPs were not detectable. 

Nanoparticles with a diameter less than 10 nm were not detected due to the limit of 

detection by NTA but may be present. However even if a small NP fraction of <10 nm is 

present, preliminary experiments indicate that Zincon dye does not interact directly with 

CuO NPs (data not shown). Measurement of Cu2+ within the supernatant was performed 

on a Spectra Max® M2e spectrophotometer (Molecular Devices) using Zincon reagent 

(MP Biochemicals).  All samples were diluted in Tris-HCl buffer (20 µM, pH 7.2) 

containing Zincon (40 µM).  A standard curve with Cu2+ (0 - 2.4 mg/L) was prepared from 

copper sulfate in the same buffer.  Samples were incubated at room temperature for 10 

min and absorbance was measured at 615 nm.  The relationship between absorbance at 

615 nm and the known concentration of Cu2+ standard served to determine Cu2+ ion 

concentration. To observe the influence of organic material and anions, identical 

experiments were performed in double distilled water. To remove the pH as a potential 

variable, distilled water was adjusted to pH 6.4, identical to the growth media.  All 

measurements were performed in triplicate.  

 To define the amount of total Cu released from CuO NPs in the growth media, 

aliquots of previously ultracentrifuged supernatant were digested with equal volume 70% 

(w/v) HNO3 at 65oC for 2 hour and stored in acid-washed glass vials at 4oC for no more 
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than 1 week. Samples were then further diluted to 2% HNO3 with ddH2O, containing 

0.5% HCL, prior to sample analysis using an ICP-MS system (7700x ICP-MS with 

autosampler, Agilent Technologies).  ICP-MS detects total copper regardless of copper 

ion species, copper in strong-association with organic material, or copper in the form of 

nano-solids.  

 

6.4.6 Determining zeta potential of nanoparticles via Zeta sizer 

To determine Zeta potentials of CuO NPs in YP media, NPs in solution were 

pipetted into Folded Capillary Cells (Malvern Instruments, Worcestershire, UK) and Zeta 

potential was measured using a Zetasizer Nano-ZS (Malvern Instruments). 

 

6.4.7 NPs aging in the growth media  

 Note that S. cerevisiae has a high copper tolerance, up to 480 mg/L CuO NPs for 

12 hours of exposure in YP media before lethal effects are observed (data not shown).  

In the current study, sub-lethal nanoparticle concentrations in the range of 40 – 240 

mg/L were employed in 1.5 hour exposure scenario to study the NPs effect on S. 

cerevisiae cell metabolism. To explore media component-NPs interactions, CuO NPs 

were dispersed into YP-gal media as described above to 40, 80, or 240 mg/L initial mass 

in 4 mL volume in 15 mL polypropylene disposable centrifuge tubes. The NPs solutions 

were covered to prevent light exposure and placed at 30oC in a table-top incubator at 

250 rpm for 24 hour.  A 2 mL aliquot of the ‘aged’ NPs were ultracentrifuged at 45,000 g 

for 30 min (Optima MAX-E Ultracentrifuge) and supernatant was then removed and used 

as released fraction.  The CuO NPs pellet was resuspended in sterile YP-Gal media and 

used as aged NPs in fresh media.  The remaining 2 mL of aged NPs in released fraction 

was used as an additional treatment.  Fresh suspensions of CuO NPs were prepared by 
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diluting stock solution (8,000 mg/L) to 40, 80, and 240 mg/L and immediately added to 

cell suspensions for exposure. 

 In cases of NPs exposure with Cu2+ chelation, ethylenediaminetetraacetic acid 

(EDTA) in final concentration of 0.5 mM was added to CuO NPs or the released ionic 

copper fraction in YP-gal medium and incubated at 30oC for 1 hour prior to the addition 

of S. cerevisiae cells. The S. cerevisiae cells used as the untreated control were pelleted 

and resuspended in growth media which was also supplemented with EDTA. 

 

6.4.8 Preparing released fraction exposure scenario 

 When copper sulfate was used to mimic the released Cu2+ from CuO NPs, less 

metabolic inhibition was observed compared to exposure with the actual released 

fraction from NPs.  This observation of soluble Cu salt treatments not being an adequate 

mimic of NPs-released Cu ion treatment has also been reported in other studies [17]. 

Only after incubation of copper sulfate in YP-gal (to simulate the Cu ions released from 

CuO NPs) was the metabolic inhibition more similar to the metabolic inhibition observed 

with released Cu treatments. Instead of aged copper sulfate, the released copper ion-

containing supernatant from the CuO NPs was used in the subsequent experiments to 

better represent the nature of the soluble copper within the YP-gal media. To 

characterize the released copper from CuO in the growth media, total copper was 

measured with inductively coupled plasma mass spectrometry (ICP-MS).  Cu2+ is a 

dominant fraction in the ‘released copper only’ exposure scenario as the concentration of 

total copper, as measured with ICP-MS, was not significantly different than Cu2+ ions 

concentrations, as measured with zincon assay.   

 In order to generate the released Cu ion treatment, CuO NPs at 800 mg/L were 

incubated for 24 hour, the suspended NPs were then centrifuged (14,000rpm 30 min) 

and the supernatant was then filtered (0.1 µM syringe filter, Supor® low protein binding, 
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Acrodisc® PALL Life Sciences). The supernatant was assayed using Zincon dye as per 

[18] and determined to contain 200 mg Cu2+/L. This supernatant was considered the 

‘released Cu ion’ treatment stock and was diluted to a working concentration as 

required.  

 

6.5 Supplementary data for Caenorhabditis elegans  

6.5.1 Statistics to compare copper treatment and untreated nematode strains for 

toxicological endpoints analyzed 

 

 

Table S1. Statistical difference between untreated and copper exposed nematodes. 

Statistical comparison, Tukey’s honest significant difference (HSD) p values, of 24 hour 
copper exposed Caenorhabditis elegans and untreated nematode population body 
length, feeding behavior, and reproduction. p-values were determined by Tukey’s HSD 
using Rstudio; p<0.05 was considered significant. NSD – no statistical difference. 

Effect vs 

Untreated 

Conc. 

(mg Cu/L) 

Reproduction Feeding Behavior 
Population  

Body Length 

CuO NPs Cu+ CuO NPs Cu+ CuO NPs Cu+ 

N2 3.8 NSD 

 

NSD 

 

<0.001 NSD 

 

0.014 NSD 

 
 7.9 NSD 

 

NSD 

 

<0.001 NSD 

 

<0.001 NSD 

 
 15.9 NSD 

 

0.031 <0.001 <0.001 <0.001 <0.001 

CB4856 3.8 NSD 

 

NSD 

 

<0.001 NSD 

 

NSD 

 

NSD 

1.00 

 

 7.9 NSD 

 

NSD 

 

<0.001 NSD 

 

<0.001 NSD 

 
 15.9 0.0051 <0.001 <0.001 0.003 <0.001 <0.001 

DL238 3.8 NSD 

 

NSD 

 

<0.001 NSD 

 

NSD 

 

NSD 

 
 7.9 NSD 

 

NSD 

 

<0.001 NSD 

 

<0.001 NSD 

 
 15.9 0.0014 <0.001 <0.001 <0.001 <0.001 <0.001 

JU258 3.8 NSD 

 

NSD 

 

<0.001 <0.001 NSD 

 

NSD 

 
 7.9 0.04 NSD 

 

<0.001 <0.001 <0.001 NSD 

 
 15.9 0.013 NSD 

 

<0.001 <0.001 <0.001 <0.001 
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6.5.2 Statistics to compare CuO NPs and copper sulfate for nematode toxicological 

endpoints analyzed 

 

Table S2. Statistical differences between copper oxide nanoparticle inhibitory effects 
and the inhibitory effect from copper sulfate exposure.  
 

CuO NPs 
vs Cu ions 

Conc. 
(mg Cu/L) 

Reproduction Feeding Behavior 
Population  
Body Length 

N2 3.8 NSD 
 

<0.001 0.014 

 7.9 NSD 

 

<0.001 <0.001 

 15.9 NSD 

 

<0.001 <0.001 

CB4856 3.8 NSD 

 

<0.001 NSD 

 
 7.9 NSD 

 

<0.001 <0.001 

 15.9 0.0051 <0.001 <0.001 

DL238 3.8 NSD 

 

<0.001 NSD 

 
 7.9 NSD 

 

<0.001 <0.001 

 15.9 0.0014 <0.001 <0.001 

JU258 3.8 NSD 

 

<0.001 NSD 

 
 7.9 0.04 <0.001 <0.001 

 15.9 0.013 <0.001 <0.001 

Statistical comparison, Tukey’s HSD p-values after exposure to 28 nm copper oxide 
nanoparticle and copper sulfate effects after 24 hour exposure on Caenorhabditis 
elegans population body length, feeding behavior, and reproduction. p-values were 
determined by Tukey’s HSD using Rstudio; p<0.05 was considered significant. Bold 
values indicate more significant increase in effect from the CuO NPs exposure. NSD – 
no statistical difference. 



121 
 

6.5.3 Statistics to compare laboratory-adapted nematode N2 strain and wild strains for 

toxicological endpoints analyzed 

 
Table S3. Statistical differences in response to copper exposure from the lab adapted 
N2 strain and the wild nematode strains.  
 

N2 vs  

Wild strain  

Copper oxide 
Nanoparticles 

Soluble copper 

3.8 mg 
Cu/L 

7.9 mg 
Cu/L 

15.9 mg 
Cu/L 

3.8  mg 
Cu/L 

7.9 mg 
Cu/L 

15.9 mg 
Cu/L 

JU258 
 

      

Population Body length NSD 

 

NSD 

 

NSD 

 

0.006 NSD 

 

NSD 

 Feeding Behavior NSD 

 

NSD 

 

NSD 

 

<0.001 0.013 NSD 

 Reproduction 0.03 NSD 

 

NSD 

 

NSD 

 

<0.001 NSD 

 DL238 
       

Population Body length NSD 

 

0.046 0.002 0.022 NSD 

 

NSD 

 Feeding Behavior NSD 

 

0.004 0.025 0.023 NSD 

 

NSD 

 Reproduction NSD 

 

NSD 

 

NSD 

 

NSD 

 

NSD 

 

NSD 

 CB4856        

Population Body length 0.002 NSD 

 

0.047 NSD 

 

0.013 NSD 

 Feeding Behavior NSD 

 

NSD 

 

0.012 0.033 <0.001 0.027 

Reproduction 0.027 NSD NSD NSD 

 

0.002 NSD 

 Statistical comparison, Tukey’s HSD p values, of the laboratory-adapted Caenorhabditis 
elegans N2 strain and the wild nematode strain population body length, feeding 
behavior, and reproduction after copper exposure. The laboratory-adapted N2 (Bristol) 
strain and three wild strains were exposed to 28 nm copper oxide nanoparticles or 
soluble copper (CuSO4). p-values were determined by Tukey’s HSD using Rstudio; 
p<0.05 was considered significant. NSD – No statistical difference. 
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6.5.4 Number of nematodes analyzed for neurodegeneration 

Table S4. Total number of animals examined for neurodegeneration in each experiment 
after copper exposure.  
 

 Conc. 

(mg Cu/L) 

Copper oxide 
nanoparticles 

Copper Sulfate 

Expt. 1 Expt. 2 Expt. 3 Expt. 1 Expt. 2 Expt. 3 

wild type 3.8 96 40 67 92 40 81 

 7.9 101 40 40 87 113 66 

 15.9 46 69 40 87 55 61 

Δsmf-1 3.8 82 81 53 71 94 40 

 7.9 113 77 56 77 90 40 

 15.9 102 88 50 62 69 43 

ΔSmf-2 3.8 52 68 56 73 84 73 

 7.9 85 48 52 79 87 125 

 15.9 76 66 40 58 65 70 

 

 

6.5.5 Statistics and data regarding HSP-16.2 data 

Table S5. Total animals examined and statistical differences in the induction of HSP-
16.2 after exposure to copper. 
 

Treatment Concentration 

(mg Cu/L) 

Animals 

Imaged 

p-value 

(vs Unt.) 

Untreated 0 25 - 

Copper oxide 

NN 

NPs  

nanoparticle 

3.8 28 NSD 

(28 nm) 7.9 34 <0.001 

 15.9 32 <0.001 

Copper sulfate 3.8 28 NSD 

 
 7.9 25 <0.001 

 15.9 31 <0.001 

The total animals examined and statistical comparison, Tukey’s HSD p-values, of 
exposed Caenorhabditis elegans to untreated nematodes for hsp-16.2 induction after 24 
hour exposure to copper. p- values were determined by Tukey’s HSD using Rstudio; 
p<0.05 was considered significant. NSD – No statistical difference. 
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6.6 Supplementary data for Saccharomyces cerevisiae  

6.6.1 Yeast sensitivity to hydrogen peroxide exposure 

In contrast to copper exposure effects, we observed resistance to H2O2 in cells 

grown on YP-ethanol compared to cells on YP-dextrose media.  The observed effect of 

H2O2 on metabolic activity on cells grown on different carbon source in our study is in 

conjunction with a previous report by Cabiscol et al [204].  They found that H2O2 and 

menadione treatments (5 mM H2O2 and menadione) resulted in lower cell survival and 

produced higher oxidative stress in S. cerevisiae cells grown on YP-dextrose than in 

cells grown on YP-gal, measured as amounts of protein carbonyl content [204]. The 

higher sensitivity of respiratory grown S. cerevisiae cells to copper exposures, in both 

CuO NPs and copper sulfate treatments, potentially indicates a different mode of action 

than the common ROS generating chemical.   

 

6.6.2 Quantifying intracellular copper content of yeast cells 

S. cerevisiae has a minimum copper quota of 8.3 x 105 to 1.3 +/- 0.2 x 106 

atoms/cell when grown in nutrient rich media YP-dextrose containing 32-40 mg Cu/L (as 

analyzed by ICP-MS, [205]).  We have measured 160-400 mg Cu/mL in our YP-gal 

medium and a minimum copper quota of 8.3 +/- 0.3 x107 atoms/cell when cultured in YP-

gal (respiratory/fermentative metabolism).  

In our study, short exposure (1.5 hour) to all 28 nm CuO treatments, fresh or 

aged, resulted in 1.8-8.5 x 108 Cu atoms/cell while 64 nm NPs exposure resulted in 

internalization of 3.0-9.5 x 108 Cu atoms/cell (Figure S1).  CuO NPs treatments do 

notsignificantly increase Cu ion internalization after 1.5 hour. On initial inspection, these  

results appear surprising as 28 nm 24 hour aging results in 4-5 fold greater Cu2+ release  
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compared to 64 nm NPs.  However, S. cerevisiae has efficient and dynamic copper 

homeostasis mechanisms to stay at homeostatic copper levels via down regulation of 

Cu+ importers (CTR1 and CTR3) or up regulation of Cu+ exporters (CCC2) in response 

to an increase in exogenous Cu+ ions [206].  This further supports the hypothesis that 

while Cu2+ release plays a role in CuO NPs toxicity, the nanoparticle component must 

also play a role in the effect on cellular metabolism.   

 

6.6.3 Quantifying total released copper within YP media 

 In order to investigate whether the released Cu2+ ions account for the observed 

toxicity, S. cerevisiae cells were exposed also to the extracted “released fraction”, i.e. 

the supernatants collected after 4 hour incubations of NPs dispersions at different 

concentrations (40, 80, and 240 mg Cu/L) in sterile growth medium followed by 

separation of the remaining CuO solids by filtration (0.2 µM). The previously-aged NPs 

(24 hour) resuspended in fresh media or released fraction released 6-10 times more Cu  

Figure S1. The internal copper atom concentration within yeast after exposure to copper 

oxide nanoparticles and copper sulfate. 
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into media compared to the freshly suspended NPs (Figure S2) during the same time 

period (1.5 hour). 

 

6.6.4 Nanoparticle impact on cellular respiration 

To examine the impact that CuO NPs have on the mitochondrial respiratory 

capacity of cells, we measured changes in the cellular respiration rate based on 

measured O2 consumption using a clark electrode. S. cerevisiae was cultured on YPE as 

ethanol is a carbon source supporting a respiratory metabolism and in addition these 

cells showed greatest sensitivity to copper treatments in the aB assay. The copper 

exposure scenarios are fresh suspensions of CuO NPs, 24 hour aged NPs in fresh 

media, 24 hour aged NPs in released fraction, and released fraction alone. The two 

Figure S2. The total copper within YP media after incubation for 4 hour with the 

respective exposure scenario.  
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differently sized CuO NPs affected cellular respiration differently as both fresh 

suspensions of 28 nm CuO NPs and aged 28 nm CuO NPs in released fraction had the 

most dramatic effect on O2 consumption while the released fraction from 64 nm CuO 

NPs inhibited O2 consumption more so than any other 64 nm treatment. Aged 28 nm 

CuO NPs in released fraction significantly inhibited cellular respiration more than the 

released fraction without the presence of NPs (80 mg/L) after 30 min treatment.   

The aged 28 nm CuO NPs in release fraction also had a greater impact 

compared to the aged NPs in fresh media (69.9+/-0.8% versus 88.5+/-2.2%, p <0.01) 

(Figure S3).  The increased effect with the released fraction compared to replacement 

with fresh YP-gal media is the influence of the released Cu2+ ions as a component of 28 

nm CuO NPs toxicity. Nonetheless, aged 28 nm CuO NPs in released fraction inhibited 

metabolism more compared to the released fraction alone which suggests an effect from 

the nanoparticle component itself.  These results in total suggest a combined effect from 

both the nanoparticle component and the released Cu ions within the first 30 mins of 

exposure. Experiments analyzing exposure for periods beyond 30 mins revealed similar 

effects from the various copper exposures (Figure S4). 

 

6.6.5 Copper oxide nanoparticles reactive oxygen species generation 

The production of intracellular superoxide and hydroxyl radical production was 

measured after exposure to CuO NPs using the cell-permeable fluorescent probe 

Dihydrorhodamine 123 (DHR123).  Exposure to either 28 or 64 nm CuO NPs for 1.5 

hours resulted in no significant ROS production in any of the treatments used in this 

study (Figure S5).  For comparison, the redox-cycling chemical menadione was used 

which did result in a significantly greater staining compared to untreated cells.  These 
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Figure S3. The influence of the effect of copper oxide nanoparticles, both fresh and 

aged, on yeast respiratory oxygen consumption.  

 

 

 

  

 Figure S4. The influence of time on the effect of 28 nm copper oxide nanoparticles on 

yeast respiratory oxygen consumption.  
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data do not exclude ROS as the cause of toxicity, instead it suggests that CuO NPs 

treatments (for the short duration of exposure in this study) do not result in production of 

superoxide radicals to a sufficient degree to be detected and thus the cellular ROS 

defense system is not overloaded. Our study with mutant yeast strains indicates that 

SOD1 and PRX1 play an important role in the S. cerevisiae defense against ROS 

species generated during CuO NPs exposure. No observable increase in ROS occurred 

after exposure of only 1.5 hour, which may have been too short to observe a reduction in 

the antioxidant pool that each yeast cell retains to deal with exogenous stress. Farrugia 

et al suggest that a majority of ROS-related stress is associated with a depletion of the 

antioxidants within the cytoplasm of yeast [207] and this may not occur at the sublethal 

concentrations and short exposure time.  

 

 

 

Figure S5. Reactive oxygen species produced by S. cerevisiae cells after copper 
exposure as detected by ROS-sensitive fluorescent probe DHR123. 
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6.6.6 The influence of copper exposures on reactive oxygen species sensitive yeast 
strains 
 

Yeast strains containing deletions made in proteins involved in dealing with 

oxidative stress were exposed to both CuO NPs as well as CuSO4 and hydrogen 

peroxide (H2O2). Differences in the reaction to treatment will assist in identifying the 

relationship of the deleted gene and the mechanism of inhibition. The yeast mutant 

strains examined include super oxide dismutase 1 (Sod1Δ) and the cytoplasmic catalase 

1 (Ctt1Δ) genes in the S. cerevisiae BY4742 genetic background, as well as the 

peroxidase (Prx1Δ) gene in the S. cerevisiae W303-a genetic background, were 

exposed to the copper treatments.  

Upon copper exposure, of the studied mutant strains the Sod1Δ and Prx1Δ show 

a phenotype with increased sensitivity compared to the wild type strain (Figure S6). The 

deletion of the gene Sod1 showed increased sensitivity to both CuO NPs and to CuSO4, 

but not to the H2O2 control, compared to the wild type. This similarity in sensitivity 

suggests a similar mechanism of toxicity of the CuO NPs and the Cu ions. Most likely, 

the sod1Δ mutants inability to generate hydrogen peroxide by dismutating the 

superoxide anion led to its accumulation in the cell and increased the toxicity of the 

copper treatments in the mutant. Unfortunately, menadione (a superoxide radical 

generator) was interfering with the aB dye and wasn’t possible to be used as a control 

compound in the metabolic activity assay.  

We expect that the removal of catalase will cause more generation of the 

hydroxyl radical through Fenton-like reactions with reduced metals including reduced Cu 

in the Ctt1Δ strain. Based on the metabolic activity assay, the Ctt1 single-gene deletion 

mutant for cytosolic catalase was not more sensitive to CuO NPs or H2O2 treatments in 

comparison to the wild type based on determined IC50 values.  
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PRX1 is a mitochondrial enzyme and has a thioredoxin peroxidase activity with a 

role in reduction of hydroperoxides, e.g. reducing H2O2 to water. Previously, it has been 

shown that peroxiredoxin-null yeast cells were more susceptible to oxidative and 

nitrosative stress (Wong, Siu et al. 2004) and Prx1 is particularly required to protect 

against mitochondrial oxidation and heavy-metal induced oxidative stress (Greetham 

and Grant 2009). Interestingly, upon exposure to copper treatments, 28 nm and 64 nm 

CuO NPs, as well as CuSO4, to the prx1Δ and Sod1Δ strains resulted in significantly 

increased sensitivity (p<0.05) in comparison to the wild type W-303a strain.  These 

results suggest that CuO NPs may exert some toxicity to yeast cells via the 

mitochondrion induced oxidative stress resulting from the released Cu ions.  

 

 

 

Figure S6. The inhibitive effect of copper treatments and hydrogen peroxide on the 
metabolism of yeast mutants containing gene deletions involved in dealing with oxidative 
stress. 
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