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ABSTRACT

A NOVEL APPROACH TO COMPLEX HUMAN ACTIVITY RECOGNITION

Md Osman Gani, B.S., M.S.

Marquette University, 2017

Human activity recognition is a technology that offers automatic recognition of

what a person is doing with respect to body motion and function. The main goal is

to recognize a person’s activity using different technologies such as cameras, motion

sensors, location sensors, and time. Human activity recognition is important in many

areas such as pervasive computing, artificial intelligence, human-computer interaction,

health care, health outcomes, rehabilitation engineering, occupational science, and so-

cial sciences. There are numerous ubiquitous and pervasive computing systems where

users’ activities play an important role. The human activity carries a lot of information

about the context and helps systems to achieve context-awareness. In the rehabilitation

area, it helps with functional diagnosis and assessing health outcomes. Human activity

recognition is an important indicator of participation, quality of life and lifestyle.

There are two classes of human activities based on body motion and function.

The first class, simple human activity, involves human body motion and posture, such

as walking, running, and sitting. The second class, complex human activity, includes

function along with simple human activity, such as cooking, reading, and watching TV.

Human activity recognition is an interdisciplinary research area that has been active for

more than a decade. Substantial research has been conducted to recognize human ac-

tivities, but, there are many major issues still need to be addressed. Addressing these

issues would provide a significant improvement in different aspects of the applications

of the human activity recognition in different areas. There has been considerable re-

search conducted on simple human activity recognition, whereas, a little research has

been carried out on complex human activity recognition. However, there are many key

aspects (recognition accuracy, computational cost, energy consumption, mobility) that

need to be addressed in both areas to improve their viability. This dissertation aims

to address the key aspects in both areas of human activity recognition and eventually

focuses on recognition of complex activity. It also addresses indoor and outdoor local-

ization, an important parameter along with time in complex activity recognition. This

work studies accelerometer sensor data to recognize simple human activity and time,

location and simple activity to recognize complex activity.
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CHAPTER 1

INTRODUCTION

Automated recognition of human activities has importance across different

research areas including artificial intelligence, ubiquitous and pervasive computing,

human-computer interaction, human-robot interaction, rehabilitation engineering,

assistive technology, health outcomes, social networking, and social sciences. There

are numerous context-aware applications where users’ activities play an important

role. It also plays a pivotal role in designing pervasive computing systems. Human

activity recognition (HAR) is an interdisciplinary research area that has been active for

more than a decade, but, there are many major issues that still need to be addressed.

Addressing these issues would provide a significant improvement in different aspects

of the applications of the HAR in various fields.

Humans perform numerous activities throughout the day. There are two classes

of activities based on body motion and functionality. The first class is simple full body

motor activity, and the second class is complex functional activity. The full body

motor activity considers human body motion and posture, for example, walking,

sitting, running, taking the stairs, or standing. The second class, complex functional

activity, deals with different functions performed by a human, for instance, reading,

working on the computer, watching TV, playing tennis, cooking, or vacuuming. There

has been substantial research conducted on simple human activity recognition,

whereas, little research has been carried out on complex human activity recognition.

Many key aspects (recognition accuracy, computational cost, energy consumption,

privacy, mobility) need to be addressed in both areas to improve their viability.

Building system to recognize context from real-world observation is a
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challenging task. With the proliferation of location-based services (LBS), the idea of

the context focuses mainly on the user’s location. The combination of location and

activity forms the context. This combination helps to describe context well and

provides more meaningful information to make systems context-aware. The ubiquitous

and pervasive computing systems focus more on providing seamless services to the

user based on their context. Therefore, there is an increasing demand for localization

and human activity recognition in pervasive and ubiquitous computing areas.

In rehabilitation research, human activity recognition helps to perform

functional diagnosis and outcome assessment. It is also an indicator of participation,

quality of life (QoL) and lifestyle. The automated recognition of human activities

allows automatic health monitoring, evidence-based healthcare. It provides an

objective measure for medical personnel. It can also be used for evaluation in self-care

and self-management. With automatic human activity recognition, it is possible to

monitor remotely and provide assistance to residents in assisted living. Such systems

offer continuous monitoring and ensure the safety and well-being of its residents.

In this dissertation, we address the key aspects in both areas of human activity

recognition with particular focus on complex functional activity recognition. We also

address indoor and outdoor localization, one of the most influential parameters in

context-awareness and complex functional activity recognition. We also describe the

development of a novel complex functional activity recognition system. The time,

location, and simple full body motor activity have been studied to recognize complex

functional activity. In this work, we address the challenges related to 1) algorithm and

system development of infrastructure-less and ubiquitous localization system for both

indoor and outdoor, 2) development of a computationally inexpensive approach to

recognize simple human activities from kinematic sensors, 3) development of simple

human activity recognition system as a service, 4) framework and system development

of complex functional activity recognition.
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1.1 Dissertation focus

In this dissertation, we first focus on understanding the challenges in

developing an automated system to recognize complex functional activities. Based on

this, we then propose a complex activity recognition framework. We also describe our

design and development of a smartphone based ubiquitous localization system using

received signal strength indicator (RSSI) of the wireless device. The goal of this

localization system is to build an infrastructure-less, energy efficient, and cost effective

solution for finding indoor and outdoor locations using a smartphone. Later we focus

on developing an efficient simple human activity recognition system using kinematic

sensors from a smartphone. In the end, we focus on the study to recognize complex

functional activities using time, location and simple human activity.
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1.2 Dissertation Statement

It is possible to recognize simple and complex human activities unobtrusively using

time, location and inertial sensor with reduced complexity and improved accuracy.
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1.3 Research Challenges

In this dissertation, we aim to make several contributions by addressing

following research challenges:

• An infrastructure-less and ubiquitous localization system for both indoors and

outdoors.

• A computationally efficient technique to recognize simple human activities

using the inertial sensor.

• A framework to recognize complex functional human activities.

• Evaluation of the human activity recognition approach with real data and

real-life application.

1.4 Dissertation organization

The organization of this dissertation is as follows:

• In Chapter 2, we introduce and describe different human activities. We discuss

different terminologies widely used in human activity recognition research. In

this chapter, we present definition and classification of these activities with

examples. Then we present the taxonomy of human activity recognition

approaches that have been studied for more than a decade. Each of the

approaches is discussed briefly with device, sensor, and signal used to classify

activities.

• In Chapter 3, we present the mathematical models, machine learning techniques,

and the foundation of the algorithmic development and analysis. In this chapter,

we discuss the background mathematics and algorithm for each of the

experiments. We present a brief descriptions of exponential regression,
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time-delay embedding (reconstructed phase space), Gaussian mixture models,

maximum likelihood classifier, Markov model, hidden Markov model, and

Viterbi algorithm.

• In Chapter 4, we describe the RSSI-based localization technique for a

smartphone. In this chapter, we present an extensive comparative survey of

existing localization techniques based on wireless technology. Then we present

the mathematics to model the location using RSSI. We describe experiments and

performance comparison between mobile and fixed wireless devices. Finally, we

evaluate the application of localization by developing an asset/object tracking

system using the proposed approach.

• In Chapter 5, we present the simple human activity recognition system. In this

chapter, we describe the objectives and challenges related to automatic

recognition of simple human activity. We discuss the state-of-the-art research in

simple human activity recognition. Then we present the mathematical model to

capture the underlying dynamics of simple activities from accelerometer sensor

data. We also present a sensor data collection tool for Android and data

collection procedure. Later, we discuss the methodology and experimental

details along with results. We compare proposed approach with existing work

and present a quantitative analysis of efficiency with respect to time. Finally, we

discuss the application of the proposed approach as a service in Android

Application Framework.

• In Chapter 6, we describe the complex functional activity recognition system. In

this chapter, we discuss background mathematics and data collection. Then we

propose the framework to recognize complex human activities. After that, we

present the data modeling and computation of HMM parameters from data.

Later, we analyze experimental results for different settings and compare finding
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with existing approaches. Finally, we discuss findings, contribution, and

applications.

• In Chapter 7, we present the summary of this dissertation. Then we discuss the

contributions of the work with respect to each application area. Finally, we

present the intellectual merit and broader impact of this dissertation.

1.5 Publications

1.5.1 Conferences/Journals

• Md Osman Gani, Amit Kumar Saha, Golam Mushih Tanimul Ahsan, Sheikh

Iqbal Ahamed, Roger O. Smith, ”A Novel Framework to Recognize Complex

Activity,” (IEEE COMPSAC 2017; As of the publication of this dissertation in

April 5, 2017, this reference is accepted for publication).

• Md Osman Gani, Sheikh Iqbal Ahamed, Roger O. Smith, ”A Novel Framework

to Recognize a Large Set of Complex Activities,” (Smart Health, Elsevier; As of

the publication of this dissertation in April 5, 2017, this reference is currently

under review).

• Md Osman Gani, Taskina Fayezeen, Sheikh I. Ahamed, Richard J. Povinelli,

Roger O. Smith, Muhammad Arif, A. J. Kattan. ”A Novel Light Weight

Smartphone based Activity Recognition using Gaussian Mixture Models of

Reconstructed Phase Spaces,” IEEE Transaction on Mobile Computing, (As of

the publication of this dissertation in April 5, 2017, this reference is currently

under review).

• Md Osman Gani, Golam Mushih Tanimul Ahsan, Duc Do, Drew Williams,

Mohammed Balfas , Sheikh Iqbal Ahamed, Muhammad Arif, Ahmed J. Kattan,

”An approach to localization in crowded area,” 2016 IEEE 18th International
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Conference on e-Health Networking, Applications and Services (Healthcom),

Munich, 2016, pp. 1-6.

• Md Osman Gani, Taskina Fayezeen, Sheikh Iqbal Ahamed, Richar J. Povinelli,

”Computationally Efficient Human Activity Modeling and its Application as a

Service in Android Application Framework,” ACM HotMobile, February 2016,

FL, USA.

• Md Osman Gani, Taskina Fayezeen, Sheikh Iqbal Ahamed, Dennis B.

Tomashek, Roger O. Smith, ”Simple Activity Recognition Using Smartphone

Technologies For In-Home Rehabilitation,” RESNA 2015 Annual Conference,

June 2015, Denver, Colorado, USA.

• Farzana Rahman, Md Osman Gani, Golam Mushih Tanimul Ahsan and Seikh

Iqbal Ahamed, ”Seeing Beyond Visibility: A Four Way Fusion of User

Authentication for Efficient Usable Security on Mobile Devices,” 2014 IEEE

Eighth International Conference on Software Security and

Reliability-Companion, San Francisco, CA, 2014, pp. 121-129.

• Md Osman Gani, Sheikh Iqbal Ahamed, Samantha Ann Davis, Roger O.

Smith, ”An Approach to Complex Functional Activity Recognition using

Smartphone Technologies,” in Proceedings of RESNA 2014 Annual Conference,

June 11 -15, 2014, Indianapolis, IN, USA.

• Md Osman Gani, Casey OBrien, Sheikh Iqbal Ahamed, Roger O. Smith, ”RSSI

based Indoor Localization for Smartphone using Fixed and Mobile Wireless

Node,” in Proceedings of IEEE 37th Annual Computer Software and

Applications Conference (COMPSAC), July 22-26, 2013, Kyoto, Japan.
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1.5.2 Poster

• Md Osman Gani, GMT Ahsan, Amit Kumar Saha, Sheikh Ahamed, ”Smart

Spectacle Clip to Train and Prevent Fall,” Proceedings of the Forward Thinking

Poster Session, Marquette University, WI, USA, Nov. 2016.

• Taskina Fayezeen, Md Osman Gani, Sheikha Iqbal Ahamed, ”mHealth System

for the Patients with Arthritis,” Proceedings of the Forward Thinking Poster

Session, Marquette University, WI, USA, Nov. 2015 (Best Poster Award).

• Piyush Saxena, Md Osman Gani, Sheikh Iqbal Ahamed, Stephen Yau,

”Situation-Aware Cyber-Human Environments for Enriched Assisted Living in,”

Proceedings of the Forward Thinking Poster Session, Marquette University, WI,

USA, Nov. 2014.

• Md Osman Gani, Duc Do, Balfas, Drew Williams, G M Tanimul, Sheikha Iqbal

Ahamed, ”Ubitrack: Locating Lost Pilgrims in the Crowded Area of Makkah

during Hajj,” Proceedings of the Forward Thinking Poster Session, Marquette

University, WI, USA, Nov. 2014.
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CHAPTER 2

HUMAN ACTIVITY AND HUMAN ACTIVITY RECOGNITION

There has been numerous research studies in the area of human activity

recognition. Work on this area dates back to at least three decades. There are many

terms related to human activities used in the literature. In this section, we briefly

discuss important terms that have been used in the area of human activity recognition

research. Though these terms are well established in respective fields [42] [38], we

have seen these terms being employed in different meanings in the human activity

recognition area. We also discuss the classification of human activities and

state-of-the-art techniques to recognize human activities. We also present a taxonomy

of HAR research approaches and briefly discuss each of the areas.

2.1 Terminology

• Action: The gesture or movement of a person is called an action.

• Activity: The Oxford dictionary defines the term activity as ”a thing that a

person or group does or has done” [34].

• Physical Activity: According to the World Health Organization (WHO),

”physical activity is defined as any degree of physical motion or movement

which is produced by skeletal muscles that involves energy expenditure” [108]

[66]. According to the National Institute of Health, ”physical activity is any

body movement that works your muscles and requires more energy than

resting.” Examples are: walking, running, swimming, yoga, and gardening

[104]. According to the Department of Health and Human Services ”2008

Physical Activity Guidelines for Americans,” physical activity is defined as the
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movement that improves health [103].

• Exercise: A planned and structured physical activity is called exercise.

Examples are: lifting weights, taking an aerobics class, and playing on a sports

team [104].

2.2 Taxonomy of Human Activities

Lara [81] has studied the taxonomy of human activities classified by existing

research studies. Other studies also have classified human activities into different

classes [33]. These studies suggest that there are mainly two categories of activities,

simple activity and complex activity. We define the simple activity and complex

activity in the following subsection.

2.2.1 Simple Human Activity or Simple Activity

Simple full body motor activity, or simple human activity, or just simple

activity, considers the body motion and posture while defining different activities

(Figure 2.1). These include walking (Figure 2.1(a)), taking stairs (Figure 2.1(b)),

sitting, standing, running (Figure 2.1(c)), lying (Figure 2.1(d)), jogging. The members

of this class are differentiated only by the body motion and posture [33].

2.2.2 Complex Human Activity or Complex Activity

Complex functional activities are comprised of simple activity/activities and a

specific function [33]. For example, when a person is reading a book (Figure 2.2(b)) it

is most likely that the person is sitting somewhere (chair or couch). Here the complex

activity is ”reading a book,” which is comprised of simple activity ”sitting” and the

function ”reading.” Examples of complex activities (Figure 2.2) are playing soccer

(Figure 2.2(a)), vacuuming, working on desk or computer (Figure 2.2(c)), brushing

teeth, doing dishes, and eating dinner (Figure 2.2(d)). The specific function and related

simple activity/activities differentiate the members of this class [81].
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(a) Walking (b) Taking Stairs

(c) Running (d) Lying

Figure 2.1: Simple Human Activities, images are taken from [43]

Based on existing studies [81] [33] and the above definition, we present the

taxonomy of the human activities that has been widely studied by the state-of-the-art

research in the area of human activity recognition in Figure 2.3. Lara [81] suggested

seven different types of activities in human activity recognition (HAR) systems. These

are ambulation, daily activities, exercise, upper body, phone usage, transportation, and

military. In the figure, as we go from left to right, we see the transition from simple

activities to complex activities.

2.3 Taxonomy of Human Activity Recognition Approaches

There are mainly four different types of approaches used in HAR. These are:

1) computer vision-based HAR, 2) environmental sensor-based HAR, 3) wearable

sensor-based HAR, and 4) time geography-based HAR. We present the taxonomy of
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(a) Playing Soccer (b) Reading Book

(c) Working on Computer (d) Eating Dinner

Figure 2.2: Complex Human Activities, images are taken from [43]

HAR in Figure 2.4. We briefly discuss each of these in the following subsections.

2.3.1 Computer Vision

The computer vision approaches implement the HAR from a sequence of

images or videos where the activities can be performed by one or more subjects [6]

[69]. HAR is one of the promising applications in computer vision research. It requires

cameras to be projected to a target region and captures images and videos [135].

2.3.2 Environmental Sensor

The environmental sensor approaches use sensors and signals, for example, the

sound sensor on the floor, the light sensor in the room, radio frequency identification

(RFID) as door tag, and signal strength of wireless devices (Wi-Fi, Bluetooth), to

detect different activities [132] [101] [4].
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Figure 2.3: Taxonomy of Human Activities [81] [33]

2.3.3 Wearable Sensor

The wearable sensor approaches place kinematic sensors (accelerometer,

gyroscope) on different parts of the body. It also includes the use of smartphone

built-in sensors (accelerometer, gyroscope, pressure, GPS, magnetometer). The signals

from these sensors are then processed to recognize activities [33] [152].

2.3.4 Time Geography

The time geography approaches use the time and location information to

recognize human activities [29] [13]. Hagerrstrand first proposed that both time and

location constraints human activities. He called it time geography [127]. Both time

and location have been used separately to predict human activities.

We discuss these approaches more in detail in Chapters 5 and 6.



1
5

Figure 2.4: Taxonomy of Human Activity Recognition Approaches
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CHAPTER 3

BACKGROUND

This chapter outlines the background mathematics of the approaches that is

used in the remaining chapters. The exponential regression described here has

application in localization (Chapter 4). The dynamical system, time-delay embedding,

Gaussian Mixture Model, and Maximum Likelihood Classifier described here in this

chapter have application in simple human activity recognition (Chapter 5). The

Markov and Hidden Markov Model described here have used to model complex

human activity recognition (Chapter 6).

3.1 Exponential Regression

The exponential regression is a process that finds the equation of the

exponential function that best fits the given dataset (Figure 3.1). The focus of the

process is the form of the exponential equation:

y = a ∗ bx (3.1)

We have considered the following form, which is more specific form of the

exponential equation (natural exponential function):

y = a ∗ ec∗x (3.2)

e is considered the natural base of exponential functions as it is the derivative of its
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Figure 3.1: Exponential Regression

The Nelder-Mead simplex search algorithm is a popular direct search method

to find minimum of the unconstrained multivariate function. This algorithm is one of

the most widely used methods for nonlinear unconstrained optimization [Lagarias

1998]. This method attempts to find a minimum of a multivariate nonlinear scalar

function with an initial estimate and without any derivative information. It falls under

the general class of direct search methods.

3.2 Delay Reconstruction of the Phase Space

3.2.1 Phase Space

The phase space represents all possible states of the system that evolve over

time. Each point in the phase space corresponds to one possible state. The system

parameters are represented as an axis of a multidimensional space (Figure 3.2).

3.2.2 Dynamical System

A dynamical system is a model that describes the evolution of a system over

time. Theory of dynamical system attempts to understand and describe the temporal

evolution of a system, which is defined in a phase space.
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Figure 3.2: Phase Space

3.2.3 Reconstructed Phase Space

Given a time series x,

x = xn, n = 1...N, (3.3)

where n is the index and N is the total number of observations. These observations are

converted into state vectors according to Takens’ delay embedding theorem,

Xn = [xn, xn−τ , ..., xn−(d−1)τ ], (3.4)

where τ is the time delay and d is the embedding dimension [128]. This process of

delayed reconstruction is called time delay embedding. The newly formed state space

is called Reconstructed Phase Space. This newly formed space is topologically

equivalent to the original system. The time lag and embedding dimension can be

estimated using different data driven approaches.
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3.3 Gaussian Mixture Models

The Gaussian Mixture Models (GMM) is a parametric probability density

function, which is a weighted sum of M Gaussian probability density function.

p(χ, λ) =

M∑

i=1

wipi(x) =

M∑

i=1

wiN (χ, µi,Σi), (3.5)

where M is the number of mixtures,N (x;µi,Σi) is a normal distribution with mean

µi and covariance matrix Σi, and wi is the mixture weight satisfy the constraint that

∑M

i=1wi = 1. The parameters of a complete parameterized Gaussian mixture is

denoted by λ,

λ = {wi, µi,Σi} i = 1, ...,M. (3.6)

The parameters of the GMM are estimated using the

Expectation-Maximization algorithm to maximize the likelihood of the data.

3.4 Maximum Likelihood Classifier

The Bayesian maximum likelihood classifier is defined as,

p(X|ai) =
T∏

k=1

p(xk|ai), (3.7)

where p(xk|ai) is the likelihood of each point xk for each of the learned model, ai and

p(X|ai) is the likelihood of X given ai. The maximum likelihood is computed from

all the likelihood,

â = argmax
i

p(X|ai). (3.8)

3.5 Markov Model

The Markov Chain states that the present state has all the information that

could influence the evolution of the future states. The process is a probabilistic
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process. The Markov property says, given the current state, future states are

independent of the past states [48]. The Markov Model (MM) is a stochastic model

that maintains the Markov property. It has two parameters, the initial probabilities of

the states, π, and the transition probabilities between states, A.

3.6 Hidden Markov Model

The Hidden Markov Model (HMM) is a statistical MM and widely used

technique in speech recognition and face recognition. It models the generative state

sequences of a system from an observable sequence. HMM has three parameters, π,A,

and B. The first two parameters are from MM. The third parameter, B, is the

observation probability matrix.
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CHAPTER 4

INDOOR AND OUTDOOR LOCALIZATION

4.1 Introduction

Localization plays an important role in our everyday life (Figure 4.1). One of

the developed systems for identifying location is the space-based satellite navigation

Global Positioning System (GPS), which is widely used to get location and time

information for military, civil and commercial users. Other localization techniques are

based on different wireless networks such as Wi-Fi, ZigBee, and GSM. These

techniques are used to get outdoor and indoor locations. There have been numerous

location-based services (LBS) developed using GPS for the outdoor environment.

Localization is used extensively in many applications such as navigation, map

generation, complex activity recognition, patient identification, location tracking in

hospitals, child tracking, disaster management, monitoring firefighters, indoor and

outdoor navigation for humans or mobile robots, inventory control in factories,

anomaly detection, customer interest observation in supermarkets, visitors interest

observation in exhibitions, and smart houses [41] [46] [151] [61] [153]. These

localization applications help us to solve a variety of real-life problems.

GPS has a good accuracy for outdoor localization, but, it does not offer good

accuracy for indoor localization because of the unavailability and lack of reliability of

signal inside buildings. It is also expensive in terms of energy and cost. Besides GPS,

most of the other existing methods use fixed infrastructure to estimate location both

indoors and outdoors. These methods require additional cost for the infrastructure.

Also the infrastructure is stationary with respect to long-range user mobility. Hence, it

is not possible to identify the location of the user accurately and sometimes it is
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Where am I?

Figure 4.1: Localization: The Big Question. Images are taken from [28] and [109].

unavailable when users leave the service region. Some of these methods are adaptive,

and others require training each time there is a change in the environment. Some of the

approaches require additional setup time before they start working. Therefore, these

methods need to recalibrate the system every time there is a change in the environment

to improve their accuracy. Some of these techniques offer both indoor and outdoor

localization, and others offer either one.

We have seen a huge growth in the number of smartphone users in recent years.

Total shipments of smartphones in 2013 were 1004.2 million with annual growth of

38.4% percent from 2012 [134]. It reached the one billion unit mark in a single year

for the first time. Most smartphones are equipped with various wireless adapters. They

offer a range of useful sensors such as accelerometer, gyroscope, orientation sensor,

magnetometer, barometer, GPS, Wi-Fi, and near field communication (NFC) [63].

They also have substantial computational power. Therefore, the use of the smartphone

in any system eliminates the cost of additional devices and sensors.

We have worked on developing a system for localization using signal strength

of wireless technology. In our work we have focused on solving problems noted in

existing methods, include improving accuracy, eliminating infrastructure, reducing
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cost and setup time, supporting for both indoor and outdoor environment, and

enhancing mobility. We have developed a mathematical model for estimating the

location (both distance and direction) of a mobile device indoors and outdoors using

Wi-Fi. We have used our developed model to build a localization system for

smartphones (Android/iPhone). We have also implemented another approach called

the fingerprint technique, to identify smartphone location using multiple mobile and

fixed wireless routers.

4.1.1 Contributions

In this research, we present an approach to determine the location of a mobile

node using mobile and fixed wireless routers, and smartphone. Our research has the

following contributions:

• An extensive comparative survey of existing localization techniques based on

wireless technology

• A new approach to model the location of mobile nodes with received signal

strength indicator (RSSI) of wireless devices

• Easy to use, infrastructure-less, and cost effective smartphone based localization

system

• The proposed approach is ubiquitous and achieves good accuracy for both

indoor and outdoor environments

• An unobtrusive system that protects user privacy

• Comparison of localization techniques with mobile and fixed wireless node

(router).
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4.2 Related Work

There have been significant research work on indoor and outdoor localization

using wireless technology. These wireless technologies include Wi-Fi (Wireless

Fidelity, IEEE 802.11), Bluetooth (IEEE 802.15.1), ZigBee (IEEE 802.15.4), GSM

(Global System for Mobile Communications), WiMAX (Worldwide Interoperability

for Microwave Access, IEEE 802.16), and RFID (Radio Frequency Identification)

[63] [25] [85] [50] [117] [119] [143] [59]. These wireless technologies have been

used with a number of different methods to estimate the location of the wireless

device. There are several methods for estimating positioning using wireless

technologies. There are three types of measurements mainly used in these techniques,

a) Angle of Arrival (AOA) [85] b) Time of Arrival (TOA) and Time Difference of

Arrival (TDOA) and c) Received Signal Strength Indicators (RSSI) [37]. Each of

these parameters has advantages and disadvantages. In contrast with AOA and

TOA/TDOA, measuring the RSSI value is simple. It is the measurement of the power

of received wireless signal from the remote device, available in all existing wireless

systems. Therefore RSSI based methods are preferable and easy to implement.

We can consider RSSI value as a function of distance from the source. RSSI

value changes (even if the source and destination devices remain in the same position)

for a number of reasons such as propagation losses, complex indoor layout, the

orientation of the source and receiver, line of sight (LOS) requirement, and

environmental changes. The key complexity here is that the wireless signals in an

indoor environment suffer from interference and attenuation from multipath fading,

reflection, channel fading, deflection, and diffraction. Due to the unpredictable

behavior of this signal strength reading, estimating location with a low error rate is a

challenging task.

In the last few years, researchers have proposed, simulated, and implemented
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many algorithms and techniques on localization using RSSI values and propagation

time of wireless devices. Some of these methods are: a) Log distance path loss model

[41] [151] [16], b) Trilateration [153] [10] [119], c) Multilateration [77], d)

Fingerprint method [63] [120] [39], e) Centroid algorithm, f) Weighted Centroid

algorithm [24] [7] [68], g) Maximum likelihood estimation (MLE) [12] [50] [68],

h) K-nearest neighbors method [30] [117] [7], i) Kalman filter [41] [86], j) Particle

filtering algorithm [7] [86], k) Min-Max [50] [154], l) Hidden Markov Model [57],

m) Bayesian Method [120] [52], n) Artificial Neural Network [117], o) Principal

Component Analysis [145] and p) Gaussian model [133] [153] [120]. Almost all of

the methods use the RSSI value, a number of reference or anchor nodes (Access Point

or APs), and a fingerprint map or RSSI database for the location estimation. The

application of these localization techniques has a wide range of areas, including: a)

indoor positioning [41] [61] [117], b) tracking moving objects [46] [151] [119]

[86], c) navigation [51], d) monitoring firefighters [154], e) child tracking [143]

[23], f) location based services [130], g) safety application in industrial automation

[40], h) anomaly detection in wireless sensor network [142], i) locating underground

miners [68], j) tracking and navigation of mobile robots [18] [51] [76], k) distance

measurement [37] [133].

We have conducted an extensive survey of localization techniques in wireless

technologies that use RSSI as a parameter to estimate location. We have tabulated a

summary of these localization approaches in Table 4.1. It includes localization

technique, algorithms or methods considered, parameters used, application of the

approach, error, accuracy, and type of the experiment. The accuracy of the presented

approaches varies with an approximate error between 1 meter and 5 meters.
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Table 4.1: Comparison of Different Localization Approaches.

Work Area Location Algorithm Parameters Application Error Experiment

[41] WSN Indoor
Path Loss Model,

Kalman Filter

RSSI, Beacon

node
Indoor positioning 4.85m Real-time

[46] WSN Indoor MAP criterion

RSSI, Anchor

node, Close

proximity, Line of

Sight (LOS)

Tracking moving

object in close

proximity for medical

application

Mean 0.7cm,

Std Dev 4cm
Real-time

[151] ZigBee
Not

specified

Gaussian model,

Log path loss

model,

Optimization

algorithm

RSSI, Reference

Node

Tracking multiple

mobile robot
3.38m to 5.1m

Simulation in

Matlab

[61] ZigBee
Not

specified

Log path loss

model, Antenna

polarization

RSSI, Reference

Node,

Accelerometer

Location

identification
1.5m Real-time

[153] ZigBee Outdoor
Gaussian model,

Trilateration

RSSI, Beacon

node
Localization 1 to 5 m Real-time

[63] GSM
Not

specified

Probabilistic

fingerprint

localization

technique

RSSI, Cell

information

database

GSM positioning

system

Improved

accuracy

23.8% and

86.4%

Real-time

[25] WLAN Indoor Radio Map
RSSI, Reference

Node
Position detection

Accuracy:

32%-47% to

find exact

room

Real-time

[57] WLAN Indoor

Hidden Markov

Model (HMM),

Viterbi algorithm

RSSI, Reference

APs

People location

system
50% Real-time
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Table 4.1: Comparison of Different Localization Approaches.

Work Area Location Algorithm Parameters Application Error Experiment

[85] WiMAX Outdoor
Matrix Pencil for

AOA
AOA, RSSI

2D multi-user

location system

¡10m in 1Km

range
Simulation in

WiBro

[37] WSN

Indoor,

Line of

sight

Adaptive

Neural-Fuzzy,

Inference System

RSSI, 3 Beacons Distance measure 2m mean Real-time

[133] WLAN Indoor
Hop count based

localization
RSSI Distance measure NA Real-time

[30]

WLAN

en-

abled

Smart

phone

Indoor

K-Nearest

neighbors,

Nearest neighbors

Mean, Linear

Discriminant

Analysis,

Quadratic

Discriminant

Analysis

RSS, Reference

APs
LBSs

Accuracy:

KNN 62%

NMM 58%

LDA 53%

QDA 56%

Real-time

[18] WLAN Indoor

Signal Strength

Map, Monte Carlo

Localization,

Particle Filter

RSS, Reference

APs

Localization of an

indoor mobile robot

on a map

Mean error

0.7m
Real-time

[83] WLAN Indoor
FBCM-

Refinement

RSSI, Reference

APs

Localization-based

multimedia guide
1.3m Real-time

[120] WLAN Indoor

Fingerprint map,

Nearest

neighbors,

Gaussian Method,

Bayesian Method

RSSI, Reference

APs
WSN

Error is less

than 4m 90%

of the time

Real-time
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Table 4.1: Comparison of Different Localization Approaches.

Work Area Location Algorithm Parameters Application Error Experiment

[10] WLAN
Not

specified
Triangulation

method

RSSI, Reference

Node
Qos Error 5m Real-time

[12] WSN Indoor

Maximum

likelihood,

Outline Rejection
RSSI WSN ZigBee

Improves

performance

by 45%
Real-time

[50] ZigBee Indoor
Trilateration,

Min-Max, MLE

RSSI, Reference

APs
ZigBee

Mean error:

3.8, 12.21

4.79m

respectively

Real-time

[52]
WLAN,

PDA
Indoor

Fingerprint

database,

Euclidian

distance,

Delaunay-

Triangulation,

Bayesian

Theorem

RSSI, Reference

Node
WSN

Mean error:

2.91, 2.33,

2.00m

respectively

Real-time

[16] ZigBee Indoor

Log distance path

loss model,

Global virtual

calibration,

Pre-wall virtual

calibration,

Ad-hoc

calibration

RSSI, Anchor

Node
WSN Error 1.5m Real-time

[36] ZigBee
Outdoor,

Indoor

Log distance path

loss

RSSI, Reference

Node
WSN

40%reduced

error
Real-time
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Table 4.1: Comparison of Different Localization Approaches.

Work Area Location Algorithm Parameters Application Error Experiment

[51] ZigBee Outdoor

Probability torus,

Sequence based

localization

RSSI, N Beacon

node

Path driven by a robot

in a map
0.95m to

2.17m
Real-time

[117] RFID Indoor

K-Nearest

neighbors, ANN

(MLP)

RSSI, Beacon

Node
Indoor localization 83% Real-time

[154] ZigBee Indoor Min-Max
RSSI, Anchor

Node

monitoring

firefighters
5m mean Real-time

[119] RFID Outdoor
Trilateral, Path

loss model
RSSI, Beacons

Track and monitor

object in university

area

6.7m
Simulation in

Matlab

[143]

GPS,

Blue-

tooth

Outdoor

Approximation of

distance from

RSSI [Y = -13.3

ln(x) - 47]

GPS, RSSI Child tracking Not specified Real-time

[24] WSN
Not

specified

Weighted

Centroid

algorithm

RSSI, Beacon

Node

Target localization

and tracking
RMSE less

than 3m
Simulation

[91] WLAN Indoor
Dominant AP’s

algorithm
RSSI, Reference

Node

Location Based

Services
Mean 3m Real-time

[130] WSN
Not

specified

Log distance path

loss model,

Lateration

estimation

RSSI, Reference

Node

Anomaly Detection

for WSN
Not specified Simulation

[142] WLAN Indoor

K-nearest

neighbors,

Particle filter,

Map filtering

RSSI, Anchor

Node
WLAN

Mean 1.98m,

Std Dev.

1.39m

Real-time
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Table 4.1: Comparison of Different Localization Approaches.

Work Area Location Algorithm Parameters Application Error Experiment

[7] WSN Indoor

Log distance path

loss model,

Weighted

Centroid

RSSI, Anchor

Node
ZigBee Not specified Real-time

[40] WSN Indoor

Antenna Diversity

and Plausibility

Filter

RSSI, Reference

Node

WSN, Safety in

Industrial Automation
1 to 2.56m Real-time

[86] RFID
Not

specified

Unscented

Kalman and

Particle Filter

RSSI, Reference

Node
Tracking object

2.2m for PF

and 7.19m for

UKF

Real-time

[68] WSN
Under

ground

Weighted

minimum

variance Centroid

MLE

RSSI, Reference

Node

ZigBee, Locate

underground miners,

vehicles and detect

temperature

Location

20.5%

distance

33.8%

Real-time

[23] ZigBee Outdoor

Piecewise linear

path loss model,

Min-Max

RSSI, Static Node
Park lighting control,

Child tracking
RMS 3.5228 Real-time

[76] WSN
Not

specified
RSSI formation

control

RSSI, Beacon

Node
Control mobile robot Not specified Simulation

[84] RFID
Indoor,

Outdoor

Enhancement

algorithm
RSSI, Reference

Node

Tracking user

location
Mean 2.8m Real-time

[77] WLAN Indoor

Multilateration

with RSSI

linearization

RSSI, Reference

Node
WSN

15.99m in an

50x50m area
Simulation

[39] WLAN Indoor

Time-Space

Sampling Mobile

device calibration

RSSI, Fingerprint

database
Not specified Not applicable Not applicable
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Table 4.1: Comparison of Different Localization Approaches.

Work Area Location Algorithm Parameters Application Error Experiment

[110]
WLAN,

RFID
Indoor

Hybrid Schema

for localization

enhancement

RFID tag, WLAN WSN 4.2m Simulation

[145] WLAN Indoor

Adaptive

Neuro-Fuzzy

Interference

System, Principal

Component

Analysis

RSSI, Reference

Node
WSN

Max error

5.13m, Min

error 0.25m

Real-time

[149] RFID Indoor Radio Map
RSS, Reference

Node

Indoor Localization,

Improved and

automate radio map

construction

Not applicable Real-time

[59] WLAN
Indoor,

Outdoor
jinifMap

RSSI, Reference

APs

Content services with

location-aware

functionality

Hospital

3-5m,

University

10-15m

Real-time
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Smartphone

RSSI

WiFly Mobile Node

Figure 4.2: Proposed Localization Approach

4.3 Our Approach

We have performed two experiments with wireless device and smartphone. In

the first experiment, we tried to locate a mobile Wi-Fi node using a smartphone. We

have developed a mathematical model for distance and direction estimation using

RSSI value. In the second experiment, we estimated the location of a smartphone

using fixed and mobile wireless nodes (routers). Both approaches are described in the

following subsections with experimental details and results.

4.3.1 Localization of Mobile Wi-Fi Node with Smartphone

In this approach, we used the RSSI value of a wireless network as the

parameter to estimate the location (distance and direction) of a mobile wireless node

using a Smartphone (Figure 4.2). First, we collected RSSI values for different

distances. Data were collected for both indoor and outdoor environments. We then

used a low pass filtering method to eliminate noise in collected RSSI, which is caused

by various environmental factors. This filtering improves the usability and

acceptability of the RSSI value as a parameter to estimate distance and direction. In

our experiment, we used Roving Networks (now Microchip) WiFly RN-131GSX [2]

as a mobile Wi-Fi router. It has the capability to create a Wi-Fi ad hoc network and

also connect as a client. This battery powered device is very small and light weight.

We developed an application for data collection in Android and iOS. We

recorded RSSI values of the mobile node for both indoor and outdoor environments
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using Android and iPhone application. These measurements were taken at distances of

10 feet to 80 feet between the smartphone and mobile Wi-Fi node. We stored the pair

(distance, RSSI) for all the distinct locations with 2 feet intervals. We also computed

the direction, θ, which is the angle between the device and true north, for each

collected RSSI value. We used the accelerometer and magnetometer sensors of the

smartphone to compute direction from true north. Then we used the following

mathematical model to predict the distance and direction of the mobile Wi-Fi node

from the smartphone.

Mathematical Model

We used the result from a separate experiment (RSSI value, and orientation of

smartphone and wireless node) to build the mathematical model. From the

experimental results, we saw that the RSSI value varies with the orientation of the

mobile device and Wi-Fi node. To normalize the orientation effect we collected RSSI

value, rssi while rotating the smartphone by 360 degrees on the horizontal plane

(Equation 4.1). The phone was placed on the hand palm and faced upward.

rssi = {rssi0, rssi1, rssi2, ..., rssin} for 0 ≤ θ ≤ 360. (4.1)

Then we computed the mean value of the collected RSSI values, and stored

mean RSSI value and the corresponding distance, d pair for all the distances (Equation

4.2).

(d, rssimean) where rssimean =
1

n

n∑

j=0

rssij for 0 ≤ θ ≤ 360. (4.2)

We found that rotation of the smartphone reduces the orientation effect on the

RSSI value. We also found that the RSSI value is strongest, when the smartphone

orientation points towards the Wi-Fi node (Line of Sight). Based on this result and
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Figure 4.3: Localization of Mobile Wi-Fi Node (Router) with Smartphone.

Figure 4.4: Distribution of RSSI Values Over Distance
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observation, we computed the direction as the angle from the true north, for which we

get the strongest (maximum RSSI value) wireless signal (Equations 4.3 and 4.4). The

overall approach is shown in Figure 4.3.

rssimax = {rssij | rssij > ∀
i∈j
i!=jrssii}. (4.3)

direction = {θi | rssimax = rssii, current direction is θi}. (4.4)

We used filtered (low pass filter) accelerometer sensor and magnetometer

sensor data to compute the heading of the smartphone. At the same time, we collected

RSSI from the mobile node for each degree rotation. Then we used the mathematical

model to the predict distance and direction of the mobile node from the smartphone.

The distribution of the RSSI values over distances is shown in Figure 4.4.
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Figure 4.5: Exponential Regression for Outdoor Environment with Android Smart-

phone

We used exponential regression on distance and RSSI pairs using Nelder-Mead
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Figure 4.6: Exponential Regression for Indoor Environment with iPhone

Simplex Search method [102] [79]. As RSSI values vary with different vendors, we

collected four different sets of data and used four separate regressions for the indoor

and outdoor environments with Android and iPhone. We show the regression (RSSI

vs. distance) for outdoor environment on Android in Figure 4.5 for distance 3 meters

to 18 meters and for indoor environment on iPhone in Figure 4.6 for distance 10 feet

to 20 feet. We plot both true value and exponential estimation. We have used negative

value of RSSI to plot graph and find exponential equation.

Result

The exponential regression function was then used to estimate location from

observed RSSI. We developed a working prototype on the smartphone (both Android

and iPhone) using this model. We then computed the accuracy of both Android and

iPhone systems for indoor and outdoor environments. We considered the distance from

10 feet to 80 feet (3 meters to 24 meters). The result is presented in Table 4.2. We also

developed two different tools for data collection and location estimation.
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Table 4.2: Accuracy of the Systems for Different Environment (Mobile)

Environment System Error (meters) Accuracy

Indoor
Android <2.0 85%

iPhone <2.5 80%

Outdoor
Android <1.5 90%

iPhone <1.8 90%

Figure 4.7: Floor Map of the Test Bed at UbiComp Lab, Marquette University

4.3.2 Localization of Smartphone with Wi-Fi Routers

In this approach, we tried to locate the user with a smartphone within a single,

open spaced room using the previously observed RSSI values. We did the experiment

in the UbiComp Lab, Marquette University (MU) 4.7. Here we imposed six different

points (12 grids) inside the room. Then we placed three WiFly RN-131GSX in three

separate locations. We also used the publicly available three MU Wireless routers for

our experiment. The details of the experimental setup are shown in Figure 4.7. The

dimensions of the UbiComp Lab are 31.6 feet by 24.8 feet. We used 12 equally spaced
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grids in this experiment.

We collected RSSI vectors (1 x 3) for each of the six points for both WiFly

routers and MU Wireless routers. We developed a tool for Android to collect data from

the wireless routers. Data collection frequency was 9-10 Hz. We collected 1000

samples for approximately 1.7 minutes. We then generated a histogram and computed

cumulative mean of the collected RSSI samples. Histograms and cumulative means for

four points (point 1, point 2, point 3, and point 6) are shown in Figure 4.8, Figure 4.9,

Figure 4.10, and Figure 4.11 . All the cumulative means converge to certain values

over time. We can see that, in almost all of the cases (Figure 4.9, Figure 4.10, and

Figure 4.11) the cumulative mean value converges to the mean value at around 300

samples. Therefore we decided to collect at least 300 samples during the test phase.

We created the RSSI signatures using the mean value of collected RSSI samples.
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Figure 4.8: Histogram and Cumulative Mean of WiFly Tag 1 at Point 1.

We did the same experiment using three publicly available MU Wireless

routers and generated the cumulative mean and histogram from RSSI samples. Like

the previous experiment, using the mean RSSI of collected samples, we created RSSI

signatures for each point. This signature will be compared to the observed RSSI vector

during the test phase. The signature of six different points for both routers is shown in

Figure 4.12 and Figure 4.13. From these two figures, we can see the difference

(distance) between the signatures of these six different points. We used this property



39

RSSI Values
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Figure 4.9: Histogram and Cumulative Mean of WiFly Tag 2 at Point 3.
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Figure 4.10: Histogram and Cumulative Mean of WiFly Tag 2 at Point 4.

(distance) to distinguish the points and predict location from observed RSSI values.

We have RSSI values, computed means and then used previously observed

RSSI signatures to predict location during the test phase. We developed a tool for

Android to predict locations. We predicted six different points using both WiFly and

MU Wireless routers. The result of both experiments is presented in Table 4.3. We

show actual locations and predicted locations for both WiFly RN 131 GSX and MU

Wireless routers.

4.4 Evaluation

We have evaluated our system by implementing these approaches in three

different scenarios.
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Figure 4.11: Histogram and Cumulative Mean of WiFly Tag 2 at Point 6.
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Figure 4.12: Observed RSSI Signatures of 6 Points using 3 WiFly for Two Different

Dataset

4.4.1 Scenario 1

We developed an asset/object tracking system for smartphones using the first

approach. Here the mobile node (WiFly) was integrated with the asset (target object)

to be tracked. Then we developed two separate applications on Android and iOS for

the smartphone to track the distance and direction of the mobile node (tracked asset).

The application can find the location (distance and direction) of the mobile node. It

can also trigger an alarm (paging sound) in the tracked asset so that a user can locate it

using the sound. The applications also allow the user to activate a ”leash” function to

keep track of the distance of the asset from the smartphone. Once the tracked asset is
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Figure 4.13: Observed RSSI signatures of 6 Points using 3 WiFly for Two Different

Dataset

out of the preset perimeter (set by the user), the application triggers an alarm in the

smartphone to notify its user. We used the open-source electronics prototyping

platform ”Arduino-Mini” to power our developed system. We programmed the

Arduino to operate continuous monitoring of WiFly shield and maintain

communication with Android and iOS devices. The asset tracker (tracked device and

iOS application) is shown in Figure 4.14. The Arduino hosts WiFly, buzzer, and LEDs

and communicates with smartphone application through WiFly.

4.4.2 Scenario 2

We also evaluated our localization technique in complex activity recognition

(sleeping, eating, watching TV, washing dishes, taking a shower). We have

implemented our system inside an apartment to find the location of the user with

respect to different rooms and anchors (bedroom, kitchen, dining, living room, lawn,

couch, sink). In this approach, we used time and location parameters as input to the

system. We also considered other parameters that influence human activity to create a

vector of attributes. Then we trained our system by collecting these parameters for

different complex activities. We observed from the experiment that the correct location
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Table 4.3: Accuracy of the System for Different Environments (Fixed)

Wireless Router Actual Location Computed Location

WiFly RN-131 GSX

Point 1 Point 1(100%)

Point 2 Point 1(100%)

Point 3 Point 1(100%)

Point 4
Point 4(90%)

Point 1 (10%)

Point 5
Point 4(70%)

Point 6 (30%)

Point 6
Point 6(80%)

Point 4 (20%)

MU Wireless Access Point

Point 1
Point 1(70%)

Point 5 (30%)

Point 2

Point 3(40%)

Point 1 (30%)

Point 5 (30%)

Point 3 Point 3(100%)

Point 4
Point 4(70%)

Point 6 (30%)

Point 5
Point 5(80%)

Point 1 (20%)

Point 6
Point 6(80%)

Point 5 (20%)

of the user tells us more about the ongoing complex activities. The errors in the

location led us to predict wrong complex activity. Therefore localization plays an

important role in this application.

4.4.3 Scenario 3

We are also evaluating our localization system in a crowded place where

people might get lost. The Hajj is the fifth pillar of Islam and an annual Islamic

pilgrimage of Muslims to Mecca. Hajj is a one-time mandatory religious duty for
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(a) Tracker Module (b) Tracker Application

Figure 4.14: Asset Tracker Module and iOS application

Muslims who are physically and financially capable of undertaking the pilgrimage

[31] [105]. It is considered to be the largest annual gathering in the world. More than

3 million people performed the Hajj in 2012 [1]. As pilgrims, in a new and crowded

area, it is very easy to get lost. Every year there have been report of lost pilgrims,

mostly elderly, despite placement of clear signs [105]. We have started working on

building a system using the technique described that could be used by millions of users

in Mecca during Hajj. The key motivation here is to assist pilgrims to find a place,

their companions, or the hotel where they reside. It will also help emergency teams to

find lost pilgrims. The system will feature several services including, 1) pilgrim’s

current location, 2) location of pilgrim’s companion, 3) emergency response, 4)

location tracking, and 5) indoor mapping. The location will be estimated based on the
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available resources (Wi-Fi, GPS, or Kinematic sensors) shown in Figure 4.15. We are

also working on developing a computational model for step-by-step navigation using

Wi-Fi signals and inertial sensor (accelerometer, gyroscope) fusion.

Figure 4.15: Location Estimation based on Available Resources.

4.5 Discussion

The goal of this research is to design and develop an infrastructure-less

intelligent ubiquitous localization system, which will able to detect the location of the

user both indoors and outdoors with a high accuracy using wireless technology. In our

first approach, we performed an experiment to find the location of a mobile node with

a smartphone. We achieved good accuracy without using any infrastructure. We found

that we were able to predict user locations with an error less than 2 meters in Android

and in less than 2.5 meters in iPhone for both indoor and outdoor environments. We

achieved even better accuracy (less than 1.5 meters for Android and less than 1.8

meters for iPhone) for outdoor environments only. Thus the proposed approach works

slightly better in the outdoor environments than in indoors. We think this is because of

the complex indoor layout and presence of different household goods. From Table
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4.1, we can see most of the approaches use infrastructure to achieve this level of

accuracy (errors are between 1 meter and 5 meters). We were able to achieve the same

accuracy without using any trilateration or reference nodes. This reduces the cost and

complexity of the system. Another advantage of this system is that it can be used in

both indoor and outdoor environments.

We did the experiment in real-time to test the performance of the system. We

also evaluated our localization approach. We used the first approach to design and

develop an object/asset tracking system (for both Android and iPhone). We used our

second method in an activity recognition system. To localize a smartphone with a

wireless router we achieved 80% accuracy for 5 out of 6 different locations with MU

Wireless routers. However, we have low accuracy (30% to 40%) for mobile nodes or

WiFly routers. We decided to use fixed routers (like MU Wireless routers) to find

different anchors (rooms and locations of objects like couch and sink) inside buildings

and apartments.

Though we achieved a good accuracy in the first experiment, we achieved less

accuracy in the second experiment. We achieved better accuracy with a fixed wireless

router than with a mobile wireless router in the second experiment. We think that a

battery powered mobile wireless router is more vulnerable to the environment, which

influences RSSI by a large factor. We also think that modeling RSSI with the

orientation and environmental changes will be helpful for better prediction. Also,

automatic map generation using smartphones will be helpful for better navigation and

will require less setup time.

4.6 Conclusion

We achieved a good localization accuracy (compared to the approach presented

in Table 4.1) for the first approach without using any infrastructure. We also evaluated

our proposed system using the implementation in two different applications. Use of

kinematic sensors of smartphone with this approach can be used to develop indoor and



46

outdoor navigation systems. We plan to work on the second approach to improve the

accuracy with both fixed and mobile nodes. We think the inclusion of publicly

available parameters (like cellular network information, nearby wireless devices) in the

system, which is available within the range, can accelerate accuracy of the system.

Creation of an RSSI map database considering orientation and environmental changes

will be helpful for the fingerprint approach. We are working on tracking specific users

in a highly crowded area where GPS signal may be weak or even unavailable. We are

also working on a group-tracking mechanism that can be applied when a group

member appears to get lost in a crowded area. Other members of the team will be

immediately notified and receive an estimation of the missing member’s location. We

will integrate inertial sensor data with this localization technique, to develop a

mathematical model and build a system for both outdoor and indoor localization. This

system will be used by millions of users in Mecca, where there have been thousands of

reported cases of pilgrims getting lost during Hajj, the annual Islamic pilgrimage.
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CHAPTER 5

SIMPLE HUMAN ACTIVITY RECOGNITION

5.1 Introduction

Human activity recognition is important in many research areas such as

pervasive computing, machine learning, artificial intelligence, human computer

interaction, medicine, rehabilitation engineering, assistive technology, social

networking, and the social sciences [121], [125], [81]. Substantial research has been

conducted to recognize human activities. One of the most significant and challenging

tasks for pervasive computing systems is to offer correct and appropriate intelligence

about peoples activities and behaviors [81]. Activity recognition systems are being

used extensively to monitor elderly people with dementia and people in rehabilitation

[94]. The functional status of a person is an important parameter in the area of assisted

living and elderly care. This status is described mainly by the activity of daily living

(ADL) [60]. Also, it can be used to offer context-aware services to the smartphone

users like suitable application selections and content recommendation [87].

In everyday life, we perform numerous activities that occur both indoors and

outdoors [90]. We categorize these activities into two classes. The first class is simple

full body motor activity, and the second class is complex functional activity [33].

Simple activities include walking, running, standing, sitting, lying, climbing upstairs

or downstairs, and jumping. Complex activities include brushing teeth, taking a

shower, cooking, washing dishes, driving, watching TV, reading a book, playing

tennis, and swimming [81]. Humans can easily distinguish activities by observing

them, but creating an automatic system to identify a particular activity from a large set

of human activities is a challenging task [75].
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We used smartphones to capture these activities. They offer a range of useful

sensors such as accelerometers, gyroscopes, orientation sensors, magnetometers,

barometers, GPS, Wi-Fi, fingerprint, and near field communication (NFC) [150].

Smartphones also have substantial computational power. Hence, use of the smartphone

in the human activity recognition system eliminates the cost of additional devices and

sensors [80]. Most smartphones have built in tri-axial accelerometer sensors, which

measure acceleration along the x, y and z-axes. The key challenge is to use the

accelerometer sensors to model full body human motor activities. In this chapter, we

present a smartphone based human activity recognition system using Gaussian mixture

models (GMM) of reconstructed phase spaces (RPS). Our approach uses raw

accelerometer sensor data from one single axis to recognize 11 different activities

including walking, walking upstairs and downstairs, running, standing, and sitting. We

investigated the use of dynamical system and chaos theory to capture and then

recognize the underlying dynamics of different human activities.

We evaluated our proposed system using two datasets (collected dataset and a

publicly available dataset) of acceleration measurements of 11 activities. We collected

accelerometer data for 10 different activities. The activities were performed by ten

different participants who carried a smartphone in their pocket. We collected another

dataset from UCI Machine Learning repository. It has accelerometer and gyroscope

data for 6 activities performed by 30 participants. Both datasets were divided into

training and testing sets. The training dataset was only used to train the system, while

test datasets were used to test the accuracy.

We implemented our system in two different case studies. One case study took

place in a rehabilitation clinic for remote monitoring, where the patients daily

activities are reported to a cloud server from their smartphone. Physicians could access

and assess patients activities based on the assigned task and daily routine. The other

case study took place in the Hajj, the fifth pillar of Islam, an annual pilgrimage of



50

muslims to Makkah, Saudi Arabia [27]. The purpose was to track pilgrims’ location

based on their activities when they get lost.

The summary of the contributions of this research include:

• Use of time-delay embedding or reconstructed phase space to capture underlying

dynamics of the human body motion for different activities from smartphone

accelerometer

• Statistical learner that learns the underlying dynamics of the human activities

and maximum likelihood classifier to recognize those activities

• An alternative approach to widely used machine learning techniques to

recognize human activities from kinematics sensors (specifically accelerometer)

• Activity recognition system with a very good accuracy across 11 activities

• Computationally inexpensive approach to activity recognition by using only one

accelerometer axis

• Evaluation of the approach using collected dataset and publicly available human

activity dataset

• Deployment of the system in two different case studies: Daily activity

monitoring of patients in a rehabilitation clinic, and 2) 1) Location tracking of

pilgrims using their activity information

• Published collected human activity dataset on public domain to enhance

research in this area

This chapter is organized as follows. The related research is discussed in

section 5.2. The background is discussed in section 5.3. The data collection process is

presented in section 5.4. The method is discussed in section 5.5. The details of the

experiments including training, testing, and results are discussed in section 5.6. The
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contributions are discussed in section 5.7. Finally the conclusions are presented in

section 5.8.

5.2 Related Research

There has been extensive research focused on automated machine recognition

of human activity [90], [6], [146], [147], [132] [74] [139]. Use of computer vision

has been one approach [6]. Computer vision approaches implement automatic human

activity recognition from a sequence of images or videos where activities are

performed by one or more persons. Other research has used environmental sensors like

the sound sensor on the floor, the light sensor in the room, radio frequency

identification (RFID) as a door tag or wearable kinematic sensors like the

accelerometer, and the gyroscope by placing them on different parts of the body [96],

[132], [15], [113] [123]. The wearable device based systems are very expensive.

These systems lack applicability on mobile devices due to high computational cost and

excessive energy consumption. Therefore, there is a need for special attention to

energy consumption and computational cost when designing systems to recognize

human activities using mobile devices [94]. One of the disadvantages of the wearable

activity recognition system is that the may users face discomfort using the wearable

devices. There is a risk of losing and forgetting the devices [94].

An alternative approach leverages the increasingly ubiquitous smartphone.

Compared to computer vision or wearable sensor approaches, smartphones offer many

advantages. Smartphones do not require additional infrastructure, are unobtrusive, and

have good and rapidly increasing computational power [33], [21], [53], [152]. Most

smartphone based approaches have focused on recognizing simple human activities

such as walking, running, standing, walking up stairs, walking down stairs, sitting, and

climbing. Some researchers also considered recognition of more complex functional

activities like brushing teeth, cleaning dishes, and vacuuming the floor [81]. The

overview of the smartphone based human activity recognition system is shown in
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Figure 5.1: Overview of the Smartphone-based Human Activity Recognition System

Figure 5.1 [125]. Different activity signals are collected from the smartphone sensors.

The signals are then processed to train a human activity recognition system and tested

to recognize different activities. The approaches vary based on data preprocessing,

number and type of sensors, mathematical models, and implementations. These

systems output the classified human activities.

There has been a widespread use of machine learning techniques in wearable

and smartphone based human activity recognition. One of the most common

approaches is to extract statistical and structural features ( time-domain features:

mean, standard deviation, maximum, minimum, correlation [125] [93], [78],

frequency-domain features: Fourier transform [15], Discrete Cosine transform [8],

and principal component analysis (PCA) [55]) from raw sensor data and then to use

classification algorithms like logistic regression [78], multilayer perceptron [17],

support vector machine (SVM) [55], [71], decision tree [67], k-nearest neighbors

[96], naive Bayes [131], hidden markov model (HMM) [155] [125], [81] [11]

[113]. Gaussian mixture models have also been used to model human activities [124],

[111]. Most of these approaches require extensive computation to extract feature, train

model, and recognize activity class. It increases power consumption on mobile and

wearable devices, which limits the long-run activity recognition [146]. The memory

and computational complexity of the activity recognition system depends on the

number of sensors, sampling frequency, number of extracted features, size of the
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activity cycle, and mathematical model [81]. Yan discussed the effect of the sampling

frequency and classification features on energy consumption [146]. We discussed the

number of sensor, sampling frequency, and size of the activity cycle used in different

studies in the following subsection.

The activity cycle is a set of time series observations (sensor data) that contains

a complete execution of an activity pattern. The system wont be able to determine the

performed activity if the time series observation does not contain a complete activity

cycle [94]. There are different strategies to select this window or segment so that it

contains necessary time series observation [15] [33]. Kwapisz used a 10 second

window (comprises of 200 samples) from cell phone accelerometer at a sampling

frequency of 20 Hz [78]. The authors argued that it was an adequate amount of time to

capture several repetitions of the performed activities. They performed their

experiment with 10 and 20 second windows and found the 10 second segment

produced a better outcome. Reiss used a 5 second window at a sampling frequency of

100 Hz from three body mounted sensors (mounted to the dominant arm, chest, and

foot) [115]. Lee used a smartphone accelerometer signal window of 5 seconds (60

samples) [87]. In some research work, the activity window included some percentage

overlap of the immediate neighboring activity window [15] [60] [65]. Bao used a

window of 512 samples (6.7 seconds of data) with 50% overlap to extract time and

frequency domain features from 5 body mounted bi-axial accelerometer sensors [15].

Ravi used a single tri-axial accelerometer (worn near pelvic region) to form an activity

window of 256 samples (5.12 seconds of data) with 50% overlap at a sampling

frequency of 50 Hz [113]. Hong also extracted features from a 256 sample window

overlapped with 128 samples (50% overlap) [60]. Inoue recognized real nursing

activities for a whole day by extracting features from a window of 5 seconds,

overlapping every 2.5 seconds [65].

Most of the existing research has focused on generalized activity recognition
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model to recognize unseen activities [78] [21]. Lockharty and Weiss discussed the

impact of personalized model and generalized model in smartphone-based activity

recognition [140]. They also discussed the benefits of the personalized or

individualized activity recognition models [92]. They showed that the personalized

models performed better than generalized models. The generalized models were

unable to classify activities with good accuracy. They experimented with six activities

(walk, jog, stair, sit, stand, and lie) using widely used classification algorithms

(decision tree, random forest, instance-based learning, neural networks, naive Bayes

and logistic regression). The participant carried the android smartphone in their

pocket. The 3 axes accelerometer sensor data were used to extract 43 statistical

features. The personal model showed an average accuracy of 97% compared to the

average accuracy of the hybrid model of 88%, whereas their combination provided

even lower average accuracy of 70%. They showed that in order to improve the

accuracy of the generalized models, it is better to get data from more users than to

obtain more data from the same set of users.

There has been some work using dynamical system theory and chaos theory

along with machine learning techniques. Frank et al. used a wearable device (Intel

mobile sensing platform (MSP) [26] ) that contained a tri-axial accelerometer and a

biometric pressure sensor [71]. The device was clipped onto a belt at the side of the

hip. They used three axes acceleration to form a single measure of magnitude. The

series of acceleration magnitude were used to reconstruct phase space. They used

principle component analysis (PCA) to extract features (9 largest eigenvalues) from

the phase space. These 9 features along with gradient of biometric pressure were used

to train and test a Support vector Machine (SVM) for 5 activities performed by 6

participants. They achieved an accuracy of 85%. Kawsar developed an activity

recognition system using accelerometer and gyroscope sensor data from the

smartphone, and pressure sensor data from the shoe [73]. They used decision tree,
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Shapelet based classification [148] and time-delay embedding based classification.

The experiments were performed using only 4 activities (running, walking, sitting, and

standing). They achieved 88.64% classification accuracy using the Shapelet based

classification with pressure sensor data from the left shoe which took 3.3 seconds. This

is a very expensive system with respect to time. They achieved 100% classification

accuracy using the time-delay embedding with one pressure sensor data from the left

shoe. They did not include the number of participants in the study, which has

significant impact on the classification accuracy. Also, they did not perform their

experiment with the other widely tested activities like walking upstairs and walking

downstairs. Most of the existing approaches have lower accuracy in differentiating

between these two activities and the walking activity [62] [15] [81]. In our approach,

we used only one-axis acceleration from the smartphone to capture underlying

dynamics of the activities by reconstructing the phase space. We learned Gaussian

mixture models from underlying dynamics to classify 11 activities performed by 40

participants placing the smartphone in two different body positions.

5.3 Background

A dynamical system is a model that describes the evolution of a system over

time. It describes the temporal evolution of a system to capture the system’s dynamics.

A phase space represents all possible states of the system that evolve over time. The

dynamics is the map that describes how the system evolves. Theory of dynamical

systems attempts to understand and describe the temporal evolution of a system, which

is defined in a phase space.

5.3.1 Reconstructed Phase Space

We use the representational capability of RPS to capture the underlying

dynamics of the system from time series observations (accelerometer sensor data). The
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RPS is topologically equivalent to the original system [128]. Given a time series x,

x = xn, n = 1...N, (5.1)

where n is the index and N is the total number of observations. We observe a sequence

of scalar measurements in a time series that depends on the state of the system. We

convert these observations into state vectors. These vectors are formed according to

Takens delay embedding theorem,

Xn = [xn, xn−τ , ..., xn−(d−1)τ ], (5.2)

where τ is the time delay and d is the embedding dimension [128], [141], [122]. This

time-delay embedding reconstructs the state and dynamics of the unknown system

from the observed measurements. This time delayed embedding of the time series is

called the reconstructed phase space. The reconstructed space is topologically

equivalent to the original system. It preserves the dynamics of the underlying

dynamical system if certain assumptions are made. The embedding dimension d needs

to be greater than twice the box counting dimension of the original system [112]. For

most of the system where d is unknown, d is estimated using the false nearest-neighbor

technique. The dimension of the RPS can be reduced using appropriate selection of the

time lag. Though embedding theorems say nothing about the time lag, one of the data

driven approaches to find a reasonable estimate of the time lag is to use the first

minimum of the automutual information [72].

5.3.2 Gaussian Mixture Models

We use Gaussian Mixture Models (GMM) to learn the underlying distribution

of the dynamics represented by the RPS. We represent each activity class model using

a GMM. The GMM is a parametric probability density function, which is a weighted



57

Timestamp (x = 0 to 4 π)

0 20 40 60 80 100 120 140

S
in

e(
x

)

-1

-0.5

0

0.5

1

(a) Sine Curve for Value of x from 0 to π

1

0

X
t

-1-1
X

t
 - τ

0

-1

0

1

1

X
t - 2

τ

(b) Phase Spaces of the Sine Curve for the Di-

mension, d = 3 and Time Lags, τ = 3 (Blue), 5

(Orange), 7 (Yellow), and 9 (Purple)
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sum of M Gaussian probability density function defined as [116],

p(χ, λ) =
M∑

i=1

wipi(x) =
M∑

i=1

wiN (χ, µi,Σi), (5.3)

where M is the number of mixtures,N (x;µi,Σi) is a normal distribution with mean

µi and covariance matrix Σi, and wi is the mixture weight satisfy the constraint that

∑M

i=1wi = 1. The parameters of a complete parameterized Gaussian mixture is

denoted by λ,

λ = {wi, µi,Σi} i = 1, ...,M. (5.4)

The parameters of the GMM are estimated using the Expectation-Maximization (EM)

algorithm to maximize the likelihood of the data [100]. The EM algorithm begins

with an initial model λ and then estimate a new model λ̄ at each iteration, where

p(X|λ̄) ≥ p(X|λ) for a sequence of training vectors, X = x1, x2, ..., xT . Parameters
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are estimated using the following formulas:

µm
′ =

T∑
t=1

pm(xt)xt

T∑
t=1

pm(xt)

,

Σm
′ =

T∑
t=1

pm(xt)(xt − µm)
T (xt − µm)

T∑
t=1

pm(xt)

,

wm
′ =

T∑
t=1

pm(xt)xt

T∑
t=1

M∑
m=1

pm(xi)

.

(5.5)

5.3.3 Maximum Likelihood Classifier

A Bayesian maximum likelihood classifier computes likelihoods on each point

xk, from each of the learned model, ai using the following likelihood function:

p(X|ai) =
T∏

k=1

p(xk|ai). (5.6)

Once all the likelihoods are computed then the maximum likelihood class, â

(i.e. classification) is found:

â = argmax
i

p(X|ai). (5.7)

5.4 Data

Wearable kinematics sensors, such as accelerometer and gyroscope, have been

widely used in activity recognition systems. Smartphone platforms offer application

frameworks and libraries to access the sensor data, such that it is easy to access and

collect motion data from the smartphones. Thus, smartphones provide a powerful

mobile system with integrated sensors, inexpensive software development, and without
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the need for additional hardware. Practically, users are more comfortable carrying a

smartphone than wearing multiple sensors on their body. We used two different

datasets (one through data collection procedure and another publicly available human

activity dataset) to perform the experiment. Both datasets contained raw data from the

built-in accelerometer sensor of the smartphone. The data were collected placing the

smartphone in four different positions (pant pocket, waist, table, and beside cupholder

(inside car)). The activities performed and phone placement are shown in Table 5.1.

Table 5.1: Activities and Smartphone Placement

Activity Phone Placement

Walking Pocket and Waist

Walking Downstairs Pocket and Waist

Walking Upstairs Pocket and Waist

Running Pocket and Waist

Standing Pocket and Waist

Sitting Pocket and Waist

Lying Waist

Elevator Down Pocket

Elevator Up Pocket

Driving Pocket and Cupholder

Baseline Table

5.4.1 Development of the Data Collection Tool

We developed a data collection tool, UbiSen (Ubicomp Lab Sensor

Application), in Android, to collect sensor data from smartphones. It shows the list of

available and unavailable sensors in green and red colors respectively. It can collect

data from all available sensors simultaneously. We used multi-threading technique to

parallelize the operation and separate data collection process from the main thread. It

provides more precise sensor data at each timestamp.
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The developed tool is generic. It can be used to collect data from a specific set

of sensors. The frequency can be specified from the settings of the application. The

data collection process can be labeled. It offers a stop watch feature to start and stop

the data collection process. The recorded data can be exported as a CSV (comma

separated value) file. The screenshots of the data collection tool is shown in Figure

5.3.
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(a) List of Available and

Unavailable Sensors

(b) Settings and Data

Collection

(c) Sensor Information

and Raw Data

(d) Sensor Data Visual-

ization

(e) Label Data (f) Data Collection

Progress

(g) Exported Data in

Excel

(h) Settings Window (i) Sensor Selection for

Data Collection

Figure 5.3: UbiSen (Data Collection Tool) Functionality
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5.4.2 Data Collection

We collected accelerometer sensor data for different activities using UbiSen

(Ubicomp Lab Sensor Application for Android). We used a Google Nexus 5

smartphone running Android OS 5.0. The participants placed the phone in their front

pant pocket. They performed eight simple activities: walking, walking upstairs,

walking downstairs, running, sitting, standing, elevator up and elevator down. We also

collected sensor data during driving and when the phone was placed at a fixed place

like on a table. For the driving activity, the phone was placed inside the pant pocket

and also beside a cupholder. Sun discussed different aspects of the activity recognition

system varying mobile phone positions and orientations [126]. The accelerometer

sensor data along the three axes for the walking activity is shown in Figure 5.4. Here

three different axes have three different but repetitive patterns. The accelerometer

sensor data along the y-axis for all the activities are shown in Figures 5.5 - 5.9.
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Figure 5.4: Acceleration along Three Axes for Walking Activity.

There were 10 participants (age ranges between 20-35, both male and female)

in the data collection event. Each participant performed 10 activities in an uncontrolled

environment. Each activity was performed for a different time duration. Walking,

running, standing, sitting, and phone placed at table (baseline) were performed for 2-3

minutes. Walking upstairs, walking downstairs, elevator up, and elevator down were
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performed for 1-2 minutes. Driving data were collected for approximately 10-15

minutes. In total, we have 3 hours and 20 minutes of sensor data for 10 different

activities performed by the participants.
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Figure 5.5: Accelerometer Sensor Data along the Y-axis for Walking and Walking

Down Stairs.
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Figure 5.6: Accelerometer Sensor Data along the Y-axis for Walking Up Stairs and

Running.
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Figure 5.7: Accelerometer Sensor Data along the Y-axis for Standing and Sitting.
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Figure 5.8: Accelerometer Sensor Data along the Y-axis for Elevator Down and Up.

5.4.3 Public Dataset

We utilized dataset Human Activity Recognition Using Smartphone Data Set

from the UCI Machine Learning Repository [9]. The data were collected from a group

of 30 participants within an age range of 19-48 years. Each participant wore a

smartphone (Samsung Galaxy S II) on the waist and performed six activities: walking,

walking upstairs, walking downstairs, sitting, standing, and lying down. The

accelerometer and gyroscope sensor data were captured at a rate of 50Hz. The noise
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Figure 5.9: Accelerometer Sensor Data along the Y-axis for Baseline and Driving.

filters were applied to preprocess the raw sensor data. The Butterworth low-pass filter

was used to separate gravity from the acceleration signal. The dataset has been

partitioned randomly into training (70%) and testing (30%) sets.

5.5 Method

We briefly discuss the process of training and testing the human activities in

the following subsections. An overview of both phases is shown in Figure 5.10.

5.5.1 Training

The first step was to build RPS from accelerometer data for each activity using

time lag and embedding dimension. We estimated the time lag and embedding

dimension using the techniques discussed in section 5.3. The time lag was estimated

for each activity signal using the first minimum of the automutual information. Once

all the time lags were estimated for each activity, then a time lag was selected for the

RPS using the mode of the histogram of all estimated time lags. The global false

nearest-technique was applied on each activity signal to calculate embedding

dimension for RPS. Again, once embedding dimensions for all the signals were

calculated, then an embedding dimension was selected for the RPS as the mean of all
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Figure 5.10: Overview of Training and Testing Phases of the Proposed Approach.

calculated dimensions. The mode and mean were taken so that most of the activity

signals were able to unfold completely in the RPS. Once time lag and embedding

dimension were selected, then we built RPS for each signal.

Once the RPS was built, we learned a GMM probability distribution for each

activity signal class. Each GMM represented the corresponding model for the activity

class. Thus, we had an array of models after the completion of the training phase. The

size of this array is equal to the number of activity class.

5.5.2 Testing

To test activity signal, we created RPSs from the raw accelerometer sensor data

using the same time lag and embedding dimensions (estimated in training phase).

Then we tested the RPS against all the GMMs (created in training phase). It gave us

likelihood probability for each activity model. Bayesian maximum likelihood classifier

was used to classify test signal as classified or recognized activity. This is done using

the activity model class with the highest likelihood. The system outputs test signal as
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one of the classified activities.

We evaluated our system with quantitative assessment. The k-fold cross

validation helped us to evaluate accuracy where k was the number of data partitions. It

helped us to generalize the statistical analysis and overcome problems like over fitting

of the algorithm on the training set. We also varied the system’s parameter to analyze

its robustness.

5.6 Evaluation

We evaluated our approach using both the collected and publicly available

datasets. We used an individualized model to experiment with the collected dataset and

a generalized model for the public dataset. We used Matlab and Weka machine

learning toolbox to perform the experiment. We tested our approach using both dataset

and time-domain features with classification algorithms using the first dataset. We

discuss the experimental details and results in the following subsections.

5.6.1 Experiment with Our Approach

We analyzed accelerometer sensor data (3 axes) for all the activities. We

observed acceleration along different axes. We observed different patterns along these

axes for different activities. Even when we looked only at the acceleration along the

y-axis (as shown in Figures 5.4 - 5.9), we also saw that there was a uniquely

distinguishable pattern for each of the different activities. The challenge was to build

the model to capture the dynamics of the activities from this acceleration along the

y-axis and differentiate one from another. We discuss training and testing phases in the

following subsections in detail.

Training

We used the raw sensor data along the y-axis to build reconstructed phase space

with appropriate time lag and embedding dimension. We partitioned data into different

activity cycles (number of partitions, k = 40) each containing 300-600 samples.
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During the data collection process we recorded videos of the footsteps. We selected

the sample size by comparing activity (walking, walking upstairs, walking downstairs,

and running) cycles with synchronized video observations for each of the activities and

the corresponding sensor values at the same time. We selected the sample size to

ensure that it contained more samples than the largest activity cycle. We also analyzed

the effect of sample size on the system’s performance. To build the RPS, we took one

subject from each of the different activity classes. Then we computed automutual

information for different time lags. The first minimum of the automutual information

was used to estimate the time lag for each activity class. The graph in Figure 5.11(a)

shows the automutual information of ”walking upstairs” activity for different time lags.

Here the first minimum of the automutual information was found for time lag value 5.
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Figure 5.11: Time Lag Estimation for Walking Activity.

We computed the time lag for all the activity classes. The mode of these time

lags was used to estimate time lag for RPS as shown in Figure 5.11(b) for all the

activities. We found time lag τ = 5 in this process. Then we used this estimated time

lag value to estimate embedding dimension. We computed percentage of false

nearest-neighbors to determine the embedding dimension for each activity class. We

took the mean of all calculated embedding dimensions to select embedding dimension
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for the RPS. We estimated the embedding dimension to be d = 6. We used these

estimated values of time lag and embedding dimension to build RPS for each activity

class. The RPSs for walking, walking downstairs, walking upstairs, running, sitting,

and phone placed at table build with time lag, τ = 5 and embedding dimension, d = 6

are shown in Figures 5.12, 5.13, 5.14, 5.15, and 5.16. The difference in underlying

dynamics between the activities is represented by these RPSs. We used RPSs for each

activity class to learn GMMs.
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Figure 5.12: RPS for Time Lag, τ = 5, and Embedding Dimension, d = 6 for Walking

and Walking Down Stairs.

Testing

We evaluated all the subjects for each activity using each of the activity models

(GMMs). At first the RPSs were generated using the same time lag and embedding

dimension we used in the training phase. These RPSs were then tested against each of

the activity class models. We estimated the likelihood of the RPSs against GMMs. We

used m = 5 mixtures for GMM. We also changed the number of mixtures to see its

effect on the system’s performance. For each single subject of data, we computed all

the likelihood probability (log probability) for each activity class model. Then we used

a maximum likelihood classifier to identify the corresponding subject as one of the
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Figure 5.13: RPS for Time Lag, τ = 5, and Embedding Dimension, d = 6 for Walking

Up Stairs and Running.
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Figure 5.14: RPS for Time Lag, τ = 5, and Embedding Dimension, d = 6 for Standing

and Sitting.

human activities. The classifier takes all the likelihood probabilities and outputs the

activity class associated with the maximum probability. We used 10-fold cross

validations to validate accuracy of the system. We took nine partitions at a time to train

the system. The 10th one along with the training partitions were used to test the

performance.
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Figure 5.15: RPS for Time Lag, τ = 5, and Embedding Dimension, d = 6 for Elevator

Down and Up.
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Figure 5.16: RPS for Time Lag, τ = 5, and Embedding Dimension, d = 6 for Baseline

and Driving.

5.6.2 Experiment with Time-Domain Features and Classification Algorithms

We performed experiments with time-domain features and classification

algorithms used by state-of-the-art human activity recognition systems [88] [32] [33]

[123]. We used following time-domain features: 1) Mean, 2) Max, 3) Min, 4) Standard

Deviation, 5) Variance, representing mean, maximum, minimum standard deviation,

and variance of activity cycle, respectively.
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The features were extracted from each subject (as discussed in the previous

section) for all the activities. The feature vector was formed using the features. We

used the feature vector to train and test different classification algorithms. We analyzed

the performance of the classification algorithms tabulated in Table 5.2.

Table 5.2: Classification Algorithms

Family Classifiers

Decision Tree Classification and Regression Trees

Beyasian Bayesian Network, Naive Bayes

Artificial Neural Networks Multilayer Perceptron

Maximum Margin Classifier Support Vector Machine

Instance based k-Nearest Neighbors

Rule based classifier Decision Table

Regression Logistic Regression

Classifier Ensembles Bagged Trees, Random Forest

5.6.3 Experiment with Time and Frequency Domain Features

We performed experiments with time and frequency domain features used in

[9] for each axis acceleration. We extracted 60 features for each axis and used

Decision Tree, SVM, Weighted KNN, Bagged Trees along with SVM with Gaussian

Karnel (technique used in [9]) to perform the experiment.

5.6.4 Results

We present quantitative evaluation of the system in this subsection. The

confusion matrix for all the activity classes are also presented. Here for each row, the

corresponding true activity class is the positive class and the rest of the activity classes

were considered as the negative class. To describe the performance, we obtained the

following terms from the confusion matrix:

• True Positives (TP) is the number of positive activity classes that were classified
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as positive.

• False Positives (FP) is the number of negative activity classes that were

classified as positive.

• True Negatives (TN) is the number of negative activity classes that were

classified as negative.

• False Negatives (FN) is the number of positive activity classes that were

classified as negatives.

Then, we computed the performance for all the activity classes from using

these terms as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
. (5.8)

Collected Dataset

There were 10 participants, and for each of the activities, we took 40 partitions

into consideration; therefore we complied a total of 400 instances for each class of

activity. We used individual activity models for each of the participants. We changed

different parameters of the model to test its robustness. The confusion matrix is shown

in Table 5.3. All 400 instances in each row were classified correctly. We also

performed experiments with the rest of the data (not included in the 40 partitions) and

found similar results.
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Table 5.3: Confusion Matrix for the Individualized Model of Collected Dataset using Proposed Approach

Predicted Class

Activity Walking Downstairs Upstairs Running Sitting Standing Elevator Down Elevator Up Baseline Driving

T
ru

e
C

la
ss

Walking 400 0 0 0 0 0 0 0 0 0

Downstairs 0 400 0 0 0 0 0 0 0 0

Upstairs 0 0 400 0 0 0 0 0 0 0

Running 0 0 0 400 0 0 0 0 0 0

Sitting 0 0 0 0 400 0 0 0 0 0

Standing 0 0 0 0 0 400 0 0 0 0

Elevator Down 0 0 0 0 0 0 400 0 0 0

Elevator Up 0 0 0 0 0 0 0 400 0 0

Baseline 0 0 0 0 0 0 0 0 400 0

Driving 0 0 0 0 0 0 0 0 0 400
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We changed the size of the training set from 1000 samples to 3000 samples and

increased the size of each activity cycle from 200 samples to 600 samples. For each

combination we tested system accuracy. The performance of the system for all the

configurations is shown in Figure 5.17. The performance increased as we increased

the size of the training set and activity cycle. We observed that most of the activities

had cycle length around 260-270. The incorrect partitioning of the activity cycle did

not contain enough evidence for respective activity class. Hence, the system was

unable to capture the underlying dynamics of the activity. Thus increasing the size of

activity cycle helped each cycle to contain enough information about the activity class.

The accuracy of the system was consistent when the activity cycle contained enough

information and the model wss trained with the underlying dynamics.
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Figure 5.17: Performance of the System with Respect to Number of Sample in Training

Set and Activity Cycle.

We also changed the number of mixtures for GMMs from m = 1 to m = 7. We

combined this change in a number of mixtures with change in size for each activity

cycle discussed above. The performance of the system for all the configuration is
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shown in Figure 5.18. The performance was stable with 100% accuracy for all the

configurations having at least activity cycle size of 300 and 5 mixtures. We observed

that the system was unable to classify activity cycle with number of mixtures less than

or equal to 3, even though activity cycle contained enough evidence (size = 300 to

size = 600). Therefore the number of mixtures was not enough to maximize the

likelihood of the RPS.
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Figure 5.18: Performance of the System with Respect to Number of Gaussian Mixtures

and Size of Activity Cycle

The performance of the classification algorithms using time-domain features is

shown in Figure 5.19. The acronyms used in the figure are as follows: a) Our: Our

Approach, b) BT: Bagged Trees, c) LR: Logistic Regression, d) RF: Random Forest, e)

DTb: Decision Table, f) W-KNN: Weighted K-Nearest Neighbors, g) SVM, h)

Artificial Neural Network, i) NB: Naive Bayes, j) BN: Bayesian Network, and k) DT:

Decision Tree. We tested 10 classification algorithms using 5 time-domain features for

individual model. We achieved 90%-91% accuracy for Bayes Network, Naive Bayes,
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Multilayer Perceptron, SVM, KNN, and Bagged Trees. We had accuracy of above

83% for other classification algorithms. Compared to these approaches, our system

achieved an accuracy of 100%. Our system was able to classify all the activities from

y-axis acceleration with 100% accuracy. We have shown the models are able to

capture the underlying dynamics when activity cycle contains enough information

about activity. The classification algorithms are not very successful with the above

mentioned extracted time-domain features from the same activity cycle.
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Figure 5.19: Algorithm Performance using 1-Axis Acceleration (Our Dataset)

Public Dataset

We applied our approach on the public dataset. We used generalized model of

each activity for all the participants. The confusion matrix for this experiment is

shown in Table 6.4. The accuracy of the system is 90%. Here for each row, the

corresponding true activity class was the positive class and rest of the activity classes

were considered as negative class. We also compared our work with Anguita [9] using

60 time and frequency domain features and presented those results in Figure 5.20. Our
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Table 5.4: Confusion Matrix for the Generalized Model of Public Dataset using Pro-

posed Approach

Predicted Class

Activity Walking Downstairs Upstairs Standing Sitting Lying
T

ru
e

C
la

ss

Walking 278 37 55 0 0 0

Downstairs 33 297 0 0 0 0

Upstairs 30 15 255 0 0 0

Standing 0 0 0 361 19 0

Sitting 0 0 0 5 402 0

Lying 0 0 0 6 0 409

approach achieved the highest level of accuracy compared to other approaches and the

approach used in Anguita [9].
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Figure 5.20: Performance of Algorithms using 1-axis Acceleration (UCI Dataset) [9]

5.7 Discussion

We have presented a human activity recognition system for smartphones. Here

we leveraged the built-in accelerometer sensor to identify users current activity. For the
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first dataset of 10 participants, out of 10 activities, we achieved 100% accuracy for all

the activities. We used individualized models for each of the participants. We extracted

5 time-domain features from the same dataset and applied 10 classification algorithms.

We achieved the largest accuracy of 91% using these techniques. We also compared

(Figure 5.19) our work with Anguita [9] using 60 time and frequency domain features.

We present a comparative analysis of our work with state-of-the-art techniques in

Table 5.5. We compare activities, methodology, sensors, extracted features, no of

subjects, and performance for each of the works. Compared to the existing approaches,

we achieved a very good accuracy for the personalized model even with a less amount

of data. This gives us the opportunity to easily create a high accuracy personalized

activity recognition model. We also presented time required to build RPS and extract

time and frequency domain features from the acceleration signal of sample size 128

and 600, shown in Figure 5.21. The time required to extract features (7 features and

66 features respectively) is 3 to 4 times higher than building RPS. Also, the time to

recognize activity class is fast, taking an approximate time of 0.0715 milliseconds.
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Figure 5.21: Time Required to Extract Features and Build RPS
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Table 5.5: Comparison of Representative Past Works on Activity Recognition

Work Activities Methodology Sensors System Features Subjects Accuracy

[32] Gait, 3 speed

walking

Cross DTW, SVM,

BN, RT, MLP

3 axis Acc Smartphone 24 25 99%, 81.9%, 89.3% 1

[88] 5 MOE, GLCT 3 axis Acc, Orn,

Mag, Light, Prox

Smartphone 22 Unknown 91.7%, 92.56% 2

[11] 5 HMM, SVM 3 axis Acc Smartphone 106 12 90.8%, 88.1%, 95.2% 3

[22] 6 Random Forest 3 axis Acc 1 Wearable 20 14 94%

[15] 20 DT 2 axis Acc. 5 Wearables 40 20 84%

[113] 8 NB, SVM, kNN, DT,

Plurality Voting

3 axis Acc 1 Wearable 12 2 73% to 99% 4

[9] 6 SVM 3 axis Acc, Gyr Smartphone 561 30 96%

[78] 6 ST, LR, ML NN 3 axis Acc Smartphone 43 29 83% 5

[14] 6 activities, 6

transitions

kNN, SVM, GMM,

RF, HMM, k-Means

3 axis Acc, Gyr,

Mag

3 Wearables 168 6 99%,83% 6

[129] 2 activities, 4

transitions

HMM 1 Axis Acc Wearable 6 to 20 3 70% to 80%

Our 11 RPS, GMM, MLE 1 axis Acc. Smartphone RPS 40 100%, 90% 7

1 Walking(Individualized: 99%, Generalized: 81.9%) Gait: 89.3%. 2 Dateset 1: 91.7%, Dataset 2: 92.56%.
3 Mean 90.8% (Known location), 88.1% (Unknown location), highest 95.2% (pocket). 4 Varies in different settings.
5 Mean 6 Supervised: 99%, Unsupervised: 83% 7 Individual: 100%, Generalized: 90%
8 Acronyms: DTW: Dynamic Time Warping, MLP: Multilayer Perceptron, Acc: Accelerometer, MOE: Mixture-of-Experts, GLCT:

Global-local co-training, Orn: Orientation, Mag: Magnetometer, Prox: Proximity, Gyr: Gyroscope.
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For the second dataset, we applied our approach and used a generalized model.

However, the system was able to classify 6 different activities of 30 participants with

an accuracy of 90%. We achieved 99% accuracy for sitting and lying activity, and 95%

for standing. The overall accuracy increased to 95% when we increased the number of

samples in the activity cycle. When we used individualized models the system was

able to classify the activities with an accuracy of 100%. Hence, our approach was able

to recognize 11 different activities for 40 different users varying the smartphone

placement between the pocket and waist. This is only using the observation from one

single axis accelerometer data for personalized models.

The walking, walking upstairs, and walking downstairs are classified with an

accuracy of 75%, 90%, and 85% respectively. It looks like the system is unable to fully

capture dynamics for these three activities. When we looked at the misclassified

instances, we saw that all the misclassified instances were classified between these

three activities interchangeably. Also by observing RPSs for these activities we saw

that they have a similar dynamics. It means, when we placed the smartphone on the

waist, these three showed similar dynamics based on the acceleration along y-axis. We

considered grouping these three activities as one activity, named ”walk”, and then

classifying it. We found that the system is able to classify the walk activity with 100%

accuracy.

We think that the representational capabilities of time-delay embedding (RPS)

captures the underlying dynamics well from the time series acceleration. The higher

dimensional representations also helps GMM to learn well from RPS. Compared to

existing approaches where the goal is to extract time and frequency domain features to

learn signal patterns, this approach (RPS+GMM) focuses on understanding underlying

dynamics, which describes the temporal evolution of the activities that evolve over

time. The better RPS understands underlying dynamics, the better GMM learns. This

achieves higher accuracy compared to existing approaches.
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In this chapter, we investigated the performance and applicability of the

dynamical systems and chaos theory in the smartphone based human activity

recognition system. We also used time-delay embedding or reconstructed phase space

to capture underlying dynamics of the human body motion for 11 different activities

from smartphones accelerometer sensor. Most of the proposed and existing approaches

use three axes acceleration along with other sensors (3-axes gyroscope, pressure,

magnetometer) values to recognize activities. In contrast to these approaches, we only

used one axis acceleration to recognize activities. This reduces the computational and

memory complexity of the system by reducing the size of data (from 3-7 time series to

1 time series) that needs to be processed. Moreover, most of the machine learning

techniques require extensive computation and occupy large memory because of the

large number of attributes that are present in the feature vectors [81]. Building RPSs

are less complex and less expensive than these techniques, Figure 5.21. The time

required to extract features is a couple magnitude higher than building RPS. This is

very helpful for implementation of the system on the smartphone. We also reduced

computational and memory complexity by considering a small sample size. We used a

statistical learner to train captured underlying dynamics in the RPSs and used

maximum likelihood classifier to classify activities.

Human activity recognition plays a very important role in many research areas

and applications. Therefore, a support system, which will provide information about

current activity of the user by hiding all the complex details behind activity

recognition, is a time demanding service for these areas. We have implemented the

proposed activity recognition system in the Android application framework as a

service (Figure 5.22). The applications from the application layer and other services

from the application framework can register to get the activity information.

We implemented our system (as android application) in two different case
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Figure 5.22: Human Activity Recognition as a Service in Android

studies: 1) a rehabilitation clinic, to track patients daily activities, and assess assigned

task and daily routine, 2) the Hajj, to track pilgrims’ location based on their activities.

We used Android platform for the implementation. We have published our dataset on a

public domain website to enrich human activity dataset and accelerate research in this

area.

5.8 Conclusion

We experimented with an alternative approach to extensively use machine

learning techniques in human activity recognition from kinematics sensors

(accelerometer) and achieved a high accuracy. We also investigated the performance of

the proposed approach using collected and publicly available human activity

recognition datasets. We presented a comparative study and an analysis. Application

of the proposed system in wearable sensor based activity recognition can be researched

further. The analysis of the experience and results from the case studies can be a future

work.
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The functional or complex activities comprise of a simple activity and a

particular function. For example, when a person is reading a book, it is most likely that

the person is sitting somewhere. We developed this simple activity recognition system

to expand our work on the complex activity recognition system (we discuss it in next

chapter), where this simple activity will be considered as one of the inputs beside

location and time to predict functional activities.
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CHAPTER 6

COMPLEX HUMAN ACTIVITY RECOGNITION

6.1 Introduction

Automated recognition of human activities has importance across different

fields such as pervasive computing, artificial intelligence, human-computer interaction,

human-robot interaction, rehabilitation engineering, assistive technology, health

outcomes, social networking, and social sciences [121], [125], [81]. Human activity

recognition (HAR) is an interdisciplinary research area that has been active for more

than a decade. Despite the length of time researchers have investigated HAR, there are

still many major issues that need to be addressed. There are numerous context-aware

applications where user activities play an important role. HAR also plays a pivotal role

in pervasive computing systems [81]. HAR systems are also being used in monitoring

people in assisted living, elderly care, and rehabilitation [94] [60].

Humans perform numerous activities in their everyday life. Existing studies

suggest two classes of activities based on body motion and functionality [33]. The

first one is simple full body motor activity; the second one is complex functional

activity. Full body motor activity considers body motion and posture, for example,

walking, sitting, or running. The functional activity class deals with different functions

performed by the subject, for example, reading, working on computer, or watching TV.

Existing research defines these two classes of activities with different terminologies.

Also, the boundaries of these classes are not well defined [33].

Performing activities of daily living (ADLs) and instrumental activities of daily

living (IADLs) are an important part of living a healthy independent life [89], [99].

These activities cover a wide range, such as self-care, meal preparation, bill paying,
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and entertaining guests. Virtually every rehabilitation therapist and program focuses

on these types of activities as outcome goals. The ability to perform ADLs and IADLs

are important indicators both for those recovering from a newly acquired disability, as

well as for those at risk for decline, either through chronic, physical or mental

impairments (i.e., ALS, MS, Parkinsons, Alzheimers), and may act as early indicators

of disease or illness [19]. Disruptions in the routine of ADLs can be an indicator of

either lack of success in rehabilitation or significant decline in function, and act as an

important indicator of a return to or decrease in the quality of life (QoL) [138], [70].

These disruptions in routine are often used as indications that help diagnose, treat, and

document the outcomes of services for people with a wide variety of disabilities

including psychological impairments, such as depression and dementia [20], [45],

[95]. Additionally, older adults may perform activities despite decreases in functional

capacity. However, a threshold of declined functional performance may be reached, at

which time assistance may be necessary [3].

Substantial research has been conducted on simple human activity recognition

(HAR), whereas, less research has been conducted on complex human activity

recognition [81]. However, there are many key aspects (recognition accuracy,

computational cost, energy consumption, privacy, mobility) that need to be addressed

in both areas to improve their viability. We propose a novel complex activity

recognition framework where the time, location, and simple full body motor activity

are used to recognize complex functional activity. To the best of our knowledge, this is

the first approach to consider simple activity as an influential parameter in the

recognition process of complex activities. Also, ours is the first approach to consider a

large number of complex activities.

We evaluated our proposed system using a dataset of 51 unique complex

activities. We collected data of time, location, simple activity, and complex activity.

The data was collected from 3 subjects, 2 male and 1 female, 2 subjects for 3 weeks
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and 1 subject for 2 weeks, in total of 56 days of data. The out-of-sample experiment

shows that the approach achieved an accuracy of above 97% for all the subjects over

51 unique complex activities. The goal of developing this system is to implement it in

two different scenarios. One setting is in a rehabilitation clinic for remote activity

monitoring of patients and elderly people; we have two locations, one in the USA and

one in Taiwan. The other setting is in the Hajj [97], to track pilgrims when they get

lost and provide emergency services if needed.

The summary of the contributions of this research include:

• Propose a novel framework to recognize complex human activity.

• Evaluate the proposed framework with real human activity data of 56 days.

• Activity recognition system with a very good accuracy across 51 unique

complex activities.

• Comparative analysis with existing works.

• Publish complex human activity dataset on the public domain to enhance

research in the area of complex HAR.

This chapter is organized as follows. The related research is discussed in

section 6.2. The background is discussed in section 6.3. The proposed approach is

discussed in section 6.4. The data collection is presented in section 6.5. The

experimental details are discussed in section 6.6. The contributions are discussed in

section 6.7. Finally, the conclusions are presented in section 6.8.

6.2 Related Work

We discussed the classification of activities, taxonomy of state-of-the-art

human activity recognition approaches and activities studied by those approaches in

Chapter 2. In Chapter 5, we discussed human activity recognition approaches in detail,

including computer vision approach, environmental sensor-based approach, and
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wearable sensor-based approach. We presented machine learning based methodologies

used in different approaches. In this section, we discuss the approaches in detail.

6.2.1 Computer Vision

Computer vision approaches implement the HAR where the activities can be

performed by one or more subjects [6] [69]. Cameras are used as sensors to capture

an image or a sequence of images (video). These images and videos are then analyzed

to recognize activities and gestures. There are many applications for the computer

vision approach, especially in security and interactive applications [81]. Applications

include surveillance and interaction with video games. One of the main advantage of

this approach is it can be used to recognize a wide range of gestures and activities.

There are some disadvantages with this approach, including privacy, mobility

and computational complexity. Recording video or capturing images may violate user

privacy. Due to the fixed location of the camera, the approach lacks mobility or

pervasiveness. The recognition of objects and actions from the image or a sequence of

images require good computational power, thus making it computationally expensive.

6.2.2 Environmental Sensor

Environmental sensor based approaches use different sensors throughout the

environment to capture signals about surroundings to recognize activity [132] [101].

Sensors include sound sensor, light sensor, RFID, wireless devices (Wi-Fi, Bluetooth),

and pressure sensor [5] [144]. The sensors are placed at different locations. Sound

and pressure sensors are on the floor, light sensors in the room, RFID attached to

different objects (faucet, door, glass, drawer, medication container), and wireless

devices placed in different rooms. Signals from these devices are analyzed to recognize

a wide range of activities. It can be used to recognize activities in home settings.

This approach lacks mobility and applicability as it is unable to recognize

activities not involving placed sensors or if the sensors are out of reach. Thus,
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environmental sensor approaches are unable to recognize any outdoor activities. It also

requires high costs to setup and maintain a large set of sensors.

6.2.3 Wearable Sensor

The wearable sensor based approaches tries to capture human body motion

using kinematic and other sensors [33] [152]. Sensors used in this approach include

accelerometer, gyroscope, magnetometer, orientation, pressure, location (GPS) [82].

There are approaches where physiological signals (heart rate, electrocardiogram

(ECG)) are captured to recognize activities. Sensors are attached to different parts of

the subject’s body to capture body motion and physiological parameters. Beside this,

smartphones have built-in sensors, which are also used to recognize activities. The

subject carries the smartphone and built-in sensors capture motion. Another set of

wearable devices are wrist-worn devices, like the smart watch and fitness tracker.

These devices are equipped with kinematics sensors, heart rate sensors and other

sensors to capture motion and physiological parameters.

This approach has been used widely to recognize simple human activities,

energy expenditure, workout, and a small set of complex human activities. Placement

of the sensors on different parts of the body may make it uncomfortable for the user

and lacks viability for real-life applications. Besides, these body worn sensors require

computational power and connectivity that compromises device batteries. It is also not

possible to recognize activities if the subject does not carry their smartphone or wear

wrist-worn devices. Another problem with the smartphone-based approach is that

different users carry smartphones in different locations (pant pocket, belt, backpack,

hand) making it more complicated.

6.2.4 Time Geography

In the time geography approach, the time and location are used to recognize

human activities [29] [98] [114]. Both time and location have been used separately
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to predict human activities. Importantly, the literature has examined the use of time

and location data to predict activity. Hagerstrand was early to propose that human

activities were constrained not only by location, but also by time, which he called

”time geography” [127]. He also recognized individual differences and emphasized

the importance of the individual as the unit of study in human activity [29]. As

humans we are creatures of habit and tend to follow the similar routines based on

various cycles. Such cycles include circadian rhythms, weekly schedules, seasonal

events and annual holidays. Prediction of what a person is doing based on their

individual time schedules is quite plausible when both location and time are known.

The better granularity of the time/activity linked data increases the confidence level of

the deduction. This method of location and time based activity deduction is currently

used in such diverse fields as environmental health [35], wildlife monitoring [49], and

traffic systems analysis [58].

The time information is easily available to any computing device, while the

location information requires the use of technologies discussed in Chapter 4. Outdoor

locations are easier to find while indoor locations lack accuracy and reliability. The

more accurate locations are obviously better for activity recognition.

6.3 Background

In this section, we discuss the background of the mathematical model used to

model complex activity data and perform the experiment. We discuss the data

modeling in section 6.6.

6.3.1 Markov Model

The Markov Chain (MC) is a stochastic process with the Markov property. The

Markov property is that, given the current state, future states are independent of past

states [48] [47]. Therefore, only the information of the current state influences the

evolution of the future process. A MC is a sequence of random variables X1, X2, ...,
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defined by

Pr(Xn+1 = x|Xn = xn, ..., X1 = x1)

= Pr(Xn+1 = x|Xn = xn).

(6.1)

The values of Xi constitute a finite set called the state space of the MC, denoted by

S = {1, 2, 3, ..., N − 1, N}. (6.2)

The state St denotes the state at the time instant t and ranges over the set S. The

Markov Model (MM) has two parameters, π and A, the initial probabilities of the

states and the transition probabilities between the states. The initial probability, πi, is

the probability that the value of the state will be i at time t. The transition probability,

Aij , is the probability of the transition from the state i at time t to the state j at time

t+ 1. Therefore,

πi = Pr(St = i), i ∈ S.

Aij = Pr(St+1 = j|St = i), i, j ∈ S.

(6.3)

6.3.2 Hidden Markov Model

The Hidden Markov Model (HMM) is a statistical MM with the system being

modeled as a Markov process. HMM is used to model the generative state sequences

that can be characterized by an underlying process that generates an observable

sequence [48]. It can be used to find the unobserved sequence of hidden states from

the respective sequence of the related observation. HMM has been used for modeling

and analyzing time series data. It has been applied in many areas including automatic

speech recognition, natural language processing, and face recognition. The HMM is

defined by three parameters, π,A, and B, where, π and A are the parameters that form

the MM. The other parameter, B, is the observation matrix, where each entry in the

matrix represents the probability of a specific observation given that the system is in a
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particular state at a particular time. Therefore,

B = {bj(k)}, where bj(k) = P (vk at t|St = j), (6.4)

the probability of vk being the observation given that the system is in state j and vk is

the member of the set V , the discrete set of possible observations. λ, where

λ = (A,B, π), is used to denote the HMM. The observation symbol observed at time t

is denoted by Ot.

Applications of HMM

HMMs are used to solve three main problems:

• Given the HMM, λ, compute the probability of occurrence of the observation

sequence O, P (O|λ).

• Given the HMM, λ, compute the state sequence, I , so that the joint probability

of the observation and state sequence, P (O, I|λ), are maximized.

• Adjust the parameters of the HMM to maximize the P (O|λ) or P (O, I|λ)

We discuss the modeling of the complex activity with the application of HMM in

section 6.6.

6.4 Our Approach

Most of the complex activities are influenced by the time and location at which

they occur. Time and location provide vital information about the ongoing activity. For

example, when a person is sitting in the dining room at night, it is most probable that

the person is eating dinner. Here the time ”night,” and the location ”dining room”

provide us very useful information to identify that the person is eating his/her dinner.

Beside time and location, simple activity also provides us essential information about

the complex activity. In the previous example, simple activity ”sitting” helps to
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determine complex activity. We propose a novel system to predict complex functional

activity of the user. Here we use time, location, and identified simple activity as input

to the system. These inputs are used to develop a mathematical model.

6.4.1 Proposed Framework

We propose a novel system to predict complex activity based on time, user

location and simple human activity (Figure 6.1). Simple activities provide influential

information about complex activities. We use smartphone to collect sensor data and

recognize simple activities. With smartphone, activities can be recognized indoors and

outdoors as long as the user carries it. We leverage Wi-Fi signals to find indoor

locations and Wi-Fi and GPS to find outdoor locations. Time is readily available in

most computing systems.

Besides Wi-Fi based localization and smartphone based simple activity

recognition, any other approach can be used to get the location and simple activity

information. The main goal of the framework is to use time, location, and simple

activity information to recognize complex activity.

To the best of our knowledge, this is the first approach that considers simple

activity as a parameter to predict complex activity. The assumption is that the

incorporation of this vital parameter in the recognition system with time and location

information helps to recognize complex activities.

6.5 Data

One of the most challenging tasks in the area of HAR research is to collect real

data from subjects [81]. We discuss the data collection process in the following

subsection.

6.5.1 Data Collection

We collected real human activity data from three subjects. The subjects

included two men and one woman. Our goal is to collect data consisting of time,
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Figure 6.1: Complex Human Activity Recognition Framework

Table 6.1: Snapshot Of The Complex Activity Dataset

Time Room Anchor SA CA

7:05 bedroom bed lying wake up

7:20 bathroom shower standing showering

8:10 kitchen counter standing make coffee

12:33 dining room table sitting eating lunch

16:26 door front door walking returning home

18:45 living room recliner sitting playing games

location, simple activity, and complex activity of the subjects throughout the day. In

this data collection process, for each of complex activity, we collected time of the

complex activity, location where the activity is performed with a specific anchor

whenever possible, duration of the complex activity, corresponding simple activity,

and the performed complex activity. We have collected data from two of the subjects

for three weeks (21 days), and data from the other subject for two weeks (14 days). In

total, we have 56 days of data. We show the snapshot of the data in Table 6.1. The

first column contains the time complex activity performed. The second and third

columns contain the location data, in two parts. The first part is the room inside the

apartment or house. The second part has more precise location inside the room with

respect to different household stuff and object anchors such as bed, sofa, chair, sink

etc. The fourth column lists the simple activity (SA) that has been performed. The fifth



96

Table 6.2: Set of Simple Activities, Room and Anchor Level Locations

Room Anchor SA

Bedroom Bed Sitting

Bathroom toilet Standing

Kitchen Sink Walking

Front Door Counter Lying

Dining Room Dining Table -

Living Room Chair -

Porch Shower -

Garage Dresser -

Laundry Room Refrigerator -

- Couch -

- Door -

- Hamper -

column contains the performed complex activity (CA). We also collected the duration

of the performed activities.

The set of simple activities, room level locations, and anchor level locations for

subject 1 are shown in Table 6.2. These are listed in first, second, and third columns

respectively. Here we have 9 room level locations, 12 anchor level locations, and 4

simple activities. The other two subjects also have a similar set of locations and simple

activities.

6.5.2 Kasteren Human Activity Dataset

We also collected a complex human activity dataset [137] from the public

repository available for research. The data were recorded in a three-room apartment

with one subject performing everyday activities. 14 state-change sensors were installed

at different locations of the apartment. These included doors, cupboards, refrigerator,

and toilet-flush. The data were collected for a period of 4 weeks or 28 days, with a total

of 245 activities recorded. It contains time of the activity, sensor event, and activity.

Activities were annotated by the participant. Recorded activities were 1) leave

house, 2) toileting, 3) showering, 4) sleeping, 5) preparing breakfast, 6) preparing

dinner, and 7) preparing a beverage. These activities are used to assess cognitive and
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physical capabilities of elderly in healthcare. The assessment is based on Katz ADL

index.

6.6 Evaluation

We evaluated our proposed framework with the collected complex activity

data. The nature of the problem of complex human activity recognition falls in

category 2 of the applications of HMM. Here the observation sequence, O, is the

combination of time, location, and simple activity. The state sequence, I , corresponds

to the sequence of the complex activities performed by the subject. In this case, we

want to find the most likely state sequence (complex activities) for a given observation

sequence, O = O1, O2, ..., OT and a HMM, λ = (A,B, π). We have used the Viterbi

algorithm [48] to find the hidden state sequence (complex activities) using the

maximum likelihood. This algorithm can be interpreted as a graph search where the

vertices are the states of the HMM. We discuss the data modeling and building HMM

parameters in the following subsections.

6.6.1 Data Modeling

We modeled the collected data to work with the HMM. We describe the data

modeling process in this section. The idea was to form unique observations (Ot) from

the combination of time, location, and simple activity and unique states (St) using the

complex activities.

Time

The dataset contains a specific time instant for each complex activity in the

format of ”hour:minute,” more specifically ”hh:mm.” Our goal was to minimize

number of observations in the set. Therefore, we grouped every 15 minutes to the

same time group. We start from ”00:00” and for every 15 minutes we formed a time

group till ”23:59.” In total, we have 96 different time groups.
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Location

The location information has two parts: location with respect to the

house/apartment and location within the room with respect to anchor/object. We

combined both of them together to form a combined location. For example, for the

second subject, we found 10 different locations inside the house. These included

bedroom, dining room, kitchen, living room, laundry room, etc. Also, we identified 19

different anchors, which include couch in the living room, sink in the kitchen, table in

the dining room, etc. We combined both locations to form a location groups. In theory,

there were 190 location groups possible for the first subject.

Simple Activity

The simple activities were also recorded during the data collection. These

include walking, running, sitting, standing, lying. We treated each activity as it is.

Complex Activity

We considered each of the complex activities as the state of the system. For the

first subject, we have in total 43 unique complex activities. These unique complex

activities form the set of states, S. The other two subjects have 37 and 51 unique

complex activities, respectively.

After forming the time groups and location groups, we combined them with the

simple activity to form the unique observations. In total, we have 250 unique

observations for the first subject. Using these 250 unique observations we built the

observation set O.

6.6.2 Experiment

We used the modeled data to compute the parameters of the HMM. We

computed the transition matrix, A, and the initial probability matrix, π, from the set of

states S. We also computed the observation matrix, B, from the set of states, S, and

observation set, O. Each entry in the observation matrix has the probability of the
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respective observation (combined group of time, location, and simple activity) given

the state (complex activity) of the system.

6.6.3 Experiment with Kasteren Dataset

In this experiment, we used time and location information to recognize

complex activities. We modeled data following the same procedure described in the

previous section. We present the result of the experiment in the following subsection.

6.6.4 Result

We used individualized model to experiment with the dataset. We built three

different models (HMM) for three subjects. We used Matlab to perform the

experiment. For each subject, we used Algorithm 6.2 to build the parameters of each

of the models. Once the model was ready, we applied Viterbi algorithm to find the

hidden state sequence (complex activities) for the given observation sequence (time,

location, and simple activity). The Viterbi algorithm computes the most likely

sequence of complex activities from the given model (initial probability of complex

activities, transition probability of complex activities, and observation probability

matrix of observations (time, location, simple activity) and complex activities).

We present the quantitative evaluation of the system in this subsection. The

accuracy of the system recognizing the subject-wise complex activities are presented

in Figure 6.3. This accuracy was achieved using all the input parameters (time, room

level location, anchor level location, and simple activity). We tabulated the number of

activities and corresponding system accuracy in Table 6.3. From the table we can see

that the accuracy of the system for the subject 1, subject 2, and subject 3 are 97.59%,

98.39%, and 97.89% respectively.

In the second experiment, using the Kasteren dataset, we achieved an accuracy

of 98.51%. This accuracy was achieved using time and location information.
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1: Matrix CA contains the complex activities, S is the set of states, and O is the set of

observations

2: numberOfStates← size of S

3: numberOfObservations← size of O

4: π ← array[numberOfStates]

5: for i = 1:numberOfStates do

6: π(i) = sum(i == CA)

7: end for

8: π ← π./(length of O)

9: A← array[numberOfStates, numberOfStates]

10: for i = 2:numberOfObservations do

11: A(CA(i-1), CA(i)) = A(CA(i-1), CA(i)) + 1

12: end for

13: for i = 1:numberOfStates do

14: sumOfAiRow = sum(A(i, :))

15: A(i, :) = A(i, :)./sumOfAiRow

16: end for

17: B ← array[numberOfStates, numberOfObservations]

18: for i = 1:numberOfObservations do

19: B(CA(i), O(i)) = B(CA(i), O(i)) + 1

20: end for

21: for i = 1:numberOfStates do

22: sumOfBiRow = sum(B(i, :))

23: B(i, :) = B(i, :)./sumOfBiRow

24: end for

Figure 6.2: Build Hidden Markov Model Parameters Procedure

Table 6.3: Subject-wise Number of Activities and Corresponding System Accuracy

Activities/Subject
Our Dataset Kasteren dataset

Woman 1 Man 1 Man 2 Subject 1

Number of unique activities 37 43 51 7

Accuracy of the system 97.59% 98.97% 97.89% 98.51%



101

Woman1 Man1 Man2 Subject1−Kasteren

Subjects

A
cc

ur
ac

y

0
20

40
60

80
10

0

Figure 6.3: Comparison of Accuracies for All Subjects.
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Table 6.4: Subject and Activity-wise Classification Result

Subject Man1 Man 2 Woman 1

Total Activi-

ties

485 855 747

Misclassified 5 18 18

Unique Activ-

ities

43 51 37

Unique Mis-

classified

2 10 7

M
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as

si
fi

ed
A

ct
iv

it
ie

s

Activity Wrong Total Activity Wrong Total Activity Wrong Total

Personal Hygiene 2 24 Cleaning Dishes 3 34 Cleaning Dishes 4 63

Cleaning Dishes 3 27 Eating Lunch 1 18 Eating & Watching TV 1 9

- - - Food Preparation 2 68 Knitting 2 15

- - - Getting a Drink 1 22 Leaving Home 1 27

- - - Getting a Snack 1 17 Sitting (Window) 1 3

- - - Leaving Home 4 29 Talking over phone 1 8

- - - Putting Dishes 1 16 Watching TV 8 67

- - - Resting 1 14 - - -

- - - Soaking Dishes 1 4 - - -

- - - Watching TV 3 63 - - -
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Figure 6.4: Comparison of Accuracies for All Subjects Varying Input Parameters.

We also performed experiments varying input parameters (time, room level

location, anchor level location, and simple activity). The accuracy of the system

recognizing the subject-wise complex activities are presented in Figure 6.4 and Table

6.5. We saw the lowest accuracy (60%, 74% and 46% for woman1, man1, and man2

respectively) of the system with only time parameter as input. When we added room

level location with the time information in input, we observed that the accuracy

increased to 93%. The inclusion of anchor level location (with time and room level

location) makes it go above 97%. Inclusion of simple activity with the other three

inputs produce the same level of accuracy. It seemed like simple activity did not

provide any additional information; however, when we used only time and simple

activity information the accuracy goes above 85% (89.5%, 94% and 85% for woman1,

man1, and man2 respectively). Therefore, we concluded that the simple activity does

contain vital information about the complex activity. Also, we can offset location

information with the simple activity information when the location is unavailable or
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unreliable.

Beside individualized model, we also performed experiments where the models

are trained with one subject and tested by other two subjects. We observe that the

performance of the model depends on the regularity and similarity of the activities

performed by the subjects. There are also other constraints like difference in room

level locations and anchor level locations.

Table 6.5: Recognition Accuracies Varying Parameters

Subject T TR TS TRA TRAS 1

Woman 1 59.71 96.52 89.56 97.59 97.59

Man 1 73.81 95.05 94.02 98.97 98.97

Man 2 46.67 93.92 85.73 97.89 97.89

1 Acronyms: T: Time, TR: Time, Room Level Location, TS: Time, Simple Ac-

tivity, TRA: Time, Room Level Location, Anchor, TRAS: Time, Room Level

Location, Anchor, Simple Activity.

We present the subject and activity-wise classification result in Table 6.4. The

first four rows have the total number of activities and unique activities for each subject

along with respective number of misclassified activities. We present the activity-wise

total and misclassified instances in the following eight rows for each subject. For each

subject, we present the activity, total and number of misclassified instances in each

row. We see that in most of the cases, the number of misclassified activity is lower than

the total occurrence of the respective activity.

6.6.5 Analysis

In this experiment, we had four parameters, 1) time, 2) room level location, 3)

anchor level location, and 4) simple activity. We tried all possible combination of these

inputs taking combination of 1, 2, 3, and 4 parameters, one combination at a time,

respectively. We represent each of the parameters with their initials (T, R, A, and S).

There are 15 possible combinations, 4 single parameter inputs, 6 double parameter
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Figure 6.5: Accuracy for Woman1 Varying Input Parameters

inputs, 4 triple parameter inputs, and 1 tetra parameter input. We combined the initials

to represent corresponding combination. The results of the experiments are presented

in Table 6.6. Each row contains results for individual subjects and each column

contains results for one combination of the parameters. The corresponding graph for

this result is shown in Figure 6.8 to visualize the comparative performance. We also

present subject wise performance in Figures 6.5, 6.6, and 6.7.
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Figure 6.8: Subject-wise Comparison of Accuracies Varying Input Parameters
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Table 6.6: Recognition Accuracies for All Combination of Parameters

Subject T R A S TR TA TS RA RS AS TRA TRS TAS RAS TRAS 1

Woman 1 59.71 87.28 88.35 64.52 96.52 97.19 89.56 90.90 89.02 88.76 97.59 96.79 97.19 91.29 97.59

Man 1 73.81 81.65 87.22 58.14 95.05 98.35 94.02 90.31 87.01 88.25 98.97 97.53 98.35 90.31 98.97

Man 2 46.67 78.60 88.77 53.80 93.92 97.19 85.73 89.82 84.56 88.77 97.89 95.67 97.19 89.82 97.89

1 Acronyms: T: Time, R: Room Level Location, A: Anchor, S: Simple Activity.
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We observe that for each subject, the combinations of the input parameters

showed similar recognition performance. The time information alone produced the

lowest accuracy, while the combinations of time, room level location, and anchor level

location produced higher accuracy. When we look at the performance for location and

combination of locations, it is between 80% to 90%. Once we add the time

information to the locations, the accuracy goes up to highest accuracy. Therefore, time

information does carry a lot of information about the complex activity. Again, with

just simple activity input, it achieved an accuracy between 53% to 64%. Once we

added the time information with the simple activity information, the accuracy went up

by a lot, and is between 85% to 94%. Therefore, time information again helped to

achieve a good accuracy with simple activity recognition. The combination of time

and simple activity was able to recognize complex activities with a high accuracy.

Human activities vary with location. It is more likely to do kitchen activities

while in the kitchen and personal hygiene activities while in the bathroom. The more

accurate location information we can get, the better result for the activity recognition.

The location information was relatively hard to get with a reliable accuracy. If we

considered room level location and anchor level location, we had to place a large set of

sensors through-out the home to get an accurate estimation of the location. With

wireless signal based approaches the indoor localization was less reliable and lacked

accuracy. Anchor level locations were even harder to get with a good accuracy than

room level locations. Therefore, it is not helpful to use location information with an

unreliable localization system. As location influences complex activities a lot, a small

error in the input will produce erroneous recognition.

On the other hand, the simple activity information was relatively easy to get

from different devices (smartphone, body worn sensors, smart watch, fitness tracker).

Therefore, even when the location information was unavailable or unreliable, it is

possible to recognize complex activities with an accuracy up to 94%. It is remarkable
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that simple activity information and time help to recognize a large set of complex

activities. Simple activity alone can not recognize complex activity with high

accuracy. We observed that the set of simple activity is relatively small. Also, the same

simple activity maps to a large number of complex activities. Therefore, there is a

large number of possible complex activities for a single simple activity. Thus, it is

harder to get complex activity information from just simple activity information.

Human activities also vary with time. There are some activities people do only

in the morning, some only in the evening or at night. Some activities happen in a

sequence, one after another, while others happen in a periodic manner. Some activities

happen over a long period of time. Therefore, time carries a lot of information about

the ongoing activity. The time information helped both location and simple activity to

recognize complex activities. In this experiment, we only used the simplest form of

time information.

Beside simple time information, we also collected two other time information,

duration of the activity and the day of the week. We also performed experiment with

duration information. In this experiment, we divided duration information (in minutes)

in to twelve levels to minimize number of observations in HMM. We used bar plot to

analyze the duration information and find the range of duration levels (Table 6.7). We

used this duration level (D) information to perform experiment. The duration level has

been used both alone and with other parameters to form observation. The experimental

result for Man1 is presented in Figure 6.9.

We observe that the time and duration information alone produced the lowest

accuracy, while the combinations of time and duration produced higher accuracy

(95.46%). Also, when we add the duration information to the locations and simple

activity, the accuracy increases. Therefore, time information does carry a lot of

information about the complex activity. Again, with just simple activity input, it

achieved an accuracy between 58% . Once we added the time and duration
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information with the simple activity information, the accuracy went up by a large

factor, and produces 98.35%. Therefore, time and duration information helped to

achieve a high accuracy with simple activity recognition. In general, the incorporation

of duration information increases the accuracy of the complex activity recognition.

Table 6.7: Duration Ranges and Levels

Time (minutes) Level

0 to 1 1

1 to 2 2

2 to 5 3

5 to 10 4

10 to 15 5

15 to 20 6

20 to 30 7

30 to 60 8

60 to 120 9

120 to 180 10

180 to 240 11

240 and above 12

There is other time information, for example, timestamp, one-step sequence

(sequence of activities with respect to time), multi-step sequence, day of the week, day

of the month, season, weekend, holiday, or day to day regularity. We only used 1st

order time information in this experiment. These are time, and one-step sequence. We

did not use other second order time information. Still, we achieved a pretty good

accuracy. The influence of the other time information in complex activity recognition

needs to be investigated.

The occupation of time and space tells a lot about the human activity. With the

proliferation of sensors and related technologies, most previous research ignored time

information to recognize complex human activities. Prior work also missed the
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Figure 6.9: Accuracy for Man1 Varying Parameters Inclduing Duration

opportunity to leverage multi-level time information. The combination of time and

other technologies may lead to better recognition of human activities.

6.7 Discussion

6.7.1 Contributions

We have presented a novel framework for complex activity recognition. We

have also evaluated our proposed system using 56 days of real data from 3 subjects.

The dataset consisted of 51 unique complex activities. We modeled the time, location,

and simple activity to develop the mathematical model. We presented the experimental

details and results of the experiments. The developed model classifies this large set of

complex human activities with a very high accuracy of above 97%. The model can

leverage simple activity information to recognize complex activities. The effects of

absence of location and simple activity information have been presented. We also

evaluated the proposed system using a public dataset. It classified a set of 7 complex
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human activities collected over 28 days with an accuracy of 98.51%.

We have compared our work with existing work in Table 6.8. For each work,

we presented the number of activities it studied in the first column (simple activity

(SA), complex activity (CA)) and total number of instances in the second column. The

third column contains the total time duration of the data set. The fourth and fifth

column presents the methodologies and different sensors used in the studies. The

seventh column has the number of subjects that participated in the study. The last

column contains the accuracy of the system. Our work has used 2087 number of

instances of 51 unique complex activities and achieves an accuracy of above 97%.
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Table 6.8: Comparison with Existing Works

Work # of activity Total activities Duration Methodology Sensors # of subjects Accuracy

[137] 8 CA 245 4 weeks HMM,

Conditional

RF

14 location sen-

sors

1 79.4 Class

accuracy

[136] 14 CA 318 12 weeks Hidden

Semi MM,

SMCRF

25 sensors (reed

switch, BT, IR,

float, mercury

contact)

2 Highest

preci-

sion:75.3 &

recall: 84.7

[107] 7 CA - - HMM, EM,

Bayesian

25 sensors (reed

switch, BT, IR,

float, mercury

contact)

3 Highest

F-measure:

0.8

[33] 5 SA, 10 CA - - MLP,

NB, DTb,

K-Start

Acc., Gyro.,

Smartphone

10 Over 50%

for CA,

93% for SA

[15] 3 SA, 17 CA - 160 hours DTb, C4.5,

NB, IBL

5 Acc. sensor 20 84%

[118] 16 CA - 3 weeks Context

Driven

Activity

Theory

Acc., Smart-

phone, BT,

RFID, GPS

2 95.73%

Our 51 CA 2087 8 weeks HMM,

Viterbi

Acc., WiFi 3 above

97.58%
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6.7.2 Novelty

To the best of our knowledge, this is the first system to recognize complex

human activities using time, location, and simple activity. Also, this is the first system

to recognize a large number of complex human activities. The dataset used in this

experiment was made publicly available to enhance the research in the area of HAR.

We have extensively studied previous work in the area of HAR and presented the

definition of simple activity and complex activity along with the related terminologies.

We also presented the taxonomy of the approaches in HAR.

6.7.3 Applications

We have developed this system to implement in two different case studies. The

first one in the rehabilitation clinics and elderly care (one in USA, and another in

Taiwan), to track the patients’ daily activities. The reported activities will be evaluated

by a rehabilitation specialist to assess the assigned task and daily routine. The second

one is in the Hajj, where millions of Muslims gather annually for the pilgrimage. The

goal is to track pilgrims based on their activities and provide emergency services if

needed.

6.8 Conclusions

Human activity recognition has an important role in many research areas and

their applications. We have presented taxonomy of the human activities and human

activity recognition approaches. We proposed a novel framework to recognize

complex human activities. We collected real complex activity data from three subjects

for a total of 56 days. We used HMM and Viterbi algorithm to model and recognize

activities. We achieved a very good accuracy of above 97% for a large number of

activity sets. The system achieved upto 94% accuracy with just time and simple

activity information. The comparison of other approaches with this dataset can be a

future work. Also, other datasets can be used to evaluate the proposed system.
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CHAPTER 7

CONCLUSION

7.1 Summary

In this dissertation, we describe how we developed a mathematical model and

systems for indoor and outdoor localization. We used received signal strength

indicator (RSSI) as a parameter to model location with distance. We evaluated the

localization system by developing an asset tracking system. We also developed a

computationally efficient approach to recognize simple human activity. Theory from

chaos and nonlinear system along with Gaussian mixture model was used to capture,

understand and learn underlying dynamics of the simple human activities. We

proposed a framework to recognize complex human activities using time, location and

simple activity information. Hidden Markov Model was used to evaluate the

framework with real data.

There is much opportunities for future research to advance the knowledge in

this area. In simple human activity recognition, application of the time-delay

embedding method in wearable sensor-based activity recognition can be researched

further. The analysis of the experiment and results from the case studies can be a

future work. In complex human activity recognition, the comparison of other

approaches with the collected dataset can be a future work. Also, other datasets can be

used to evaluate the proposed system.

7.2 Contributions

The major contribution of this research work is in algorithm development,

system design, framework development, and evaluation with real data. In this section



118

we summarize the contributions of this dissertation. These contributions are discussed

with respect to each of the application areas.

7.2.1 RSSI based Indoor Localization for Smartphone using Fixed and Mobile Wireless

Node

Today with the widespread use of mobile computing, wireless technology,

smartphones and diverse related services, different localization techniques have been

developed. One of the widely used space-based satellite navigation system is Global

Positioning System (GPS). It has a high rate of accuracy for outdoor localization. But

the service is not available inside buildings. Also other existing methods for indoor

localization have low accuracy. In addition, they require fixed infrastructure support.

In this work, we presented an extensive survey on existing localization techniques in

wireless technology. We proposed a novel approach to solve indoor localization, which

also works well outside. We have developed a mathematical model to estimate

location (both distance and direction) of a mobile node (router) using wireless

technology. We have presented our results and it shows that we can achieve good

accuracy (an error less than 2.5 meters) on smartphones (Android and iOS). We have

evaluated the developed system in different applications.

7.2.2 Asset Tracking System for Smartphone

We have developed an asset/object tracking system for smartphones using the

first approach. Here the mobile node (WiFly) is integrated with the asset (target object)

to be tracked. We have developed two separate applications in Android and iOS for the

smartphone to track the distance and direction of the mobile node (tracked asset). The

application can find the location (distance and direction) of the mobile node. It can

also trigger an alarm (paging sound) in the tracked asset so that user can locate it using

the sound. We have used the open-source electronics prototyping platform

”Arduino-Mini” to power our developed system.
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7.2.3 Data Collection Tool

We developed a data collection tool, UbiSen (Ubicomp Lab Sensor

Application), in Android, to collect sensor data from smartphone. It shows the list of

available and unavailable sensors in green and red colors respectively. It can collect

data from all available sensors simultaneously. We used multi-threading technique to

parallelize the operation and separate data collection process from the main thread. It

provides more precise sensor data at each timestamp. The developed tool is generic. It

can be used to collect data from a specific set of sensors. The frequency can be

specified from the settings of the application. The data collection process can be

labeled. It offers a stop watch to start and stop the data collection process. The

recorded data can be exported as a CSV (comma separated value) file. Beside human

activity data collection, it can be used for a wide range of purposes to collect sensor

data from built-in smartphone sensors.

7.2.4 Novel Light Weight Smartphone based Activity Recognition using Gaussian Mix-

ture Models of Reconstructed Phase Space

Human activity recognition is an important area of research because it can be

used in context-aware applications. It also has significant influence in many other

research areas and applications including healthcare, assisted living, personal fitness,

and entertainment. With the pervasive use of smartphones, which contain numerous

sensors, data for modeling human activity is readily available. This study presents a

computationally efficient smartphone based human activity recognizer, based on

dynamical systems and chaos theory. A reconstructed phase space is formed from the

accelerometer sensor data using time-delay embedding. A single accelerometer axis is

used to reduce memory and computational complexity. A Gaussian mixture model is

learned on the reconstructed phase space. A maximum likelihood classifier uses the

Gaussian mixture model to classify ten different human activities and a baseline. One
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public and one collected dataset were used to validate the proposed approach. Data

was collected from 10 subjects. The public dataset contains data from 30 subjects.

Out-of-sample experimental results show that the proposed approach is able to

recognize human activities from smartphones’ one-axis raw accelerometer sensor data.

The proposed approach achieved 100% accuracy for individual models across all

activities and datasets. The proposed research requires three to seven times less

amount of data than existing approaches to classify activities. It also requires three to

four times less time to build reconstructed phase space compare to time and frequency

domain features.

7.2.5 Application of Simple Full Body Motor Activity Recognition System as A Service

A support system, which will provide information about current activity of the

user by hiding all the complex details behind activity recognition, is a time demanding

service in HAR applications. We implemented the developed simple activity

recognition system in the Android application framework as a service. The

applications from the application layer and other services from the application

framework can register to get the activity information. It provides an opportunity to a

wide range of application areas to leverage activity information.

7.2.6 Recognition of Complex Functional Activity

Human activity recognition has importance in many research areas including

healthcare, elderly care, assisted living, and context-aware applications. There has

been much work involving simple human activities like walking, sitting, and running.

There are only a few studies that considered recognizing complex human activities

such as reading a book, watching TV, doing dishes, and cooking. This study presents a

novel framework to recognize complex activities. The framework uses the time,

location, and simple activity to recognize complex activities. These inputs of the

framework have been used to model the observation and the complex activities as the



121

states of a Hidden Markov Model. Then the Viterbi algorithm was used to find the

hidden states (complex activities) from the observations (time, location, and simple

activity). Data was collected from three subjects for a total of 56 days consisting 51

unique complex activities. Out-of-sample experimental results show that the proposed

approach is able to recognize these 51 unique complex activities. The approach

achieved an accuracy of above 97% for all the subjects. The proposed approach

leverages time, location, and simple activity information to recognize complex

activities. It also achieved up to 94% accuracy with just time and simple activity

information. We also evaluated the proposed system using a public dataset. It

classified a set of 7 complex human activities collected over 28 days with an accuracy

of 98.51%.

7.3 Broader Impact

Our research work helps to understand the key issues and challenges in the area

of human activity recognition. It also describes the different issues related to building

localization systems using RSSI value of wireless networks. The localization

technique developed here will help building low cost, infrastructure-less mobile

systems. The simple human activity recognition system developed here helps in the

recognition of the human activities with reduced computational and memory

complexity. It also improves the recognition accuracy. The complex human activity

recognition provides a bigger picture of daily human life. To the best of our

knowledge, this is the first system to recognize complex human activities using time,

location, and simple activity. Also, this is the first system to recognize a large number

of complex human activities. It will be helpful in many different areas from achieving

context-awareness in ubiquitous computing systems to perform functional assessment,

cognitive assessment, and measure health outcomes in occupational science and

rehabilitation engineering. Besides, the followings are the list of products that has

been/can be developed from this dissertation:
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• Child tracking or asset tracking device with smartphone application

• System service in smartphone to offer simple human activity recognition

• Simple activity recognition API

• Software application to estimate complex human activity information from time,

location, and simple activity information

• System for rehabilitation engineers and occupational therapist to estimate

patients activity and perform assessment after surgery.

7.4 Future Works

Automated recognition of human activities plays an important role in our

everyday life. The length of the activities ranges from seconds to hours. Also, we

interact with other objects in the environment while performing these activities. A

series of simple activities and changes in time and location forms a more complex

activity. The changes in time along with simple activity and location history can be

used to investigate complex activity recognition. The interactions with the surrounding

objects in the connected home environment may lead to a better understanding of the

human activities and their recognition process. The use of sensor signals from a single

device to recognize complex activity may not provide us a good activity recognition

system. Rather, working in a bottom-up approach, where these simple information can

be bundled together along with location history, time changes, input from surrounding

devices to get more intelligence about the activity, needs to investigated to recognize

different levels of human activities. With the progress in human activity recognition,

there are many exciting applications from personal management and context-aware

personal assistant to ubiquitous mobile computing system in the connected world.
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APPENDIX A

WRIST-WORN HEART RATE SENSOR TO RECOGNIZE HUMAN

ACTIVITIES

We worked on recognizing human activities from wrist-worn heart rate sensor

data. The apple watch is equipped with a heart rate sensor to measure heart rate. We

collected heart rate data using a wrist-worn apple watch from two subjects. The data

were collected for 1 week for three different activities. The activities are walking,

sitting, and standing. The watch was worn in three different configurations: loose fit,

fit, and tight. These configurations are based on how tight or loose the watch is worn

with the wrist. We have used last three holes of the watch belt for each of the

configurations. For each configuration, we collected heart data from the apple watch

heart rate sensor every 15 to 20 minutes. We collected four heart rate samples every

time. We have also collected heart rate data using the Pulse Oximeter and hand

reading.

We have analyzed the collected heart rate data to find correlation with the

human activities. At first, we have analyzed the apple watch heart rate data. We

observed that the heart rate data varies within a short time period. It shows a

significant difference even in four samples collected at each iteration where time

difference is less than a minute and there was no changes in activities and emotion. We

than compared the data collected from apple watch with the data collected using hand

reading and Pulse Oximeter. The hand reading and reading from the Pulse Oximeter

are consistent and had a little to no difference. On the other hand, the apple watch

heart rate sensor data were significantly different from the Pulse Oximeter reading. We

have found a mean root mean square error (RMSE) of 21 beats per minute (BPM) for
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all configurations. The lowest RMSE was 9 BPM for the fit configuration for fourth

heart rate reading and the highest RMSE was 33 for the tight configuration for second

heart rate reading. In general, there is an mean error of 15 to 20 BPM for all other

readings and configurations. Therefore, the unreliability of heart rate data from the

apple watch heart rate sensor makes it difficult to recognize human activities.
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APPENDIX B

SMART SPECTACLE CLIP TO TRAIN AND PREVENT FALL

Elderly people are the fastest growing segment of the population in the world.

According to the Administration on Aging (AoA), the older population, 65 years or

older people, numbered 46.2 million in 2014. They represent the 14.5% of the US

population and by 2060, there will be more than twice their number in 2014 [106].

Falls are the leading cause of accidents in elderly people. It is also the primary cause

of serious injuries and accidental deaths. It is more common than strokes [44].

Research has identified the leading risk factors that contribute to falling. The four

leading risk factors are vision problems, lower body weakness, difficulty with walking

and balance, and home hazards [54]. Most of the falls are caused by a combination of

the above risk factors. Changes or modification to these risk factors can help to train

and prevent falls.

Healthcare providers (rehabilitation therapist) can help to cut down risk by

reducing fall risk factors. Vision problem is an important risk factor. Wearing

multifocal glasses while walking leads to falls [56]. Though nowadays many

presbyopes use the progressive lenses, conventional bifocal and trifocals. They offer

wider lens areas than progressive lenses for reading and using computer. People with

progressive lenses use another pair of glasses for other activities such as walking.

These different types of lenses can make things seem closer or farther away than they

actually are and leads to a fall if they forget to wear the correct glass [64]. In this

work, we worked to develop a portable smart spectacle clip to remind the subject when

to change glasses. The smart clip recognizes and track the activities. It reminds and

warns the user to change the glasses suitable for the activities. The repeated reminders
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help training the subject to wear right glasses for the activities. Also, the real-time

warnings help prevent the falls.
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APPENDIX C

LINK TO CODE

The code to recognize simple human activities and corresponding C code to

implement system service in Android Application Framework is uploaded to the

https://bitbucket.org under Ubicomp Laboratory account. The link to the

repository is:

https://bitbucket.org/ubicomplaboratory/simple-

human-activity-recognition

Contact:

Dr. Sheikh Iqbal Ahamed

Email: sheikh.ahamed@marquette.edu

Md Osman Gani

Email: oscse23@gmail.com, md.gani@marquette.edu

https://bitbucket.org
https://bitbucket.org/ubicomplaboratory/simple-human-activity-recognition
https://bitbucket.org/ubicomplaboratory/simple-human-activity-recognition


141

APPENDIX D

LINK TO PUBLISHED PAPERS

The papers published from this dissertation is stored in the https://

bitbucket.org under Ubicomp Laboratory account. The link to the repository is:

https://bitbucket.org/ubicomplaboratory/papers

https://bitbucket.org
https://bitbucket.org
https://bitbucket.org/ubicomplaboratory/papers
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APPENDIX E

LIST OF PRODUCTS

The followings are the list of products that has been/can be developed from this

dissertation:

• Child tracking or asset tracking device with smartphone application

• System service in smartphone to offer simple human activity recognition

• Simple activity recognition API

• Software application to estimate complex human activity information from time,

location, and simple activity information

• System for rehabilitation engineers and occupational therapist to estimate

patients activity and perform assessment after surgery.

• Smart spectacle clip to train and prevent fall
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