Title

Spectroscopic and Thermodynamic Characterization of the E151D and E151A Altered Leucine Aminopeptidases from Aeromonas proteolytica

Document Type

Article

Language

eng

Format of Original

7 p.

Publication Date

11-2005

Publisher

American Chemical Society

Source Publication

Inorganic Chemistry

Source ISSN

0020-1669

Original Item ID

doi: 10.1021/ic051034g

Abstract

Previous kinetic characterization of the glutamate 151 (E151)-substituted forms of the leucine aminopeptidase from Aeromonas proteolytica (Vibrio proteolyticus; AAP) has provided critical evidence that this residue functions as the general acid/base. The close proximity of similar glutamate residues to the bridging water/hydroxide of the dinuclear active sites of metalloenzymes (2.80 and 3.94 Å in carboxypeptidase G2 and 3.30 and 3.63 Å in AAP), suggests it may also be involved in stabilizing the active-site metal ions. Therefore, the structural perturbations of the dinuclear active site of AAP were examined for two E151-substituted forms, namely E151D-AAP and E151A-AAP, by UV−vis and electron paramagnetic resonance (EPR) spectroscopy. UV−vis spectroscopy of Co(II)-substituted E151A-AAP did not reveal any significant changes in the electronic absorption spectra. However UV−vis spectra of mono- and dicobalt(II) E151D-AAP exhibited a lower molecular absorptivity compared to AAP (23 and 43 M-1 cm-1 vs. 56 and 109 M-1 cm-1 for E151D-AAP and AAP, respectively) suggesting both Co(II) ions reside in distorted octahedral coordination geometry in E151D-AAP. EPR spectra of [Co_(E151D-AAP)], [ZnCo(E151D-AAP)], and [(CoCo(E151D-AAP)] were identical, with g = 2.35, g = 2.19, and E/D = 0.19, similar to [CoCo(AAP)]. On the other hand, the EPR spectrum of [Co_(E151A-AAP)] was best simulated assuming the presence of two species with (i) gx,y = 2.509, gz = 2.19, E/D = 0.19, A = 0.0069 cm-1 and (ii) gx,y = 2.565, gz = 2.19, E/D = 0.20, A = 0.0082 cm-1 indicative of a five- or six-coordinate species. Isothermal titration calorimetry experiments revealed a large decrease in Zn(II) affinities, with Kd values elevated by factors of ∼850 and ∼24 000 for the first metal binding events of E151D- and E151A-AAP, respectively. The combination of these data indicates that E151 serves to stabilize the dinuclear active site of AAP.

Comments

Inorganic Chemistry, Vol. 44, No.23 (November 2005): 8574-8580. DOI.

Brian Bennett was affiliated with Medical College of Wisconsin at the time of publication.

Richard Holz was affiliated with Utah State University at the time of publication.