Date of Award

Fall 2006

Degree Type

Thesis - Restricted

Degree Name

Master of Science (MS)

Department

Electrical and Computer Engineering

First Advisor

Johnson, Michael T.

Second Advisor

Povinelli, Richard

Third Advisor

Struble, Craig

Abstract

Automatic Speech Recognition (ASR) is a useful tool that can facilitate the research and study of animal vocalizations. The use of human speech-based signal processing techniques for animal vocalizations has several pitfalls. Animal vocalizations may not share the same spectral or temporal characteristics as human speech. As a result, the typical ASR assumptions concerning the best frame length, frame overlap and HMM topology may not be suitable for various animal vocalizations. This paper proposes a technique for estimating the frame length, frame overlap and HMM topology from a single, clean, example animal vocalization. Multiple trials are run using the proposed technique, against the vocalizations of two distinct animal species: the Norwegian Ortolan Bunting (Emberiza Hortulana) and the African Elephant (Loxodonta Africana). The results are examined, and the technique provides reasonable estimates for the frame length, the frame overlap and the HMM topology, given the quality of the example vocalizations. Specific recommendations are made for the continuation of this research into a usable tool for animal researches.

Share

COinS