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Background 
Traditionally, norepinephrine has been associated with stress responses, whereas dopamine has been 

associated with reward. Both of these catecholamines are found within the bed nucleus of the stria 

terminalis (BNST), a brain relay nucleus in the extended amygdala between cortical/limbic centers, and 

the hypothalamic-pituitary-adrenal axis. Despite this colocalization, little is known about subsecond 

catecholamine signaling in subregions of the BNST in response to salient stimuli. 

Methods 
Changes in extracellular catecholamine concentration in subregions of the BNST in response to salient stimuli 

were measured within the rat BNST with fast-scan cyclic voltammetry at carbon-fiber microelectrodes. 

Results 
A discrete subregional distribution of release events was observed for different catecholamines in this nucleus. 

In addition, rewarding and aversive tastants evoked inverse patterns of norepinephrine and dopamine release in 

the BNST. An aversive stimulus, quinine, activated noradrenergic signaling but inhibited dopaminergic signaling, 

whereas a palatable stimulus, sucrose, inhibited norepinephrine while causing dopamine release. 

Conclusions 
This reciprocal relationship, coupled with their different time courses, can provide integration of opposing 

hedonic states to influence response outputs appropriate for survival. 

Key Words 
Dopamine, dorsolateral bed nucleus of the stria terminalis (dlBNST), fast-scan cyclic voltammetry (FSCV), 

norepinephrine, tastant stimuli, ventral bed nucleus of the stria terminalis (vBNST) 

 

It is well-established that a group of neuronal circuits form the brain “reward” pathway, a system that is 

activated during goal-directed behaviors such as acquisition and consumption of palatable food (1). By analogy, 

another set of brain circuitry is activated by aversive stimuli and their associated cues (2, 3, 4). A portion of both 

of these systems lies within the extended amygdala, a group of telencephalic nuclei that act as relay centers 

where information from descending cortical neurons is integrated with limbic afferents to 

evaluate homeostasis (5). The extended amygdala includes the nucleus accumbens (NAc) shell, a central 

structure in the brain reward pathway that receives a dense dopaminergic innervation associated with 

motivation and reward processing (1). Indeed, dopamine release in the NAc is immediately triggered by 

unexpected reward presentation (6, 7) and it is suppressed after delivery of an aversive substance (8). 

The extended amygdala also includes the bed nucleus of the stria terminalis (BNST), a catecholamine-containing 

structure that has been linked with negative emotional states and stress (4, 9). The BNST consists of more than 

12 anatomically distinct subnuclei. It serves as a critical relay center and integrator between limbic structures 

(e.g., amygdala, hippocampus, and medial prefrontal cortex) and the hypothalamic paraventricular 

nucleus (PVN) (10). Via these pathways, excitatory and inhibitory input elicited by stress is conveyed to the 

hypothalamic-pituitary adrenal (HPA) axis (11, 12). The anterior BNST receives dense inputs of 



both norepinephrine and dopamine. The dorsolateral (dl)BNST, which includes the oval nucleus, 

receives dopaminergic innervation from the ventral tegmental area (VTA), dorsal raphe nucleus, 

and periaqueductal gray area but contains little norepinephrine (5, 13, 14). It is noteworthy that the function of 

these dopamine neuron populations in the wake-sleep cycle is different. Recent work suggests that the 

dopamine neurons in the ventrolateral periaqueductal gray change their activity across sleep-wake periods and 

promote waking, whereas VTA dopamine neurons do not change their mean firing rate across the sleep-wake 

cycle (15, 16). In contrast to the dlBNST, the ventral (v)BNST—which includes the fusiform nuclei—has a dense 

noradrenergic innervation from the nucleus of solitary tract, ventrolateral medulla (VM), and locus 

coeruleus cell groups but little dopamine content (17, 18). The dlBNST and vBNST subregions are interconnected 

with dense projections from the oval nucleus to the fusiform nucleus and a lighter reciprocal connection. The 

fusiform nucleus has a strong projection to the PVN by which it can activate the HPA axis (10). However, little is 

known concerning catecholamine neurotransmission within the BNST. Although a few stressful stimuli such as 

fox odor (19) or morphine withdrawal (20) have been shown to evoke norepinephrine increases within the 

BNST, the large size and slow response of conventional chemical probes has impeded subsecond 

characterization of behaviorally evoked catecholamine neurotransmission in the subregions of the BNST. 

To evaluate brain processing during discrete rewarding and aversive events, we used intra-oral delivery of 

tastants while measuring catecholamine responses with fast-scan cyclic voltammetry at carbon-

fiber microelectrodes, a methodology that enables subsecond monitoring of extracellular catecholamines during 

behavior (21). Animals rapidly differentiate aversive and palatable tastes and show different behavioral outputs 

(22). Rats exhibit licking behavior during infusions of sucrose, a palatable tastant, and exhibit rejection responses 

during infusions of quinine, an aversive tastant (23). Because rats typically avoid aversive events, intra-oral 

deliveries allow evaluation of equal number of rewarding and aversive events detected by the same sensory 

modality. We used this design to compare in real time the responses to aversive and appetitive stimuli of 

dopamine and norepinephrine in different subregions of the BNST. 

Methods and Materials 

Animals and Surgery 
Male Sprague-Dawley rats (320–420 g; Charles River, Wilmington, Massachusetts) were anesthetized 

with ketamine hydrochloride (100 mg/kg) and xylazine hydrochloride (20 mg/kg), and stereotaxic surgeries for 

electrochemical recordings were performed as described previously (8). Small holes in the skull were drilled for 

reference (silver/silver chloride) and stimulating electrodes as well as for carbon-fiber microelectrodes. A 

guide cannula (Bioanalytical Systems, West Lafayette, Illinois) for loading a micromanipulator containing a 

carbon-fiber electrode on the day of the experiment was implanted above the vBNST (0.0 mm posterior 

from bregma, 1.2 mm lateral from the bregma) or dlBNST (.1 mm posterior, 1.6 mm lateral from the bregma) 

(24). A bipolar, stainless-steel stimulating electrode (Plastics One, Roanoke, Virginia) was placed in the ventral 

noradrenergic bundle and VTA/substantial nigra dopaminergic cell bodies (5.2 mm posterior, 1.0 mm lateral, 

8.0–9.0 mm ventral). A reference electrode was placed in the contralateral cortex. The implanted items were 

permanently secured to the skull with dental cement. 

Each intra-oral cannula for infusion of sucrose or quinine consisted of an approximately 6-cm length of 

polyethylene-100 tubing that was flanged at one end with a Teflon washer (8). The cannulas were inserted 

lateral to the first maxillary molar with the Teflon washer flush against the molar on each side of the mouth. The 

other end was accessible via an incision at the top of the head and held in place with a second Teflon washer. 



Experimental Design 
One week after recovery from surgery, rats were placed in a standard operant chamber, and voltammetric 

recordings were made. At the start of the behavioral session, white noise was activated to control for potentially 

interfering ambient noise and the house light was turned on to observe oro-facial responses. After a variable 

interval (1 to 2 min), a peristaltic pump delivered approximately 200 μL of a tastant solution for 3.5 sec through 

the intra-oral cannula. Rats received multiple trials of sucrose followed by an equal number of trials of quinine at 

unpredictable times to ensure comparable novelty and salience but opposing hedonic valence. Previous studies 

showed that this design elicited strong and consistent behavioral differences in hedonic expression with no 

evidence of anticipatory or conditioned responses (8), and the dopamine response to intra-oral infusions is 

independent of the order of tastant delivery (8). All animals received a brief rinse with distilled water after each 

oral infusion to prevent lingering of the prior tastant in subsequent taste reactivity. After the tastant 

experiments, selective dopamine and norepinephrine drugs were administered to verify that the recorded signal 

was norepinephrine and/or dopamine. After pharmacological agents, the tastants were readministered in some 

animals. Each animal was run only on 1 day in a single subregion of the BNST. 

Voltammetric Procedures 
Glass-encased, cylindrical carbon-fiber microelectrodes with an exposed length of 75–100 μm T-650 carbon fiber 

(5.1 μm in diameter) and reference electrodes were prepared as described previously (25). Fast-scan cyclic 

voltammetry was computer-controlled. A triangular scan (−0.4 to +1.3 V, 400 V/sec) was repeated every 100 

msec. Data were digitized and stored on a computer with software written in LABVIEW (National Instruments, 

Austin, Texas). Background-subtracted cyclic voltammograms were obtained by digitally subtracting 

voltammograms collected during stimulation from those collected during baseline recording. Voltammetric 

responses were viewed as color plots with the abscissa as voltage and the ordinate as acquisition time and the 

current encoded in color. Because the carbon-fiber microelectrode was used to lesion the brain, thus marking 

the recording site, this precluded postcalibration of the sensitivity of the electrode (see following text). Instead, 

we used postcalibration factors/carbon fiber area (6.9 ± .3 pA/[μmol/L × μm2] for dopamine, 4.5 ± .2 pA/[μmol/L 

× μm2] for norepinephrine) on the basis of the average response obtained from multiple electrodes as described 

in our previous study (26). Each calibration factor was determined with five dopamine and norepinephrine 

concentration standards. The calibration factors are scaled to the electrode length that varied between 75 and 

approximately 100 μm. Before the experiment, the length of the exposed carbon fiber was measured. 

Histology 
At the end of experiments, the recording sites were verified by electrolytic lesions by applying constant current 

(20 μA for 10 sec) to the carbon-fiber microelectrodes after administration of urethane (1.2 g/kg) (18). The 

animals were subsequently euthanized with an overdose of urethane. Brains were removed and stored in 

10% formaldehyde and coronally sectioned into 40-μm-thick slices with a cryostat. The sections mounted on 

slides were stained with .2% thionin, and coverslipped before viewing under a light microscope. 

Drugs and Reagents 
In all animals, at least one drug selective for each catecholamine was administered intraperitoneally (IP) to verify 

that the recorded signal was norepinephrine and/or dopamine after both tastant experiments and their effects 

on electrically stimulated release were evaluated. All drugs were obtained from Sigma-Aldrich (St. Louis, 

Missouri). Desipramine-hydrogen chloride (HCl) (15 mg/kg), raclopride-HCl (2 mg/kg), and idazoxan-HCl (5 

mg/kg) were dissolved in saline. [1-[2-[bis(4- fluorophenyl)methoxy]ethyl]-4 -(3-phenylpropyl)pipera- zine] (GBR 

12909; 15 mg/kg) was dissolved in water and diluted in saline. The doses of the drugs used are ones that are 

commonly used in microdialysis studies. 



Data Analysis 
The changes of basal catecholamine level by the tastants or electrically evoked catecholamines over time were 

identified by a locally written principal component regression algorithm as descried earlier (27, 28). A residual 

analysis procedure was used to verify that the cyclic voltammograms of the trials being predicted were 

consistent with the analyte cyclic voltammograms used for calibration. Any trials containing uncharacteristic 

variance larger than 95% of the noise of the training set were discarded. 

Clampfit 8.1 (Axon Instruments, Foster City, California) was used to analyze half-life (t1/2, the time to descend 

from its maximum value to half of that value) as described in the literature (18). Electrically 

stimulated catecholamine release was recorded every 4 min for 20 min before and for 30 min after IP 

administration of drugs. To determine the catecholamine concentration changes during tastant trials, data from 

each trial (−5 sec before and 20 sec after infusion onset) were first background subtracted with the local minima 

in the 5 sec before infusion onset as the baseline. Significant changes over time were evaluated with average 

baseline (−5.0 to 0 sec relative to infusion onset) and maximal evoked catecholamine concentration during and 

after infusion (.1 to 15 sec). Mean values were compared by using the two-tailed Student t test to calculate the 

level of significance. Statistical significance of difference in t± 20 nmol/L (sec) between dopamine and 

norepinephrine was evaluated with two-way analysis of variance with Bonferroni post-tests used to correct for 

multiple comparisons. Statistical analysis employed GraphPad Software version 4.0 (San Diego, California). 

A p value < .05 was regarded as statistically significant. Data are represented as mean ± SEM. 

Results 

Depth Profile of Evoked Catecholamine Release in the BNST Pathways 
The subregions of the BNST targeted in this work are quite small (approximately 200 μm across in the horizontal 

plane for the dlBNST). However, as we showed in the vBNST of anesthetized animals (18), evoked catecholamine 

release yields distinct responses as the position of the electrode is lowered, and these responses can be used to 

guide microelectrode placement. In these experiments, the detachable micromanipulator was implanted 

directly above the targeted region, and the electrode was lowered 4.8 mm below the skull surface. A bipolar 

stimulating electrode was implanted in the VTA/substantial nigra, the site of dopaminergic cell bodies, an area 

that is traversed by the ventral noradrenergic bundle, a pathway originating in the nucleus of solitary tract/VM 

cell groups. Thus, stimulation of this region evokes simultaneous norepinephrine and dopamine release. 

The carbon-fiber microelectrode was lowered in approximately .15-mm increments, and catecholamine release 

was evoked at each position. 

Figure 1A (left) shows the targeted track for measurements in the vBNST. In freely moving animals, stimulated 

release above the BNST (6.0 mm) was not observed, but as the carbon fiber reached the dorsomedial (dm)BNST 

(6.3 mm), a small signal was seen during the stimulation (Figure 1A, right). The cyclic voltammogram reveals that 

it arose from released catecholamines. With further lowering, the electrode reached the anterior 

commissure where stimulated release was not seen. Stimulated norepinephrine release was evoked at 7.5 mm, 

the depth of the vBNST. Comparison of Figure 1A with the data presented in anesthetized animals (18) shows 

the depth profiles are independent of anesthesia. Although cyclic voltammograms distinguish between 

catecholamines and their metabolites, they cannot discern dopamine from norepinephrine (29). Thus, in our 

prior work we established that the predominant catecholamine in this subregion is norepinephrine, on the basis 

of tissue content, immunohistochemical results, and pharmacological results (18). 



 
Figure 1. Electrically evoked catecholamine responses in the ventral bed nucleus of the stria terminalis (vBNST) 

and dorsolateral bed nucleus of the stria terminalis (dlBNST). (A, B) Diagram of the region examined (left) (24). 

The dotted lines illustrate the approximate path of the carbon-fiber microelectrode through the vBNST 

and dlBNST. (A, B) Evoked (60 Hz, 40 pulses, 150 μA) catecholamine concentrations recorded at the depth 

indicated (right). The red bars under the current trace show the electrical stimulation time. Inset: background-

subtracted cyclic voltammogram measured during the indicated trace. AC, anterior commissure; CPu, caudate-

putamen; dmBNST, dorsomedial bed nucleus of the stria terminalis; LV, lateral ventricle; VP, ventral pallidum. 

(Portions of A and B reprinted from [24], with permission from Elsevier, copyright 2007.) 

 

Figure 1B (left) shows the targeted track for the dlBNST. Stimulated release was not seen at 4.8 mm, but at the 

depth of the medial caudate putamen (5.2 mm) and the dlBNST (6.5 mm) dopamine release was evoked 

(Figure1B, right). If the electrode was lowered further into the anterior commissure, release was not evoked. 

Identical responses were obtained in anesthetized animals. Pharmacological, anatomical, and electrochemical 

data in the anesthetized animals established again that the predominant catecholamine detected in the dlBNST 

was dopamine (Figure S1 in Supplement 1). 

Dopamine Signaling in the dlBNST in Response to Tastants 
Once robust release sites were found in the dlBNST, we examined the effect of palatable and aversive tastants 

on catecholamine release. Each naïve animal received repeated, small-volume (3.5 sec, 200 μL), intra-oral 

infusions of sucrose and then an equal number of quinine infusions. They were delivered at unpredictable times 

to ensure comparable novelty. 

Intra-oral sucrose (.3 mol/L) infusions increased extracellular dopamine concentration as shown in the average 

results from one animal (Figure 2A). In some trials, intra-oral sucrose infusions evoked a rapid and significant 

elevation in dopamine concentration that started during the infusion and then returned to baseline, whereas in 

other trials no change was observed (examples in Figure 2B). In response to intra-oral quinine (.001 mol/L) 

infusions, however, dopamine concentrations decreased (averaged example from one animal in Figure 2C, 

individual trials in Figure 2D). The trial × trial variations with sucrose were not apparent when results from all 

animals were averaged together (Figure S2A in Supplement 1). The average dopamine concentration changes in 

multiple rats after each tastant are shown in Figure 3A. The average time for a 20-nmol/L change after initiation 

of infusion (t± 20 nmol/L) was <5 sec with both tastants (Figure 3B). Both the direction and the time course of the 

changes are similar to rapid dopamine signaling in response to these tastants in the NAc shell (8). 



 
Figure 2. Dopamine signaling in the dorsolateral bed nucleus of the stria terminalis (dlBNST) in response to 

palatable and aversive tastants. (A) Intra-oral infusions of sucrose increase dopamine release. The upper trace is 

the average dopamine concentration change over 15 trials in response to intra-oral sucrose infusions in a single 

animal (infusions during the red bar). The color plot shows the averaged cyclic voltammograms collected during 

the 15 trials. Catecholamine concentration changes are apparent in the color plots at the potential for its 

oxidation (approximately +.65 V, dotted white line) and its reduction (approximately −.2 V, solid white 

line). (B) Trial-by-trial changes of dopamine concentration from the animal shown in (A) in response to intra-oral 

sucrose infusion. (C) Upper trace is the average dopamine concentration change over 15 trials in response to 

intra-oral infusions of quinine in a single animal (infusions during the red bar). The color plot shows the average 

of all of the cyclic voltammograms collected during the 15 trials in this animal. (D) Trial-by-trial changes of 

dopamine concentration from the animal shown in (C) in response to intra-oral infusions of quinine. 

In (A) and (C) the mean is given by the solid lines, and ± SEM is given by the dotted lines. Ag, silver; AgCl, silver 

chloride; Eapp, applied potential; V, voltage. 

 
Figure 3. Average concentration change and time course for dopamine in the dorsolateral bed nucleus of 

the stria terminalis (dlBNST). (A) Maximal dopamine concentration ([DA]) change measured in response to 

infused tastants (p < .005 for sucrose, p < .01 for quinine). (B) Time for dopamine to change by 20 nmol/L (t± 20 

nmol/L) after initiation of tastant infusion. (C, D) Effect of idazoxan (IDA) (5 mg/kg), desipramine (DMI) (15 

mg/kg), raclopride (RA) (2 mg/kg), and GBR 12909 (GBR) (15 mg/kg) on electrically evoked dopamine 

release. (C) Maximal [DA] and (D) time to clear the released dopamine to one-half of its maximal concentration 

(t1/2). *Significantly different from control values (p < .05). 



To ensure verification of the dopamine detected in each experiment, several experiments were undertaken. At 

each measurement site in the dlBNST, idazoxan, an α2-adrenergic antagonist, and desipramine, 

a norepinephrine transporter inhibitor, did not alter the maximal electrically evoked dopamine concentration 

(Figure 3C) or its time to return to half of its maximal concentration (t1/2, Figure 3D). In contrast, raclopride, a D2 

antagonist, and GBR 12909, a dopamine transporter inhibitor, significantly increased both dopamine 

concentration and t1/2 of evoked release at all dlBNST sites. Subsequently, an electrolytic lesion was made with 

the carbon-fiber microelectrode for histological identification (Figure S3A in Supplement 1). Taken together, the 

cyclic voltammograms, coupled with the histological and pharmacological results, confirmed that the signals 

reported from the dlBNST arise from dopamine. 

Norepinephrine Signaling in the vBNST in Response to Tastants 
In a different group of animals, we investigated norepinephrine responses in the vBNST to the same intra-oral 

delivery of tastants. The responses were opposite to those observed for dopamine in the dlBNST. After sucrose 

infusions, the extracellular norepinephrine concentration gradually decreased (example from one animal 

in Figures 4A and 4B), whereas it increased after quinine delivery (example from the same animal in Figures 4C 

and 4D; average norepinephrine concentration changes in multiple rats after each tastant in Figure 5A). Mean 

norepinephrine concentration changes did not differ by trial number for either tastant (Figure S2B in 

Supplement 1) despite trial × trial variation (Figures 4B and 4D). The average t± 20 nmol/L after tastant infusion in 

this region was approximately 9 sec (Figure 5B), values that are significantly longer than those for dopamine [t± 20 

nmol/L, F(1,21) = 45.7, p < .001] (compare Figures 3B and 5B). Confirming norepinephrine detection, idazoxan and 

desipramine both significantly increased evoked norepinephrine concentration and t1/2 (Figures 5C and 5D). 

However, neither raclopride nor GBR 12909 significantly altered stimulated responses in this subregion. Again, 

electrode placements were electrolytically marked and histologically verified (Figure S3B in Supplement 1). The 

responses termed “noradrenergic” exclude those in which the carbon-fiber microelectrode was outside 

the vBNST. 

 
Figure 4. Norepinephrine signaling in the vBNST in response to palatable and aversive tastants in a single 

animal. (A) Intra-oral infusions of sucrose decrease norepinephrine release. The upper trace is the average 

norepinephrine concentration change over 15 trials in response to intra-oral sucrose infusions in a single animal 

(infusions during the red bar). The color plot shows the averaged cyclic voltammograms collected during the 15 

trials. White lines are as in Figure 2 (A). (B) Trial-by-trial changes of norepinephrine concentration from the 

animal shown in (A) in response to intra-oral sucrose infusion. (C) Upper trace is the average norepinephrine 

concentration change over 15 trials in response to intra-oral infusions of quinine in a single animal (infusions 

during the red bar). The color plot shows the average of all of the cyclic voltammograms collected during the 15 

trials in this animal. (D) Trial-by-trial changes of norepinephrine concentration from the animal shown in (C) in 



response to intra-oral infusions of quinine. In (A) and (C) the mean is given by the solid lines, and ± SEM is given 

by the dotted lines. Abbreviations as in Figure 1, Figure 2. 

 
Figure 5. Average concentration change and time course for norepinephrine in the vBNST. (A) Maximal 

norepinephrine concentration ([NE]) change measured in response to infused tastants (p < .0001 for sucrose, p < 

.0001 for quinine). (B) Time for 20 nmol/L norepinephrine changes to occur (t± 20 nmol/L) after initiation of tastant 

infusion. (C, D) Effect of IDA (5 mg/kg), DMI (15 mg/kg), RA (2 mg/kg), and GBR (15 mg/kg) on electrically 

evoked norepinephrine release. (C) Maximal evoked [NE]. (D) Half-decay time (t1/2). *Significantly different from 

control values (p < .05). Abbreviations as in Figure 1, Figure 3. 

Pharmacological Effects on BNST Catecholamine Signaling in Response to Tastants 
After pharmacological agents, the tastants were readministered in some animals. In the dlBNST the 

dopaminergic response to sucrose was enhanced after raclopride, but little change was seen in the response to 

quinine (examples in Figure S4 in Supplement 1). In the vBNST, the noradrenergic response to sucrose was 

unaffected by idazoxan, whereas it was amplified after quinine (examples in Figure S5 in Supplement 1). After 

administration of both idazoxan and desipramine, the noradrenergic response to quinine was increased even 

more. Evoked norepinephrine concentration lasted for a longer time in the vBNST than the dopamine 

concentration in the dlBNST (Figure 2, Figure 4), returning back to the pre-quinine basal norepinephrine level 

within 1 minute (examples in Figure S6 in Supplement 1). After administration of idazoxan and desipramine, 

increased norepinephrine in response to quinine lasted longer than 1 minute. Once again, the increased 

norepinephrine concentration in response to quinine clearly showed no change by trial number. 

In eight recording sites, the pharmacological responses indicated that both norepinephrine and dopamine 

contributed to the cyclic voltammetric signal (indicated by red triangles in Figure S3 in Supplement 1). These 

sites were found in the border regions between the dlBNST and dmBNST and between vBNST and ventral 

pallidum. In four of these locations, the signals were too small for evaluation of tastant responses. However, in 

the remaining sites, the response to tastants was intermediate between that expected for norepinephrine and 

dopamine. An example set of responses at one of these sites at the boundary between dlBNST and dmBNST is 

shown in Figure 6. After intra-oral sucrose there was a catecholamine concentration increase (mean in this 

animal of 10.1 ± 2.3 nmol/L, n = 15 trials) followed by a decrease (−14.0 ± 4.9 nmol/L; Figure 6A) that fluctuated 

on a trial-by-trial basis (Figure 6B). After intra-oral quinine, the tastant first infused in this animal, 

catecholamine(s) increased (Figures 6C and 6D; 20.5 ± 5.8 nmol/L during 15 trials). Subsequently, the presence 

of both catecholamines was confirmed because the amplitude and time course of electrically evoked release 

was increased by administration of raclopride and then further increased after idazoxan (Figure 6E). After the 

two antagonists, intra-oral sucrose induced larger catecholamine increases (51.9 ± 6.8 nmol/L, p < .0001, relative 



to predrug responses), and the subsequent decline also seemed enhanced (−28.4 ± 4.9 nmol/L, p < .05, relative 

to predrug responses). However, intra-oral quinine after the antagonists induced a catecholamine increase that 

was indistinguishable from that before drugs in this region with mixed contributions. Evidently, the composite 

signal from norepinephrine and dopamine, although likely changed by the antagonist administration, summed 

to the same level. 

 
Figure 6. Catecholamine signaling at a single location in the border of the dlBNST and dorsomedial 

(dm)BNST. (A) The upper trace is the average catecholamine concentration change over 15 trials in response to 

intra-oral sucrose infusions in a single animal (infusions during the red bar). The color plot shows the averaged 

cyclic voltammograms collected during the 15 trials. (B) Trial-by-trial changes of catecholamine concentration 

from the animal shown in (A) in response to intra-oral sucrose infusion. (C) Upper trace is the average 

catecholamine concentration change over 15 trials in response to intra-oral infusions of quinine in a single 

animal (infusions during the red bar). The color plot shows the average of all of the cyclic voltammograms 

collected during the 15 trials in this animal. (D) Trial-by-trial changes of dopamine concentration from the animal 

shown in (C) in response to intra-oral infusions of quinine. In (A) and (C) the mean is given by the solid lines, and 

± SEM is given by the dotted lines. (E) Responses in this location to electrical stimulation before and after 

administration of the RA (predrug [CA] = 167 ± 7 nmol/L, 20 min after RA [CA] = 236 ± 5 nmol/L, p < .005, 3 trials) 

and IDA ([CA] = 257 ± 7 nmol/L 50 min after RA, 20 min after IDA [CA] = 414 ± 4 nmol/L, p < .0001, 3 

trials). (F) Average concentration traces (mean ± SEM denoted by solid and broken lines, respectively) after 

intra-oral sucrose (upper, n = 18 infusions) and quinine (lower, n = 14 infusions) after administration of RA and 

IDA. (G) An electrolytic lesion (denoted by broken red circle) in the BNST at the site where these recordings were 

made. Abbreviations as in Figure 1, Figure 2, Figure 3. 

Discussion 
The data presented here provide the first subsecond measurements of catecholamines in the BNST of an 

ambulatory rat. These measurements reveal an unanticipated reciprocal relationship in the extracellular 

concentration changes of norepinephrine and dopamine in response to aversive and palatable tastants. The 



signal in the vBNST is primarily due to norepinephrine, as previously established in anesthetized animals (18); as 

shown here, dopamine is the predominant releasable catecholamine in the dlBNST, on the basis of anatomical 

and pharmacological evidence. The boundaries of these two BNST subnuclei are separated by a microscopic 

distance (approximately 150 μm). Nevertheless, the concentration changes of norepinephrine and dopamine are 

directly opposite and have significantly different temporal responses to the intra-oral delivery of palatable and 

aversive tastants. In the dlBNST, dopamine changes occur during the infusion time of the tastant, decreasing in 

response to quinine and increasing in response to sucrose. In contrast, the norepinephrine responses in 

the vBNST are the reciprocal, significantly lag those for dopamine, and show prolonged changes that exceed the 

20-sec measurement. Indeed, a cumulative decline in norepinephrine dialysate concentration from the NAc has 

been reported some 20 min after initiation of sucrose intake (30). Catecholamine responses to tastants also 

occur in other subregions of the BNST, but when they overlap, their individual contributions cannot be resolved 

(Figure 6). 

The observed, opposing catecholamine-concentration changes in response to appetitive and aversive stimuli are 

consistent with prior single-unit recordings in regions afferent to the BNST. Noradrenergic neurons in the locus 

coeruleus show increased activity with a variety of stressors and during drug withdrawal (17, 31) and decreased 

firing rates in response to sucrose intake (32). In contrast, most dopaminergic neurons in the VTA show 

increased firing on presentation of rewarding stimuli but diminished firing on presentation of aversive stimuli 

and during drug withdrawal (33, 34, 35). However, there are exceptions with a subset of dopamine neurons that 

are excited by noxious stimuli (36). Previous electrophysiological and neurochemical findings show that most 

dopamine neurons seem to encode a reward prediction-error rule (37, 38, 39), but it does not seem that 

norepinephrine neuron firing activity encodes a prediction error (37). Instead, norepinephrine neuronal signaling 

regulates attention, arousal, and memory (40). Noradrenergic neuronal activity seems to be elicited by 

conditioned stimuli and tracks both the conditioned response and outcome of the action (41, 42). However, 

most of our knowledge of the function of norepinephrine neurons comes from electrophysiological studies in 

the locus coeruleus, whereas the majority of noradrenergic input to the vBNST originates from nucleus of 

solitary tract/VM (12). Although electrophysiological recordings provide a general view of the activity of 

dopaminergic and noradrenergic neurons, they do not yield information on the specific release patterns of the 

catecholamines in their terminal regions. This can be a critical shortcoming in 

understanding neurotransmitter actions, because chemical release can be regionally specific even though it 

originates from the same group of neurons (43). 

The small volume sensed by the carbon-fiber microelectrode makes it highly sensitive to spatial fluctuations in 

the release from neurons. Our chemical measurements reveal that dopamine-encoded information concerning 

rewarding and aversive stimuli that is transmitted to the brain reward system is conveyed to the dlBNST in a 

form identical to that previously reported for dopamine in another extended amygdala, the NAc shell (8). In 

both brain regions the responses show that a population of dopamine nerve terminals are excited by appetitive 

stimuli and silenced by aversive stimuli. The trial-by-trial variations of dopamine or norepinephrine 

concentrations for sucrose or quinine data were not apparent when results from all animals were averaged 

together (p > .05 for sucrose and quinine, one-way repeated measures analysis of variance) (Figure 2, Figure 4B, 

and 4D). Identical fluctuations in release amplitudes from trial to trial have also been observed for dopamine 

concentration changes associated with repetitive responses to novel stimuli (44). 

Accumulating evidence shows that different subregions of the BNST might play different or even opposing roles 

in integrating and processing limbic information and can either excite or inhibit HPA axis activity by neuronal 

modulation of the PVN (12, 45). This is clearly true for the two different subregions examined in this work. Both 

catecholamines modulate glutamatergic synaptic transmission at target neurons in the BNST but in opposite 

ways. Dopamine in the dlBNST increases spontaneous glutamatergic transmission (46), whereas in the vBNST 



norepinephrine causes a decrease in glutamatergic transmission (47). Thus, their reciprocal responses to 

aversive and rewarding stimuli reinforce these actions. The anatomical connections of these neuronal circuits 

are arranged to strengthen this reciprocal relationship. For example, norepinephrine signaling enhances 

inhibition of BNST projections to VTA, an action that is expected to decrease dopaminergic signaling (48). 

Furthermore, norepinephrine engages a feed-forward system involving corticotropin-releasing factor that can 

further activate behavioral responses to stressors (31). The net result of these reciprocal actions of dopamine 

and norepinephrine is an excitation of the HPA axis in response to aversive stimuli and an inhibition in response 

to rewarding stimuli. The significance of these neurochemical signals is also suggested by the timing of their 

responses. The dopamine system rapidly conveys information about reward, providing this signal on a timescale 

needed for quick retrieval. In contrast, norepinephrine responses are delayed and prolonged, providing a signal 

that is suitable for maintained avoidance of aversive stimuli. 

Thus, our data are consistent with the view that the BNST functions as a reward-aversion integrator, processing 

opposing hedonic states and influencing response outputs appropriate for survival. Anatomical and physiological 

data had inferred such integration in the BNST (45), and our results concerning 

catecholamine neurotransmission confirm these expectations. We have restricted our analysis of the responses 

to the dlBNST and vBNST, because the two catecholamines give well-resolved responses in these regions. 

However, our recordings in other regions of the BNST indicate that the level of integration is even greater in 

subnuclei, where both neurotransmitters reside. 
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