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GSEPD: a Bioconductor package for RNA-
seq gene set enrichment and projection
display
Karl Stamm1,2, Aoy Tomita-Mitchell2 and Serdar Bozdag1*

Abstract

Background: RNA-seq, wherein RNA transcripts expressed in a sample are sequenced and quantified, has become
a widely used technique to study disease and development. With RNA-seq, transcription abundance can be measured,
differential expression genes between groups and functional enrichment of those genes can be computed. However,
biological insights from RNA-seq are often limited by computational analysis and the enormous volume of resulting
data, preventing facile and meaningful review and interpretation of gene expression profiles. Particularly, in cases
where the samples under study exhibit uncontrolled variation, deeper analysis of functional enrichment would
be necessary to visualize samples’ gene expression activity under each biological function.

Results: We developed a Bioconductor package rgsepd that streamlines RNA-seq data analysis by wrapping
commonly used tools DESeq2 and GOSeq in a user-friendly interface and performs a gene-subset linear projection
to cluster heterogeneous samples by Gene Ontology (GO) terms. Rgsepd computes significantly enriched GO terms for
each experimental condition and generates multidimensional projection plots highlighting how each predefined gene
set’s multidimensional expression may delineate samples.

Conclusions: The rgsepd serves to automate differential expression, functional annotation, and exploratory data
analyses to highlight subtle expression differences among samples based on each significant biological function.
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Background
RNA-seq is a revolutionary technology to measure
genome-wide gene expression of biological samples at
high resolution by sequencing messenger RNA (mRNA)
molecules [1]. Common usages of RNA-Seq technology
are computing transcription abundances [2], finding dif-
ferentially expressed genes between two or more groups
[3], de novo transcriptome assembly [4, 5] and finding
novel genes and splicing patterns [6]. Among these
usages, differential gene expression (DGE) analysis
followed by functional enrichment is a common workflow
in gene expression studies [2, 7, 8].
After RNA-seq reads are generated using a sequencing

instrument, gene expression abundance is estimated by
mapping the sequencing reads to a reference genome if

there is an available reference genome or by building a
transcriptome assembly de novo [9, 10]. DGE analysis is
performed to compute statistically significant differen-
tially expressed (DE) genes using tools such as DESeq2
[3], edgeR [11], limma [12] and Cufflinks [2]. DGE ana-
lysis could result thousands of genes, thus to better
characterize the underlying biological functions of the
DE genes, functional enrichment analysis is performed
using tools such as GOSeq [8] and SeqGSEA [13].
However, particularly when biological samples are not

well separated (e.g., mammalian tissue or human disease
samples are often heterogeneous or heterocellular), a
direct two-group DGE analysis can result in unmanage-
able lists of DE genes with uncertain significance [14].
Furthermore, batch effects may obscure the experimen-
tal signal or sample mishandling may generate outliers
that perturb the experimental signal in ways unnoticed
by the investigator.
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In these scenarios, list of DE genes and even signifi-
cantly enriched biological processes would be hard to in-
terpret for biologists. Alternatively, after computing
significantly enriched biological processes, samples could
be visualized based on their activity for each of these
biological processes. Per biological process visualization
would enable biologists to have a deeper understanding
of the samples’ activity with respect to each significant
biological process.
To streamline the analysis of RNA-seq datasets to

achieve the aforementioned goals, we developed a soft-
ware toolkit GSEPD (gene set enrichment and projection
display). GSEPD produces DE gene lists, significantly
enriched gene ontology (GO) terms, and importantly
their cross-product: a mapping of which genes are per-
turbed within each GO term, and how genes associated
with those terms define the samples’ expression profiles
in the context of the other RNA-Seq samples. GSEPD
provides various plots and tables to summarize the re-
sults and give its users a comprehensive outlook of the
underlying RNA-seq data.
We demonstrated the usage of GSEPD on a time series

dataset of H1ESC cell lines [15]. GSEPD computed DE
genes and significantly enriched GO terms between two
time points, and clustered samples from all time points
based on their activity in each significant GO term.
GSEPD is implemented as a Bioconductor package

named rgsepd and freely available under GPL-3 license.

Implementation
We built GSEPD as a Bioconductor package named
rgsepd to ensure that it is readily available, simple to
install, and bundled with both test data and documenta-
tion. The system architecture of GSEPD is shown in
Fig. 1. The interface to GSEPD is a short list of R com-
mands and all the functions are fully automatic after
providing the input data as a matrix. GSEPD generates
all tables and figures for the input data within minutes.
GSEPD requires two types of input data to run: the

multisample RNA-seq raw counts matrix and sample in-
formation matrix. Input should be loaded as a matrix in
R with RefSeq ID numbers as row and sample identifiers
as column names. The sample information matrix is
used to link sample identifiers with test conditions and
short labels (for plotting into figures). Given input data,
GSEPD automatically computes DE genes between two
groups with default parameters of DESeq2, adjusted if
necessary for small sample counts [3]. GSEPD also uti-
lizes GOSeq [8] for GO term enrichment analysis, once
each for downregulated, upregulated and all genes in the
DE gene list.
One of the novel features of GSEPD is to focus on

each significantly enriched GO term and assess how
samples are segregated with respect to the expression of

genes in that GO term. In order to study if samples segre-
gate in their original groups with respect to a particular
GO term, GSEPD performs clustering of samples based
on the expression of all genes in a significantly enriched
GO term. GSEPD can also incorporate non-tested sam-
ples (i.e., samples that are not in the predefined groups) in
clustering to enable investigators label unclassified or in-
determinate samples by their expression profiles among
GO terms relevant to the experiment.
GO term-based clustering of samples is performed by

using k-means clustering where k = 2. Briefly, for a given
GO term with N genes, each sample is represented as an
N-dimensional vector of expression of all genes in the GO
term. To avoid broad GO terms associated with thousands
of genes, only GO terms with less than m (m = 31 by de-
fault) genes are evaluated by GSEPD for clustering.
To assess the quality of the clustering outcome, a val-

idity score called V-measure [16] is computed. The
V-measure computes the concordance between cluster
assignments and actual class labels of the samples. The
V-measure of a clustering is the harmonic mean of the
cluster’s homogeneity and completeness. A cluster’s
homogeneity is computed based on the entropy of class
labels within the cluster, i.e., maximum homogeneity is
achieved when all members of the cluster belongs to the
same cluster. The completeness of a cluster is computed
based on what percent of members of a class are
assigned to the cluster. A cluster would have maximum
completeness if it has all members of a class. In ideal
cases, clusters should be homogenous and complete.
In order to assess the significance of V-measure score,

GSEPD computes an empirical p-value for each GO
term-based clustering by permuting sample group labels
(i.e., class labels) and re-calculating the V-measure. The
p-value is the proportion of random assignments that
achieve a higher V-measure. By default, GSEPD per-
forms adaptive permutation up to 400 times to resolve
segregation by p < 0.01.
GSEPD visualizes significant GO terms in scatter plots

and subspace principle component analysis (PCA) figures
to allow further exploration of the results by the user.
Vector projection of samples is performed based on gene
set of the GO term to score each sample’s similarity to the
centroid of each group and to highlight any outlier sam-
ples for the gene set.
In order to assess the concordance between group

label of a sample and its localization in the clustering,
GSEPD performs vector projection. First, we define the
mean expression of the GO term gene set in samples of
each group as the centroid of the group, and define an
axis connecting both group centroids where one of the
centroids is chosen as the origin in a N-dimensional
Euclidean space (Fig. 2). Each sample is projected on this
axis to compute two scores named alpha and beta.
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The alpha score is the distance between projected
point on the axis to the origin and the beta score is
the Euclidean distance between the sample and the
projected point in the axis (Fig. 2). Beta score mea-
sures the goodness of fit and flag samples which do
not fit the linear assumptions of the two-group compari-
son performed by DESeq2 whereas alpha score is used to
measure the confidence of the cluster assignments. Alpha
and beta scores are computed for samples from other

groups and can help assess how samples from other
groups “behave” for a given GO term.
GO term-based clustering and vector projection is per-

formed for each significant GO term with gene sets ≤ m,
creating an alpha and beta score for each sample and
GO term pair. GSEPD produces heatmaps of gene ex-
pression for DE genes, heatmaps of alpha scores for sig-
nificant GO terms, multi-panel scatterplots of genes in
significant GO terms, PCA plots of samples and tables.
All thresholds and parameters are configurable before
runtime, and configurable output folders and formulaic
file naming conventions ensure easy reproducibility or
automated parameter sweeps. A tutorial and explan-
ation of all outputs are available within the package
vignette/manuals.

Results and discussion
We run GSEPD on a time series dataset (five time points
with two replicates) along the differentiation of H1ESC
cells into cardiomyocytes (NCBI SRA accession number
SRP048993) [15]. We used GSEPD to compare samples
of day 3 and 5, which is a critical turning point between
early tissue development and heart muscle precursors
[15]. Pairwise comparison of all time points revealed that
time points day 3 and day 5 had the fewest DE genes
(3279 genes with p < 0.05, comprising 2214 GO terms
with p < 0.05, 1073 of which were found to cluster sam-
ples with a significant V-measure score p < 0.01).
The heatmap of alpha scores (HMA) plot is shown in

Fig. 3. The HMA plot can visualize if any sample “behave”

Fig. 2 Vector Projection Illustration. With the origin at the cross, vector
AP is projected onto vector AB, yielding the green projection. In GSEPD,
the point A is the centroid of class A, and point B is the centroid of class
B. Point P is any one sample. The green vector is the alpha score and the
black perpendicular line from point P is the beta score

Fig. 1 Systems Architecture diagram of the components of the GSEPD system, with major sections in red outlines. Blue items indicate automated
systems. An experiment starts at the upper left, with the Sequencing Facility where the tissue samples are converted to gene expression quantification
through sequencing and processing external to GSEPD. The user then creates a table of count data and defines the sample metadata and conditions
to be compared (lower left, green items indicate user inputs). Across the top are External Resources, where functional annotation databases are
curated by third parties and plug in to the rgsepd software package. The R code wraps subprocesses for differential expression, set enrichment,
and set based projection scoring. The orange cylinder of sample data indicates a normalization produced by DESeq2 with useful expression
measurements. Within the Projection Engine box are small diagrams of the integral vector projections and clustering analyses
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similar to its own group or some other group. For in-
stance, for the GO term “cardiac atrium morphogenesis,”
the day 3 samples are unique (i.e., bright green), the day 0
and the day 1 samples have average alpha scores (i.e.,
faded gray) with the day 1 samples are slightly more simi-
lar to the day 3 samples, while the samples from later days
(i.e., day 8 and 14) behave quite similar to the day 5
samples.
The results in the HMA plot also show that the

day 3 samples were unique in GO terms “mesodermal
cell fate specification”, “mesodermal cell fate commit-
ment”, “negative regulation of cell fate commitment”,
and “regulation of mesoderm development,” suggest-
ing a unique spike of gene activation that deactivated
on all other time points. With no biological systems

background knowledge, the user of GSEPD can thus
extract pathway activation knowledge from RNA-seq
count data.
GSEPD also extracts significant GO terms into

multi-page scatterplots of genes showing orthogonal
views of samples on the high-dimensional clusters.
For instance, for the “cardiac atrium morphogenesis”
a 28-gene GO term in the HMA figure (Fig. 3), a
sample scatterplot between PITX2 and NOTCH1 is
shown in Fig. 4. In this scatterplot PITX2 is shown
downregulated in class day 3 (green) versus class day
5 (red), whereas NOTCH1 is upregulated by 1.5 units
of logged normalized counts. Colored lines (corre-
sponding to cells of the heatmap in Fig. 3) are
perpendicular to the thick black axis in the 28-

Fig. 3 GSEPD Results from the H1ESC Study. The H1ESC dataset is evaluated with GSEPD’s Alpha/Beta scores. Notes along the bottom are a coded
sample identifier ending in the time point name D3 for day 3, D1 for day 1, and so on. This figure shows GO terms with significant segregation
between day 3 (green) and day 5 (red). GSEPD was instructed via input parameter to display only the top 8 results. The color bar across
the top indicates which samples were part of the DESeq2 contrast, here day 3 in green versus day 5 in red, with black denoting non-tested samples
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dimensional space (although they do not appear per-
pendicular in the two-gene subspace), indicating
samples of day 0 and day 1 fall between the clusters
of the day 3 and the day 5 samples and whereas the
day 8 and the day 14 samples are clustered with the
day 5 samples for this GO term.

Conclusions
GSEPD is a user-friendly RNA-seq analysis toolkit. To en-
able rapid and simple installation and ensure reproducibility

of results, GSEPD was implemented as an open source Bio-
conductor package. By utilizing the GO hierarchy through
GOSeq, GSEPD can quickly identify significantly enriched
GO terms with DE genes computed by DESeq2. Further-
more, GSEPD can visualize how each sample behaves with
regard to each significant GO term. Byproducts including
sample PCA figures save time and effort and can identify
sample batch effects that may confound analyses and
be obscured by rudimentary differential expression
produced by other pipelines.

Fig. 4 Scatterplot of Two Genes. Corresponding to ‘atrial cardiac muscle tissue development’ GO term in Fig. 3, this diagram is one part of
generated file GSEPD.D3x2.D5x2.GO0003209.pdf (first two genes). Points as triangles, circles, and crosses correspond to the input samples.
Solid dots indicate the projection coordinate. Labels D5x2 and D3x2 indicate class centroids of the comparison of two samples of day 5
versus two samples of day 3. The small point labels are specified by the user as each sample’s “shortname,” a parameter given to GSEPD
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Availability and requirements
GSEPD is implemented as a Bioconductor package named
rgsepd and freely available under GPL-3 license for aca-
demic and non-academic usage. The Bioconductor system
will install required additional packages DESeq2, GOSeq,
and the GO databases, available to any Mac, Linux, and
Windows PC. Generating the input matrix will require
other tools. Description of the 13 types of figures and 12
types of tables generated by each comparison run are
available in the bundled package manuals. Instructions,
manuals, and sample data are available in the online help
files and the project website at https://bioconductor.org/
packages/release/bioc/html/rgsepd.html.

Abbreviations
DE: Differential expressed; GO: Gene Ontology; HMA: Heatmap of alpha scores;
mRNA: messenger RNA; PCA: Principal Component Analysis
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