
Marquette University Marquette University 

e-Publications@Marquette e-Publications@Marquette 

Computer Science Faculty Research and 
Publications Computer Science, Department of 

11-4-2019 

Adjustable Flat Layouts for Two-Failure Tolerant Storage Systems Adjustable Flat Layouts for Two-Failure Tolerant Storage Systems 

Thomas Schwarz 

Follow this and additional works at: https://epublications.marquette.edu/comp_fac 

https://epublications.marquette.edu/
https://epublications.marquette.edu/comp_fac
https://epublications.marquette.edu/comp_fac
https://epublications.marquette.edu/comp
https://epublications.marquette.edu/comp_fac?utm_source=epublications.marquette.edu%2Fcomp_fac%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages


 

Marquette University 

e-Publications@Marquette 
 

Computer Science Faculty Research and Publications/College of Arts and 
Sciences 

 

This paper is NOT THE PUBLISHED VERSION; but the author’s final, peer-reviewed manuscript. The 
published version may be accessed by following the link in th citation below. 

 

2019 35th Symposium on Mass Storage Systems and Technologies (MSST) (November 4, 2019): 217-
229. DOI. This article is © Institute of Electrical and Electronic Engineers (IEEE) and permission has 
been granted for this version to appear in e-Publications@Marquette. Institute of Electrical and 
Electronic Engineers (IEEE) does not grant permission for this article to be further copied/distributed or 
hosted elsewhere without the express permission from Institute of Electrical and Electronic Engineers 
(IEEE).  

Adjustable Flat Layouts for Two-Failure 
Tolerant Storage Systems 
 

Thomas Schwarz 
Marquette University 
 

Abstract: 
Systems suffer component failure at sometimes un-predictable rates. Storage systems are no exception; 
they add redundancy in order to deal with various types of failures. The additional storage constitutes an 
important capital and operational cost and needs to be dimensioned appropriately. Unfortunately, storage 
device failure rates are difficult to predict and change over the lifetime of the system. Large disk-based 
storage centers provide protection against failure at the level of objects. However, this abstraction makes it 
difficult to adjust to a batch of devices that fail at a higher than anticipated rate. We propose here a 
solution that uses large pods of storage devices of the same kind, but that can re-organize in response to an 
increased number of failures of components seen elsewhere in the system or to an anticipated higher 
failure rate such as infant mortality or end-of-life fragility. Here, I present ways of organizing user data and 
parity data that allow us to move from three-failure tolerance to two-tolerance and back. A storage system 
using disk drives that might be suffering from infant mortality can switch from an initially three-failure-

https://doi.org/10.1109/MSST.2019.000-1
http://epublications.marquette.edu/


tolerant layout to a two-failure-tolerant one when disks have been burnt in. It gains capacity by shedding 
failure tolerance that have become unnecessary. A storage system using Flash can sacrifice capacity for 
reliability as its components have undergone many write-erase cycles and thereby become less reliable. 
Adjustable reliability is easy to achieve using a standard layout based on RAID Level 6 stripes where it is 
easy to convert components containing user data to ones containing parity data. Here, we present layouts 
that unlike the RAID layout use only exclusive-or operations, and do not depend on sophisticated, but 
power-hungry processors. There main advantage is a noticeable increase in reliability over RAID Level 6. 

SECTION I. Introduction 
Any storage system stores data in fallible devices. Currently, these are mainly magnetic disk drives or flash 
memory, and in the near future, phase change memories. To protect against device failures and other types 
of data unavailability, data is stored redundantly. Since replicating data is expensive, many systems use 
erasure coding that adds parity data to a group of user data and that allows us to calculate some 
inaccessible parts of user data from the remaining user data and the parity data. We could arrange all 
devices with user data in a single reliability stripe and then add 𝑘𝑘parity devices in order to achieve 
tolerance against 𝑘𝑘failures, but since parity data needs to be updated with every change of user data in the 
stripe, such an arrangement would easily overwhelm the parity devices with updates. Additionally, in case 
of failure, reconstructing inaccessible data requires reading the same number of devices as there were 
those containing user data, which would be all of them in this scenario. The length of the reliability stripes 
are therefore chosen much smaller than the number of devices in the ensemble. The RAID Level 6 
organization for instance arranges data in stripes each consisting of 𝑛𝑛 user data devices and an additional 
two parity devices. 
 
The hazard rate a.k.a. the failure rate (the probability to not survive the next time period) for many types of 
devices, including disk drives and flash, changes over their lifetime. We present here data layouts that 
adjust their level of erasure protection to these failure rates. The total number of storage devices does not 
change, which allows adjustment in prepackaged storage such as a large disk array or flash array with a 
fixed number of slots. This is easy to do if one chooses some form of RAID Level 6 design. We present here 
an organization that is based on a more resilient flat XOR layout. 

Write cycles in Flash drives degrade their reliability. The resulting high error rate is controlled with Error 
Correcting Codes (ECC) that add parity data to each Flash page. Errors not controlled in this manner result 
in lost data. Meza and colleagues discern distinct rates of SSD failures during distinct periods of their useful 
life. Apparently, quite a number of devices fail early, and those that do not fail early, fail only towards the 
end of their useful life. [13]. 

The emergence of very large data centers with associated storage systems has allowed several studies on 
the failure behavior of disk drives. One result is that disks in these large installations fail at higher rates than 
the data sheet specifications suggest. For maybe 50% of batches, disk failure rates follow a bathtub curve - 
high failure rates at the beginning (burn-in phase) and the end of the economic lifespan (wear-out) and a 
lower rate in between [2], [18], [19], [20]. 

A recent study by Beach showed that individual disk batches can evidence much higher failure rates than 
usual, even considering that disk failure rates in data centers already tend to be higher than the 
specification sheets suggest. Beach reports a batch of 1163 Seagate Barracuda 7200.14 disks that failed at a 
rate of 43% per year in 2014, whereas other disks from the same manufacturer perform much better. 



Beach's observation are taken from Backblaze that buys the cheapest disks available and stores them in 
bundles of 45 in a Backblaze Storage Pod [3], [11]. The statistical significance of the Backblaze data can be 
doubted, but even if they are incapable of measuring the robustness of a specific drive family, they make 
the point that disk drive reliability differs unpredictably between batches and different time periods. 

Data centers sometimes literally expand by adding a container with hardware to it. An organization usually 
does not buy containers and disks independently but rather an ensemble of enclosures and disks. If flash 
memory is used, then the diverse chips will also be packaged in an enclosure. Unless we are willing to 
organize reliability stripes across enclosures and disk arrays, we need to organize reliability with a fixed 
number of components. This is easy to do if we use RAID Level 6. Of course, very large disk farms do exactly 
that: they organize reliability across several racks and even storage facilities. The data is organized using 
sophisticated erasure correcting codes such as Local Reconstruction Codes [7], [28] or Partial MDS 
Codes [4], [5] in a manner that allows data reconstruction usually involving only disks from the same rack 
but that are still capable of dealing with larger failures using disks in other racks or even remote data 
centers. 

 
Fig. 1. A RAID 6 adjustable reliability stripe. 

These sophisticated layouts use individual disks as the management unit. I propose instead to use storage 
pods with even a few hundred disks as the unit of management. Each storage pod consists of a set of data 
and parity disks together with a few spare disks and is managed on an individual level. To obtain security 
against common cause failure (ranging from catastrophe to seemingly trivial causes such as a loose 
enclosure that allows vibration from one bad disk to affect others in the same enclosure) as well as 
temporary data unavailability such as one caused by a network problem at a data center, we can arrange 
the storage pods in reliability stripes as well, using a simple parity code, a linear MDS code, or a more 
sophisticated partial MDS code. The storage pods appear as highly reliable and very large storage units. 
They are responsible for trading capacity for reliability in case that the underlying disks are less reliable 
than expected or in order to combat infant mortality. 

Since our construction applies to devices made of Flash drives or Phase Change Memories as well as disk 
drives, we call our organizations storage arrays. We are proposing and evaluating the internal organization 
of storage arrays and their individual reliability, not how they are used in large scale distributed storage 
systems. A smaller organization might for legal reasons prefer to satisfy its data needs with a single array. A 
PCM storage manufacturer might decide to use the layout proposed here for a single very high capacity 
storage solution that gracefully react to the aging of devices by lowering its storage capacity. 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8882740/8890059/8890075/392000a217-fig-1-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8882740/8890059/8890075/392000a217-fig-1-source-large.gif


Such a storage array (or pod) stores data internally using a number of storage devices such as disks or flash 
chips and protects again device failure in the usual manner by creating redundant parity data. It therefore 
organizes the set of devices in several reliability stripes. Each stripe contains a fixed number 𝑛𝑛 of disks (or 
flash chips). Data is stored in groups of 𝑛𝑛 buckets (or disklets), one on each physical disk. Each group 
consists of 𝑛𝑛 − 𝑘𝑘 data buckets and 𝑘𝑘 parity buckets. We simply adjust the resilience of a stripe and thereby 
the reliability of the storage array by rededicating one bucket from a data bucket to a parity bucket or vice 
versa. Figure 1 gives a simple example for a RAID 6 reliability stripe consisting of 10 disks or flash chips. In 
the two-failure tolerant layout, the stripe stores data in buckets Di, j and parity in buckets Pi, j. If a higher 
resilience is needed, then the data buckets Di, 7 becomes a parity bucket. The contents of the first parity 
bucket Pi, 1 in each stripe 𝑖𝑖 is calculated using the exclusive-or operation, but the parity in the other parity 
buckets is calculated in a more involved way by using a linear erasure correcting code. Switching from two-
failure tolerance to three-failure tolerance or back is an involved procedure. In the first case, data needs to 
be moved from the reassigned (violet) data buckets as the array is loosing capacity and the parity data 
needs to be recalculated. In the latter case, the parity bucket is conceptually emptied. But when data is 
written to these violet buckets, then the corresponding parity blocks (depicted in red) have to be rewritten 
with recalculated parity data. However, as we only envision one or maybe two changes of failure tolerance 
over the life-span of the array, the cost of the procedure is amortized to almost nothing over the economic 
life-span of the storage array. 
 
Instead of using the RAID 6 architecture, we propose to use layouts based on Flat XOR-codes [6] because of 
their greater robustness than those based on RAID Level 6. The flat layouts also do away with the need for 
Galois field calculation and the need for power-hungry, sophisticated processors that can encode and 
decode general linear erasure correcting codes at access speeds [17]. These flat layouts have the same 
parameters as a corresponding RAID Level 6 layout, that is, they have the same storage overhead, the same 
amount of reconstruction traffic after a failure, and the same number of parity updates. Their biggest 
drawback is that they only exists for certain configurations (Table I below). Because each storage device 
belongs to two otherwise disjoint reliability stripes, reconstructing the contents of a failed device can be 
done in two different ways, implying greater flexibility in the handling of reconstruction traffic. To deal with 
the phenomenon of unexpectedly high failure rates, we proposed earlier “hardening” a disk array by adding 
additional parity disks on demand [16]. Here, we propose to achieve hardening by merely reconfiguring the 
data layout. Reconfiguration instead of hardening is called for when storage needs are provided by 
ensembles with a fixed number of devices. 

 
Fig. 2. Left: the two-dimensional layout for a storage array. D1,D2,…,D9 are data devices and 𝐴𝐴,  𝐵𝐵, … ,𝐹𝐹 parity 
devices. Right: the corresponding graph visualization. 
 
In the rest of this paper, we describe these layouts, calculate their reliability, and then compare with the 
reliability of RAID based layouts. In the final section, we point out that there are still other flat layouts that 
can be used for more reliable, but still adaptable layouts. 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8882740/8890059/8890075/392000a217-fig-2-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8882740/8890059/8890075/392000a217-fig-2-source-large.gif


SECTION II. Layouts 
Our storage arrays are laid out using flat XOR-codes [6]. This means that all devices are either parity or data 
devices and are organized into reliability stripes that consist of 𝑘𝑘data and one additional parity device. A 
two-failure tolerant layout places each device into (at least) two different reliability stripes. Reversely, if 
each data device is placed in two different reliability stripes, then the layout is two failure tolerant if 
reliability stripes are either disjoint or intersect in exactly one data disk [16], [23]. 
 

A. A Graph Representation 
This frequently made observation implies that each data device is uniquely characterized by the two 
reliability stripes in which it is located. This allows us to represent a layout as a graph. The vertices of this 
graph are the reliability stripes and the edges of the graph are the data devices. Since each reliability stripe 
contains exactly one parity device, we can identify the vertices with parity devices as well. To our best 
knowledge, this representation of flat XOR-codes with two-failure tolerance as a graph was first used by Xu 
and colleagues in the definition of B-codes [27]. 

Figure 2 shows on the left a typical two-dimensional layout consisting of the nine data 
disks 𝐷𝐷1,𝐷𝐷2, … ,𝐷𝐷9 and six parity disks 𝐴𝐴,𝐵𝐵, … ,𝐹𝐹. The dotted lines indicate the reliability stripes. Thus, the 
contents of 𝐵𝐵 are the exclusive-or of the data disks 𝐷𝐷4,𝐷𝐷5, and 𝐷𝐷6. On the right, Figure 2 shows the 
corresponding graph. For example, the edge labeled 𝐷𝐷8 on the right of Figure 2 connects 
vertices 𝐶𝐶 and 𝐸𝐸 and corresponds therefore to data disk 𝐷𝐷8 on the left of the Figure located in the third 
row (with 𝐶𝐶) and second column (with 𝐸𝐸). As we can see, each data disk is determined by a pair of parity 
disks but not every pair of parity disks has an associated data disk. 

 
Fig. 3. The complete graph k6. 
 

We present a different example in Figure 3, where we start with the complete graph with six vertices. The 
colors of the edges are from the Lawless factorization that we will use below. The data devices correspond 
to the edges and the parity devices to the vertices. We can therefore read off the six reliability stripes. We 
present them as lines starting with the parity device and followed by the user data carrying devices in the 
left-to-right order of the edges at the vertex: 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8882740/8890059/8890075/392000a217-fig-3-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8882740/8890059/8890075/392000a217-fig-3-source-large.gif


A 0 1 2 3 4
B 4 5 6 7 8
C 8 3 9 10 11
D 11 7 2 12 13
E 13 10 6 1 14
F 14 12 9 5 0

 

The construction guarantees that all data disks belong to exactly two reliability stripes and that each 
reliability stripe contains exactly five data devices. Two failure tolerance is also a consequence of the 
construction, but that is not as obvious. We can argue by case distinctions. If the two failed devices are 
parity, then their contents can be reconstructed from the user data that has survived in its entirety. If one is 
a parity and the other one a data device, then we can reconstruct the data in data device from one of the 
two reliability stripes in which the data device is located. Finally, if both are data devices, then they can only 
be in the same reliability stripe once and we can use the respective other stripe to reconstruct the data on 
the lost two devices. 

B. Amended Layouts 
Disk reliability can be much lower than advertised. Many, but far from all disk families investigated show 
high infant mortality. Layouts whose data survive three simultaneous failures are therefore desirable. In 
previous work [23] we advocated using a complete graph to define a two-failure tolerant layout and then 
divide the data disks into additional reliability stripes, also with 𝑘𝑘data disks. In the graph, the additional 
reliability stripe are an edge factoring in the sense of graph theory. We are using Lawless' construction of 
such a factoring from 1974 that results in triple-failure tolerant layouts [12]. 
 

 
Fig. 4. Lawless factorizations of the complete graph for k8(left) and k10(right). 
 
Lawless designed the factorization in the context of design theory, and in particular, in order to give a 
“handcuffed design”, a generalization of Kirkman's famous schoolgirl problem from 1847 that stands at the 
beginning of the theory of Combinatorial Designs [10]. A factor in the construction is a path that starts at 
one vertex, then moves to the vertex to the right, then two to the left, then three to the right, etc. and 
creating a zig-zag pattern. This factorization only exists if the number of vertices is even. The number of 
factors is half the number of vertices and the length of the factor is one less than the number of vertices. 
We give factorizations of 𝐾𝐾8 and 𝐾𝐾10 in Figure 4, where factors are colored with the same color. 
 
To change the resilience of a layout from two-failure tolerance to three-failure tolerance, we 
add n additional parity disks and create a new reliability stripe by grouping all data disks corresponding to 
edges in the same factor together with one of the parity disks. We called this the “amended layout”. It is 
the basis for the current work. 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8882740/8890059/8890075/392000a217-fig-4-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8882740/8890059/8890075/392000a217-fig-4-source-large.gif


C. Punctured Layouts 
Adding and removing parity devices from an ensemble is possible, but not convenient. We present now a 
flat layout that switches from two-failure to three-failure tolerance and back without adding or removing 
devices. We start with an amended layout by coloring the edges of a complete graph 𝐾𝐾2𝑑𝑑 with the design 
by Lawless. The edges colored with a given color form a path starting at a node 𝑖𝑖 and then moving to nodes 
i + 1 (mod 2d), i − 2 (mod 2d), i + 3 (mod 2d), i − 4 (mod 2d),…, Figure 5. Since all vertices are visited and 
since the number of vertices is even, the number of edges in the path is odd. Therefore, there is a middle 
edge in the path, the dthone, which goes from i - d + 1 (mod 2d) to i + d (mod 2d) if d is odd and which goes 
from i + d - 1 (mod 2d) to i - d (mod 2d) if d is even. If we arrange the nodes in a cycle in ascending or 
descending order, then these edges are the ones that pass through the center of the cycle. 
 
The two-failure tolerant layout is just defined by 𝐾𝐾2𝑑𝑑  and disregards the colors. Thus, there are 2d reliability 
stripes, each with 2d − 1 data disks and - of course - one parity disk. To switch to the three-failure tolerant 
layout, we convert the data disks corresponding to the middle edges in the Lawless paths, indicated by 
dotted lines in Figure 5 to parity disks. We then create d additional parity stripes from the data disks 
colored by the same color in the Lawless coloring. Of course the middle edges in each path are no longer 
available as data disks, since they are now parity disks. The design now has 3d reliability stripes, each 
with 2d − 2 data disks and a parity disk. 
 
Table I Dimensions of punctured layouts. On the left, we give the numbers for the two-failure tolerant and on 
the right for the three-failure tolerant layout. 

d  # Data  # Parity  # Total Disks  Stripe Sizes 
3  15/12  6/9  21  5/4 
4  28/24  8/12  36  7/6 
5  45/40  10/15  55  9/8 
6  66/60  12/18  78  11/10 
7  91/84  14/21  105  13/12 
8  120/112  16/24  136  15/14 
9  153/144  18/27  171  17/16 
10  190/180  20/30  210  19/18 
11  231/220  22/33  253  21/20 

 
 

 
 

We still need to show that the new design is three failure tolerant. Therefore assume that three devices 
have failed. If one or more of the failed devices is one of the 𝑑𝑑 converted parity devices, then we really 
have at most a two-device failure in the non-amended layout, and we know that we can recover from that. 
The remaining case is that of three devices in the non-amended layout. There are exactly two failure 
patterns. The first one consists of a data device and the two parity devices belonging to the same reliability 
stripe as the data device. In this case, we can reconstruct the data on the data disk using the new reliability 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8882740/8890059/8890075/392000a217-table-1-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8882740/8890059/8890075/392000a217-table-1-source-large.gif


stripe containing the data device and write it to a spare disk. The second failure pattern consists of three 
failed data devices such that each pair of two of the three failed devices share a reliability stripe. These 
corresponds to three edges that form a triangle in the graph. The edges colored with the same color form a 
path and cannot therefore contain a triangle. This means that the edges in a triangle have two or three 
different colors. Therefore at least one of the edges has a different color than the other two in the triangle 
and since these are the only failed devices, we can use the new reliability stripe corresponding to its color 
to reconstruct the data on a spare drive. Now there are only two failures and we can deal with them using 
the old reliability stripes. This concludes the proof that the new layout provides three-failure tolerance. 
 

Switching between two- and three-failure tolerance without introducing additional disks into the ensemble 
restricts the dimension of any disk array. However, the dimensions of our layouts cover a quite reasonable 
range, as can be seen from Table I. 

SECTION III. Reliability Calculation 
Attempts to count patterns of failed devices for our 2-failure and 3-failure tolerant flat XOR layouts quickly 
run into too many inclusions and exclusions and become very difficult to calculate. Instead, we used 
simulation. In batches of 100,000 or 1,000,000 runs, each run simulates the failure of 𝑓𝑓 storage 
components in one of our layouts. For each batch, we count the number 𝑐𝑐 of times per batch where we 
would not have been able to recover all data. We did this for at least 200 batches. We could assume that 
the value 𝑐𝑐 is normally distributed. Statistical tests revealed this to be indeed the case with the exception of 
very small 𝑓𝑓 for large layouts. Nevertheless, we assumed the Student's t distribution for 𝑐𝑐 for the 
calculation of 99% confidence intervals. The average value of 𝑐𝑐 divided by the number of runs in a batch 
estimates the robustness - the probability that a system with 𝑓𝑓 failed devices has lost data. By adding 
batches if necessary the radius of the confidence intervals was made to be less than 1/10000. We judged 
this precision to be necessary for trustworthiness as we calculate the data survival rate during five years for 
each layout. 

 
Fig. 5. Punctured layout of K6,K8, and K10. 
 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8882740/8890059/8890075/392000a217-fig-5-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8882740/8890059/8890075/392000a217-fig-5-source-large.gif


 
Fig. 6. Survival rates of two-failure (top) and three-failure (bottom) tolerant layouts. The x-axis gives the number 
of failed devices, the y-axis the probability that the layout has not lost data. 
 

 
Fig. 7. Relative survival rates of two-failure (top) and three-failure (bottom) tolerant layouts. The x-axis gives the 
percentage of failed devices, the y-axis the probability that the layout has not lost data. 
 

We display the results of our robustness determining simulations in Figures 6 and 7. There are no error bars 
because we made the confidence intervals so small. The x axis gives the number of failed devices in Figure 
6 and the percentage of failed devices in Figure 7. The curves are labeled with the d-value in Table 1, which 
is half the number of vertices. The y-axis gives the probability of data survival. The typical S- curves in Figure 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8882740/8890059/8890075/392000a217-fig-6-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8882740/8890059/8890075/392000a217-fig-6-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8882740/8890059/8890075/392000a217-fig-7-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8882740/8890059/8890075/392000a217-fig-7-source-large.gif


6 show that data survival probability increases with increased size, whereas the ones in Figure 7 show the 
reversed order. This is not surprising since the size of the reliability stripes increases with the degree. The 
relative increase in robustness between the two-failure and the three-failure tolerant layouts are quite 
apparent. 

We then used a standard continuous Markov model to calculate survival probability of a system after four 
and five years. We did not assume declustering. This means that all storage components are assigned a 
fixed role, either as data or as parity. 

A. Markov Model 
In order to avoid a plethora of states, our Markov models have one state for each number of failed devices 
in the ensemble. In addition, we have the failure state. We consider every dataloss catastrophic, so that we 
made the failure state self-absorbing. 

There are two types of state transitions in our models, those modeling repair and those modeling failure. 
The rate of failure transitions is given by 𝑛𝑛𝑛𝑛 where 𝑛𝑛 is the failure rate and 𝑛𝑛 is the number of currently 
functioning devices in the ensemble. We determine the destination of the transition - either to the next 
state or to the failure state - based on the previously determined robustness. We now derive these values. 
 
Let 𝐴𝐴𝑖𝑖  stand for the event that the ensemble has not lost data in the presence of exactly 𝑖𝑖 failures and 
let 𝐹𝐹𝑖𝑖 = 1 − 𝐴𝐴𝑖𝑖  stand for the opposite event that the device has suffered data loss in the presence of 
exactly 𝑖𝑖 failures. The robustness is the probability 𝑃𝑃(𝐴𝐴𝑖𝑖). Clearly, for all 𝑖𝑖 ∈ ℕ 
 

𝐴𝐴𝑖𝑖 ⊇ 𝐴𝐴𝑖𝑖+1 

and 

𝐹𝐹𝑖𝑖 ⊆ 𝐹𝐹𝑖𝑖+1, 

as additional failure cannot restore an ensemble with dataloss to one without. Also, 𝑃𝑃(𝐴𝐴0) =
1and 𝑃𝑃(𝐹𝐹𝑖𝑖) = 0 for large enough 𝑖𝑖. The rate at which a failure transition from State 𝑖𝑖 leads to the 
absorbing failure state is the conditional probability of dataloss in State i + 1 given that there was no 
dataloss in State 𝑖𝑖 and is 

𝑃𝑃(𝐹𝐹𝑖𝑖+1|𝐴𝐴𝑖𝑖) =
𝑃𝑃(𝐹𝐹𝑖𝑖+1 ∩ 𝐴𝐴𝑖𝑖)

𝑃𝑃(𝐴𝐴𝑖𝑖)

=
𝑃𝑃(𝐹𝐹𝑖𝑖+1) − 𝑃𝑃(𝐹𝐹𝑖𝑖)

1 − 𝑃𝑃(𝐹𝐹𝑖𝑖)
⋅
 

 
Correspondingly, if the total number of devices in the ensemble is denoted by N, then the transition from 
State 𝑖𝑖 to State i + 1 is taken at a rate of 
 

𝜏𝜏𝑖𝑖,𝑖𝑖+1 = (1 −
𝑃𝑃(𝐹𝐹𝑖𝑖+1) − 𝑃𝑃(𝐹𝐹𝑖𝑖)

1 − 𝑃𝑃(𝐹𝐹𝑖𝑖)
)(𝑁𝑁 − 𝑖𝑖)𝑛𝑛 

and from State 𝑖𝑖 to the absorbing failure state at a rate of 



𝜏𝜏𝑖𝑖,𝑓𝑓 =
𝑃𝑃(𝐹𝐹𝑖𝑖+1) − 𝑃𝑃(𝐹𝐹𝑖𝑖)

1 − 𝑃𝑃(𝐹𝐹𝑖𝑖)
(𝑁𝑁 − 𝑖𝑖)𝑛𝑛. 

 
There are repair transitions from State 𝑖𝑖 to State i-1 taken at a rate of 𝑖𝑖𝑖𝑖. 
 

B. Implementation of Survival Rate Calculation 
We used the Euler method to update the stay probabilities of the states every second. Discretizing updates 
is one source of numerical error, the other one is rounding error. We used the Apfloat (arbitrary precision) 
Java library experimenting with various degrees of precision until settling on one where there were no 
longer changes in the results. 

C. Results 
We display the results of our calculations in Figure 8. The x-axis gives the mean time to failure of the disks 
in hours, whereas the y-axis gives the number of nines in the survival probability after 5 or 6 years, 
respectively. The number of nines is defined as −log1 0(1 − 𝑝𝑝𝑠𝑠) for a survival probability of 𝑝𝑝𝑠𝑠. For 
example, the number of nines of 𝑝𝑝𝑠𝑠 = 0.999 is 3 and of 𝑃𝑃𝑃𝑃 = 0.9995 is 3.30103. 
 
For a given mean time to failure of the disks, the survival rate of the three-failure tolerant ensemble is 
better by about four nines. More importantly, if disks fail at a much higher rate, then the three-failure 
tolerant layout has an equivalent rate of survival than the two-failure tolerant layout. In the graphs, the 
difference between x-axis values for the same survival level is more important. 

SECTION IV. Comparison with Raid Levels 6 and 6+1 
We compare with RAID levels 6 and 6+1 in order to put our reliability numbers in context. A RAID level 6 is 
organized as n reliability stripes, each of which contains 𝑚𝑚 data devices and an additional two parity 
devices. The first parity device contains the exclusive-or parity of the 𝑚𝑚 data devices, whereas the contents 
of the second one are calculated via Galois field arithmetic. Using the Packed Shuffle Bytes (PSHUFB) 
instruction in the INTEL architecture's Supplemental Streaming SIMD Extensions 3 or its equivalent on other 
processors, Plank, Greenan, and Miller showed how this so-called Q-parity can be calculated at speeds 
faster than the speed of streaming data from a disk [17]. The drawback is of course the need for 
sophisticated, but power-hungry processors. For lack of a better name, we call RAID level 6+1 a similar 
design with 𝑚𝑚 data disks and three parity disks per reliability stripe. By flipping one of the data disks to a 
parity disk, we change a level 6 RAID to a level 6+1 RAID and vice versa. For the convenience of the reader, 
we show the definition of the parameters in Figure 9. 
 
It is normal to divide the blocks of a disk in a RAID level 6 or 6+1 into regions and cyclically change the 
assignments of each disk to the role of data or parity disk so that each disk contains the same number of 
blocks that serve as data blocks or parity blocks. This strategy equalizes read and write loads. It however 
has no influence on the reliability of the ensemble. 

This is not true if we use declustering, where the assignment of a region in a disk also varies the reliability 
stripes. Declustering equalizes the reconstruction load over the remaining disks after one or more disk 
failures. 



 
Fig. 8. Five and six year survival rate in number of nines in dependence on the disk mean time to failure (in 
hours) for layouts of degree 4, 5, 6, 7, 8, 9, 10, and 11. 
 

A. Layout Equivalencies 
The punctured layout of degree 𝑘𝑘has 2k parity disks and k(2k − 1) data disks in the two-failure tolerant 
version. These numbers are exactly the ones for a RAID Level 6 with 𝑘𝑘reliability stripes each consisting 
of 2k − 1 data disks and 2 parity disks. The three-failure tolerant version of the punctured layout 
has 3k parity disks and k(2k − 2) data disks, corresponding to a RAID Level 6+1 layout with 𝑘𝑘reliability 
stripes, each consisting of 2k − 2 data disks and 3 parity disks. This allows us direct comparisons between 
the two types of disk arrays. 
 
In one point of comparison, flexibility, the RAID organization is a clear winner. There are configurations for 
any number of stripes and any number of data disks per stripe. As we will now see, the flat layouts offer 
considerably higher reliability. 

B. RAID 6 and 6+1 Survivability Formulae 
We now derive formulae for the survival of the data in a RAID level 6 organization after 𝑓𝑓 failures. A failure 
pattern of 𝑓𝑓 failed devices does not lead to dataloss and constitutes therefore a “good” pattern, if there is 
no stripe with more than two failed devices. We call the number of stripes with one failed device κ 𝜅𝜅11 and 
the number of stripes with two failed devices 𝜅𝜅2. Since the number of failed devices adds up to 𝑓𝑓, we have 
 

𝜅𝜅1 + 2𝜅𝜅2 = 𝑓𝑓 ⇒ 𝜅𝜅1 = 𝑓𝑓 − 2𝜅𝜅2. 

 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8882740/8890059/8890075/392000a217-fig-8-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8882740/8890059/8890075/392000a217-fig-8-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8882740/8890059/8890075/392000a217-fig-9-source-large.gif


Fig. 9. Definition of parameters for a RAID level 6 layout, where one data disk can be changed into an additional 
parity disk for a RAID level 6+1 layout. 
 

In addition, we know that 𝜅𝜅1 ≥ 0,𝜅𝜅2 ≥ 0,𝜅𝜅1 ≤ 𝑛𝑛, and 𝜅𝜅2 ≤ 𝑛𝑛. Under those conditions, we know that the 
number of good failure patterns with these parameters is 
 

𝑛𝑛6good(𝑛𝑛,𝑚𝑚, 𝜅𝜅1, 𝜅𝜅2) = �
𝑛𝑛
𝜅𝜅1
� �
𝑛𝑛 − 𝜅𝜅1
𝜅𝜅2

� �
𝑚𝑚 + 2

1 �
𝜅𝜅1
�
𝑚𝑚 + 2

2 �
𝜅𝜅2

, 

otherwise it is 0. The total number of good patterns is obtained by summing over the various possibilities 
for 𝜅𝜅2, yielding 

𝑔𝑔6(𝑛𝑛,𝑚𝑚,𝑓𝑓) = � 𝑛𝑛6good(𝑛𝑛,𝑚𝑚, 𝑓𝑓 − 𝜅𝜅2, 𝜅𝜅2).
⌊𝑓𝑓/2⌋

𝜅𝜅2=0

 

 
While not exactly closed form, this equation can be evaluated precisely by using fractions of arbitrarily large 
integers with a tool like Mathematica. The same is true for the RAID level 6+1, though the formula and its 
evaluation are more involved. A failure pattern for RAID level 6+1 has lead to dataloss if one of the stripes 
contains more than three failed devices. If we denote the number of stripes with one, with two, and with 
three failed devices respectively with 𝜅𝜅1, 𝜅𝜅2, and 𝜅𝜅3, then the number of patterns with these 
characteristics are 
 

𝑛𝑛7good(𝑛𝑛,𝑚𝑚, 𝜅𝜅1, 𝜅𝜅2, 𝜅𝜅3)

= �
𝑛𝑛

𝜅𝜅1, 𝜅𝜅2, 𝜅𝜅3,𝑛𝑛 − 𝜅𝜅1 − 𝜅𝜅2 − 𝜅𝜅3
� �
𝑚𝑚 + 3

1 �
𝜅𝜅1
�
𝑚𝑚 + 3

2 �
𝜅𝜅2
�
𝑚𝑚 + 3

3 �
𝜅𝜅3  

 

and zero otherwise. The total number of good patterns is again obtained by summing up over the various 
possibilities 

� 𝑛𝑛7good(𝑛𝑛,𝑚𝑚, 𝜅𝜅1, 𝜅𝜅2, 𝜅𝜅3)
𝜅𝜅1+2𝜅𝜅2+3𝜅𝜅3=𝑓𝑓;𝜅𝜅1≥0;𝜅𝜅2≥0;𝜅𝜅3≥0;

 

 

C. Robustness Comparison 
We compare the resulting robustness in Figure 10. The black graphs are for the two-failure tolerant layouts 
and the red ones for the three-failure tolerant ones. The solid graphs give the robustness for the RAID 
layouts and the dotted ones for the punctured layouts. Both sets of graphs with the same failure tolerance 
start out and finish together; this is because the have the same number of failures they can tolerate for 
sure and equally naturally, both fail for sure when the number of failures exceeds the number of parity 
disks. However, if the number of failed devices is between these two extremes, the robustness, the 
probability that data survives in the presence of that number of failed devices, differs considerably. We also 
observe that as the degree and therefore the size of the ensemble increases, the punctured layout with two 



failure tolerance has closer robustness to that of the RAID layout with three failure tolerance. All together, 
these results show the positive effect of entanglement quite impressively. 

D. RAID 6 and 6+1 Survival Rates 
We again used the Euler Method to solve a Markov model to determine the survival rates in number of 
nines for the RAID 6 and RAID 6+1 layouts. The results are shown in Figure 11. As was the case for the 
punctured layouts, the extension of the economic lifespan of a disk ensemble by a year has much less of an 
impact then an increase in the reliability of the disks. 

E. Comparison Between RAID and Punctured Layouts 
In Figure 12, we give the comparison between RAID 6 and RAID 6+1 on the one hand and the punctured 
layouts on the other hand of the survival probability after six years (in number of nines). The punctured 
layout is more reliable. The difference grows with the larger layouts, which is only natural. 

SECTION V. Adjusting to Arbitrary Device Numbers 
The total number of devices in a storage system arranged according to a punctured layout is a multiple of a 
large number. For 𝑑𝑑 =  8, we obtain a 2 to 15 ratio of parity over data devices, but the device number 
needs to be 136 or a multiple thereof. This is however only necessary if we assign complete devices to the 
single function of either carrying user data or parity data. 
 
Declustering distributes the role of parity and data devices so that each single device has about the same 
number of parity data and user data and therefore that the write-loads resulting from “small writes” (small 
changes in situ that affect only a single data block) tend to be more equal. It also allows us to use any 
number of devices for a certain layout as long as it is at least as large as the total number of devices 
from Table I. A very simple scheme uses the “left rotate” layout such as the one depicted in Figure 13. The 
vertical rectangles present 10 storage devices. Just as for RAID Level 6 (see Figure 1), they are broken up 
into disklets, depicted as the colored squares. Assume that we have a layout for 7 devices. We then 
organize the first disklets on the first seven devices according to the layout. We then organize the next set 
of seven disklets, three on the remaining three devices and four in the previous set of devices, again using 
the layout. The belonging to a certain seven-device layout is represented in Figure 13 through different 
colors. The different roles of a block (user data versus parity data) is indicated by the absence of presence 
of linear grading of each block. We can see that even though the numbers do not fit well, the left-rotate 
organizations uses up almost all of the available space and almost evens out the number of parity data 
carrying disklets on each device. 



 
Fig. 10. Robustness comparisons for degrees 4 – 11 for the punctured and the RAID layouts with two and three 
failure tolerance. 
 

 
Fig. 11. Five and six year survival rate in number of nines in dependence on the disk mean time to failure (in 
hours) for layouts RAID 6 and RAID 6+1 corresponding degree 4, 5, 6, 7, 8, 9, 10, and 11. 
 

This particular layout is actually far from optimal. For example, if the first and the second device dies, then 
the third device's disklets are used for recovery six times, whereas the fifth device's disklets are only used 
four times. Finding better organizations is a combinatorial problem that needs to be left to future research. 

At first glance, it seems that declustering does away with the reliability advantage of punctured layouts 
compared with an equally declustered RAID Level 6 organization, since all failures of three disks seem to 
imply data-loss. Indeed, if we use a random declustering organization with a very large number of disklets 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8882740/8890059/8890075/392000a217-fig-10-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8882740/8890059/8890075/392000a217-fig-10-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8882740/8890059/8890075/392000a217-fig-11-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8882740/8890059/8890075/392000a217-fig-11-source-large.gif


per device, then this is asymptotically the case. However, we can achieve good declustering with very 
moderate numbers of disklets per device, and in this case, the differences in survival rates are still present 
though not quite as marked. 

Recently, a theoretical study by Iliadis extended a previous study on the reliability of erasure coded storage 
systems [25], [9]. This study confirms the broad lines of behavior that were known since the seminal papers 
by Muntz [14] and Holland and Gibson [8] and the early works by various authors [1], [21], [22], [24], [26]. 
The load at individual devices is roughly inversely proportional to the number of devices over which we 
decluster and thus inversely linearly reduces the “window of vulnerability” during which additional failure 
can lead to dataloss. To our best knowledge, no published work discusses the fast, reliable detection of 
device failures (though presumably heart beat monitoring can achieve this), and how even the 
reconstruction load at individual devices is. The latter is not an issue when parity stripes are declustering 
over all disks in a large data center, since it is unlikely then that any device would have to be read more 
than once, but it becomes an issue in our situation. It should be noted that one potential benefit of flat 
layouts is that each failure can be repaired using two independent reliability stripes. 

 
Fig. 12. Comparison of the six year survival rates (in number of nines) of analogue punctured and RAID layouts. 
 

Whatever the underlying technology (disk drives, Flash memory, or newer memories such as PCM), our 
“super-storage” devices will have to contain spare components and will have to do some moderate amount 
of declustering. 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8882740/8890059/8890075/392000a217-fig-12-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8882740/8890059/8890075/392000a217-fig-12-source-large.gif


 
Fig. 13. Left rotate layout for declustering 
 

SECTION VI. Future Work 
The punctured layouts are not the only layouts possible. In Figure 14, we show a two-dimensional layout. It 
consists of 𝑛𝑛 × 𝑛𝑛 data disks arranged in a two-dimensional grid, to which for each column and row parity 
disks for a total of 2n are added. In the three-failure-tolerant layout, the data disks in the main diagonal are 
made into parity disks. Each row and column of data disks forms a reliability stripe. The new reliability 
stripes are formed by minor diagonals. In this layout, the assignment of disks to stripes is somewhat 
arbitrary. The right lower corner of Figure 14 shows that in this layout, some reliability stripes have an 
intersection of more than two, as the two disks in new stripe 1 are located in the same column. The only 
failure pattern of three disks in the square layout consists of a data disk together with the parity disk in the 
row and with the parity disk in the column. Since such a data disk is in one diagonal there is enough 
information in the system to make the three-failure-tolerant layout in fact three-failure tolerant. 
From previous work [15] we know that designs based on complete graphs are somewhat less reliable than 
two- or three-failure tolerant square layouts which are exactly those based on complete bi-partite graphs. 
However, the former are considerably smaller than the latter, which makes them more attractive for 
flexible storage system layouts. 

It is obvious that there is much potential research to be done evaluating different types of layouts. 

Another issue for more research is that of declustering. With declustering, a layout for n disks can be used 
for layouts with 𝑚𝑚,𝑚𝑚 > 𝑛𝑛 disks. In addition, with declustering, the “window of vulnerability” after a storage 
device failure is greatly reduced since many reconstruction operations can be performed in parallel. In a 
very finely declustered layout, any failure of 𝑡𝑡 +  1 disks in a 𝑡𝑡-failure tolerant layout will lead to dataloss, 
because a bad configuration is going to happen in the many layouts that declustering superimposes on the 
array. However, a too finely declustered layout renders meta-data management complex. It is therefore 
natural to limit declustering by for example creating 1000 “disklets” on each hard drive and assign the 
disklets on a drive to different configurations. If this is a case, then many instances of 𝑡𝑡 +  1 and even some 
of 𝑡𝑡 +  2 failed devices do not lead to dataloss. Thus, the robustness of a moderately declustered system is 
of course less than the robustness of a non-declustered layout, but not quite as extreme as one might 
think. Finally, in a declustered layout, repair times are much smaller and the impact of the distribution of 
repair time on five-year survival rates should be higher. Modeling repair times as exponentially distributed 
introduces another source of modeling errors into the model. The lack of scientific activity on accurately 
modeling repair times (to my best knowledge) is attributable to the immense difficulty of making accurate 
modeling assumptions and of performing an analysis with them. 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8882740/8890059/8890075/392000a217-fig-13-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8882740/8890059/8890075/392000a217-fig-13-source-large.gif


 
Fig. 14. An adjustable square layout. 
 

SECTION VII. Conclusions 
Storage arrays consisting of individual components, whether flash or disk, need to deal with life-time 
variations of device reliabilities. Flash technology becomes more error prone with each erase cycle. An 
adjustable layout can sacrifice capacity for better failure protection when it is needed. Disk drives often, 
but not always suffer from infant disk mortality. A disk-based system can start out in a three-failure-
tolerant configuration and move to a two-tolerant configuration once trust in the longevity of the hard 
drives has been established. 

Since the punctured layouts presented here only use parity based on the exclusive-or operation, there is no 
need for the sophisticated and power-hungry CPUs that are needed to encode the linear codes used in 
RAID 6 and RAID 6+1. 

The ease of parity generation in conjunction with the reliability gains should more than outweigh the 
flexibility of RAID based designs. We have argued (without proper investigation) that the lack of flexibility 
can be overcome using declustering with large disklet size. Declustering allows a trade-off between 
flexibility and the survival rate advantage of the resulting design. 

Citation Map 
1. G. Alvarez, W. Burkhard, F. Cristian, "Tolerating multiple failures in RAID architectures with optimal storage 

and uniform declus-tering", Proceedings of the 24th Annual International Symposium on Computer 
Architecture, pp. 62-72, 1997. 

2. L. N. Bairavasundaram, G. R. Goodson, S. Pasupathy, J. Schindler, "An analysis of latent sector errors in disk 
drives" in ACM SIGMETRICS Performance Evaluation Review, ACM, vol. 35, no. 1, pp. 289-300, 2007. 

3. B. Beach, What is the best hard drive?, January 2015, [online] Available: www.backblaze.com/blog/best-
hard-drive-q4-2014. 

4. M. Blaum, J. L. Hafner, S. Hetzler, "Partial-MDS codes and their application to RAID type of 
architectures", IEEE Transactions on Information Theory, vol. 59, pp. 4510-4519, 2013. 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8882740/8890059/8890075/392000a217-fig-14-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8882740/8890059/8890075/392000a217-fig-14-source-large.gif


5. G. Calis, O. Koyluoglu, "A general construction for PMDS codes", IEEE Communications Letters, vol. 21, no. 3, 
pp. 452-455, 2017. 

6. K. M. Greenan, E. L. Miller, J. J. Wylie, "Reliability of flat XOR-based erasure codes on heterogeneous 
devices", Dependable Systems and Networks With FTCS and DCC 2008. DSN 2008. IEEE International 
Conference on, pp. 147-156, 2008. 

7. V. Guruswami, C. Xing, C. Yuan, "How long can optimal locally repairable codes be?", IEEE Transactions on 
Information Theory, 2019. 

8. M. Holland, G. Gibson, "Parity declustering for continuous operation in redundant disk arrays", Proceedings 
of the 5th International Conference on Architectural Support for Programming Languages and 
Operating Systems, pp. 23-35, 1992. 

9. I. Iliadis, "Reliability of erasure coded systems under rebuild bandwidth constraints", Eleventh International 
Conference on Communications Theory Reliability and Quality of Service, pp. 1-10, 2018. 

10. T. P. Kirkman, "On a problem in combinations", Cambridge and Dublin Math. J, vol. 2, no. 1847, pp. 191-
204. 

11. A. Klein, Backblaze hard drive stats for 2018, January 2019, [online] Available: 
www.backblaze.com/blog/hard-drive-stats-for-2018. 

12. J. Lawless, "On the construction of handcuffed designs", Journal of Combinatorial Theory Series A, vol. 16, 
no. 1, pp. 76-86, 1974. 

13. J. Meza, Q. Wu, S. Kumar, O. Mutlu, "A large-scale study of flash memory failures in the field", ACM 
SIGMETRICS Performance Evaluation Review, vol. 43, no. 1, pp. 177-190, 2015. 

14. R. Muntz, J. Lui, "Performance Analysis of Disk Arrays Under Failure", Proceedings Very Large Data Bases, 
pp. 162, 1990. 

15. J.-F. PÂRIS, D. D. Long, W. Litwin, "Three-dimensional redundancy codes for archival storage", Modeling 
Analysis & Simulation of Computer and Telecommunication Systems (MASCOTS) 2013 IEEE 21st 
International Symposium on, pp. 328-332, 2013. 

16. J.-F. PÂRIS, T. J. Schwarz, A. Amer, D. Long, "Protecting RAID arrays against unexpectedly high disk failure 
rates", Proceedings 20th IEEE Pacific Rim International Symposium on Dependable Computing 
(PRDC), 2014. 

17. J. S. Plank, K. M. Greenan, E. L. Miller, "Screaming fast galois field arithmetic using intel simd 
instructions", FAST, pp. 299-306, 2013. 

18. B. Schroeder, S. Damouras, P. Gill, "Understanding latent sector errors and how to protect against 
them", ACM Transactions on storage (TOS), vol. 6, no. 3, pp. 9, 2010. 

19. B. Schroeder, G. A. Gibson, "Disk failures in the real world: What does an MTTF of 1 000000 hours mean to 
you?", Usenix Conference on File and Storage Technologies, vol. 7, pp. 1-16, 2007. 

20. B. Schroeder, G. A. Gibson, "Understanding failures in petascale computers", Journal of Physics: Conference 
Series, vol. 78, no. 1, pp. 012022, 2007. 

21. E. Schwabe, I. Sutherland, "Improved parity-declustered layouts for disk arrays", Proceedings of the sixth 
annual ACM symposium on Parallel Algorithms and Architectures, pp. 76-84, 1994. 

22. T. Schwarz, W. Burkhard, "Almost complete address translation (ACATS) disk array 
declustering", Proceedings of SPDP'96: 8th IEEE Symposium on Parallel and Distributed Processing, 
pp. 324-331, 1996. 

23. T. Schwarz, D. D. E. Long, J. F. PÂris, "Triple failure tolerant storage systems using only exclusive-or parity 
calculations", IEEE 21st Pacific Rim International Symposium on Dependable Computing (PRDC), pp. 
245-254, 2015. 

24. T. J. Schwarz, J. Steinberg, W. A. Burkhard, "Permutation development data layout (pddl)", Proceedings Fifth 
International Symposium on High-Performance Computer Architecture, pp. 214-217, 1999. 

25. V. Venkatesan, I. Iliadis, X.-Y. Hu, R. Haas, C. Fragouli, "Effect of replica placement on the reliability of large-
scale data storage systems", 2010 IEEE International Symposium on Modeling Analysis and 
Simulation of Computer and Telecommunication Systems, pp. 79-88, 2010. 



26. Q. Xin, E. Miller, T. Schwarz, D. Long, S. Brandt, W. Litwin, "Reliability mechanisms for very large storage 
systems", Proceedings of the 20th IEEE/11th NASA Goddard Conference on Mass Storage Systems 
and Technologies, pp. 146-156, 2003. 

27. L. Xu, V. Bohossian, J. Bruck, D. G. Wagner, "Low-density MDS codes and factors of complete 
graphs", Information Theory IEEE Transactions on, vol. 45, no. 6, pp. 1817-1826, 1999. 

28. Q. Xu, W. Xi, K. L. Yong, C. Jin, "Concurrent regeneration code with local reconstruction in distributed storage 
systems" in Advanced Multimedia and Ubiquitous Engineering, Springer, pp. 415-422, 2016. 

Keywords 
Reliability, Layout, Arrays, Organizations, Disk drives, Data centers, Aging 
 

https://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean=true&queryText=%22Index%20Terms%22:Reliability&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean=true&queryText=%22Index%20Terms%22:Layout&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean=true&queryText=%22Index%20Terms%22:Arrays&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean=true&queryText=%22Index%20Terms%22:Organizations&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean=true&queryText=%22Index%20Terms%22:Disk%20drives&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean=true&queryText=%22Index%20Terms%22:Data%20centers&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean=true&queryText=%22Index%20Terms%22:Aging&newsearch=true

	Adjustable Flat Layouts for Two-Failure Tolerant Storage Systems
	Abstract:
	SECTION I. Introduction
	SECTION II. Layouts
	A. A Graph Representation
	B. Amended Layouts
	C. Punctured Layouts

	SECTION III. Reliability Calculation
	A. Markov Model
	B. Implementation of Survival Rate Calculation
	C. Results

	SECTION IV. Comparison with Raid Levels 6 and 6+1
	A. Layout Equivalencies
	B. RAID 6 and 6+1 Survivability Formulae
	C. Robustness Comparison
	D. RAID 6 and 6+1 Survival Rates
	E. Comparison Between RAID and Punctured Layouts

	SECTION V. Adjusting to Arbitrary Device Numbers
	SECTION VI. Future Work
	SECTION VII. Conclusions
	Citation Map
	Keywords

