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Abstract: 
In this paper, we introduce our hierarchical filter and refinement technique that we have developed for 
parallel geometric intersection operations involving large polygons and polylines. The inputs are two 
layers of large polygonal datasets and the computations are spatial intersection on a pair of cross-layer 
polygons. These intersections are the compute-intensive spatial data analytic kernels in spatial join and 
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map overlay computations. We have extended the classical filter and refine algorithms using 
PolySketch Filter to improve the performance of geospatial computations. In addition to filtering 
polygons by their Minimum Bounding Rectangle (MBR), our hierarchical approach explores further 
filtering using tiles (smaller MBRs) to increase the effectiveness of filtering and decrease the 
computational workload in the refinement phase. We have implemented this filter and refine system 
on CPU and GPU by using OpenMP and OpenACC. After using R-tree, on average, our filter technique 
can still discard 69% of polygon pairs which do not have segment intersection points. PolySketch filter 
reduces on average 99.77% of the workload of finding line segment intersections. PNP based task 
reduction and Striping algorithms filter out on average 95.84% of the workload of Point-in-Polygon 
tests. Our CPU-GPU system performs spatial join on two shapefiles, namely USA Water Bodies and USA 
Block Group Boundaries with 683K polygons in about 10 seconds using NVidia Titan V and Titan Xp 
GPU. 

SECTION I. Introduction 
In Geographic Information Systems (GIS) and spatial databases, vector geometries like polygons and polylines 
are used to represent real-world objects. The input to map overlay and spatial join queries are two layers of geo-
spatial data. Spatial query operations often require expensive computational geometry algorithms. For 
computational efficiency, query operations are carried out in two phases. The first phase is a filter phase where 
complex geometries are approximated by their minimum bounding rectangle (MBR). Filter phase employs 
spatial data structures like R-tree built using MBRs of geometries. Working with MBR representation is faster 
compared to actual geometries that may contain thousands of vertices. Geometries that could not possibly 
satisfy the query condition are removed. The output of filter phase consists of candidate pairs that may or may 
not be part of the final output. The drawback of filtering using MBR is that it produces many false hits because of 
MBR approximation. As such, in the second phase of refinement, actual geometries are used to produce correct 
results by detecting and removing false hits. 

With two layers 𝑅𝑅 and 𝑆𝑆 as inputs, the output of spatial join is a collection of pairs (𝑟𝑟,  𝑠𝑠) such that 𝑟𝑟 ∈ 𝑅𝑅, 𝑠𝑠 ∈ 𝑆𝑆, 
and 𝑟𝑟 and 𝑠𝑠 overlap spatially. An example of spatial join query is “Find all the places where roads cross rivers”. 
Overlap is one of the spatial relations between 𝑟𝑟 and 𝑠𝑠. Other spatial relations are Intersects, Touches, Contains, 
etc. Spatial databases and GIS support such topological relations on two layers of geometries. 

In this paper, we extend the classical filter and refine strategy by introducing PolySketch technique. The basic 
idea is to represent a large geometry using its sketch that is made up of a collection of tiles. Each tile is a subset 
of contiguous vertices with the corresponding MBR induced by the subset. Our PolySketch filter not only reduces 
the candidate pairs but also reduces the workload in the refinement phase. 

Refinement phase involves computational geometry algorithms on a variety of shapes. Computing the 
topological relations and geographic map overlay requires two kernels namely, line segment intersection (LSI) 
and Point-in-Polygon (PNP). An example of polygon intersection is shown in Figure 1. There are two overlapping 
polygons P1 and Q1. The first step is to find line segment intersection vertices (black) among line segments from 
the two polygons as shown in Figure 1(a). The second step requires PNP function to find polygon vertices that 
are inside another polygon e.g., one vertex (red) of Q1 is inside P1 and two vertices (blue) of P1 are inside Q1 as 
shown in Figure 1(b). Finally, output polygon(s) are produced by combining the output of LSI and PNP functions. 
An output polygon is shown in Figure 1(c).  



 
Fig. 1. (a) Line segment intersection vertices, (b) vertices inside another polygon, and (c) output polygon (best 
viewed in color) 

It has been shown that as geometries are getting larger in size, the refinement phase is taking most of the time 
[1]. Decreasing the number of candidates produced in the filter phase also reduces the workload in the 
refinement phase. Therefore, we propose applying a hierarchy of MBR and PolySketch filter to improve the filter 
efficiency. Not all segments of a polygon will intersect with the segments of another polygon. Expensive polygon 
intersections in the refinement phase can be possibly eliminated by using the sketch of a polygon. Further 
improvement is possible by the GPU-acceleration of computational geometry algorithms in the refinement 
phase. 

We illustrate the benefit of our new approach using an example that shows how hierarchical filtering reduces 
the overall workload. Let us consider we have two layers of polygons L1 and L2. L1 and L2 consist of 310 and 500 
polygons respectively. Table I shows nine candidate pairs and each pair has two polygons (P and Q) from L1 and 
L2 whose MBRs overlap with each other. The number of vertices in a polygon is also shown below the polygon 
ID. As shown in Table II, the application of PolySketch Filter eliminates some line segments that can be safely 
ignored from further refinement. Moreover, in case of polygons from a few of the candidates, MBR-based Filter 
eliminates all the line segments. As a result, we can discard the pairs that have zero line segments after applying 
hierarchical filtering. Since, polygon intersection with 𝑛𝑛 and 𝑚𝑚 line segments is an 𝑂𝑂(𝑛𝑛 ∗ 𝑚𝑚) time algorithm, 
reducing the line segments by filtering is beneficial.  

Table I Candidate pairs before hierarchical filtering 
 1 2 3 4 5 6 7 8 9 
L1 P3 P3 P21 P24 P88 P88 P99 P236 P300 
 35 35 199 652 998 998 152 4652 52 
L2 Q5 Q7 Q56 Q3 Q5 Q12 Q5 Q5 Q457 
 65 22 659 832 65 529 65 65 1526 

 

Table II Eliminating line segments by hierarchical filtering 
 1 2 3 4 5 6 7 8 9 
L1 P3 P3 P21 P24 P88 P88 P93 P236 P427 
 35 0 156 0 0 451 112 324 52 
L2 Q5 Q7 Q56 Q3 Q5 Q12 Q5 Q5 Q637 
 0 0 34 0 65 256 32 30 0 

 

The contributions of this paper are as follows:  

1. 1) We have introduced a new filtering technique based on PolySketch concept which can speedup LSI 
function used by spatial join and map overlay computations involving large polygons and polylines. 
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2. 2) Our OpenACC-based GPU implementation performs spatial join on two shapefiles, namely USA Water 
Bodies and USA Block Boundaries in about 10 seconds using NVidia Titan V and Titan Xp GPU. 

The rest of the paper is organized as follows. Section II provides the background and related work. Section III 
introduces PolySketch Filter. Section IV provides design and algorithm details on our hierarchical filter and refine 
system. The experimental results are discussed in Section V. Finally, we conclude in Section VI. 

SECTION II. Background and Related Work 
Plane-sweep is a fundamental technique in computational geometry and it has been parallelized on multi-core 
and manycore architectures [2]–[3][4]. Boolean set operations like union and intersection on polygons require 
line segment intersections and point-in-polygon test [5]. GPU-based acceleration of segment intersections and 
point-in-polygon test have been studied in the domain of GIS and spatial databases [1], [6]–[7][8][9]. 

We have designed theoretical PRAM algorithms and multithreaded implementations for polygon clipping [10], 
[11]. We used the intersection of two cross-layer polygonal MBRs (CMBR) earlier in our GPU-based spatial join 
system called GCMF [12] to filter out candidate pairs that do not need further refinement. CMBR is effective in 
cases where it can filter out the majority of the line segments. This leads to a reduction in workload. It was 
observed that in some cases CMBR was not effective in workload reduction. So, CMBR technique was further 
improved by creating grid inside the area of CMBR for further filtering [13]. As opposed to CMBR, PolySketch is a 
hierarchical technique. However, our PolySketch system can employ CMBR technique in a hierarchical manner to 
weed out the pairs of cross-layer tiles that do not need further refinement. Other approaches used in literature 
include PixelBox where geometries represented as co-ordinates are converted to raster format (pixels) to 
leverage image processing using a GPU [14]. 

Spatial partitioning of geometries using techniques like uniform grid [9], quadtree and binary space partitioning 
has been studied in literature. In our system, we do not explicitly do spatial partitioning. Instead, we use data 
partitioning by tiling. Tiling induces spatial partitioning. We do not use uniform or adaptive grid partitioning of 
input layers of spatial data. 

Different methods employed in filter and refine based spatial query processing have been discussed in [15]. R-
tree is used for building a spatial index and MBR query [16]. Partitioning a polygon by decomposing its area into 
smaller and simpler geometries has been studied earlier [17]. Existing tools in GIS invoke computational 
geometry algorithms on shapes made of 2D co-ordinate data. In computer graphics, a complicated shape is 
often decomposed by triangulation. For efficiency, triangulations are used instead of actual geometry. In 
contrast, PolySketch is a recursive tiling of polygon boundary only; the interior of a polygon is disregarded 
altogether. As such, sketch of a polygon does not work in the same way as a polygonal MBR or classical polygon 
partitioning because PolySketch approximates the boundary only. In short, PolySketch is not a replacement for 
MBR in classical filter and refine scenario. It must be used in conjunction with point-in-polygon test (PNP) to 
implement standard intersects predicate in spatial join. 

In addition to representing geometries using MBRs, convex and concave hull can also be used. Convex hull can 
be used as a replacement for MBR in spatial queries. Creating a PolySketch is a linear time operation, on the 
other hand, convex hull algorithms require 𝑂𝑂(𝑛𝑛log 𝑛𝑛) time. Douglas- Peucker line simplification algorithm and 
its variants reduce the number of points to represent a curve [18]. Line simplification is primarily used for 
visualization on a map. In case of geometries like polygons, using the simplified version may not yield correct 
results for spatial queries. PolySketch is similar to hierarchical bounding technique used for line-curve 
intersection and curve-curve intersection [19]. 



We have used compiler directives for GPU-based parallelization of computational geometry algorithms earlier 
[4]. In our OpenACC-based spatial join implementation, we used classical filter and refine technique where filter 
phase was done on a CPU using R-tree query and refinement phase was done on a GPU. The performance for 
large data was unsatisfactory when compared to sequential implementation of spatial join on a CPU. This 
basically motivates the present work.  

 
Fig. 2. Polysketch of polyline data composed of tiling at three different levels. 

SECTION III. Polysketch and CMBR Filter 
Sketch of a polygon/polyline is made by tiling its boundary in such a way that one tile represents an MBR of the 
vertices in that tile. These tiles are contiguous and two adjacent tiles share a vertex. A sketch is designed as a 
lightweight representation to be used in the filter phase of a filter-and-refine algorithm in a spatial computation, 
e.g., join, overlays. Figure 2 shows the hierarchical tiling approach. A tile is defined as a C structure. When 
compared to MBR of a geometry, a sketch of a geometry has less dead-space. As such, better filter efficiency is 
possible at the cost of additional space requirement.  

 
 
A PolySketch for a geometry with 𝑛𝑛 vertices and tile length set as 𝑏𝑏 consists of �𝑛𝑛

𝑏𝑏
� tiles. Since, in each tile, an 

MBR for the vertices in that tile needs to be computed, building a sketch of a polygon is 𝑂𝑂(𝑛𝑛) operation. An 
MBR of an entire geometry is also 𝑂𝑂(𝑛𝑛) operation. As will see later in the experimental results, sketching 
provides a space-time tradeoff because of its hierarchical nature. 

A tree can be constructed to represent a hierarchy of PolySketches at different levels. Using the leaf-level tiles, 
internal nodes of the tree can be constructed using union of two successive tiles. An MBR of a polygon can be 
thought of as its level 0 sketch with its start index as 0 and end index as the number of vertices in the polygon. 
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For a polygon with N vertices, there are O(log N) sketches possible in a tree-based representation. However, it 
suffices to use a few levels only as shown in Figure 2 for space-efficiency.  

 
Fig. 3. Polygon intersection using polysketch. Tiles for each polygon is shown in different colors. 

As shown in Figure 3, there are two polygons P1 from layer1 and Q1 from layer 2. The tile-size is set as six line 
segments. Q1 consists of twenty-one line segments, so it is divided into five tiles. For polygon intersection 
between P1 and Q1, we first check if their corresponding tile-MBRs overlap or not. If some tile-MBRs from P1 
and Q1 overlap, we record those tile pairs and use LSI function for those pairs. If there is no tile-MBR overlap, 
we discard this task for LSI function. In Figure 3, we can see that there are three pairs of tiles that have overlap. 
A tile located in the lower left corner of Q1 overlaps with two tiles located in the right-side corner of P1. 
Similarly, another tile located in the upper left corner of Q1 overlaps with one tile located in the upper right 
corner of P1. Other tiles and their corresponding vertices can be safely ignored in LSI function. 

Checking if two tile-MBRs overlap is computationally cheaper than finding the segment intersection between 
two line segments. In one of the datasets that we have used, about 13% of polygons have more than 500 
vertices. Since, a tile's MBR contains a fraction of the vertices of a polygon, using it in place of actual vertices in 
the filter phase is a cost-effective strategy. 

CMBR Filter 
Common Minimum Bounding Rectangle (CMBR) is a method which is based on Minimum Bounding Rectangle 
(MBR) of a polygon. For a pair of polygons, the CMBR is an area where the two MBRs overlap. Figure 4 shows 
two examples of CMBR. Black rectangles are two polygons' MBRs and the red rectangle is their CMBR. When 
two MBRs overlap as shown in Figure 4(b), it is possible that these two polygons do not overlap. Such cases can 
be safely ignored in the refinement phase. This particular case can be detected in the filter phase itself by 
checking if the vertices of a polygon lie in the CMBR area or not. Line segments that do not occupy the CMBR 
area can be safely ignored for LSI function. CMBR of a polygon has been used in earlier work [12] to improve the 
performance of spatial join on GPU.  

 
Fig. 4. Common minimum bounding rectangle examples (red rectangle is CMBR; best viewed in color.) 

In some cases, common MBR area may contain most of the vertices of the overlapping polygons. This particular 
case is shown in Figure 4(a). This limitation of CMBR approach makes it less effective [13]. A filter based on 
PolySketch provides an alternative way of reducing the workload in LSI function. In general, there are not many 
segment intersections in polygon overlay [11], so even when the CMBR is less effective, PolySketch can provide 
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significant workload reduction. In addition, the strengths of CMBR and PolySketch can be combined to get better 
performance. 

In spatial join, the output polygon produced by polygon intersection is not required. Spatial join is based on a 
boolean predicate, e.g., Intersects. Intersects predicate returns true if two polygons have line segment 
intersection or a polygon is inside another polygon. In polygon overlay, output polygon needs to be computed as 
well. This requires finding all line segment intersections as well as vertices of the polygon that are inside another 
polygon. Because of this difference, polygon overlay is computationally more expensive than spatial join. In our 
work, we compute all the segment intersections and the vertices of a polygon that are inside another one. The 
number of segment intersections (can be quadratic in the worst case) is variable for each candidate pair, so 
handling it on GPU either requires redundant computation because of counting the number of intersections a 
priori or using atomic locks while storing them. 

SECTION IV. Hierarchical Filter and Refinement System 
When two layers of geometries are overlaid or superimposed in a geographic map, there can be millions of 
candidate pairs whose MBRs have overlap and need further refinement using computational geometry 
algorithms. Even though there are PRAM based parallel algorithms available in literature [10], [11], optimal 
𝑂𝑂(𝑛𝑛log 𝑛𝑛) algorithms for geometric intersection are not available on GPUs. On CPUs, sequential plane-sweep 
based algorithms are used. For practical parallel implementations, naive 𝑂𝑂(𝑛𝑛2) algorithms or grid partitioning 
are used [9], [14]. Even on massively parallel hardware, the quadratic runtime of the naive algorithms results in 
unacceptable high latency [4]. Grid partitioning may not handle skewed data efficiently. Moreover, partitioning 
polygons in a uniform or adaptive grid has the disadvantage of a polygon spanning multiple grid cells, thereby 
increasing redundancy due to duplication of geometries across grid lines. 

For the original data, we do not use spatial partitioning using grids. Our approach is to use a combination of 
filter techniques to reduce the workload in the refinement phase. The input to CMBR and PolySketch Filters is 
the list of candidate pairs produced by querying R-tree data structure built using the MBRs of the input 
geometries. We refer to these candidate pairs as tasks because we process them concurrently on a GPU.  

SECTION Algorithm 1 Hierarchical Filter-Based Segment Intersection 

1: Input: Two polygon layers L1 and L2 
2: Build R-tree using MBRs of polygons from L1 
3: tasks ← Rtree Query using MBRs of polygons from L2 
4: newTasks ← Apply CMBR Filter on tasks  
5: Apply PolySketch Filter for each newTask  
6: Refine: Line Segment Intersection Function 
 

A. System Design Overview 
In this section, we present how our hierarchical filter and refinement system works. Given two layers of 
polygons, Algorithm 1 shows the order of application of different filters to find cross-layer line segment 
intersections in the refine phase. At first, we check which polygon's MBR overlaps with others by using R-tree. If 
some MBRs overlap, we store these polygon pairs as tasks (T) and every task has two polygons. Then we use 
CMBR Based Task Reduction Algorithm to check which tasks are valid tasks (T1) or invalid tasks (T2) for LSI 
function. After this, we fix the tile-size for creating tiles for the valid tasks (T1) and use PolySketch Filter to 
reduce the number of line segments and workload. In the last step, we use LSI function to detect the tasks 
where two polygons have line segment intersection(s). 



PNP Operation for Polygon 
There are some cases when a polygon is contained inside another polygon completely. In spatial database, these 
cases belong to the within or contains spatial relations. Finding if a point is inside another polygon is 𝑂𝑂(𝑛𝑛) 
operation because all the n segments of the polygon need to be examined. As such, a brute-force check for an 
entire polygon is quadratic in the number of vertices of a polygon. When a polygon A is contained inside another 
polygon B, then MBR of A is also contained inside MBR of B. However, the reverse is not always true. Our 
algorithm for PNP can detect these contains relation without resorting to a quadratic algorithm. Our algorithm 
can also detect those cases where MBR of A is contained inside MBR of B, but A and B are disjoint polygons. As a 
result, our system can safely ignore these tasks from expensive refinement operation later. Identifying these 
cases correctly is possible because we take advantage of the CMBR filter for optimizing PNP operations as well. 
More details for PNP-based Task Reduction Algorithm are in Subsection IV-D. 

Now we will discuss the hierarchy of filters that our system employs to reduce the number of tasks and overall 
workload. 

B. CMBR Filter Based Task Reduction 
The input to this filter is the list of candidate pairs generated by R-tree queries. Each candidate consists of a pair 
of MBR-overlapping geometries. However, by virtue of CMBR Filter [12], those cross-layer pairs of polygons 
whose Minimum Bounding Rectangles (MBRs) intersect but their rectangular intersection does not contain line 
segments from both layers can be safely ignored because those pairs will not have segment intersections. We 
call such tasks invalid tasks and save computation time by discarding them from further processing in LSI 
function. An example of an invalid task is shown in Figure 4(b). 

Our system classifies the pairs that have line segments inside or across CMBR from two cross-layer polygons as 
valid tasks; both polygons have segments that are contained inside or across the CMBR boundary. We store this 
task because the polygons can potentially intersect and need further refinement. An example of a valid task is 
shown in Figure 4(a). 

CMBR Filter works well in eliminating some tasks from further refinement. In Subsection V-C, we compare the 
execution time performance and filter efficiency of using PolySketch vs CMBR w.r.t. LSI function. 

C. Workload Reduction by Polysketch Filter 
As shown in Figure 3, a polygon can be represented as a collection of tiles. The tile-size is user-defined. 
Intersection of two polygons can be expressed as intersection of their PolySketches. Since, tile-MBR in a 
PolySketch captures the actual area covered by line segments in that tile, line segment intersection can be 
carried out in two phases: 1) filter phase where tile-MBRs are used for intersection test and 2) refine phase 
where we only consider the line segments from those tiles that have overlap in LSI function. This is the essence 
of PolySketch Filter. 

In CMBR Filter, we need to compare all segments inside CMBR of one polygon with all segments inside CMBR of 
another polygon. If CMBR is large as shown in Figure 4(a), we cannot decrease a lot of segments from both 
polygons which affects workload in LSI function. However, by using PolySketch, a line segment in tile A needs to 
be compared against the segments of only those tiles which overlap with tile A. Algorithm 2 shows how to apply 
PolySketch Filter and Refine for polygon intersection tasks using compiler directives supported by OpenACC. 

There are certain scenarios where two polygons overlap but it is not detected by LSI function. Therefore, we use 
PNP function for further filtering of tasks. 



D. PNP Based Task Reduction Algorithm 
In this algorithm, we find out the vertices of a polygon that are contained inside another polygon. This is 
required to construct the output polygon for each task. We also find out those tasks where one polygon is 
entirely inside another polygon in an optimized way. These tasks result in valid output pairs for spatial join or 
polygon overlay operation. We also want to discard those tasks where polygons are disjoint so that we do not 
have to invoke quadratic PNP tests for an entire polygon. Figure 5 shows the flow chart of this algorithm.  

Algorithm 2 Segment Intersections using PolySketch Filter 

1: #pragma acc data copyin(layer1Polygons, layer2Polygons) 
copyout(line segment intersections) 

2: #pragma acc parallel 
3: #pragma acc loop 
4: for each taskID ∈ taskArray do 
5:   get polygon pair (p,q) using taskID 
6:   #pragma acc loop 
7:   for each tile tp ∈ p.tiles do 
8:    Calculate tp.MBR 
9:   end for 
10:   #pragma acc loop 
11:   for each tile tq ∈ q.tiles do 
12:    Calculate tq.MBR 
13:   end for 
14:   #pragma acc loop reduction (numSegIntersections) 
15:   for each tile tp ∈ p.tiles do 
16:    #pragma acc loop 
17:   for each tile tq ∈ q.tiles do 
18:    if (tp.MBR overlaps tq.MBR) then 
19:     Call LSI(tp.segments, tq.segments) 
20:     #pragma acc atomic 
21:     store segment intersections 
22:    end if 
23:   end for 
24:  end for 
25: end for 
 

PNP based algorithm is used after the LSI Function. The intention of this algorithm is to discard invalid tasks for 
PNP function, divide valid tasks into two different types, do some pre-processing steps and use appropriate PNP 
functions for them. Before we use LSI Function, we use CMBR Filter to preprocess data to discard some invalid 
tasks for LSI function. However, we cannot discard these tasks for PNP function. We need to check all tasks (T) 
for PNP function. 

Based on the output of CMBR Filter results, we classify the overall tasks so that we can treat them differently in 
order to reduce the PNP computation time. We divide all tasks (T) into three different types of tasks (S1, S2 and 
S3). S1 includes the tasks where two polygons have line segment intersections. S2 includes the tasks where two 
polygons do not have line segment intersection and guaranteed not to intersect. S3 includes the tasks where 
two polygons do not have line segment intersection but one polygon may be inside another polygon. Then, we 
use Striping Algorithm to preprocess data for the tasks in S1 which will be used in Stripe-based PNP function. 
Furthermore, we use constant vertex PNP function only for the tasks in S3 category. We discard the tasks in S2 



category. This helps in reducing a lot of PNP workload. For implementing filter and refinement steps, we use 
OpenMP and OpenACC to parallelize them on CPU-GPU system.  

 
Fig. 5. Classifying PNP tasks after CMBR filter 

Valid Tasks for Stripe-Based PNP Function 
If two poly- gons have line segment intersection(s) (e.g. Figure 6(a)), we store the pair for Striping algorithm and 
Stripe-based PNP Function. Moreover, we also store special cases as shown in Figure 6(b) and Figure 6(c) for 
further processing. 

Valid Tasks for Constant Vertex PNP Function 
If two polygons do not have any line segment intersection, we check their MBRs. If one MBR of a polygon is 
inside another MBR, we store this task for constant vertex PNP function. The reason is that the smaller polygon 
may be totally inside the larger polygon when they do not have line segment intersection. In other words, all 
vertices of the smaller polygon may be inside the larger polygon. We also store which MBR includes another 
MBR because we only need to check whether the smaller polygon is inside the larger polygon. In addition, we do 
not need to check all vertices of the smaller polygon. It suffices to check a few vertices of smaller polygon 
whether they are inside or outside the larger polygon. Then, we know the smaller polygon is inside or outside 
the polygon. For illustration, Figure 6(e) and Figure 6(f) are two examples where we invoke PNP function for only 
a few vertices. In the experiments, we consider the output of PNP test for any five contiguous vertices to handle 
this special case. 

Invalid Tasks for PNP Function 
If two polygons intersect, there are two cases - a) there are line segment intersection(s) and b) there is no line 
segment intersection but one polygon is totally inside another polygon. Therefore, if two polygons do not have 
line segment intersection and no polygon's MBR is inside another polygon's MBR, they do not intersect. As such, 
we will discard this task. The reason is that if one polygon is inside another polygon, its MBR should be also 
inside another polygon's MBR. As shown in Figure 6(d), two polygons do not have line segment intersection and 
no MBR of a polygon is inside another MBR, so they cannot intersect.  
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Fig. 6. PNP cases: (a) Two polygons have line segment intersections, (b) and (c) two polygons touch each other, 
(d) two polygons' MBRS overlap but there is no actual intersection, (e) one polygon is inside another polygon but 
there is no line segment intersection, (f) the smaller polygon is not inside another polygon but the smaller MBR 
is inside another MBR. 

E. Striping Algorithm and Stripe-Based PNP Function 
We have used striping to speedup PNP tasks. Striping is a filter technique used to optimize PNP function. Once 
the segments of the polygon are partitioned into stripes, PNP test for a vertex needs to consider only the line 
segments contained in or crossing a stripe. This reduces the workload for PNP function.  

 
Fig. 7. An example of striping for stripe-based PNP function 

The area divided into stripes is the red rectangle as shown in Figure 7. We divide the area occupied by the red 
rectangle into 8 cells. Striping algorithm considers all the line segments belonging to a task and maps a line 
segment to the cells where there is an overlap. In case a line segment overlaps with two or more cells, the 
segment is replicated in those cells. This is carried out by comparing y co-ordinates of vertices of a line segment 
with the cell boundaries. For Stripe-based PNP function, we need to check the vertices inside a cell only with 
another polygon's line segments inside or across the same cell. Therefore, the vertices need to be compared 
only with those line segments which overlap with the same cell. For GIS datasets with large polygons, this can 
potentially reduce a lot of workload. 

Multi-GPUs 
After the geometries have been partitioned into multiple cells, parallel processing of PNP tests can be carried 
out over multiple GPUs. As shown in Figure 7, there is no dependency among those eight cells. In order to utilize 
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four GPUs, we can assign two cells to each GPU in a round-robin fashion. In our experiments, we have leveraged 
multiple GPUs to distribute PNP-based computations. 

SECTION V. Experimental Results 
A. Datasets 
We have used three datasets to evaluate our system: (1) Urban, (2) Water, and (3) Lakes. The details are shown 
in Table III. Urban and Water are from http://www.naturalearthdata.com and http://resources.arcgis.com. The 
third dataset (Lakes) is from http://spatialhadoop.cs.umn.edu/datasets.html.  

Table III Three real datasets used in our experiments 
Label Dataset Polygons Segments Size 
Urban Ne_10m_urban_areas 

Ne_10m_states_provinces 
11,878 

4,647 
1.1M 
1.3M 

20MB 
50MB 

Water USA_Water_Bodies 
USA_Block_Boundaries 

463,591 
219,831 

24M 
60M 

520MB 
1300MB 

Lakes Lakes 
Sports 

7.5M 
1.8M 

277M 
20M 

9GB 
590MB 

 

B. Hardware Description 
We have used Intel Xeon E5-2695 multi-core CPU with 45MB cache and base frequency of 2.10GHz. We have 
used two different kinds of GPU to run the experiments, namely, Titan V and Titan Xp. Titan V is more powerful 
GPU and its architecture is NVidia Volta. It has 640 Tensor Cores, 12 GB HBM2 memory, 5120 CUDA Cores and 
its memory bandwidth is 652.8GB/s. Architecture of Titan Xp is Pascal. It has 12 GB GDDR5X memory, 3840 
CUDA Cores and its memory bandwidth is 547.7GB/s. For experiments on a single GPU, we have used Titan V. 
When using multi-GPUs, we used one Titan V and three Titan Xp. The PGI compiler version is 18.10. 

First, we used classical filter and refine technique using a CPU-GPU system for LSI and PNP functions accelerated 
by OpenACC pragmas. R-tree is used for filtering on a CPU. Table IV shows the results. Even with a powerful 
GPU, it takes about 44 seconds in total for the larger dataset. This is the motivation behind developing a 
hierarchical filter and refinement system.  

Table IV Running times by using different GPUs without filters 
  Water Urban 
Titan V LSI function (s) 10.47 0.4 
 PNP function (s) 33.44 0.99 
 Total time (s) 43.91 1.39 
Titan XP LSI function (s) 22.16 0.82 
 PNP function (s) 92.99 2.51 
 Total time (s) 115.15 3.33 

 

C. Polysketch and CMBR Results 
For analysis, let us consider that each task has two polygons; P from layer 1 and Q from layer 2. For one task, P 
has 𝑚𝑚 line segments and Q has 𝑛𝑛 line segments. For LSI function, every line segment from P should be compared 
with all line segments from Q. The workload is 𝑚𝑚 ∗ 𝑛𝑛 for every task. Therefore, the total workload for LSI 
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function is the summation of workload of individual tasks. The Application of CMBR or PolySketch filter 
decreases the line segments in each task. This leads to workload reduction. 

Tables V, VI, and VII show PolySketch and CMBR's effect on reducing the workload and the number of line 
segments for the LSI function for different datasets. (In the tables, Sketch means PolySketch) We can see that 
both CMBR and PolySketch can reduce a lot of line segments and the workload. PolySketch works better than 
CMBR overall to reduce the total workload which is directly related to the running time. Therefore, we can get 
better execution time results by using PolySketch. 

Another advantage of PolySketch is that it is easier to implement using compiler directives. We only need to 
record overlapping tiles. Therefore, we implemented both PolySketch and LSI function together using OpenACC. 
For implementing CMBR, we need to calculate their CMBRs, test and store the line segments that overlap with 
the CMBRs. We implemented CMBR to preprocess data on CPU and run LSI function on GPU. 

To be fair, we show CMBR time and its LSI function time separately for CMBR Filter so that we can see how 
much time LSI function took. We show execution time for PolySketch construction and LSI function together for 
PolySketch Filter. For the bigger data, PolySketch method's time which includes PolySketch time and its LSI 
function time is better than CMBR method's LSI function time which does not include CMBR time. For other data 
sets, PolySketch method's times are similar to CMBR method's LSI function times which do not include CMBR 
time. 

Table V shows the result for Water dataset. We can see that PolySketch is more effective in reducing the 
workload compared to CMBR. As we mentioned before, for some polygon pairs, their CMBRs can be very large. 
This leads to less effective filtering of line segments in those CMBRs, which in turn increases the workload in the 
refinement phase.  

Table V Sketch and CMBR effect on the LSI function for water dataset 
Water No filters With CMBR With Sketch 
Time(s) 10.47 10.36 + 4.53 1.39 
workload 411,876,982,358 16,327,012,938 1,789,226,826 
# of segments (L1) 1,036,879,194 26,844,066 242,685,263 
# of segments (L2) 1,996,217,931 30,765,554 145,134,707 
# of tasks 1,020,458 274,283 321,658 

 

If we only consider the number of line segments present in each individual layer after the application of CMBR 
filter, we can see that CMBR is quite effective in this scenario. This is due to the fact that when the overlap area 
between two polygons is small, their CMBR will have fewer line segments. 

When we consider line segment reduction in a single layer case, PolySketch is less effective, even though it is 
quite effective in workload reduction compared to CMBR. This discrepancy can be explained by the way we 
count the number of line segments in a tile after the filter phase. For PolySketch, since one tile of a polygon may 
overlap with more than one tile of another polygon. Therefore, when counting the number of line segments in a 
tile after using PolySketch filter, we count those line segments more than once. However, to calculate the 
workload, we need to consider the line segments in all the candidate pairs from both layers. Workload in LSI 
function directly affects the execution time. Table V also shows that the execution time of using PolySketch + LSI 
function is even smaller than the execution time of CMBR + LSI function.  

Table VI Sketch and CMBR effect on the LSI function for urban dataset 
Urban No filters With CMBR With Sketch 



Time(s) 0.4 0.23 + 0.03 0.06 
workload 6,453,160,088 25,737,640 7,489,801 
# of segments (L1) 3,497,270 914,074 834,146 
# of segments (L2) 65,476,891 78,492 847,581 
# of tasks 28,687 8,166 9,729 

 

Table VII Sketch and CMBR effect on the LSI function for lakes dataset 
Lakes No filters With CMBR With Sketch 
Time(s) 2.20 9.4 + 0.51 1.17 
workload 29,289,344,523 260,210,378 37,464,000 
# of segments (L1) 1,932,905,302 4,061,067 7,716,460 
# of segments (L2) 76,801,765 1,763,838 6,143,938 
# of tasks 692,435 132,888 201,107 

 

Table VI shows the results for Urban dataset. We can see that PolySketch works better than CMBR in reducing 
the total workload. For PolySketch method, the running time which includes PolySketch time and LSI time is 
similar to the time of LSI function after using CMBR Filter. Table VII shows the results for Lakes dataset. For Lakes 
dataset as well, PolySketch reduces a considerable amount of workload compared to CMBR. 

One of the intentions of these two filters is to discard the invalid tasks for LSI function so we can use GPU 
efficiently only for the valid tasks where two polygons may have line segment intersection(s). To see our filter's 
efficiency in discarding invalid tasks for LSI function, we define its efficiency as 

𝐷𝐷Task = The number of tasks discarded
The original number of tasks

 (1) 

Table VIII Sketch and CMBR effect on reducing tasks of the LSI function for different datasets 
 Water Urban Lakes 
CMBR 73.13% 71.53% 80.81% 
Sketch 68.48% 66.09% 70.96% 

 

Table VIII shows CMBR and PolySketch efficiency percentage for discarding invalid tasks. We can see that both 
CMBR and PolySketch can discard most of the tasks for LSI function and CMBR is more effective in comparison. 
However, we use PolySketch to reduce tasks as well as workload. This is due to the fact that our compiler 
directive based CMBR filter implementation is slower compared to PolySketch filter implementation. 

For quantitative evaluation, here we describe the equations for workload and line segment reduction. In the 
equations below, 𝐶𝐶 is the candidate set (task), for a candidate pair (i,j), 𝐸𝐸𝑖𝑖  and 𝐸𝐸𝑗𝑗  are the number of the line 
segments in i𝑡𝑡ℎ and j𝑡𝑡ℎ polygons. The symbols with hat notation show the reduced number of line segments due 
to hierarchical filtering. Using these symbols, we define the workload reduction percentage and line segment 
reduction percentage as 

𝑅𝑅𝑃𝑃Workload = �1 −
∑  (𝑖𝑖,𝑗𝑗)∈𝐶𝐶 |𝐸𝐸

^
𝑖𝑖|∗|𝐸𝐸

^
𝑗𝑗|

∑  (𝑖𝑖,𝑗𝑗)∈𝐶𝐶 |𝐸𝐸𝑖𝑖|∗|𝐸𝐸𝑗𝑗|
� ∗ 100% (2) 

and 



𝑅𝑅𝑃𝑃Line-Segment = �1 − ∑  𝑖𝑖∈𝐶𝐶 |𝐸𝐸
^
𝑖𝑖|

∑  𝑖𝑖∈𝐶𝐶 |𝐸𝐸𝑖𝑖|
� ∗ 100% (3) 

 

Table IX Sketch effect on reducing workload and line segments by the LSI function for three datasets using 
percentage. 

Sketch for LSI 
Function 

The workload reduction 
percentage 

The segments reduction 
percentage for L1 

The segments reduction 
percentage for L2 

Water 99.57% 76.59% 92.73% 
Urban 99.88% 76.15% 98.7% 
Lakes 99.87% 99.6% 92% 

 

Tables IX and X show the effect of PolySketch and CMBR Filter in reducing workload and line segments of each 
layer for the LSI function for three datasets. PolySketch Filter also reduces the number of line segments from 
both layers. In some cases, it can discard more line segments from a layer where CMBR Filter is not so effective. 
In addition, PolySketch Filter can also reduce more workload compared to CMBR which is more related to the 
execution time.  

 
Fig 8 The workload in LSI function after using CMBR or Sketch. 

Table X CMBR effect on reducing workload and line segments by the LSI function for three datasets using 
percentage. 

CMBR for LSI 
Function 

The workload reduction 
percentage 

The segments reduction 
percentage for L1 

The segments reduction 
percentage for L2 

Water 96.04% 97.41% 98.46% 
Urban 99.6% 73.86% 99.88% 
Lakes 99.11% 99.79% 97.7% 

 

Figure 8 shows the workload for LSI function after using CMBR or PolySketch Filter. As we can see that 
PolySketch Filter works well in reducing more workload compared with CMBR Filter. For the Water dataset, we 
can see that the workload after using PolySketch is 11% of the workload after using CMBR. For the Urban 
dataset, the workload after using PolySketch is 29% of the workload after using CMBR. For the Lake dataset, the 
workload after using PolySketch is 14% of the workload after using CMBR. 

For the Water dataset, the number of thread blocks chosen by PGI compiler was 65535 and the number of 
threads in a block was 128 for PolySketch with LSI function. Even when the number of tasks was greater than 
65535, PGI compiler generated the grid with 65535 thread blocks. 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8970174/8990379/8990470/453500a141-fig-8-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8970174/8990379/8990470/453500a141-fig-8-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8970174/8990379/8990470/453500a141-fig-8-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8970174/8990379/8990470/453500a141-fig-8-source-large.gif


D. Different Polysketch Size Results 
The real-world datasets include small as well as large polygons. Finding an ideal tile-size for a PolySketch Filter is 
difficult. Tile-size of a sketch means the number of line segments in a tile for PolySketch Filter algorithm. Table XI 
shows the performance of using different tile-size for the Water dataset. We can either use the same tile-size for 
both polygons or use different tile-size. Based on our experience, we recommend different tile-size for small and 
large polygons in a task. For example, in our experiments, we set tile-size as 15 for large polygons and 5 for small 
polygons. In our experiment, we found that if the number of line segments of a polygon is smaller than 400, tile-
size of 5 worked well. For larger polygons, the tile-size of 15 worked well in reducing the workload and execution 
time. As shown in Table XI, in the first column, the first number is a tile-size. If there is a bracket, it means we 
used two tile-sizes and the number in the bracket is the tile-size used for the small polygon. The second column 
shows the current workload for LSI function after using PolySketch Filter. The third column shows the number of 
valid tasks for LSI function after using PolySketch. The fourth column is the execution time of running PolySketch 
and LSI function together. We can see that smaller tile-size works better. It can reduce more workload and 
discard more invalid tasks. The execution time is also less. In general, if the tile-size is small enough, we can 
discard more tile overlap pairs and only use LSI function for the overlapping tile pairs. Finally, for Water and 
Lakes, we set tile-size as 15 for large polygons and 5 for small polygons. For Urban dataset, we set tile-size as 10.  

Table XI The performance of using different tile-size for water dataset 
Water Current workload Current tasks Time(s) 
15 (5) 1,789,226,826 321,658 1.39 
15 (10) 1,875,845,026 340,303 1.49 
15 1,970,120,151 355,172 1.55 
20 (10) 2,554,936,706 356,818 1.62 
20 2,772,593,129 385,327 1.82 
30 4,460,548,392 442,279 2.29 

 

E. PNP Based Task Reduction Algorithm and Striping Algorithm Results 
 
Table XII PNP based task reduction algorithm and striping effect on reducing workload of the PNP function for 
both the datasets and the reduction percentage 

 Original workload Current workload Reduction percentage 
Water 411,876,982,358 15,653,774,431 96.2% 
Urban 6,453,160,088 291,816,678 95.48% 

 

Table XII shows PNP based task reduction algorithm and striping effect on reducing workload of the PNP 
function for both the datasets and the reduction percentage. We can see that it reduced most of the workload. 
One reason is that we can discard some tasks where two polygons do not have any line segment intersection 
and the bigger MBR does not contain the smaller MBR. Otherwise, there are only two types of tasks where we 
need to use PNP function. One case is two polygons have line segment intersection(s) so there should be some 
vertices which are inside another polygon. Another case is when two polygons do not have any line segment 
intersection but the bigger MBR contains the smaller MBR so one polygon may be totally inside another 
polygon. Although we need to use PNP function for these tasks, we have appropriate filters and refinement 
steps for them. For the first case, we use Striping method to reduce the vertices, line segments and workload. 
Striping can be effective when the CMBR of two polygons is large. For the second case, we check only a few 
vertices of two polygons to see which polygon is inside or outside another polygon based on our analysis. We 



only need to check a few vertices of only one polygon for PNP function because the bigger polygon cannot be 
inside the smaller polygon.  

 
Fig. 9. The percentage of different types of tasks after using PNP based task reduction algorithm 

Figure 9 shows the percentage of different types of tasks after using PNP based task reduction algorithm. We 
can see that PNP based task reduction algorithm is very efficient. For Water dataset, we need to check all 
vertices of polygons only for 12% of the tasks because the polygons of these tasks have line segment 
intersection(s). However, we can use Striping method which is very helpful to reduce the workload of these 
tasks and discard some vertices which cannot be inside another polygon. Then, we use Stripe-based PNP 
function. In addition, for 75% of the tasks, we can only use constant vertex PNP function (5 vertices) of a polygon 
to determine whether they are inside or outside another polygon and then we know whether this polygon is 
inside or outside of another polygon according to our analysis. We can also discard 13% of the tasks and do not 
need to do PNP tests for these tasks. PNP based task reduction algorithm also works well for Urban dataset. We 
can discard 11% of the tasks and perform constant vertex PNP function for 72% of the tasks. Then, we use 
Stripe-based PNP function for the remaining 17% of the tasks.  

Table XIII Striping effect on reducing workload for the stripe-based PNP function for both the datasets 
 Original workload Current workload Reduction percentage 
Water 156,443,271,335 5,301,138,126 96.61% 
Urban 1,254,513,546 14,321,168 98.86% 

 

Table XIII shows Striping algorithm effect on reducing the workload of the Stripe-based PNP function for both 
the datasets. Stripe-based PNP function is applied to the tasks where two polygons have line segment 
intersection(s). We can see that it can reduce most of the workload for both the datasets. The vertices inside a 
stripe need to be tested against the line segments only within the same stripe and crossing the stripe boundary, 
instead of all the line segments of a polygon. This leads to workload reduction. Even the area where we want to 
do striping is very large, we can still get benefit.  

Table XIV PNP based task reduction algorithm effect on reducing workload when a polygon MBR is inside 
another polygon MBR 

 Original workload Current workload Reduction percentage 
Water 152,287,577,854 10,352,636,305 93.2% 
Urban 4,788,726,632 277,495,510 94.2% 

 

In case when a polygon is inside another polygon, the MBR of small polygon is inside the MBR of larger polygon. 
Our PNP-based task reduction algorithm detects these cases. So, we do not apply the quadratic time PNP tests in 
these cases. This results in workload reduction compared to the naive cases. Table XIV shows PNP based task 
reduction algorithm's effect on reducing workload of these cases. We only check five vertices of the smaller 
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polygon to see whether these vertices are inside or outside of another polygon. Then, we determine whether 
the smaller polygon is inside or outside of the bigger polygon. 

F. Execution Time Details 
 

Table XV Execution time in seconds 
Dataset 1 CPU thread and 1 

GPU 
32 CPU threads, 1 GPU for LSI 
and PNP 

32 CPU threads, 1 GPU for LSI, multi-
GPUs for PNP 

Urban 1.39 0.35 0.30 
Water 43.92 10.63 7.71 

 

Table XV shows the total running times for two datasets. The first column's result is using 1 thread on CPU and 1 
GPU without using our hierarchical filtering. For testing our system, we used one or more threads on CPU and 
one or multiple GPUs to see the difference. The second column's result is using 32 threads on CPU to preprocess 
data and 1 GPU for LSI and PNP function. The third column's result is using 32 threads on CPU to preprocess 
data, 1 GPU for LSI function and multi-GPUs for PNP function. We can see that our system works well using 
multi-core CPU and multiple GPUs. Although we only use multi-GPUs for PNP function, we can still get benefit, 
especially for the larger dataset. 

Tables XVI and XVII show the details of execution time breakdown for the two datasets. We can see that our 
filters are very efficient and we can get benefit by using multi-GPUs. If the dataset is larger, we can get more 
benefit by using multi-GPUs. For Water dataset, the time taken by R-tree filter on CPU is 2.27s. Therefore, the 
end-to-end time of the system is 9.98s.  

Table XVI Execution time breakdown details for water dataset. (NA means it is not applicable.) 
Water Sketch and 

LSI Function on GPU 
(s) 

Pre-process 
for PNP on 
CPU(s) 

PNP Function on GPU 
(s) 

Final 
Time 
(s) 

No filters 8.82 NA 35.1 43.92 
One GPU for LSI and PNP 1.39 4.56 4.68 10.63 

One GPU for LSI, multi-GPUs for 
PNP 

 
1.39 

 
4.55 

 
1.77 

 
7.71 

 

Table XVII Execution time breakdown details for urban dataset. (NA means it is not applicable.) 
Urban Sketch and LSI Function 

on GPU (s) 
Pre-process for PNP 
on CPU(s) 

PNP Function on 
GPU (s) 

Final 
Time (s) 

no filters 0.4 NA 0.99 1.39 
One GPU for LSI and PNP 0.08 0.19 0.08 0.35 

One GPU for LSI, multi-
GPUs for PNP 

0.07 0.19 0.04 0.30 

 



SECTION VI. Conclusion and Future Work 
We have developed a hierarchical PolySketch-based filter and refine system for GPUs and evaluated its 
performance using real-world datasets. Even though the system was implemented using compiler directives, the 
performance is very good. Spatial join on two large datasets can be performed in about 10 seconds. This is an 
order of magnitude better performance than our previous work where we did not leverage hierarchical filtering 
[4]. 

We plan to integrate our GPU-accelerated system to MPI-GIS and MapReduce implementations which we have 
built as an HPC system for geospatial analytics [11], [20]–[21][22][23]. PNP algorithm can be further improved by 
doing the pre-processing on GPU. We also plan to improve PolySketch by making the tile-size adaptive. 
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