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Abstract: This paper demonstrates a speech enhancement system based on an efficient auditory coding 
approach, coding of time-relative structure using spikes. The spike coding method can more compactly 
represent the non-stationary characteristics of speech signals than the Fourier transform or wavelet 
transform. Enhancement is accomplished through the use of MMSE thresholding on the spike code. 
Experimental results show that compared with the spectral domain logSTSA filter, both the subjective 
spectrogram evaluation and objective SSNR improvement for the proposed approach is better in 
suppressing noise in high noise situations, with fewer musical artifacts. 
 

Section 1. 

Introduction 

Modern speech enhancement methods originated with the development of spectral 
subtraction1 in the late 1970s. Rapid progress in the early 1980s saw the advent of two 
other enhancement methods: iterative Wiener filtering2 and logSTSA filtering.3 Most of the 
current speech enhancement methods are built and extended on these three baseline 
methods, which are based on the same mathematical tool, the short time Fourier transform 
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(STFT), with the waveform divided into short frames during which the signal is assumed to 
be stationary. Non-stationary acoustic signals, however, are shift-sensitive to this block-
based signal processing tool, due to their non-stationary transient structure.4 

As an alternative analysis tool of STFT, Wavelet Transform (WT) has the advantage 
of using an implicitly variable window size for different frequency components. This often 
results in better handling of non-stationary data like speech. The application of wavelets 
for signal enhancement is attracting more attention.5,6,7 Like the Fourier transform, WT has 
both continuous WT (CWT) and discrete WT (DWT) implementations. The DWT method is 
based on decomposition by a quadrature mirror filter, and is sensitive to the selection and 
design of this filter. Additionally, the DWT is dyadic by nature and so its frequency scaling 
does not line up well with the perceptual frequency scaling desired for human speech. The 
CWT does not have this limitation, and can accurately represent speech structure through a 
good choice of Mother wavelet. However, implementation of the CWT is quite inefficient, 
requiring numerical integration techniques, and is often a highly redundant signal 
representation when done with fine frequency scaling. 

A non-block based, time-relative representation method for auditory coding has 
been proposed in.8 In this method, the speech signal is decomposed into sparse, shiftable 
acoustic spikes, represented by the kernel functions with a corresponding amplitude and 
temporal position, under the assumption that acoustic signal is encoded by spikes at the 
auditory nerve in the inner ear. This method has been shown to better characterize non-
stationary structure in speech signal than Fourier transform. Motivated by this auditory 
coding system, the work presented here uses this coding technique, instead of the 
traditional STFT and WT. An MMSE thresholding technique is used to reduce noise and 
enhance speech, with the idea that the better representational capability of this coding 
method could lead to better enhancement results. 

In section 2, we give a review of the spike auditory coding method. Section 3 
presents the enhancement method based on this auditory coding system. Results are 
present and discussed in section 4, with a conclusion in section 5. 

Section 2. 

Spike Auditory Coding 

2.1. Mathematical Model 
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Different from the block-based representation (Fourier Transform) and 
convolutional representation (CWT), spike coding is a sparse shiftable kernel 
representation, which is motivated by the assumption that speech signal is coded into 
spikes in the inner auditory nerves. In this model, a set of arbitrarily and independently 
positioned kernel functions 𝜙𝜙1, … , 𝜙𝜙𝑀𝑀 are applied to code the signal x(t), which is 
represented by the following mathematical form  

𝑥𝑥(𝑡𝑡) = �  
𝑀𝑀

𝑚𝑚=1

� 𝑠𝑠𝑖𝑖
𝑚𝑚𝜙𝜙𝑚𝑚(𝑡𝑡 − 𝜏𝜏𝑖𝑖

𝑚𝑚) + 𝜀𝜀(𝑡𝑡)
𝑛𝑛𝑚𝑚

𝑖𝑖=1

 

(1) 
 
where 𝜏𝜏𝑖𝑖

𝑚𝑚 is the temporal position of the 𝑖𝑖𝑡𝑡ℎ instance of kernel function 𝜙𝜙𝑚𝑚𝑠𝑠𝑖𝑖
𝑚𝑚 is its 

corresponding coefficient, nm is the total number of kernel functions and ε(t) is the coding 
error. 

Based on this model, the speech signal is decomposed with respect to these kernel 
functions and coded as discrete acoustic events, which is called a spike code, each of which 
has an amplitude and temporal position. 

2.2. Encoding Algorithm 

Three encoding algorithms have been introduced in [8] to compute the optimal 
values of 𝜏𝜏𝑖𝑖

𝑚𝑚 and 𝑠𝑠𝑖𝑖
𝑚𝑚 for a given signal, to minimize the error ε(t) and maximize coding 

efficiency. Here we use Matching Pursuit method for spike coding strategy. The idea of 
Matching Pursuit-based algorithm is to iteratively decompose the signal in terms of the 
kernel functions so as to best capture the signal structure, by projecting the coding residual 
signal of each iteration onto the kernel functions. The projection with the largest inner 
product is subtracted out and its coefficient and time instant are recorded. The signal is 
decomposed into kernel functions by  

𝑥𝑥(𝑡𝑡) = ⟨𝑥𝑥(𝑡𝑡) ⋅ 𝜙𝜙𝑚𝑚⟩𝜙𝜙𝑚𝑚 + 𝑅𝑅𝑥𝑥(𝑡𝑡) 
(2) 
 
where ⟨⋅⟩ indicates inner product and 𝑅𝑅𝑥𝑥(𝑡𝑡) is the residual signal after projecting x(t) in the 
direction of 𝜙𝜙𝑚𝑚. Iteratively projecting the signal in the direction to maximize the inner 
product ⟨𝑥𝑥(𝑡𝑡) ⋅ 𝜙𝜙𝑚𝑚⟩ minimizes the power of 𝑅𝑅𝑥𝑥(𝑡𝑡), which can be generally expressed as  
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𝑅𝑅𝑥𝑥
𝑛𝑛(𝑡𝑡) = ⟨𝑅𝑅𝑥𝑥

𝑛𝑛(𝑡𝑡) ⋅ 𝜙𝜙𝑚𝑚⟩𝜙𝜙𝑚𝑚 + 𝑅𝑅𝑥𝑥
𝑛𝑛+1(𝑡𝑡) 

(3) 
 
with the initialization of 𝑅𝑅𝑥𝑥

0(𝑡𝑡) = 𝑥𝑥(𝑡𝑡). The best fitting projection is subtracted out, and its 
coefficient and time are recorded. Kernel function ¢m is selected by  
 

𝜙𝜙𝑚𝑚 = arg 𝑚𝑚𝑚𝑚𝑥𝑥
𝑚𝑚

 ⟨𝑅𝑅𝑥𝑥
𝑛𝑛(𝑡𝑡) ⋅ 𝜙𝜙𝑚𝑚⟩ 

(4) 

The spike amplitude corresponding to the selected kernel function is calculated by  

𝑠𝑠𝑚𝑚 = ⟨𝑥𝑥(𝑡𝑡) ⋅ 𝜙𝜙𝑚𝑚⟩. 
(5) 
 
Section 3. 

Enhancement Task 

The enhancement method presented here is based on applying an MMSE 
thresholding technique to spike coefficients. A block diagram of the overall approach is 
shown in Fig. 1. Spike coefficients 𝑌𝑌𝑖𝑖

𝑚𝑚 are computed by (4) and (5). The kernel function 
calculation is discussed in detail in section 3.1 and thresholding method is discussed in 
section 3.2.  

 

 
Fig. 1. Block diagram of the enhancement system 
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3.1. Morlet Wavelet Kernel Functions 

Kernel function selection is a key part of spike coding, since the signal is encoded 
into spikes, each of which is represented by the corresponding kernel function located at a 
precise temporal position. Instead of using 64 Gammatone functions as in,8 we propose to 
use a set of scaled Morlet wavelet functions as the kernel functions. 

The Morlet wavelet has the advantage of easy selection of its center frequency and 
quality factor. It was firstly used for speech coding tasks,9 and has been successfully used 
for cochlear implants.10 It has been argued that Morlet wavelet is an optimal speech 
representation solution.9 and that it is more suited for modeling phonemes. 

The real Morlet wavelet is defined as  

𝜑𝜑(𝑡𝑡) = exp �−
𝑡𝑡2

𝑇𝑇0
� cos (𝜔𝜔0𝑡𝑡) 

(6) 
 
where we take 𝐹𝐹0 = 15,165.4𝐻𝐻𝐻𝐻 [10]. We keep this base frequency 𝐹𝐹0, but recalculate time 
support 𝑇𝑇0 to match the net time-frequency product of 𝑇𝑇0𝜔𝜔0 of the standard Morlet 
wavelet. This time support would be \$T_{0}=0.00007421\\$[6]. 

Two sets of kernel functions are designed for this enhancement experiment: 1) 22 
Morlet wavelet functions, with logarithmic spaced center frequencies to match cochlear 
frequency warping curve, following,10 and 2) 64 Morlet wavelet functions, with uniformly 
spaced frequencies across the frequency range. These predetermined center frequency are 
accomplished by the discretization of the scale variable 𝑚𝑚 in the Morlet wavelet function. 
The calculations of scale factor 𝑚𝑚𝑚𝑚, center frequency 𝑓𝑓𝑚𝑚 and corresponding kernel function 
𝜙𝜙𝑚𝑚 are addressed in (7) and (8). A similar calculation is used for uniformly spaced kernel 
functions.  

𝑚𝑚𝑚𝑚 = (1.1623)𝑚𝑚+6, 𝑓𝑓𝑚𝑚 = 𝐹𝐹0/𝑚𝑚𝑚𝑚 , 𝑚𝑚 = 1, … ,22

𝜙𝜙𝑚𝑚 = 𝜑𝜑 �
𝑡𝑡

𝑚𝑚𝑚𝑚
� = 𝑒𝑒−� 𝑡𝑡

𝑎𝑎𝑚𝑚𝑇𝑇0
�

2

cos �
2𝜋𝜋𝑓𝑓0𝑡𝑡

𝑚𝑚𝑚𝑚
�

 

(7)(8) 
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Fig. 2 illustrates the comparison of spectrogram and spikegram of a word 
pronounced as/aa b aa/, using 22 Morlet kernel functions. In the spikegram, the size of 
each point indicates the amplitude of spike.  

 

 
Fig. 2. Three representation of word/aa b aa/: upper, a time domain waveform; middle, 
spikegram; lower, spectrogram 

3.2. Thresholding 

Given the encoding structure, an MMSE estimator is applied to threshold the spike 
coefficients. This estimator is an optimally modified LSA estimator11 which has been used 
for wavelet denoising. 

Let 𝑌𝑌𝑖𝑖
𝑚𝑚 be the spike coefficient corresponding to the kernel function 𝜙𝜙𝑚𝑚 after 

encoding processing. An estimate for the clean coefficient, which minimize the mean-
square error, results in  

𝑋𝑋𝑖𝑖
𝑚𝑚 =

𝜆𝜆𝑖𝑖
𝑚𝑚𝑝𝑝𝑖𝑖

𝑚𝑚

𝜆𝜆𝑖𝑖
𝑚𝑚 + (𝜎𝜎𝑖𝑖

𝑚𝑚)2 𝑌𝑌𝑖𝑖
𝑚𝑚  

(9) 
 
where the signal variance is given by using the decision-directed method of logSTSA filter  
 

𝜆𝜆𝑖𝑖
𝑚𝑚 = 𝛼𝛼|𝑋𝑋𝑖𝑖−1

𝑚𝑚 | + (1 − 𝛼𝛼)𝑚𝑚𝑚𝑚𝑥𝑥[|𝑌𝑌𝑖𝑖
𝑚𝑚| − 𝜎𝜎𝑖𝑖

𝑚𝑚 , 0] 
(10) 
 
𝑝𝑝𝑖𝑖

𝑚𝑚 is a parameter of signal presence uncertainty which is calculated through the equation  
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𝑝𝑝𝑖𝑖
𝑚𝑚 = �1 +

1 + 𝜉𝜉𝑖𝑖
𝑚𝑚

(𝑞𝑞𝑖𝑖
𝑚𝑚)−1 exp �−

𝜐𝜐𝑖𝑖
𝑚𝑚

2
��

−1

 

(11) 
 
where 𝜉𝜉𝑖𝑖

𝑚𝑚 is the a priori SNR,  
 

𝑣𝑣𝑖𝑖
𝑚𝑚 =

1
1 + 𝜉𝜉𝑖𝑖

𝑚𝑚 𝛾𝛾𝑖𝑖
𝑚𝑚 , 𝛾𝛾𝑖𝑖

𝑚𝑚 =
(𝑌𝑌𝑖𝑖

𝑚𝑚)2

𝜆𝜆𝑑𝑑𝑖𝑖
𝑚𝑚  

(12) 
 
and 𝑞𝑞𝑖𝑖

𝑚𝑚 is the a priori probability for signal absence, which is estimated by  
 

𝑞𝑞
^

𝑖𝑖
𝑚𝑚 = 1 −

⎩
⎨

⎧
log (𝜉𝜉𝑖𝑖

𝑚𝑚/𝜉𝜉𝑚𝑚𝑖𝑖𝑛𝑛)
log (𝜉𝜉𝑚𝑚𝑎𝑎𝑥𝑥/𝜉𝜉𝑚𝑚𝑖𝑖𝑛𝑛)

𝑖𝑖𝑓𝑓𝜉𝜉𝑚𝑚𝑖𝑖𝑛𝑛 ≤ 𝜉𝜉𝑖𝑖
𝑚𝑚 ≤ 𝜉𝜉𝑚𝑚𝑎𝑎𝑥𝑥

0 𝑖𝑖𝑓𝑓𝜉𝜉𝑖𝑖
𝑚𝑚 ≤ 𝜉𝜉𝑚𝑚𝑖𝑖𝑛𝑛

1 𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒

 

(13) 
 
Section 4. 

Experiment Results 

To evaluate the performance of the this method, logSTSA enhancement and the 
proposed spike coding based enhancement are performed over 10 speech utterances taken 
from TIMIT database.12 For logSTSA, a frame size of 32ms with 75% overlap is used. 10 
iterations are used for Matching Pursuit method in spike encoding part. White noise is 
added to each utterance at an Segmental SNR(SSNR) level form −25dB to + 10dB. The 
noise spectrum is estimated by averaging the first 3 frames of each noisy utterance. 

Evaluation of the method was done by comparing the objectively measured quality 
of the enhanced signal through SSNR improvement. Objective evaluation results are shown 
in Fig. 3. The averaged SSNR improvement from 10 utterances show that the proposed 
spike coding based enhancement method has significant improvement over the logSTSA 
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method in low SNR situation, but is not as effective in less noisy situations. Two interesting 
points in these results:  

1. 64 kernels do not provide better results than just 22 kernels. For coding system, the 
more kernel functions, the better the speech quality (also the higher the bit rate), 
which is not the case for enhancement task. Too many kernel functions may result in 
an insufficient number of coefficients for each individual kernel, preventing accurate 
statistical measures for MMSE thresholding. 

2. In low noise conditions, the proposed method does not work as well. In a noisy 
environment, a better representation of the signal can facilitate the extraction of the 
signal information out of the noisy signal; however, when the signal is relatively 
clean, the spike coding together with the thresholding method may over-denoise the 
spike coefficients and cause some signal distortion. 

An example spectrogram in −5dB white noise is shown in Fig. 4. It can be seen that 
the 22 kernel function thresholding suppresses a significant amount of background noise 
compared with the logSTSA method. Acoustically, there is also a reduced level of musical 
artifact. Although the 64 kernel function thresholding reduces more ambient noise, it also 
suppresses more vocalization information.  

 

 
Fig. 3. SSNR evaluation of spike coding based enhancement 
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Fig. 4. Spectrogram of enhanced signal 
 
Section 5. 

Conclusion 

This paper has introduced a novel spike coding based speech enhancement 
approach, distinctly different from traditional Fourier transform and wavelet transform 
based speech enhancement methods, in that the waveform is encoded as a discrete set of 
acoustic events rather than transformed in entirety. Results indicate that the new approach 
gives better results than standard logSTSA estimation in high noise. 
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