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Abstract: Fenfluramine reduces hunger and promotes body weight loss by 

increasing central serotonin (5-HT) signaling. More recently, neuropeptides 

have been linked to the regulation of feeding behavior, metabolism and body 

weight. To examine possible interactions between 5-HT and neuropeptides in 

appetite control, fenfluramine (200 nmol/0.5 μl/side) was administered 

directly into the hypothalamic paraventricular nuclei (PVN) of male rats. 

Bilateral fenfluramine produced significant hypophagia and increased 

expression of PVN corticotropin releasing factor (CRF) mRNA and 

neuropeptide Y (NPY) mRNA in the arcuate nucleus within the first hour after 

drug administration. Fenfluramine’s effects on feeding behavior and mRNA 

expression were blocked by PVN injections of a 5-HT1-2 receptor antagonist, 

metergoline (15 nmol/0.5 μl/side). These data suggest that 5-HT neurons 

targeting hypothalamic paraventricular CRF neurons may participate in an 

appetite control circuit for reducing food intake. 

Keywords: serotonin, corticotropin-releasing factor, hypothalamus, appetite, 

mRNA 

Introduction 

Drugs used clinically to reduce appetite and body weight 

typically manipulate catecholamine and/or serotonin (5-HT) signaling 
[3]. One such agent, fenfluramine, which was very effective but is no 
longer used clinically [7], is still employed as a research tool to 

examine the role of 5-HT neurons in appetite control because it 
produces a potent and highly selective stimulation of 5-HT 

transmission [10]. Increasing 5-HT synaptic transmission using agents 
like fenfluramine decreases appetite and feeding behavior in both 
animals and humans [12, 24]. Although the regulation of feeding 

behavior by 5-HT is extensively well documented, the mechanisms or 
central pathways that mediate this behavior are still poorly 

understood. 

Numerous 5-HT receptor subtypes are located in the 
hypothalamus, a brain region which participates in the control of 

feeding and metabolism. The hypothalamic paraventricular nuclei 
(PVN) contain moderate to abundant levels of 5-HT2A and 5-HT1B 
receptor subtypes, for example, whereas the arcuate nuclei contain 

significant quantities of the 5-HT2C receptor [6, 8, 22]. Agonists to 
these specific receptor subtypes can suppress food intake while 

antagonists block such actions [16, 31, 34]. Given the anatomical 
distribution of these receptors, interactions with hypothalamic 
neuropeptides known to alter appetite and feeding behavior become a 

strong candidate for a mechanism of action of 5-HT-mediated 
hypophagia. PVN neurons containing corticotropin releasing factor 

(CRF), a neuropeptide that suppresses feeding behavior, receive 
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brainstem raphe 5-HT inputs and become activated following systemic 
fenfluramine administration [17, 20]. While current approaches to 

identify mechanisms of appetite regulation have focused heavily on 
neuropeptides as appetite signaling molecules [30], more recent lines 

of research have begun to explore for possible interactions between 
monoamine (e.g., 5-HT) and neuropeptide neurons in appetite 
regulation [14, 28]. 

Prior studies have demonstrated that systemic fenfluramine in 
rats produces a rapid-onset hypophagia (30-60 min) and a 
concomitant increase in PVN CRF mRNA levels [4, 18]. To determine 

whether this change in CRF mRNA expression is a direct or indirect 
action of 5-HT transmission, we administered fenfluramine directly into 

the PVN, alone or after administering a 5-HT receptor antagonist, and 
measured subsequent changes in food intake and the mRNA 
expression of hypothalamic neuropeptides known to influence feeding. 

Materials and Methods 

Animals 

Adult male Sprague-Dawley rats (225-250 g; Harlan, 

Indianapolis, IN) were housed singly on a 12 h light/dark cycle and 
provided food (Harlan 8604) and water ad libitum. Daily food intake 

was measured remotely with a BioDAQ Food Intake Monitor (Research 
Diets, New Brunswick, NJ). Feeding bouts measured the number of 
times animals physically manipulated the food hopper and removed 

food. The duration of a bout was defined as a single episode of feeding 
in which no inter-feeding interval exceeded 15 seconds. The Marquette 

University Institutional Animal Care and Use Committee approved all 
experiments and procedures. 

Surgery 

Animals were anesthetized with a rodent cocktail consisting of 
ketamine/xylazine/acepromazine (77/1.5/1.5 mg/ml/kg; ip) and 
placed in a stereotaxic apparatus. Bilateral guide cannulae 

(PlasticsOne, Roanoke, VA) were placed 1mm dorsal to the 
hypothalamic PVN and secured with an acrylic resin. Stereotaxic 

coordinates for the PVN were: anterior/posterior, -1.6mm from 
bregma; medial/lateral, ± 0.5mm from midline; dorsal/ventral, -
8.4mm from surface of skull [27]. Correct cannulae placements 

(cannulae tracks 1 mm dorsal to the PVN) were confirmed at the 
conclusion of the experiments on Nissl stained sections. 
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In situ hybridization 

During the light phase, brains were rapidly removed, cut into 12 

μm coronal sections and stored at -80 °C until post-fixed. Standard in 
vitro transcription methods were used to generate riboprobes against 

CRF (Mayo, Evanston, IL), NPY (Sabol, Bethesda, MD) and POMC 
(Wilkinson, Seattle, WA). Sections were hybridized overnight at 55 °C 
with each 33P-labeled riboprobe. 

After hybridization, slides were stringently washed in 0.5x SSC 
for 30 min at 65 °C (CRF, NPY) or 68 °C (POMC) then dipped in Kodak 
autoradiographic emulsion NTB (Rochester, NY) and exposed for 11-22 

days depending on the specific riboprobe to produce silver grains. 

Image analysis 

Semi-quantitative analysis of silver grains was conducted using 

dark field microscopy (Axioskop-2, Zeiss, Thornwood, NY) and 
Axiovision image analysis software (Zeiss, Thornwood, NY). Optical 

transmission (OT) was determined from the integration of scattered 
light captured with a 5x objective and analyzed for intensity of region 
of interest and total area of reflected light. Background values were 

subtracted from all measurements. 

Radioimmunoassay 

Trunk blood, following rapid decapitation, was collected within 

the first 6 hours of the dark phase in Experiment 1, whereas blood was 
collected just after lights off in Experiment 2. Corticosterone levels 
were quantified using a commercial kit (MP Biomedicals, Solon, OH). 

Statistical analysis 

Data are presented as means ± standard errors of the mean, 
and were analyzed statistically by analysis of variance (with repeated 

measures when appropriate). When necessary, centering data on their 
mean values or natural log transforms were performed prior to 

analysis. Fisher’s analysis was used for all post-hoc group comparison. 
Statistical analyses were performed using StatView (SAS Institute, 
Cary, NC). 
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Experiment 1 – Time course of fenfluramine-induced 

responses 

One week after surgery, animals (n=94 total; n=8-10/group) 

received bilateral injections of dl-fenfluramine (Sigma, St. Louis, MO; 
200 nmol/0.5 μl/side) or sterile saline (0.5 μl/side) at the dorsal 
borders of the paraventricular nuclei. This volume and dose of dl-

fenfluramine administered into the PVN effectively inhibited 
norepinephrine-induced feeding [35]. 

All injections were administered during the light period 2 hours 

prior to dark and in awake animals but measures of food intake and 
tissue collection occurred at 1, 2, 4, 8, and 24 hours post-injection. In 

a parallel group of animals, brains and trunk blood were collected 
following rapid decapitation 1, 2, or 4 hours after injections. These 
animals had no further access to food from the time of drug injection. 

Experiment 2 – Blocking fenfluramine action in the PVN 

One week after surgery, animals (n=32 total; n=7/group) 
received two bilateral injections of fenfluramine, metergoline, or 

vehicle at the dorsal borders of the paraventricular nuclei. Rats initially 
received an injection of the 5-HT1-2 receptor antagonist, metergoline 

(Sigma, St. Louis, MO) (15 nmol/0.5 μl/side) or vehicle (1% L-(+)-
tartaric acid, 0.5 μl/side) followed by either dl-fenfluramine (200 
nmol/0.5 μl/side; Sigma St. Louis, MO) or vehicle (sterile saline, 0.5 

μl/side). Food was removed two hours prior to drug administration. 
Drugs were administered just prior to the onset of dark followed by the 

immediate return of food. 

Results 

Experiment 1 – Time course of fenfluramine-induced 
responses 

PVN fenfluramine injections produced a rapid hypophagic 

response, with significant main effects for both treatment and time 
(repeated measures ANOVA). Food intake reduction was evident up to 

2 hrs post-injection (fig. 1). 
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Fig 1 Time course of food intake following an acute injection of fenfluramine into the 

hypothalamic PVN. Feeding was suppressed 2 hours immediately after drug 
administration (ANOVA with repeated measures, p<0.02 treatment; p<0.0001 time). 
Black bars = fenfluramine (200 nmol/0.5 μl/side); white bars = vehicle. n = 8-
10/group 

We measured mRNA expression for several neuropeptides 
known to be involved in feeding at one, two, and four hours after drug 
injection. PVN fenfluramine injections significantly increased CRF 
mRNA expression (fig. 2; ANOVA, p<0.05 for treatment) at 1 hour, but 

not 2 or 4 hrs post-injection (p<0.03). Fenfluramine-induced increases 
in CRF mRNA were not accompanied by changes in plasma 

corticosterone concentrations (fig. 3). 
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Fig 2 Dark field analysis of silver grains expressed in unit-less values of optical 

transmission (OT). Top, CRF mRNA levels (ANOVA, p<0.05 treatment); bottom, NPY 
mRNA levels (ANOVA, p<0.05 treatment) following an acute PVN injection of 
fenfluramine (200 nmol/0.5 μl/side). Black bars = fenfluramine; white bars = vehicle; 
* = p<0.03 (Fisher’s test), n = 4-5/group. 
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Fig 3 Plasma corticosterone levels following fenfluramine administration. No 

significant effects were noted in corticosterone levels after A) PVN fenfluramine 
administration (200 nmol/0.5 μl/side; black bars = fenfluramine; white bars = vehicle) 
or B) following metergoline (MET; 15 nmol/0.5 μl/side) and/or fenfluramine (FEN) 
administration compared to vehicle (VEH). n = 4-5/group. 

PVN fenfluramine injections also significantly increased NPY 
mRNA expression in the arcuate nuclei (fig. 2; ANOVA, p<0.05 

treatment effect), although post-hoc testing did not reveal specific 
differences at specific time points. 

Experiment 2 – Blocking fenfluramine action in the PVN 

Central fenfluramine administration in rats receiving no 
metergoline produced significant hypophagia at one hour after drug 
administration (Fig. 4; ANOVA, p<0.03; post-hoc, p<0.04). 

Metergoline did not alter feeding significantly from controls. However, 
metergoline administered into the PVN just prior to fenfluramine 

reversed the hypophagia by reducing the number of feeding bouts 
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(without effects on meal size) within the first hour (fig. 4; ANOVA, 
p<0.02; post-hoc, p<0.01). 

 
Fig 4 Levels of food intake and feeding bouts following drug administration. 

Metergoline (MET; 15 nmol/0.5 μl/side) or vehicle (VEH) was administered into the 
PVN just prior to the PVN injection of fenfluramine (FEN; 200 nmol/0.5 μl/side) or 
vehicle. A) Food intake (ANOVA, p<0.03, treatment effect) or B) feeding bouts 
(ANOVA, p < 0.02; treatment effect) were measured 1 hour after drug administration. 

* = p < 0.04 (Fisher’s test); n = 4-5/group. 

As in experiment 1, fenfluramine significantly altered PVN CRF 
mRNA expression at one hour post-injection (fig. 5a; ANOVA, p<0.02). 
Moreover, post-hoc analysis revealed that CRF mRNA levels in 

vehicle/fenfluramine-treated rats were significantly elevated over all 
other treatment groups (post-hoc, p<0.03). Metergoline alone did not 
alter CRF mRNA expression compared to control values, but blocked 

fenfluramine-induced stimulation of PVN CRF mRNA levels. Moreover, 
we found no change in CRF mRNA levels in animals treated with 

fenfluramine with misplaced cannulae compared to controls (fig. 5a; 

http://dx.doi.org/10.1016/j.neulet.2011.05.011
http://epublications.marquette.edu/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3130612/figure/F4/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3130612/figure/F4/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3130612/figure/F5/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3130612/figure/F5/


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Neuroscience Letters, Vol. 498, No. 3 (July 2011): pg. 213-217. DOI. This article is © Elsevier and permission has been 
granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission for this article to be 
further copied/distributed or hosted elsewhere without the express permission from Elsevier. 

10 

 

miss). These treatments produced no alterations in serum 
corticosterone concentrations (figure 3). NPY mRNA expression in the 

hypothalamic arcuate nuclei was significantly increased by 
fenfluramine treatment; the effect was also blocked by pre-treatment 

with metergoline (fig. 5b; ANOVA, p<0.02 for treatment; post-hoc 
p<0.03). In contrast, PVN injections of any combination of 
fenfluramine or metergoline did not modify arcuate nuclei POMC mRNA 

expression (fig. 5c). 

 
Fig 5 Hypothalamic neuropeptide mRNA levels following drug administration. Dark 

field analysis of silver grains expressed as levels of optical transmission (OT) of A) 

CRF mRNA in the PVN (ANOVA, main treatment effect p<0.02), B) NPY mRNA in the 
arcuate nuclei (ANOVA, main treatment effect p<0.02) and C) POMC mRNA in the 
arcuate nuclei 1 hour after an acute injection of fenfluramine (FEN; 200 nmol/0.5 
μl/side) and/or metergoline (MET; 15 nmol/0.5 μl/side). Miss = animals treated with 
fenfluramine but with incorrect cannulae placement. VEH = vehicle. * = p<0.03 
(Fisher’s test); n = 4-5/group. 
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Discussion 

Systemic administration of fenfluramine, a 5-HT releaser and 

reuptake inhibitor, not only decreases feeding behavior [5] but also 
increases both c-Fos protein and corticotropin releasing factor (CRF) 

mRNA expression in the hypothalamic medial dorsal paraventricular 
nuclei [4, 17, 18]. The effects of intraventricular administration of 5-
HT on feeding are blocked with CRF antibodies. These findings suggest 

CRF to be a downstream target that contributes to the anorexic 
response of 5-HT [19]. Serotonergic projections from brainstem raphe 

nuclei are found in abundance in the medial parvocellular 
paraventricular nuclei (PVN) where CRF neurons are concentrated [20, 

29, 32] and are known to decrease appetite. Collectively, these studies 
suggest the hypothalamic PVN as an important site of serotonergic 
regulation of feeding behavior. 

Injecting fenfluramine into the PVN reduces overall food intake 

by reducing the number of feeding bouts at the onset of darkness 
when food intake levels peak. This hypophagia occurs within the first 

hours after drug administration and without subsequent rebound 
feeding. Similar studies have shown identical responses within subsets 
of this time frame [19, 23, 36]. 

To begin identifying central neurons that respond to 

fenfluramine, we examined neuropeptide Y (NPY) and pro-
opiomelanocortin (POMC) in the arcuate nuclei, and CRF, which is 

abundantly expressed in PVN neurons. As with systemic fenfluramine 
[4, 15], CRF mRNA levels were elevated two hours after fenfluramine 

injections into the PVN. Evidence that intraventricular CRF significantly 
reduces food intake and CRF-overexpressing mice exhibit diminished 
hyperphagia following an overnight fast support a role for CRF 

signaling in the regulation of feeding behavior [1, 33]. Although PVN 
CRF regulates hypothalamic-pituitary-adrenal axis (HPA) function, the 

increase in CRF mRNA expression levels in the current studies was not 
accompanied by differences in plasma corticosterone levels, perhaps 
suggesting that any effects of increased PVN CRF neuronal activity 

were either local or downstream. PVN CRF projections to the nucleus 
tractus solitarius may account for, in part, the effects on feeding 

without activation of the HPA axis [2]. Moreover, the lack of 
measurable corticosterone differences between treatment groups may 
also reflect the time of day blood was sampled. We conducted studies 

around dark onset to observe fenfluramine effects when rats normally 
eat their largest meal. This time of day plasma corticosterone levels 

are normally at peak diurnal concentrations with diminished 
responsivity to HPA stimulation [9]. 
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In contrast to PVN delivery of fenfluramine, systemic 
administration of the drug produces rapid anorexia, increased PVN CRF 

mRNA and a reduction in NPY mRNA expression [4, 26]. The 
combination of CRF stimulation and NPY inhibition may reflect 

independent drug actions at the paraventricular and arcuate nuclei, 
respectively. Conversely, fenfluramine administration into the PVN 
may indirectly initiate reflexive responses of appetite-stimulating 

signals such as NPY to counter the increasing anorexic drive produced 
by CRF. Within the PVN, both 5-HT1B and 5-HT2A receptor 

immunoreactivity can be found co-localized with CRF neurons, thus 
suggesting possible pathways of 5-HT induced anorexia [8, 22]. A 
more recent study demonstrates that antagonism of 5-HT2C receptors 

in the PVN can block systemic fenfluramine stimulation of CRF mRNA 
[15]. The mechanisms by which PVN CRF stimulation could regulate 

arcuate NPY neurons are not presently known, though projections from 
the PVN to the arcuate have been described [21]. In the arcuate, 
inhibitory 5-HT1B receptors are found to be localized on NPY neurons 

[14], allowing the possibility of direct inhibition of arcuate NPY neurons 
by systemic fenfluramine. 

The present data support the notion that fenfluramine could 

induce its anorectic action via a 5-HT receptor-mediated effect on CRF 
neurons in the PVN. Furthermore, systemic administration of 

fenfluramine or specific 5-HT1B, 5-HT2A, 5-HT2C receptor agonists 
suppress food intake while selective or semi-selective antagonists 
block such actions [11, 13, 25, 34]. Thus, we examined selective 

serotonin receptor subtypes within the PVN. However, since available 
data suggest 5-HT-mediated suppression of feeding may occur via 

multiple 5-HT receptor subtypes, we chose metergoline, which blocks 
both 5-HT1 and 5-HT2 receptors, for study. Indeed, studies that have 
employed drugs that are highly-selective for a specific 5-HT receptor 

subtype may be overlooking the possibility that the food intake 
suppression produced by a drug like fenfluramine may depend on 

stimulating more than a single 5-HT receptor. Additional studies are 
needed to pursue whether multiple receptor subtypes are necessary to 
sufficiently produce fenfluramine’s effects on behavior and gene 

expression. Our observation that metergoline in the PVN effectively 
blocks fenfluramine’s actions on feeding behavior is consistent with 

studies having utilized systemic drug administration, while also 
offering the possibility that fenfluramine may be mediating its 
anorectic actions, at least in part, via a direct effect on PVN CRF 

neurons. 
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Research Highlights 

1. Fenfluramine is a useful pharmacological tool to increase serotonin 

signaling 

2. FEN injected directly into the PVN suppresses feeding and increases 

CRF mRNA 

3. Prior metergoline treatment blocks FEN effects on feeding and mRNA 

expression 

4. 5-HT - CRF interactions in the PVN may be a useful therapeutic target 
for weight loss 
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CRF corticotropin releasing factor 

NPY neuropeptide Y 

PVN paraventricular nuclei 

POMC pro-opiomelanocortin 
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