Crystal and molecular structure of bis(8-phenylmenthyl) 2-(2-methyl-5-oxo-3-cyclohexen-1-yl)propandioate, C$_{42}$H$_{54}$O$_{5}$• CH$_{3}$CN

Dennis W. Bennett
University of Wisconsin-Milwaukee

Tasneem A. Siddiquee
University of Wisconsin-Milwaukee

Daniel T. Haworth
Marquette University

Subhabrata Chaudhury
Marquette University

William Donaldson
Marquette University, william.donaldson@marquette.edu

Follow this and additional works at: https://epublications.marquette.edu/chem_fac

Part of the Chemistry Commons

Recommended Citation
Bennett, Dennis W.; Siddiquee, Tasneem A.; Haworth, Daniel T.; Chaudhury, Subhabrata; and Donaldson, William, "Crystal and molecular structure of bis(8-phenylmenthyl) 2-(2-methyl-5-oxo-3-cyclohexen-1-yl)propandioate, C$_{42}$H$_{54}$O$_{5}$• CH$_{3}$CN" (2006). *Chemistry Faculty Research and Publications*. 33.
https://epublications.marquette.edu/chem_fac/33
Crystal and molecular structure of bis(8-phenylmenthyl) 2-(2-methyl-5-oxo-3-cyclohexen-1-yl)propandioate, C_{42}H_{54}O_{5} \cdot \text{CH}_3\text{CN}

Dennis W. Bennett,¹ Tasneem A. Siddiquee,¹ Daniel T. Haworth,² Subhabrata Chaudhury,² and William A. Donaldson²*

Received December 20, 2005; accepted July 13, 2006
Published Online August 1, 2006

The X-ray crystal structure of the title compound, as crystallized from acetonitrile-water was determined. The relative stereochemistry of the cyclohexenone ring with respect to the 8-phenylmenthyl esters was determined. The title compound crystallizes in the noncentrosymmetric space group P2₁, with a = 8.9850(10) Å, b = 15.575(3) Å, c = 14.478(2) Å, \(\beta = 94.61(2) \)°, and \(D_{\text{calc}} = 1.118 \text{ g cm}^{-3} \) for \(Z = 2 \).

KEY WORDS: 2-cyclohexenone; 8-phenylmenthyl esters.

As part of our research program on the application of acyclic (pentadienyl)iron(1+) cations in synthesis, we discovered that the reaction of (3-methylpentadienyl)Fe(CO)₃⁺ (1) with sodium malonates, followed by work up with NaHCO₃, gave 4,5-disubstituted cyclohexenones 2 (Scheme 1). This reaction presumably occurs via nucleophilic attack at an internal dienyl carbon, on the face opposite to iron, to afford a (2-pentene-1,5-diyl)iron species 3 which undergoes CO insertion to afford the iron acyl complex 4. Reductive elimination of 4 and subsequent conjugation of the double bond affords 2. Since the cation 1 is planar symmetric, nucleophilic attack at either C2 or C4 would give enantiomeric products. Toward this end, reaction of 1 with the anion from bis[(-)-8-phenylmenthyl]malonate gave the cyclohexenone (-)-2b as a single diastereomer in excellent yield. In order to assign the stereochemistry at C4,C5 relative to the 8-phenylmenthyl esters, X-ray diffraction analysis of 2b was undertaken.

Experimental section

Crystallization of 2b from water–acetonitrile gave a sample which contained one molecule of acetonitrile per cyclohexenone. A crystal (0.23 × 0.24 × 0.35 mm) was attached to a glass fiber and mounted on a Bruker P4 diffractometer. The data were collected at 298 K using graphite monochromatized MoKα radiation (\(\lambda = 0.71073 \) Å) and the θ/2θ mode in the \(\Theta \) range 1.92–25.01°. No absorption correction was used. The structure was resolved by direct methods and the data were refined by full-matrix
least squares based on F^2. A total of 4801 reflections were collected (3991 independent reflections, $R_{int} = 0.0312$). The experimental crystallographic data is given in Table 1, and selected bond lengths and angles are given in Table 2. The bond distances within the aromatic rings ranged from 1.336(8) to 1.396(9) Å [average = 1.373 Å].

Results and discussion

A drawing of the molecule and the crystallographic numbering is given in Fig. 1. This reveals the cis-disubstituted relative stereochemistry about the cyclohexenone ring. Furthermore, on the basis of the known configuration of the (-)-8-phenylmenthyl group, the absolute configurations at C18 and C23 were found to be S and S respectively. To our knowledge, there are no crystal structures of a 4,5-disubstituted-2-cyclohexenone. However, the bond distances and angles within the cyclohexenone ring of 2b (Table 2) are within the average values found for other substituted cyclohexenones.
Esters of 8-phenylmenthol have found use in diastereoselective transformations at either the \(\alpha\) or \(\beta\) carbon.\(^5\) The rationale for this selectivity relies blocking of one face of the ester by the phenyl group (see A, Fig. 2). This orientation of the 1-methyl-1-phenylethyl group with respect to the cyclohexane ring is observed in a number of crystal structures of (\(-\))8-phenylmenthyl esters.\(^6\) Diastereoselective alkylation of bis[(\(-\))8-phenylmenthyl]malonates has been utilized for the enantioselective preparation of 2-vinyl-1,1-cyclopropanedicarboxylates and 2-iodomethyl-1,1-cyclopropanedicarboxylates, as well as for diastereoselective addition to pyridinium cations.\(^7\) The present structure for 2b is the first for any bis[(\(-\))8-phenylmenthyl]malonate. Notably, the side chain of the pro-\(R\) ester group adopts conformer A, while the side chain of the pro-S ester group adopts a conformer similar to B (Fig. 2). Only a few crystal structures of 8-phenylmenthyl esters exhibit conformer B,\(^8\) while none of the crystal structures exhibit conformer C.

Supplementary material Crystallographic data for the structure reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as CCDC-284152. These data can be obtained free of charge from CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK; fax: (44(0) 1223-336033; email: deposit@ccdc.cam.ac.uk.
Acknowledgment

This material is based upon work supported by the National Science Foundation (CHE-0415771).

References