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Abstract 
In this paper, we introduce a new three-parameter generalized version of the Gompertz model 

called the odd log-logistic Gompertz (OLLGo) distribution. It includes some well-known lifetime 
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distributions such as Gompertz (Go) and odd log-logistic exponential (OLLE) as special sub-models. This 
new distribution is quite flexible and can be used effectively in modeling survival data and reliability 
problems. It can have a decreasing, increasing and bathtub-shaped failure rate function depending on 
its parameters. Some mathematical properties of the new distribution, such as closed-form 
expressions for the density, cumulative distribution, hazard rate function, the kth order moment, 
moment generating function and the quantile measure are provided. We discuss maximum likeli- hood 
estimation of the OLLGo parameters as well as three other estimation methods from one observed 
sample. The flexibility and usefulness of the new distribution is illustrated by means of application to a 
real data set. 

1. Introduction 
The Gompertz distribution is a flexible distribution that can be skewed to the right or to the left. 

This distribution is a generalization of the exponential distribution and is commonly used in many 
applied problems, particularly in lifetime data analysis [23, page 25]. The Gompertz distribution is 
considered for the analysis of survival, in some areas such as gerontology [5], computer [28], biology 
[10] and marketing science [3]. The hazard rate function of this distribution is an increasing function 
and often employed to describe the distribution of adult human life spans by actuaries and demog- 
raphers [32]. The Gompertz distribution with parameters 𝑎𝑎 >  0 and 𝑏𝑏 >  0 denoted by 𝐺𝐺𝐺𝐺(𝑎𝑎, 𝑏𝑏), has 
the cumulative distribution function (cdf) 

(1.1) 𝐺𝐺(𝑥𝑥,𝑎𝑎, 𝑏𝑏) =  1 −  𝑒𝑒−
𝑏𝑏
𝑎𝑎 (𝑒𝑒𝑎𝑎𝑎𝑎 − 1), 𝑥𝑥 >  0,𝑎𝑎 >  0, 𝑏𝑏 >  0, 

and the probability density function (pdf) 

(1.2) 𝑔𝑔(𝑥𝑥,𝑎𝑎, 𝑏𝑏) =  𝑏𝑏𝑏𝑏𝑎𝑎𝑎𝑎𝑒𝑒−
𝑏𝑏
𝑎𝑎 (𝑒𝑒𝑎𝑎𝑎𝑎 − 1), 𝑥𝑥 >  0: 

In this paper, we introduce a new generalization of Gompertz distribution which by product of the 
application of the Gompertz distribution to the odd log-logistic generator proposed by [15], called the 
OLLGo distribution. Several generalized distributions have been proposed via this methodology. The 
idea is similar to introducing some generalization of the well-known distributions such as: odd-log-
logistic Weibull distribution [7] and odd log logistic exponential distribution (OLLE), [15]. The OLLGo 
distribution includes some well-known distributions and offers a more flexible distribution for 
modeling lifetime data in terms of its hazard rate functions that are decreasing, increasing, upside-
down bathtub and bathtub shaped. Several mathematical properties of this new model are provided in 
order to attract wider applications in reliability, engineering and other areas of research. 

The paper is organized as follows: In Section 2, we define cumulative distribution, probability 
density, and failure rate functions, and outline some special cases of the OLLGo distribution. In Section 
3 we provide some extensions and properties of the cdf, pdf, rth moment and moment generating 
function (mgf) of the OLLGo distribution in the form of power series. Furthermore, in this section, we 
derive the corresponding expressions for the cdf and pdf of the order statistics and quantile measure 
from the proposed distribution. Section 4 deals with certain characterizations of OLLGo distribution. In 
Section 5, we discuss maximum likelihood estimation (MLE) of the OLLGo parameters from one 
observed sample. Section 6 contains Monte Carlo simulation results on the finite sample behavior of 



MLEs as well as three other estimation methods. Finally, application of the OLLGo model using a real 
data set is considered in Section 7. 

2. The OLLGo model 
In this section, we introduce the three-parameter OLLGo distribution. The idea of this 

distribution rises from the following general class: If 𝐺𝐺(⋅) denotes the cdf of a random variable then a 
generalized class of distributions, called the Generalized log-logistic family, introduced by Gleaton and 
Lynch (2006) is 

(2.1) 𝐹𝐹(𝑥𝑥) = 𝐺𝐺(𝑥𝑥; 𝜉𝜉)𝛼𝛼

𝐺𝐺(𝑥𝑥; 𝜉𝜉)𝛼𝛼 + 𝐺̅𝐺(𝑥𝑥; 𝜉𝜉)𝛼𝛼 , 𝑥𝑥 ∈  ℝ. 

Let 𝑔𝑔(𝑥𝑥;  𝜉𝜉)  =  𝑑𝑑𝑑𝑑(𝑥𝑥;𝜉𝜉)
𝑑𝑑𝑑𝑑

 be the density of the baseline distribution. Then, the probability density function 
corresponding to (2.1) is 

(2.2) 𝑓𝑓(𝑥𝑥) = 𝛼𝛼𝛼𝛼(𝑥𝑥; 𝜉𝜉)𝐺𝐺(𝑥𝑥; 𝜉𝜉)𝛼𝛼−1 𝐺̅𝐺(𝑥𝑥; 𝜉𝜉)𝛼𝛼−1

[𝐺𝐺(𝑥𝑥; 𝜉𝜉)𝛼𝛼 + 𝐺𝐺(𝑥𝑥; 𝜉𝜉)𝛼𝛼]2
, 𝑥𝑥 ∈  ℝ: 

As stated in the paper by Gleaton and Lynch, if two distributions are generated from a common 
baseline distribution by generalized log-logistic transformations, then the log-odds function for one of 
the distributions is proportional to the log-odds function for the other distribution, with the constant 
of proportionality being the ratio of the transformation parameters. 

Inserting 𝐺𝐺(𝑥𝑥) given in (1.1) into (2.1), we have 

(2.3) 𝐹𝐹(𝑥𝑥) =
�1− 𝑒𝑒−

𝑏𝑏
𝑎𝑎 �𝑒𝑒𝑎𝑎𝑎𝑎−1��

𝛼𝛼

�1− 𝑒𝑒−
𝑏𝑏
𝑎𝑎 (𝑒𝑒𝑎𝑎𝑎𝑎−1)�

𝛼𝛼

 + 𝑒𝑒−
𝑏𝑏𝑏𝑏
𝑎𝑎  (𝑒𝑒𝑎𝑎𝑎𝑎−1)

, 𝑥𝑥 >  0. 

The model of (2.3) is called the OLLGo distribution with parameters 𝛼𝛼, 𝑏𝑏 and 𝑎𝑎 (we use the 
notation 𝑋𝑋~𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑎𝑎, 𝑏𝑏,𝛼𝛼). Hence, the pdf of OLLGo distribution is 

(2.4) 𝑓𝑓(𝑥𝑥)  =
𝛼𝛼𝛼𝛼𝛼𝛼𝑎𝑎𝑎𝑎𝑒𝑒−

𝑏𝑏𝑏𝑏
𝑎𝑎  �𝑒𝑒𝑎𝑎𝑎𝑎−1��1− 𝑒𝑒−

𝑏𝑏
𝑎𝑎 �𝑒𝑒𝑎𝑎𝑎𝑎−1��

𝛼𝛼−1

��1− 𝑒𝑒−
𝑏𝑏
𝑎𝑎 (𝑒𝑒𝑎𝑎𝑎𝑎−1)�

𝛼𝛼

 + 𝑒𝑒−
𝑏𝑏𝑏𝑏
𝑎𝑎  (𝑒𝑒𝑎𝑎𝑎𝑎−1)�

2  , 𝑥𝑥 >  0. 

The hazard rate function of OLLGo distribution is given by 

(2.5) ℎ(𝑥𝑥)  =
𝛼𝛼𝛼𝛼eax�1− e

−b
𝑎𝑎  �eax−1��

𝛼𝛼−1

�1− e
−𝑏𝑏
𝑎𝑎  (𝑒𝑒ax−1)�

𝛼𝛼

 + e
−b𝛼𝛼
𝑎𝑎  (𝑒𝑒ax−1)

, 𝑥𝑥 >  0. 

The OLLGo distribution includes some well-known distributions such as: 𝐺𝐺𝐺𝐺(𝑎𝑎;  𝑏𝑏) if 𝛼𝛼 =  1, 
which is the generalization of exponential distribution (E) and 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑏𝑏;  𝛼𝛼) if 𝑎𝑎 tends to 0+. Also, we 
can state the following propositions related to a OLLGo distribution. 

 



 
Fig. 1. pdf and hrf of OLL-Go model for some parameter values 
 

PROPOSITION 2.1. Let 𝑋𝑋 have an 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑎𝑎;  𝑏𝑏;  𝛼𝛼) distribution, then the random variable 𝑌𝑌 =

 1 − 𝑒𝑒−
𝑏𝑏
𝑎𝑎 �𝑒𝑒𝑎𝑎𝑎𝑎−1� satisfies the odd log-logistic unit uniform distribution with parameter 𝛼𝛼 and therefore, 

the random variable 𝑇𝑇 =  𝑏𝑏
𝑎𝑎

 (𝑒𝑒𝑎𝑎𝑎𝑎 − 1) satisfies the odd log-logistic exponential distribution with 
parameters 𝛼𝛼 and 1, i.e. (𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝛼𝛼, 1)) which is a sub-model of the OLLGo distribution. 

PROPOSITION 2.2. If 𝑈𝑈 ~ 𝑈𝑈(0, 1), then 

𝑋𝑋𝑢𝑢  =
1
𝑎𝑎

log�1 −
a
b

log �
(1 −  U)

1
α

U
1
α  +  (1 −  U)

1
α
��, 

follows 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑎𝑎, 𝑏𝑏,𝛼𝛼) distribution. 

The result of Proposition 2.2 helps in simulating data from the OLLGo distribution. Figure 1 
illustrates some of the possible shapes of density and hazard functions for selected values of the 
parameters. For instance, these plots show the hazard function of the new model is much more exible 
than the beta Gompertz (BG) introduced by [22] and Go (Gompertz) distributions. The hazard rate 
function can be bathtub shaped, monotonically increasing or decreasing and upside-down bathtub 
shaped depending on the parameter values. 



3. General properties 
In this section using some existing rules for the power series such as division and multiplication 

of power series and a power series raised to a positive integer n and so on, some properties of OLLGo 
distribution are mentioned. 

3.1. A useful expansion 
First, using generalized binomial expansion we have 

�1 −  𝑒𝑒−
𝑏𝑏
𝑎𝑎 (𝑒𝑒𝑎𝑎𝑎𝑎−1)�

𝛼𝛼
 = �(−1)𝑖𝑖 �

𝛼𝛼
𝑖𝑖
� 𝑒𝑒−

𝑖𝑖𝑖𝑖
𝑎𝑎  (𝑒𝑒𝑎𝑎𝑎𝑎−1)

∞

𝑖𝑖=0

 

= �  
∞

𝑖𝑖=0

�(−1)𝑖𝑖+𝑘𝑘 �
𝛼𝛼
𝑖𝑖
� �

𝑖𝑖
𝑘𝑘
� �1 −  𝑒𝑒−

𝑏𝑏
𝑎𝑎 (𝑒𝑒𝑎𝑎𝑎𝑎−1)�

𝑘𝑘𝑖𝑖

𝑘𝑘=0

 

= �  
∞

𝑖𝑖=0

�(−1)𝑖𝑖+𝑘𝑘 �
𝛼𝛼
𝑖𝑖
� �

𝑖𝑖
𝑘𝑘
� �1 −  𝑒𝑒−

𝑏𝑏
𝑎𝑎 (𝑒𝑒𝑎𝑎𝑎𝑎−1)�

𝑘𝑘𝑖𝑖

𝑘𝑘=0

 

= �𝑎𝑎𝑘𝑘 �1 −  𝑒𝑒−
𝑏𝑏
𝑎𝑎 (𝑒𝑒𝑎𝑎𝑎𝑎−1)�

𝑘𝑘∞

𝑘𝑘=0

. 

where 𝑎𝑎𝑘𝑘  = ∑  ∞
𝑖𝑖=0 (−1)𝑖𝑖+𝑘𝑘�𝛼𝛼𝑖𝑖 ��

𝑖𝑖
𝑘𝑘�. Similarly, we obtain 

�1 −  𝑒𝑒−
𝑏𝑏
𝑎𝑎 (𝑒𝑒𝑎𝑎𝑎𝑎−1)�

𝛼𝛼
 +  𝑒𝑒−

𝑏𝑏𝑏𝑏
𝑎𝑎  (𝑒𝑒𝑎𝑎𝑎𝑎−1)  = �𝑏𝑏𝑘𝑘 �1 −  𝑒𝑒−

𝑏𝑏
𝑎𝑎 (𝑒𝑒𝑎𝑎𝑎𝑎−1)�

𝑘𝑘∞

𝑘𝑘=0

, 

where 𝑏𝑏𝑘𝑘  =  𝑎𝑎𝑘𝑘  +  (−1)𝑘𝑘�𝛼𝛼𝑘𝑘�. Now using the rule for division of two power series, we have 

(3.1) 𝐹𝐹(𝑥𝑥) =
∑ 𝑎𝑎𝑘𝑘�1− 𝑒𝑒−

𝑏𝑏
𝑎𝑎 �𝑒𝑒𝑎𝑎𝑎𝑎−1��

𝑘𝑘
∞
𝑘𝑘=0

∑ 𝑏𝑏𝑘𝑘�1− 𝑒𝑒−
𝑏𝑏
𝑎𝑎 (𝑒𝑒𝑎𝑎𝑎𝑎−1)�

𝑘𝑘
∞
𝑘𝑘=0

= ∑ 𝑐𝑐𝑘𝑘 �1 −  𝑒𝑒−
𝑏𝑏
𝑎𝑎 (𝑒𝑒𝑎𝑎𝑎𝑎−1)�

𝑘𝑘
∞
𝑘𝑘=0 , 

where 𝑐𝑐0  =  𝑎𝑎0𝑏𝑏0 and for 𝑘𝑘 ≥  1 we have 𝑐𝑐𝑘𝑘  = 𝑏𝑏0−1  [𝑎𝑎𝑘𝑘 − 𝑏𝑏0−1 ∑ 𝑏𝑏𝑟𝑟𝑐𝑐𝑘𝑘−𝑟𝑟𝑘𝑘−1
𝑟𝑟=0 ]. 

The following Propositions show that the cdf and pdf of the OLLGo distribution can be rewritten 
as a mixture of cdf and pdf of the generalized Gompertz (GG) distributions. The GG distribution was 
introduced by [11] which has the following cdf and pdf as 

𝐹𝐹(𝑥𝑥) = �1 −  𝑒𝑒−
𝑏𝑏
𝑎𝑎 (𝑒𝑒𝑎𝑎𝑎𝑎−1)�

𝛼𝛼
,𝑎𝑎 ≥  0, 𝑏𝑏,𝛼𝛼 >  0, 𝑥𝑥 ≥  0, 

and 

𝑓𝑓(𝑥𝑥) =  𝛼𝛼𝛼𝛼𝛼𝛼𝑎𝑎𝑎𝑎𝑒𝑒−
𝑏𝑏
𝑎𝑎 (𝑒𝑒𝑎𝑎𝑎𝑎−1) �1 −  𝑒𝑒−

𝑏𝑏
𝑎𝑎 (𝑒𝑒𝑎𝑎𝑎𝑎−1)�

(𝛼𝛼−1)

. 



PROPOSITION 3.1. The equation (3.1) shows that we can write cdf of OLLGo distribution as a 
mixture of cdfs of GG distributions as follows: 

𝐹𝐹(𝑥𝑥)  = �𝑐𝑐𝑘𝑘𝐻𝐻𝑘𝑘(𝑥𝑥)
∞

𝑘𝑘=0

, 

where 𝐻𝐻𝑘𝑘(𝑥𝑥) denotes the cdf of GG distribution with power parameter 𝑘𝑘. 

PROPOSITION 3.2. The pdf of OLLGo distribution can be expressed as a mixture of pdfs of GG 
distributions as follows: 

(3.2)  𝑓𝑓(𝑥𝑥) = ∑ 𝑐𝑐𝑘𝑘+1ℎ𝑘𝑘+1(𝑥𝑥)∞
𝑘𝑘=0 , 

where ℎ𝑘𝑘+1(𝑥𝑥) denotes the pdf of GG distribution with power parameter 𝑘𝑘 +  1. 

From (3.2), the rth ordinary moment of OLLGo distribution is given by 

𝜇́𝜇𝑟𝑟  =  𝐸𝐸(𝑋𝑋𝑟𝑟) = �𝑐𝑐𝑘𝑘+1𝐸𝐸(𝑌𝑌𝑘𝑘+1𝑟𝑟 )
∞

𝑘𝑘=0

, 

where, using Theorem 2 of [11], the rth moment of 𝑌𝑌𝑘𝑘+1 (a GG random variable with power parameter 
𝑘𝑘 +  1) can be written as 

𝐸𝐸(𝑌𝑌𝑘𝑘+1𝑟𝑟 ) =  (𝑘𝑘 +  1)𝑏𝑏Γ(𝑟𝑟 +  1)�  
∞

𝑗𝑗=0

��
𝑘𝑘
𝑗𝑗
�

(−1)𝑗𝑗+𝑖𝑖

Γ(𝑖𝑖 +  1)
(𝑒𝑒)

𝑏𝑏
𝑎𝑎 (𝑗𝑗+1)

� 𝑏𝑏𝑎𝑎  (𝑗𝑗 +  1)�
−𝑖𝑖 �

−1
𝑎𝑎(𝑖𝑖 +  1)�

𝑟𝑟+1∞

𝑖𝑖=0

. 

Therefore, the rth moment of OLLGo distribution is 

(3.3) 

𝜇́𝜇𝑟𝑟  =  𝐸𝐸(𝑋𝑋𝑟𝑟)

= ∑  ∞
𝑘𝑘=0 ∑  ∞

𝑗𝑗=0 ∑ �𝑘𝑘𝑗𝑗� 𝑐𝑐𝑘𝑘+1(𝑘𝑘 +  1)𝑏𝑏Γ(𝑟𝑟 +  1) (−1)𝑗𝑗+𝑖𝑖

Γ(𝑖𝑖 + 1)
(𝑒𝑒)

𝑏𝑏
𝑎𝑎 (𝑗𝑗+1)

� 𝑏𝑏𝑎𝑎 (𝑗𝑗 + 1)�
−𝑖𝑖 �

−1
𝑎𝑎(𝑖𝑖 + 1)�

𝑟𝑟+1
∞
𝑖𝑖=0

. 

The skewness and kurtosis measures can be calculated recursively using the rth moment of OLLGo 
distribution in (3.3). Furthermore, the cumulants (𝜅𝜅𝑛𝑛) of 𝑋𝑋 can be written recursively as 

𝜅𝜅𝑛𝑛  =  𝜇́𝜇𝑛𝑛 −��
𝑛𝑛 −  1
𝑟𝑟 −  1

� 𝜅𝜅𝑟𝑟 𝜇́𝜇𝑛𝑛−𝑟𝑟

𝑛𝑛−1

𝑟𝑟=1

, 

where 𝜅𝜅1  =  𝜇́𝜇1, 𝜅𝜅2  = 𝜇́𝜇2  − 𝜇́𝜇12, 𝜅𝜅3 = 𝜇́𝜇3 − 3𝜇́𝜇1𝜇́𝜇2  + 𝜇́𝜇13. Figure 2 shows the behaviour of the skewness 
and kurtosis of OLLGo(𝑎𝑎, 1,𝛼𝛼) distribution. 

3.2. Moment generating function 
We give two representations for moment generating function (mgf) 𝑀𝑀(𝑠𝑠) of the OLLGo 

distribution. For the first representation, we use the Maclaurin series expansion of an exponential 
function, as follows 



𝑀𝑀(𝑠𝑠)  = �
𝑠𝑠𝑟𝑟

𝑟𝑟!
𝐸𝐸(𝑋𝑋𝑟𝑟)

∞

𝑟𝑟=0

. 

 
Fig. 2. Skewness and Kurtosis for OLL-Go(𝑎𝑎, 1,𝛼𝛼) 
 

Thus the mgf of the 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑎𝑎, 𝑏𝑏,𝛼𝛼) distribution can be obtain as 

𝑀𝑀(𝑠𝑠)  = � �
𝑘𝑘
𝑗𝑗
�
𝑠𝑠𝑟𝑟

𝑟𝑟!
𝑐𝑐𝑘𝑘+1(𝑘𝑘 + 1)𝑏𝑏Γ(𝑟𝑟 + 1)

(−1)𝑗𝑗 + 𝑖𝑖
Γ(𝑖𝑖 +  1)

(𝑒𝑒)
𝑏𝑏
𝑎𝑎 (𝑗𝑗+1)

� 𝑏𝑏𝑎𝑎  (𝑗𝑗 +  1)�
−𝑖𝑖 �

−1
𝑎𝑎(𝑖𝑖 +  1)�

𝑟𝑟+1∞

𝑟𝑟;𝑘𝑘;𝑗𝑗;𝑖𝑖=0

. 

For the second representation, using equation (3.2), we can obtain another formula for 𝑀𝑀(𝑠𝑠) as 
follows: 

𝑀𝑀(𝑠𝑠)  = �𝑐𝑐𝑘𝑘+1𝑀𝑀𝑘𝑘+1(𝑠𝑠)
∞

𝑘𝑘=0

, 

where 

𝑀𝑀𝑘𝑘+1(𝑠𝑠) =  (𝑘𝑘 +  1)𝑏𝑏𝑏𝑏
𝑏𝑏
𝑎𝑎�𝑒𝑒𝑠𝑠𝑠𝑠𝑒𝑒𝑎𝑎𝑎𝑎𝑒𝑒

−𝑏𝑏
𝑎𝑎  𝑒𝑒𝑎𝑎𝑎𝑎 �1 −  𝑒𝑒

−𝑏𝑏
𝑎𝑎  (𝑒𝑒𝑎𝑎𝑎𝑎−1)�

𝑘𝑘
𝑑𝑑𝑑𝑑

∞

0

. 

Using the binomial series expansion for�1 −  𝑒𝑒
−𝑏𝑏
𝑎𝑎  (𝑒𝑒𝑎𝑎𝑎𝑎−1)�

𝑘𝑘
, we arrive at 

𝑀𝑀𝑘𝑘+1(𝑠𝑠) =  (𝑘𝑘 +  1)𝑏𝑏��
𝑘𝑘
𝑗𝑗
� (−1)𝑗𝑗𝑒𝑒

𝑏𝑏
𝑎𝑎 (𝑗𝑗+1)

𝑘𝑘

𝑗𝑗=0

� 𝑒𝑒𝑠𝑠𝑠𝑠𝑒𝑒𝑎𝑎𝑎𝑎𝑒𝑒
−𝑏𝑏
𝑎𝑎 𝑒𝑒𝑎𝑎𝑎𝑎𝑒𝑒

−𝑏𝑏
𝑎𝑎  (𝑗𝑗+1)𝑒𝑒𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑

∞

0

. 

The change of variable 𝑧𝑧 =  𝑒𝑒𝑎𝑎𝑎𝑎 yields 



𝑀𝑀𝑘𝑘+1(𝑠𝑠)  =
(𝑘𝑘 +  1)𝑏𝑏

𝑎𝑎
��

𝑘𝑘
𝑗𝑗
� (−1)𝑗𝑗𝑒𝑒

𝑏𝑏
𝑎𝑎 (𝑗𝑗+1)

𝑘𝑘

𝑗𝑗=0

� 𝑧𝑧
𝑠𝑠
𝑎𝑎 𝑒𝑒

𝑏𝑏
𝑎𝑎 (𝑗𝑗+1)𝑧𝑧𝑑𝑑𝑑𝑑.

∞

1

 

Then, setting 𝑦𝑦 =  𝑏𝑏
𝑎𝑎

 (𝑗𝑗 +  1)𝑧𝑧, we obtain 

𝑀𝑀𝑘𝑘+1(𝑠𝑠)  =  (𝑘𝑘 +  1) �
𝑎𝑎
𝑏𝑏
�
𝑠𝑠
𝑎𝑎−1��

𝑘𝑘
𝑗𝑗
�

(−1)𝑗𝑗𝑒𝑒
𝑏𝑏
𝑎𝑎 (𝑗𝑗+1)

(𝑗𝑗 +  1)
𝑠𝑠
𝑎𝑎

Γ �
𝑠𝑠
𝑎𝑎

+  1,
𝑏𝑏
𝑎𝑎

(𝑗𝑗 +  1)�
𝑘𝑘

𝑗𝑗=0

, 

where Γ(𝑢𝑢, 𝑣𝑣) is the incomplete gamma function defined by 

Γ(𝑢𝑢, 𝑣𝑣) = � 𝑥𝑥𝑢𝑢−1𝑒𝑒−𝑥𝑥𝑑𝑑𝑑𝑑
∞

𝑣𝑣

. 

Therefore, 

𝑀𝑀(𝑠𝑠) = �  
∞

𝑘𝑘=0

��
𝑘𝑘
𝑗𝑗
� �
𝑎𝑎
𝑏𝑏
�
𝑠𝑠
𝑎𝑎−1  

𝑐𝑐𝑘𝑘+1(𝑘𝑘 +  1)(−1)𝑗𝑗𝑒𝑒
𝑏𝑏
𝑎𝑎 (𝑗𝑗+1)

(𝑗𝑗 +  1)
𝑠𝑠
𝑎𝑎

Γ �
𝑠𝑠
𝑎𝑎

+  1,
𝑏𝑏
𝑎𝑎

(𝑗𝑗 +  1)�
𝑘𝑘

𝑗𝑗=0

. 

3.3. Mean deviations 
The mean deviations can be used as measures of spread in a population. They are defined by 

𝛿𝛿1  = � |𝑥𝑥 − 𝜇𝜇|𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑
∞

0

 and 𝛿𝛿2  = � |𝑥𝑥 −𝑀𝑀|𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑
∞

0

, 

where 𝜇𝜇 and 𝑀𝑀 are the first moment and median of the corresponding distribution. These measures 
can be expressed as 

𝛿𝛿1  =  2𝜇𝜇𝜇𝜇(𝜇𝜇) −  2� 𝑥𝑥𝑥𝑥(𝑥𝑥)𝑑𝑑𝑑𝑑
∞

𝜇𝜇

 and 𝛿𝛿2  =  𝜇𝜇 −  2 � 𝑥𝑥𝑥𝑥(𝑥𝑥)𝑑𝑑𝑑𝑑
∞

𝑀𝑀

. 

Using the above equations we obtain closed form formulas for 𝛿𝛿1 and 𝛿𝛿2. From (3.2), we have 

ℎ𝐺𝐺𝐺𝐺(𝑥𝑥;  𝑎𝑎, 𝑏𝑏,𝑘𝑘 +  1) =  (𝑘𝑘 +  1)𝑏𝑏eaxe
−b
a  (eax−1) �1 −  e

−b
a  (eax−1)�

𝑘𝑘
, 

and then for a given 𝜂𝜂 we have 

� 𝑥𝑥𝑥𝑥(𝑥𝑥)𝑑𝑑𝑑𝑑 =
𝑏𝑏
𝑎𝑎2

∞

𝜂𝜂

�  
∞

𝑘𝑘=0

��
𝑘𝑘
𝑗𝑗
� (−1)𝑗𝑗(𝑘𝑘 +  1)𝑐𝑐𝑘𝑘+1𝑒𝑒

(𝑗𝑗+1)𝑏𝑏
𝑎𝑎

𝑘𝑘

𝑗𝑗=0

� 𝑒𝑒−
𝑏𝑏
𝑎𝑎 (𝑗𝑗+1)𝑧𝑧ln(𝑧𝑧)𝑑𝑑𝑑𝑑

∞

𝑒𝑒𝑎𝑎𝑎𝑎

. 

Upon changing variables and integrating by parts we have 



� 𝑥𝑥𝑥𝑥(𝑥𝑥)𝑑𝑑𝑑𝑑 =
𝑏𝑏
𝑎𝑎2

∞

𝜂𝜂

�  
∞

𝑘𝑘=0

��
𝑘𝑘
𝑗𝑗
� (−1)𝑗𝑗(𝑘𝑘 +  1)𝑐𝑐𝑘𝑘+1𝑒𝑒

(𝑗𝑗+1)𝑏𝑏
𝑎𝑎

𝑘𝑘

𝑗𝑗=0

. �
𝑎𝑎𝑎𝑎𝑎𝑎−

𝑏𝑏
𝑎𝑎 (𝑗𝑗+1)𝑒𝑒𝑎𝑎𝑎𝑎

𝑏𝑏
𝑎𝑎  (𝑗𝑗 +  1)

+
Γ �0, 𝑏𝑏𝑎𝑎   (𝑗𝑗 +  1)𝑒𝑒𝑎𝑎𝑎𝑎�

𝑏𝑏
𝑎𝑎  (𝑗𝑗 +  1)

�

=
1
𝑎𝑎
�  
∞

𝑘𝑘=0

��
𝑘𝑘
𝑗𝑗
�

𝑘𝑘

𝑗𝑗=0

(−1)𝑗𝑗(𝑘𝑘 +  1)𝑐𝑐𝑘𝑘+1𝑒𝑒
(𝑗𝑗+1)𝑏𝑏

𝑎𝑎

(𝑗𝑗 + 1) �𝑎𝑎𝑎𝑎𝑎𝑎−
𝑏𝑏
𝑎𝑎 (𝑗𝑗+1)𝑒𝑒𝑎𝑎𝑎𝑎 +  Γ �0,

𝑏𝑏
𝑎𝑎

  (𝑗𝑗 +  1)𝑒𝑒𝑎𝑎𝑎𝑎��. 

Therefore, 

𝛿𝛿1  =  2𝜇𝜇𝜇𝜇(𝜇𝜇)−
2
𝑎𝑎
�  
∞

𝑘𝑘=0

��
𝑘𝑘
𝑗𝑗
�

𝑘𝑘

𝑗𝑗=0

(−1)𝑗𝑗(𝑘𝑘 +  1)𝑐𝑐𝑘𝑘+1𝑒𝑒
(𝑗𝑗+1)𝑏𝑏

𝑎𝑎

(𝑗𝑗 + 1) . �𝜇𝜇𝜇𝜇𝜇𝜇−
𝑏𝑏
𝑎𝑎 (𝑗𝑗+1)𝑒𝑒𝑎𝑎𝑎𝑎 +  Γ �0,

𝑏𝑏
𝑎𝑎

  (𝑗𝑗 +  1)𝑒𝑒𝑎𝑎𝑎𝑎��, 

and 

𝛿𝛿2 =  𝜇𝜇 −
2
𝑎𝑎
�  
∞

𝑘𝑘=0

��
𝑘𝑘
𝑗𝑗
�

𝑘𝑘

𝑗𝑗=0

(−1)𝑗𝑗(𝑘𝑘 +  1)𝑐𝑐𝑘𝑘+1𝑒𝑒
(𝑗𝑗+1)𝑏𝑏

𝑎𝑎

(𝑗𝑗 + 1) . �𝑀𝑀𝑀𝑀𝑀𝑀−
𝑏𝑏
𝑎𝑎 (𝑗𝑗+1)𝑒𝑒𝑎𝑎𝑎𝑎 +  Γ �0,

𝑏𝑏
𝑎𝑎

  (𝑗𝑗 +  1)𝑒𝑒𝑎𝑎𝑎𝑎��. 

3.4. Order Statistics 
Order statistics make their appearance in many areas of statistical theory and practice. Suppose 

𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 is a random sample from any OLLGo distribution. Let 𝑋𝑋𝑖𝑖:𝑛𝑛 denote the ith order statistic. The 
pdf of 𝑋𝑋𝑖𝑖:𝑛𝑛 can be expressed as 

𝑓𝑓𝑖𝑖:𝑛𝑛(𝑥𝑥) =  𝑐𝑐𝑐𝑐(𝑥𝑥)𝐹𝐹𝑖𝑖−1(𝑥𝑥){1 −  𝐹𝐹(𝑥𝑥)}𝑛𝑛−𝑖𝑖  =  𝑐𝑐�
𝑛𝑛−𝑖𝑖

𝑗𝑗=0

(−1)𝑗𝑗 �𝑛𝑛 −  𝑖𝑖
𝑗𝑗 � 𝑓𝑓(𝑥𝑥)𝐹𝐹(𝑥𝑥)𝑗𝑗+𝑖𝑖−1, 

where 𝑐𝑐 =  1
𝐵𝐵(𝐼𝐼,𝑛𝑛−𝑖𝑖+1)

. 

Upon integration, the cdf of ith order statistic is 

𝐹𝐹𝑖𝑖:𝑛𝑛(𝑥𝑥) =  𝑐𝑐�
(−1)𝑗𝑗

𝑗𝑗 +  𝑖𝑖
�𝑛𝑛 −  𝑖𝑖

𝑗𝑗 � 𝐹𝐹(𝑥𝑥)𝑗𝑗+𝑖𝑖
𝑛𝑛−𝑖𝑖

𝑗𝑗=0

. 

From Gradshteyn and Ryzhik (2000), we can use the following expansion for a power series 
raise to a positive integer as 

��𝑎𝑎𝑖𝑖𝑢𝑢𝑖𝑖
∞

𝑖𝑖=0

�
𝑛𝑛

= �𝑐𝑐𝑛𝑛,𝑖𝑖𝑢𝑢𝑖𝑖;  𝑛𝑛 ≥  1
∞

𝑖𝑖=0

, 

where the coefficients 𝑐𝑐𝑛𝑛,𝑖𝑖 (for 𝑖𝑖 =  1, 2, … ) are determined from the recurrence equation 
(with 𝑐𝑐𝑛𝑛,0  =  𝑎𝑎0𝑛𝑛) 

(3.4) 𝑐𝑐𝑛𝑛,𝑖𝑖  =  (𝑖𝑖𝑖𝑖0)−1 ∑𝑖𝑖
𝑚𝑚=1 [𝑚𝑚(𝑛𝑛 +  1) −  𝑖𝑖]𝑎𝑎𝑚𝑚𝑐𝑐𝑛𝑛,𝑖𝑖−𝑚𝑚. 

Applying the above equations to the power series form of the 𝐹𝐹(𝑥𝑥)𝑗𝑗+𝑖𝑖 with 𝐹𝐹(𝑥𝑥) given by (3.1), 
the cdf of ith order statistic from OLLGo distribution can be rewritten as 



𝐹𝐹𝑖𝑖:𝑛𝑛(𝑥𝑥) =  𝑐𝑐�  
𝑛𝑛−𝑖𝑖

𝑗𝑗=0

�𝑒𝑒𝑖𝑖,𝑗𝑗𝑐𝑐𝑖𝑖+𝑗𝑗,𝑘𝑘𝐻𝐻𝑘𝑘(𝑥𝑥)
∞

𝑘𝑘=0

, 

where 𝑒𝑒𝑖𝑖,𝑗𝑗  =  (−1)𝑗𝑗

𝑗𝑗+𝑖𝑖
�𝑛𝑛−𝑖𝑖𝑗𝑗 � , 𝑐𝑐𝑖𝑖+𝑗𝑗,0  =  𝑐𝑐0

𝑖𝑖+𝑗𝑗 and 𝑐𝑐𝑖𝑖+𝑗𝑗,𝑘𝑘 satisfy in the following recursive equation 

𝑐𝑐𝑖𝑖+𝑗𝑗,𝑘𝑘  =  (𝑘𝑘𝑘𝑘0)−1 � [𝑚𝑚(𝑖𝑖 +  𝑗𝑗 +  1) −  𝑘𝑘]𝑐𝑐𝑚𝑚𝑐𝑐𝑖𝑖+𝑗𝑗,𝑘𝑘−𝑚𝑚

𝑘𝑘

𝑚𝑚=1

. 

The pdf of the ith order statistic can be used to obtain the moments, mgf and mean deviations of the 
OLLGo order statistics from above equations and some properties of the GG model. 

3.5. Asymptotics and shapes 
In the following Proposition we give some asymptotes for cdf, pdf and hazard rate functions of 

the OLLGo model. 

PROPOSITION 3.3. Let the random variable X have 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑎𝑎;  𝑏𝑏;  𝛼𝛼) distribution with cdf 𝐹𝐹(𝑥𝑥), 
pdf 𝑓𝑓(𝑥𝑥) and failure rate function ℎ(𝑥𝑥), then, 

𝐹𝐹(𝑥𝑥) ~ (𝑏𝑏𝑏𝑏)𝛼𝛼 as 𝑥𝑥 →  0, 

𝑓𝑓(𝑥𝑥)~ 𝛼𝛼𝑏𝑏𝛼𝛼𝑥𝑥𝛼𝛼−1 as 𝑥𝑥 →  0, 

ℎ(𝑥𝑥)~𝛼𝛼𝑏𝑏𝛼𝛼𝑥𝑥𝛼𝛼−1 as 𝑥𝑥 →  0, 

1 −  𝐹𝐹(𝑥𝑥)~ e
−b
a  eax as 𝑥𝑥 →  1, 

𝑓𝑓(𝑥𝑥)~ 𝑏𝑏𝛼𝛼eaxe
−bα
a  eax  as 𝑥𝑥 →  1; 

ℎ(𝑥𝑥) ~ 𝑏𝑏𝛼𝛼eax as 𝑥𝑥 →  1: 

These equations show the effect of parameters on the tail of OLLGo distribution. 

3.6. Quantile measure 
The quantile function of OLLGo distribution is given by 

𝑄𝑄(𝑢𝑢) =
1
𝑎𝑎

log�1 −
𝑎𝑎
𝑏𝑏

log
(1 −  𝑢𝑢)

1
𝛼𝛼

𝑢𝑢
1
𝛼𝛼  +  (1 −  𝑢𝑢)

1
𝛼𝛼
�, 

where 𝑢𝑢 ∈  (0, 1). 

4. Characterization Results 
This section deals with the characterizations of the OLLGo distribution in different directions: (i) 

based on the ratio of two truncated moments; (ii) in terms of the hazard function; (iii) in terms of the 
reverse hazard function and (iv) based on the conditional expectation of a function of the random 
variable. Note that (i) can be employed also when the cdf does not have a closed form. We would also 



like to mention that due to the nature of OLLGo distribution, our characterizations may be the only 
possible ones. We present our characterizations (i)-(iv) in four subsections. 

4.1. Characterizations based on two truncated moments 
This subsection is devoted to the characterizations of OLLGo distribution based on the ratio of 

two truncated moments. Our first characterization employs a theorem due to Glänzel (1987), see 
Theorem 1 of Appendix A. The result, however, holds also when the interval 𝐻𝐻 is not closed, since the 
condition of the Theorem is on the interior of 𝐻𝐻. 

PROPOSITION 4.1. Let 𝑋𝑋:  Ω (0,∞) be a continuous random variable and let 

𝑞𝑞1(𝑥𝑥) = ��1 −  𝑒𝑒−
𝑏𝑏
𝑎𝑎 (𝑒𝑒𝑎𝑎𝑎𝑎−1)� +  𝑒𝑒−

𝑏𝑏
𝑎𝑎 (𝑒𝑒𝑎𝑎𝑎𝑎−1)�

2
 

and 

𝑞𝑞2(𝑥𝑥) =  𝑞𝑞1(𝑥𝑥) �1 −  𝑒𝑒−
𝑏𝑏
𝑎𝑎 (𝑒𝑒𝑎𝑎𝑎𝑎−1)�

𝛼𝛼
 

for 𝑥𝑥 >  0. The random variable 𝑋𝑋 has pdf (2.4) if and only if the function 𝜂𝜂 defined in Theorem 1 is of 
the form 

𝜂𝜂(𝑥𝑥) =
1
2
�1 + �1 −  𝑒𝑒−

𝑏𝑏
𝑎𝑎 �𝑒𝑒𝑎𝑎𝑎𝑎−1��

𝛼𝛼
� , 𝑥𝑥 >  0. 

PROOF. Suppose the random variable 𝑋𝑋 has pdf (2.4), then 

(1 −  𝐹𝐹(𝑥𝑥))𝐸𝐸[𝑞𝑞1(𝑋𝑋) | 𝑋𝑋 ≥  𝑥𝑥]  =  1 − �1 −  𝑒𝑒−
𝑏𝑏
𝑎𝑎 �𝑒𝑒𝑎𝑎𝑎𝑎−1��

𝛼𝛼
, 𝑥𝑥 >  0, 

and 

(1 −  𝐹𝐹(𝑥𝑥))𝐸𝐸[𝑞𝑞2(𝑋𝑋) | 𝑋𝑋 ≥  𝑥𝑥]  =
1
2
�1 − �1 −  𝑒𝑒−

𝑏𝑏
𝑎𝑎 �𝑒𝑒𝑎𝑎𝑎𝑎−1��

2𝛼𝛼
� , 𝑥𝑥 >  0. 

Further, 

𝜂𝜂(𝑥𝑥)𝑞𝑞1(𝑥𝑥) −  𝑞𝑞2(𝑥𝑥) =
𝑞𝑞1(𝑥𝑥)

2
�1 − �1 −  𝑒𝑒−

𝑏𝑏
𝑎𝑎 �𝑒𝑒𝑎𝑎𝑎𝑎−1��

𝛼𝛼
� >  0, for 𝑥𝑥 >  0: 

Conversely, if 𝜂𝜂 is of the above form, then 

𝑠𝑠′(𝑥𝑥) =
𝜂𝜂′(𝑥𝑥)𝑞𝑞1(𝑥𝑥)

𝜂𝜂(𝑥𝑥)𝑞𝑞1(𝑥𝑥)−  𝑞𝑞2(𝑥𝑥)
=
𝛼𝛼𝑏𝑏𝑏𝑏𝑎𝑎𝑎𝑎𝑒𝑒−

𝑏𝑏
𝑎𝑎 �𝑒𝑒𝑎𝑎𝑎𝑎−1� �1 −  𝑒𝑒−

𝑏𝑏
𝑎𝑎 �𝑒𝑒𝑎𝑎𝑎𝑎−1��

𝛼𝛼−1

1 − �1 −  𝑒𝑒−
𝑏𝑏
𝑎𝑎 (𝑒𝑒𝑎𝑎𝑎𝑎−1)�

𝛼𝛼 , 𝑥𝑥 >  0, 

and consequently 

𝑠𝑠(𝑥𝑥) =  −log ��1 −  𝑒𝑒−
𝑏𝑏
𝑎𝑎 �𝑒𝑒𝑎𝑎𝑎𝑎−1��

𝛼𝛼
� , 𝑥𝑥 >  0. 



Now, according to Theorem 1, 𝑋𝑋 has density (2.4). 

COROLLARY 4.1. Let 𝑋𝑋:  𝛺𝛺 (0,∞) be a continuous random variable and let 𝑞𝑞1(𝑥𝑥) be as in 
Proposition 4.1. The random variable 𝑋𝑋 has pdf (2.4) if and only if there exist functions 𝑞𝑞2 and 𝜂𝜂 defined 
in Theorem 1 satisfying the following differential equation 

𝜂𝜂′(𝑥𝑥)𝑞𝑞1(𝑥𝑥)
𝜂𝜂(𝑥𝑥)𝑞𝑞1(𝑥𝑥) −  𝑞𝑞2(𝑥𝑥)

=
𝛼𝛼𝑏𝑏𝑏𝑏𝑎𝑎𝑎𝑎𝑒𝑒−

𝑏𝑏
𝑎𝑎 �𝑒𝑒𝑎𝑎𝑎𝑎−1� �1 −  𝑒𝑒−

𝑏𝑏
𝑎𝑎 �𝑒𝑒𝑎𝑎𝑎𝑎−1��

𝛼𝛼−1

1 − �1 −  𝑒𝑒−
𝑏𝑏
𝑎𝑎 (𝑒𝑒𝑎𝑎𝑎𝑎−1)�

𝛼𝛼 , 𝑥𝑥 >  0. 

COROLLARY 4.2. The general solution of the differential equation in Corollary 4.1 is 

𝜂𝜂(𝑥𝑥) = �1 − �1 −  𝑒𝑒−
𝑏𝑏
𝑎𝑎 �𝑒𝑒𝑎𝑎𝑎𝑎−1��

𝛼𝛼
�
−1

× �−�𝛼𝛼𝑏𝑏𝑏𝑏𝑎𝑎𝑎𝑎𝑒𝑒−
𝑏𝑏
𝑎𝑎 �𝑒𝑒𝑎𝑎𝑎𝑎−1� �1 −  𝑒𝑒−

𝑏𝑏
𝑎𝑎 �𝑒𝑒𝑎𝑎𝑎𝑎−1��

𝛼𝛼−1
�𝑞𝑞1(𝑥𝑥)�

−1
𝑞𝑞2(𝑥𝑥)𝑑𝑑𝑑𝑑 +  𝐷𝐷�, 

where 𝐷𝐷 is a constant. We like to point out that one set of functions satisfying the above differential 
equation is given in Proposition 4.1 with 𝐷𝐷 =  1

2
. Clearly, there are other triplets (𝑞𝑞1, 𝑞𝑞2, 𝜂𝜂) which satisfy 

conditions of Theorem 1. 

4.2. Characterization in terms of hazard function 
The hazard function, ℎ𝐹𝐹, of a twice differentiable distribution function, 𝐹𝐹, satisfies the following 

first order differential equation 

𝑓𝑓′(𝑥𝑥)
𝑓𝑓(𝑥𝑥) =

ℎ𝐹𝐹′  (𝑥𝑥)
ℎ𝐹𝐹 (𝑥𝑥) −  ℎ𝐹𝐹  (𝑥𝑥). 

It should be mentioned that for many univariate continuous distributions, the above equation is the 
only differential equation available in terms of the hazard function. In this subsection we present non-
trivial characterizations of OLLGo distribution, for 𝛼𝛼 =  1, in terms of the hazard function. 

PROPOSITION 4.2. Let 𝑋𝑋: Ω (0,∞) be a continuous random variable. The random variable 𝑋𝑋 has 
pdf (2.4), for  𝛼𝛼 =  1, if and only if its hazard function ℎ𝐹𝐹 (𝑥𝑥) satisfies the following differential 
equation  

ℎ𝐹𝐹′  (𝑥𝑥) −  𝑎𝑎ℎ𝐹𝐹  (𝑥𝑥) =  0, 𝑥𝑥 >  0. 

PROOF. The proof is straightforward and hence omitted. _ 

4.3. Characterization in terms of the reverse hazard function 
The reverse hazard function, 𝑟𝑟𝐹𝐹, of a twice differentiable distribution function, 𝐹𝐹, is defined as 

𝑟𝑟𝐹𝐹 (𝑥𝑥) =
𝑓𝑓(𝑥𝑥)
𝐹𝐹(𝑥𝑥) , 𝑥𝑥 ∈  support of 𝐹𝐹. 

In this subsection we present a characterization of OLLGo distribution in terms of the reverse 
hazard function. 



PROPOSITION 4.3. Let 𝑋𝑋:  𝛺𝛺 (0,∞) be a continuous random variable. The random variable 𝑋𝑋 has 
pdf (2.4) if and only if its reverse hazard function 𝑟𝑟𝐹𝐹 (𝑥𝑥) satisfies the following differential equation 

𝑟𝑟𝐹𝐹′  (𝑥𝑥) +  𝑏𝑏𝑏𝑏𝑎𝑎𝑎𝑎𝑟𝑟𝐹𝐹 (𝑥𝑥) =  𝛼𝛼𝑏𝑏𝑒𝑒−
𝑏𝑏
𝑎𝑎 �𝑒𝑒𝑎𝑎𝑎𝑎−1�  

𝑑𝑑
𝑑𝑑𝑑𝑑

⎩
⎨

⎧ 𝑒𝑒𝑎𝑎𝑎𝑎 �1 −  𝑒𝑒−
𝑏𝑏
𝑎𝑎 �𝑒𝑒𝑎𝑎𝑎𝑎−1��

−1

�1 −  𝑒𝑒−
𝑏𝑏
𝑎𝑎 (𝑒𝑒𝑎𝑎𝑎𝑎−1)�

𝛼𝛼
+ 𝑒𝑒−

𝑏𝑏𝛼𝛼
𝑎𝑎  (𝑒𝑒𝑎𝑎𝑎𝑎−1)

⎭
⎬

⎫
, 𝑥𝑥 >  0. 

PROOF. If 𝑋𝑋 has pdf (2.4), then clearly the above differential equation holds. Now, if this 
equation holds, then 

𝑑𝑑
𝑑𝑑𝑑𝑑

�𝑒𝑒
𝑏𝑏
𝑎𝑎 �𝑒𝑒𝑎𝑎𝑎𝑎−1�𝑟𝑟𝐹𝐹 (𝑥𝑥)� =  𝑎𝑎𝑎𝑎

𝑑𝑑
𝑑𝑑𝑑𝑑

⎩
⎨

⎧ 𝑒𝑒𝑎𝑎𝑎𝑎 �1 −  𝑒𝑒−
𝑏𝑏
𝑎𝑎 �𝑒𝑒𝑎𝑎𝑎𝑎−1��

−1

�1 −  𝑒𝑒−
𝑏𝑏
𝑎𝑎 (𝑒𝑒𝑎𝑎𝑎𝑎−1)�

𝛼𝛼
+ 𝑒𝑒−

𝑏𝑏𝛼𝛼
𝑎𝑎  (𝑒𝑒𝑎𝑎𝑎𝑎−1)

⎭
⎬

⎫
, 

from which we obtain the reverse hazard function corresponding to the pdf (2.4).  

REMARK 4.1. For 𝛼𝛼 =  1, the above differential equation has the following much simpler form. 

𝑟𝑟𝐹𝐹′  (𝑥𝑥) + 𝑏𝑏𝑏𝑏𝑎𝑎𝑎𝑎𝑟𝑟𝐹𝐹 (𝑥𝑥) =  𝑏𝑏𝑏𝑏𝑎𝑎𝑎𝑎−
𝑏𝑏
𝑎𝑎 (𝑒𝑒𝑎𝑎𝑎𝑎−1)

⎩
⎨

⎧𝑎𝑎 −  𝑒𝑒−
𝑏𝑏
𝑎𝑎 �𝑒𝑒𝑎𝑎𝑎𝑎−1� [𝑎𝑎 −  𝑏𝑏𝑏𝑏𝑎𝑎𝑎𝑎]

�1 −  𝑒𝑒−
𝑏𝑏
𝑎𝑎 (𝑒𝑒𝑎𝑎𝑎𝑎−1)�

2

⎭
⎬

⎫
, 𝑥𝑥 >  0. 

4.4. Characterization based on the conditional expectation of certain function of the 
random variable 

In this subsection we employ a single function 𝜓𝜓 of 𝑋𝑋 and characterize the distribution of 𝑋𝑋 in 
terms of the truncated moment of 𝜓𝜓(𝑋𝑋). The following proposition has already appeared in 
Hamedani's previous work (2013), so we will just state it here. It can be used to characterize an OLLGo 
distribution for 𝛼𝛼 =  1. 

PROPOSITION 4.4. Let 𝑋𝑋:  𝛺𝛺 (𝑒𝑒;  𝑓𝑓) be a continuous random variable with cdf F. Let 𝜓𝜓(𝑥𝑥) be a 
differentiable function on (𝑒𝑒;  𝑓𝑓) with 𝑙𝑙𝑙𝑙𝑙𝑙

𝑥𝑥→𝑒𝑒+
𝜓𝜓(𝑥𝑥) = 1 . Then for  𝛿𝛿 ≠  1, 

𝐸𝐸[ 𝜓𝜓(𝑋𝑋) | 𝑋𝑋 ≥  𝑥𝑥]  =  𝛿𝛿𝛿𝛿(𝑥𝑥), 𝑥𝑥 ∈  (𝑒𝑒, 𝑓𝑓) 

if and only if 

 𝜓𝜓(𝑥𝑥) =  �1 −  𝐹𝐹(𝑥𝑥)�
1
𝛿𝛿−1, 𝑥𝑥 ∈  (𝑒𝑒;  𝑓𝑓). 

REMARK 4.2. For (𝑒𝑒,𝑓𝑓) =  (0,∞),𝛼𝛼 =  1, 𝜓𝜓(𝑥𝑥) =  𝑒𝑒−(𝑒𝑒𝑎𝑎𝑎𝑎−1) and 𝛿𝛿 = 𝑏𝑏
𝑎𝑎+𝑏𝑏

 , Proposition 4.4 
provides a characterization of OLLGo for 𝛼𝛼 =  1. 

5. Estimation 
Let 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 be a random sample of size n from the 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑎𝑎;  𝑏𝑏;  𝛼𝛼) distribution and 𝚯𝚯 =

 (𝑎𝑎;  𝑏𝑏;  𝛼𝛼) be the unknown parameter vector. The loglikelihood function is given by 



𝑙𝑙(𝚯𝚯) =  𝑛𝑛 log(𝛼𝛼𝑏𝑏)

+  𝑎𝑎�𝑥𝑥𝑖𝑖  +  𝛼𝛼
𝑛𝑛

𝑖𝑖=1

� log(1 −  𝑡𝑡𝑖𝑖) +  (𝛼𝛼 −  1)
𝑛𝑛

𝑖𝑖=1

� log(𝑡𝑡𝑖𝑖) −  2
𝑛𝑛

𝑖𝑖=1

� log(𝑡𝑡𝑖𝑖𝛼𝛼 +  (1 −  𝑡𝑡𝑖𝑖)𝛼𝛼)
𝑛𝑛

𝑖𝑖=1

, 

where 𝑡𝑡𝑖𝑖  =  1 −  exp(−𝑏𝑏
𝑎𝑎

 (𝑒𝑒𝑎𝑎𝑎𝑎𝑖𝑖 −  1)). The maximum likelihood estimation (MLE) of 𝛩𝛩 is obtained by 
solving the nonlinear equations, 𝑈𝑈(𝚯𝚯)  = (𝑈𝑈𝑎𝑎(𝚯𝚯);𝑈𝑈𝑏𝑏(𝚯𝚯);𝑈𝑈𝛼𝛼(𝚯𝚯))𝑇𝑇 =  𝟎𝟎, where  

𝑈𝑈𝛼𝛼(𝚯𝚯) =
𝜕𝜕𝑙𝑙(𝚯𝚯)
𝜕𝜕𝜕𝜕

=
𝑛𝑛
𝛼𝛼

+ � log�𝑡𝑡𝑖𝑖(1 −  𝑡𝑡𝑖𝑖)� −  2
𝑛𝑛

𝑖𝑖=1

�
𝑡𝑡𝑖𝑖𝛼𝛼log 𝑡𝑡𝑖𝑖  +  (1 −  𝑡𝑡𝑖𝑖)𝛼𝛼 log(1 −  𝑡𝑡𝑖𝑖)

𝑡𝑡𝑖𝑖𝛼𝛼 +  (1 −  𝑡𝑡𝑖𝑖)𝛼𝛼

𝑛𝑛

𝑖𝑖=1

, 

𝑈𝑈𝑎𝑎(𝚯𝚯) =
𝜕𝜕𝑙𝑙(𝚯𝚯)
𝜕𝜕𝑎𝑎

=  𝑛𝑛𝑥̅𝑥 −  𝛼𝛼�
𝑡𝑡𝑖𝑖

(𝑎𝑎)

1 −  𝑡𝑡𝑖𝑖

𝑛𝑛

𝑖𝑖=1

+ (𝛼𝛼 −  1)�
𝑡𝑡𝑖𝑖

(𝑎𝑎)

𝑡𝑡𝑖𝑖
−  2𝛼𝛼

𝑛𝑛

𝑖𝑖=1

�𝑡𝑡𝑖𝑖
(𝑎𝑎)  ×

𝑡𝑡𝑖𝑖𝛼𝛼−1 −  (1 −  𝑡𝑡𝑖𝑖)𝛼𝛼−1

𝑡𝑡𝑖𝑖𝛼𝛼 + (1 −  𝑡𝑡𝑖𝑖)𝛼𝛼

𝑛𝑛

𝑖𝑖=1

,  

𝑈𝑈𝑏𝑏(𝚯𝚯) =
𝜕𝜕𝑙𝑙(𝚯𝚯)
𝜕𝜕𝑏𝑏

=
𝑛𝑛
𝑏𝑏
− 𝛼𝛼�

𝑡𝑡𝑖𝑖
(𝑏𝑏)

1 −  𝑡𝑡𝑖𝑖
+  (𝛼𝛼 −  1)

𝑛𝑛

𝑖𝑖=1

�
𝑡𝑡𝑖𝑖

(𝑏𝑏)

𝑡𝑡𝑖𝑖
−  2𝛼𝛼

𝑛𝑛

𝑖𝑖=1

�𝑡𝑡𝑖𝑖
(𝑏𝑏)  ×

𝑡𝑡𝑖𝑖𝛼𝛼−1 −  (1 −  𝑡𝑡𝑖𝑖)𝛼𝛼−1

𝑡𝑡𝑖𝑖𝛼𝛼 +  (1 −  𝑡𝑡𝑖𝑖)𝛼𝛼

𝑛𝑛

𝑖𝑖=1

 . 

Note that 

𝑡𝑡𝑖𝑖
(𝑎𝑎)  =

𝜕𝜕𝑡𝑡𝑖𝑖
𝜕𝜕𝑎𝑎

= �−
𝑏𝑏𝑏𝑏𝑖𝑖
𝑎𝑎
𝑒𝑒𝑎𝑎𝑎𝑎𝑖𝑖  

𝑏𝑏
𝑎𝑎2

 (𝑒𝑒𝑎𝑎𝑎𝑎𝑖𝑖 −  1))(1−  𝑡𝑡𝑖𝑖� 

and 

𝑡𝑡𝑖𝑖
(𝑏𝑏)  =

𝜕𝜕𝑡𝑡𝑖𝑖
𝜕𝜕𝑏𝑏

=
1
𝑎𝑎

(𝑒𝑒𝑎𝑎𝑎𝑎𝑖𝑖 −  1)(1 −  𝑡𝑡𝑖𝑖). 

By Referring to Gleaton and Rahman (2010, 2014), there are situations in which some of the 
regularity conditions are not necessarily satisfied for certain subsets of the interior of the parameter 
space for certain GLL-families of distributions. We will check these regularity conditions for this 
proposed distribution OLLGo in our future work. So, by assuming that the regularity conditions hold 
then asymptotically 

𝑛𝑛(𝚯𝚯� − 𝚯𝚯) ~ 𝑁𝑁3(0, 𝐼𝐼(𝚯𝚯)−1), 

where 𝐼𝐼(𝚯𝚯) is the expected Fisher information matrix. This asymptotic behavior is valid if 𝐼𝐼(𝚯𝚯) 
replaced by 𝐽𝐽𝑛𝑛(𝚯𝚯�), i.e., the observed Fisher information matrix evaluated at 𝚯𝚯� , see [9]. 

5.1. The other estimation methods 
There are several approaches to estimating the parameters of distributions, and each of them 

has its characteristic features and benefits. In this subsection, three of these methods are briefly 
mentioned and numerically investigated in the simulation study. A useful summary of these methods 
can be found in Dey et al. (2017). Here {𝑡𝑡𝑖𝑖:𝑛𝑛;  𝑖𝑖 =  1, 2, … ,𝑛𝑛} is the associated order statistics and 𝐹𝐹 is 
the distribution function of OLLGo distribution. 

5.1.1. Weighted least square estimators 
The Weighted least square estimators (WLSE) was introduced by Swain et al. (1988). The 

WLSE's is obtained by minimizing 



𝑆𝑆WLSE(𝑎𝑎, 𝑏𝑏,𝛼𝛼) = �
(𝑛𝑛 +  1)2(𝑛𝑛 +  2)
𝑖𝑖(𝑛𝑛 −  𝑖𝑖 +  1) �𝐹𝐹(𝑡𝑡𝑖𝑖:𝑛𝑛;  𝑎𝑎, 𝑏𝑏,𝛼𝛼) −

𝑖𝑖
𝑛𝑛 +  1

�
2𝑛𝑛

𝑖𝑖=1

 

with respect to 𝑎𝑎, 𝑏𝑏 and 𝛼𝛼. 

5.1.2. Cramr-von-Mises estimator  
Cramér-von-Mises Estimator (CVM) was introduced by Choi and Bulgren (1968). The CVMs is 

obtained by minimizing the following function 

𝑆𝑆CVM(𝑎𝑎, 𝑏𝑏,𝛼𝛼) =
1

12𝑛𝑛
+ ��𝐹𝐹(𝑡𝑡𝑖𝑖:𝑛𝑛;  𝑎𝑎, 𝑏𝑏,𝛼𝛼) −

2𝑖𝑖 −  1
2𝑛𝑛

�
2𝑛𝑛

𝑖𝑖=1

. 

5.1.3. Anderson-Darling and right-tailed Anderson-Darling estimators 
The Anderson Darling (ADE) and Right-tailed Anderson Darling estimators (RTADE) were 

introduced by Anderson and Darling (1952). The ADE's and RTADE's are obtained by minimizing with 
respect to 𝑎𝑎, 𝑏𝑏 and 𝛼𝛼, the function 

𝑆𝑆ADE(𝑎𝑎, 𝑏𝑏,𝛼𝛼) =  −𝑛𝑛 −
1
𝑛𝑛
�(2𝑖𝑖 −  1){log 𝐹𝐹(𝑡𝑡𝑖𝑖:𝑛𝑛;  𝑎𝑎, 𝑏𝑏,𝛼𝛼)  +  log 𝐹𝐹�(𝑡𝑡𝑖𝑖:𝑛𝑛;  𝑎𝑎, 𝑏𝑏,𝛼𝛼)}
𝑛𝑛

𝑖𝑖=1

, 

where 𝐹𝐹�(⋅) =  1 −  𝐹𝐹(⋅). 

6. Simulation study 
In this subsection, the behaviour of the MLEs of the parameters of the OLLGo distribution has 

been assessed via simulation. To verify the validity of the MLEs, the bias and the mean square error 
(MSE) of MLEs have been checked. Samples of size 𝑛𝑛 =  20, 25, … , 200, from 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 (𝑎𝑎, 𝑏𝑏,𝛼𝛼)  =
(2, 0.05, 1.1), with (𝑎𝑎, 𝑏𝑏,𝛼𝛼)  =  (2, , 0.05, 1.1) have been generated. To estimate the MLEs, the optim 
function (in the stat package) and BFGS method in R software have been used. We replicate these 
steps for 𝑟𝑟 =  200 times. If 𝝃𝝃 =  (𝑎𝑎, 𝑏𝑏,𝛼𝛼), for the ith replication 𝑖𝑖 =  1, 2, … , 200 the MLEs are 
obtained as 𝝃𝝃�𝒊𝒊  =  (𝑎𝑎�𝑖𝑖, 𝑏𝑏�𝑖𝑖,𝛼𝛼�𝑖𝑖). We Compute the biases and MSEs as 

(6.1) 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑟𝑟(𝝃𝝃)�  =
1
𝑟𝑟
�(𝝃𝝃�𝑖𝑖 −  𝝃𝝃𝑖𝑖)
𝑟𝑟

𝑖𝑖=1

, and   𝑀𝑀𝑀𝑀𝑀𝑀𝑟𝑟(𝝃𝝃)�  =
1
𝑟𝑟
�(𝝃𝝃�𝑖𝑖 −  𝝃𝝃𝑖𝑖)2
𝑟𝑟

𝑖𝑖=1

, for 𝝃𝝃 =  (𝑎𝑎, 𝑏𝑏,𝛼𝛼). 

Figures 3, 4 respectively reveal how the three biases, MSEs vary with respect to 𝑛𝑛. As expected, the 
Biases and MSEs of the estimated parameters converge to zero while 𝑛𝑛 growing. 



 
Fig. 3. Bias of 𝑎𝑎�, 𝑏𝑏�,𝛼𝛼� versus 𝑛𝑛 for OLLGo when (𝑎𝑎, 𝑏𝑏,𝛼𝛼)  =  (2, 0.05, 1.1) 
 

In order to explore the estimators introduced above, we consider one model that has been 
used in this section and investigate MSE of estimators for different samples. We consider the sample 
sizes of the 𝑛𝑛 =  30, 35,⋯200 with 𝑟𝑟 =  200 replications and we take (𝑎𝑎, 𝑏𝑏,𝛼𝛼)  =  (2, 0.05, 1.1). 
Then the biases and MSEs formulas that are mentioned in equation (6.1) are calculated. 

 
Fig. 4. MSE of 𝑎𝑎�, 𝑏𝑏�,𝛼𝛼� versus n for OLLGo when (𝑎𝑎, 𝑏𝑏,𝛼𝛼)  =  (2, 0.05, 1.1) 
 

To obtain the value of the estimators, we have used the optima function and BFGS method in R, 
again. The results of the simulations of this subsection are shown in Figures (5) and (6). 



A general result about above figures is that MSE plots for three parameters (𝑎𝑎, 𝑏𝑏,𝛼𝛼) will 
approach zero as the sample size increases for all methods WLSE, CVM, and ADE and this verifies the 
validity of the these estimation methods and numerical calculations for the parameters of OLLGo 
distribution. Further results are mentioned below 

• For estimating 𝑎𝑎,ADE method has the minimum amount of bias. 
• For estimating 𝑏𝑏, ADE method has the minimum amount of bias. 
• For estimating 𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑎𝑎, ADE method has the minimum amount of bias. 
• For estimating 𝑎𝑎, ADE method has the minimum amount of MSE. 
• For estimating 𝑏𝑏, ADE method has the minimum amount of MSE. 
• For estimating 𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑎𝑎, ADE method has the minimum amount of MSE. 

 

 
Fig. 5. Biases of 𝑎𝑎�, 𝑏𝑏�,𝛼𝛼� versus n for OLLGo when (𝑎𝑎, 𝑏𝑏,𝛼𝛼)  =  (2, 0.05, 1.1) for WLSE, CVM, and ADE methods 

7. Application of OLLG to real data set 
The following data set have been obtained from [1] and represents the lifetimes of 50 devices. 

The data are: 

0.1, 0.2, 1.0, 1.0, 1.0, 1.0, 1.0, 2.0, 3.0, 6.0, 7.0, 11.0, 12.0, 18.0, 18.0, 18.0, 18.0, 18.0, 21.0, 
32.0, 36.0, 40.0, 45.0, 45.0, 47.0, 50.0, 55.0, 60.0, 63.0, 63.0, 67.0, 67.0, 67.0, 67.0, 72.0, 75.0, 79.0, 
82.0, 82.0, 83.0, 84.0, 84.0, 84.0, 85.0, 85.0, 85.0, 85.0, 85.0, 86.0, 86.0. 

To analyze above data, we obtained the MLE's of the parameters (with standard deviations) for 
the distributions OLLGo (proposed distribution in this paper), OLLE ([27]), Go (Gompertz distribution), 
MO-EGG (Marshal-Olkin extended generalized Gompertz) introduced by [4]), Beta-Go (Beta-Gompertz 
introduced by [22]), Mc-Go (Mc Donald-Gompertz introduced by [29]), Kw-Go (Kumaraswamy 



Gompertz introduced by [31]) and GGo (generalized Gompertz introduced by [11]). Then, we 
calculated the Akaike information 

 
Fig. 6. MSE of 𝑎𝑎�, 𝑏𝑏�,𝛼𝛼� versus n for OLLGo when (𝑎𝑎, 𝑏𝑏,𝛼𝛼)  =  (2, 0.05, 1.1) for WLSE, CVM, and ADE methods 
 

criterion (AIC), Bayesian information criterion (BIC), Anderson-Darling (AC) and Cramér-von Mises 
(𝑊𝑊∗), Kolmogorov Smirnov (K-S) statistic and the P-Value of K. S test for each model. The results show 
that the OLLGo distribution yields the best fit. The plots of the densities (together with the data 
histogram) and cumulative distribution functions in Figure 7 confirm this conclusion. 

8. Conclusion 
Here we propose a new model, called the OLLGo distribution. Some mathematical properties of 

this model including explicit expansions for the ordinary and incomplete moments, quantile and mgf, 
mean deviations, and  

 Distribution        
 OLL-Go OLL-E Go MO-EGG Beta-G Mc-Go Kw-Go GGo 
𝑎𝑎�( s.e.) 0.0592 

(0.0058) 
0.0277 

(0.0062) 
0.0202 

(0.0057) 
0.0429 

(0.0042) 
0.0558 

(0.0094) 
0.0693 

(0.0135) 
0.0520 

(0.0077) 
0.0390 

(0.0044) 
𝑏𝑏� (s.e.) 0.0025 

(0.007) 
0.7615 

(0.1255) 
0.0097 

(0.0028) 
0.0022 

(0.0004) 
0.0044 

(0.0024) 
0.0037 

(0.0018) 
0.0035 

(0.0016) 
0.0022 

(0.0004) 
𝛼𝛼� (s.e.) 0.3661 

(0.0655) 
— 

(—) 
— 

(—) 
0.3178 

(0.1406) 
0.3285 

(0.0862) 
0.1242 

(0.1226) 
0.2661 

(0.0922) 
0.4540 

(0.0701) 
𝛽̂𝛽 (s.e.) — 

(—) 
— 

(—) 
— 

(—) 
2.3613 

(1.8029) 
0.2108 

(0.0924) 
0.0957 

(0.0847) 
0.3374 

(0.1353) 
— 

(—) 
𝑐̂𝑐 (s.e.) — 

(—) 
— 

(—) 
— 

(—) 
— 

(—) 
— 

(—) 
2.3719 

(2.3473) 
— 

(—) 
— 

(—) 



AIC 
CAIC 
BIC 
HQIC 
W 
A 
K-S 
p-value 

443.6125 
444.1343 
449.3486 
445.7969 
0.1280 
1.0262 
0.1385 
0.292 

482.8373 
483.0926 
486.6913 
484.2935 
0.4718 
2.8788 
0.2262 
0.0119 

474.6533 
474.9086 
478.4773 
476.1095 
0.2891 
1.8916 
0.1694 
0.1132 

454.8368 
455.7257 
462.4849 
457.7493 
0.1807 
1.3233 
0.1346 
0.3246 

451.1068 
451.9957 
458.7549 
454.0192 
0.1624 
1.2307 
0.1383 
0.2938 

449.3803 
450.7439 
458.9404 
453.0208 
0.1441 
1.141 

0.1252 
0.4126 

453.3934 
454.2823 
461.0415 
456.3059 
0.1786 
1.3262 
0.1337 
0.333 

455.5266 
456.0483 
461.2627 
457.7109 
0.2008 
1.4111 
0.1426 
0.2606 

Table 1. MLEs of the model parameters for the lifetimes of 50 devices data, the corresponding SEs and the AIC, 
CAIC,BIC, HQIC and K-S statistics 

 
Fig. 7. Plots of the estimated pdfs and cdfs OLLGo, OLLE, Go, Beta-Go, Kw-Go, Mc-Go, MO-EGGo and GGo 
models using the strengths of 1.5 cm glass fibers data 
 

order statistics are provided. The model parameters are estimated by the maximum likelihood 
estimation method. We prove empirically, by means of an application to a real data set, that the 
proposed family can give better fits than other models generated from well-known families. 
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9. Appendix A. 
THEOREM 1. Let (𝛺𝛺,ℱ;𝑷𝑷) be a given probability space and let 𝐻𝐻 =  [𝑎𝑎, 𝑏𝑏] be an interval for 

some 𝑑𝑑 <  𝑏𝑏 (𝑎𝑎 =  −∞, 𝑏𝑏 =  ∞ might as well be allowed). Let 𝑋𝑋 ∶   𝛺𝛺 →  𝐻𝐻 be a continuous random 
variable with the distribution function 𝐹𝐹 and let 𝑞𝑞1 and 𝑞𝑞2 be two real functions defined on 𝐻𝐻 such that 

E[𝑞𝑞2(𝑋𝑋) | 𝑋𝑋 ≥  𝑥𝑥]  =  E[𝑞𝑞1(𝑋𝑋) | 𝑋𝑋 ≥  𝑥𝑥]𝜂𝜂(𝑥𝑥);   𝑥𝑥 ∈  𝐻𝐻, 

is defined with some real function 𝜂𝜂. Assume that 𝑞𝑞1, 𝑞𝑞2  ∈  𝐶𝐶1(𝐻𝐻), 𝜉𝜉 ∈  𝐶𝐶2(𝐻𝐻) and 𝐹𝐹 is twice 
continuously differentiable and strictly monotone function on the set H. Finally, assume that the 
equation 𝜂𝜂𝜂𝜂1  =  𝑞𝑞2 has no real solution in the interior of 𝐻𝐻. Then 𝐹𝐹 is uniquely determined by the 
functions 𝑞𝑞1, 𝑞𝑞2 and 𝜂𝜂, particularly 

𝐹𝐹(𝑥𝑥) = �𝐶𝐶 �
𝜂𝜂′(𝑢𝑢)

(𝑢𝑢)𝑞𝑞1(𝑢𝑢)−  𝑞𝑞2(𝑢𝑢)
� exp(−𝑠𝑠(𝑢𝑢))𝑑𝑑𝑑𝑑

𝑥𝑥

𝑎𝑎

, 

where the function 𝑠𝑠 is a solution of the differential equation 𝑠𝑠′  = 𝜂𝜂′𝑞𝑞1
𝜂𝜂𝜂𝜂1−𝑞𝑞2

  and 𝐶𝐶 is the normalization 

constant, such that ∫𝐻𝐻 𝑑𝑑𝑑𝑑 =  1. 

We like to mention that this kind of characterization based on the ratio of truncated moments 
is stable in the sense of weak convergence (see, Glänzel [14]), in particular, let us assume that there is 
a sequence {𝑋𝑋𝑛𝑛} of random variables with distribution functions {𝐹𝐹𝑛𝑛} such that the functions 𝑞𝑞1𝑛𝑛, 𝑞𝑞2𝑛𝑛 
and 𝜂𝜂𝑛𝑛 (𝑛𝑛 ∈  ℕ) satisfy the conditions of Theorem 1 and let 𝑞𝑞1𝑛𝑛  →  𝑞𝑞1, 𝑞𝑞2𝑛𝑛  →  𝑞𝑞2 for some 
continuously differentiable real functions 𝑞𝑞1 and 𝑞𝑞2. Let, finally, 𝑋𝑋 be a random variable with 
distribution 𝐹𝐹. Under the condition that 𝑞𝑞1𝑛𝑛(𝑋𝑋) and 𝑞𝑞2𝑛𝑛(𝑋𝑋) are uniformly integrable and the family 
{𝐹𝐹𝑛𝑛} is relatively compact, the sequence 𝑋𝑋𝑛𝑛 converges to 𝑋𝑋 in distribution if and only if 𝜂𝜂𝑛𝑛 converges to 
𝜂𝜂, where 

𝜂𝜂(𝑥𝑥)  =
𝐸𝐸[𝑞𝑞2(𝑋𝑋) | 𝑋𝑋 ≥  𝑥𝑥]
𝐸𝐸[𝑞𝑞1(𝑋𝑋) | 𝑋𝑋 ≥  𝑥𝑥]

. 

This stability theorem makes sure that the convergence of distribution functions is reflected by 
corresponding convergence of the functions 𝑞𝑞1,  𝑞𝑞2 and 𝜂𝜂, respectively. It guarantees, for instance, the 
`convergence' of characterization of the Wald distribution to that of the Lévy-Smirnov distribution if 
𝛼𝛼 → ∞. 

A further consequence of the stability property of Theorem 1 is the application of this theorem 
to special tasks in statistical practice such as the estimation of the parameters of discrete distributions. 



For such purpose, the functions 𝑞𝑞1,  𝑞𝑞2 and, specially, 𝜂𝜂 should be as simple as possible. Since the 
function triplet is not uniquely determined it is often possible to choose 𝜂𝜂 as a linear function. 
Therefore, it is worth analyzing some special cases which helps to find new characterizations reflecting 
the relationship between individual continuous univariate distributions and appropriate in other areas 
of statistics. 
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