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Abstract: 
The burgeoning growth of Big Data not only matures and improves the data management efficiency and useful 
information extraction techniques, but also motivates the computational science researchers to come up with a 
new method or solution that can be repurposed for problems across the domain. Computational Sustainability 
joins this movement for a transferrable computational technique for sustainable development and a better 
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future. Internet-of-energy (IoE) - leveraging IoT to smart grids associated with advanced analytics - is one of the 
prominent efforts in this regard. This paper presents a qualitative analysis on the elements of the energy and 
power management ecosystem in the United States. This qualitative study includes the Grid Overview of the 
United States; Weather and Climate and its impact on the entire energy generation and consumption dynamics; 
Peak Load Forecasting and its techniques and burgeoning challenges; Variable Renewable Energy, its reliability 
challenges and how we can take advantage of this variability; Commodity Prices and its criticality; Energy 
Disaggregation and its impact on consumption-awareness; and Generation Expansion and Decision Analysis. 
Besides, IoE integration, associated trade-offs, challenges, research opportunities and transferable 
computational techniques are addressed in this communication. Furthermore, schematics and quantitative 
analysis are presented in support of this study. 

 

Information flow of each of the aspects in this paper. 

SECTION I. Introduction 
Computational Sustainability, a massively interdisciplinary field of study, lies in the intersection of the multiple 
domains, such as applied mathematics, statistics, computer and information science, electrical and electronic 
engineering, economics, environmental science, operational research, and policymaking [1], [2]. The overarching 
goal of this field of study is leveraging the knowledge of these multiple domains to meet the essentials and 
demands of the current generation without compromising the future generation’s potentiality to confront their 
known needs and prosper [3]–[4][5]. Computational Sustainability joins the movement of sustainable 
development through developing data-driven and robust computational models and adopting scientific methods 
to optimize decisions regarding resource allocation and management with the motivation to solve the most 
challenging sustainability problems [6]–[7][8][9]. The rise of Big Data and advanced analytics have contributed to 
the recent surge in this effort [10], [11]. 

The advent of the Big Data era brings scopes and opportunities for computational sustainability research 
regarding multi-dimensional challenges, complexities of the problems, scalability issues, computational efficacy, 
and impact towards overarching motivation [12]–[13][14]. This abundance of data not only comes with ample 
information and potential knowledge but also offers a scientific approach driven by multi-source data and 
enhances the efficiency and accuracy of problem-solving. That is why the growth of extensive multi-dimensional 
data and computational sustainability are crucial to meet the sustainability challenges [12], [15]. They contribute 
to addressing tradeoffs in scientific decision making, understanding complicated systems, and explaining 
uncertainties with complex reasoning [16], [17]. CompSustNet, a unique virtual network led by Carla Gomez at 
Cornell University and supported by the National Science Foundation (NSF) of the United States, establishes on 
the research, results, and achievements of the ICS (Institute of Computational Sustainability) [1], [2], [18]. It 
unites and helps more and more scholars, across the domain, use data mining techniques to solve the most 
complex and pressing problems of this time, such as efficient and reliable energy management [19], [20], 
healthcare [21]–[22][23], biodiversity loss protection, addressing issues regarding climate change and 
environmental collapse [24], [25], poverty eradication [26], [27], meteorology [28]–[29][30], disaster 
management [31], [32], and material discovery for renewables sources [33]–[34][35][36]. The most compelling 



aspect of this virtual network – besides making a platform for computational science researchers to put their 
muscle towards making the world a more sustainable and livable place – is that a new method or solution 
created to solve one particular problem can be repurposed for another distinct problem. 

One of the major attention of computational sustainability research is centered around the question of how we 
can leverage Big Data accumulated from the smart grid components and raise collective awareness and 
proactive demeanor towards smart and sustainable energy management [37], [38]. Besides Big Data, the recent 
advancement of information and communication technologies allows the regime switch from a traditional 
“predict (forecast) and provide” approach to a more flexible and responsive demand-based approach of power 
system management. The purpose of this approach is to reach several policy targets regarding sustainability, 
such as reducing carbon emissions, generating power from renewable resources to a certain percentage, 
smoothing peak demand, assuring a better rate of return on investments, and preventing network 
overprovisioning [15], [39], [40]. 

Smart Grid technology facilitates more accurate energy-loss monitoring and more precise control and adaptive 
techniques by escalating the intelligence and capacity of the energy distribution, as well as the control system, 
from the central cores to numerous peripheral nodes [13], [41], [42]. On a different note, recent studies showed 
that IoT is looming as a significant trendsetter in realizing the advancement of information and communication 
technologies, and analytics at a considerable dimension. IoT enables connecting, monitoring, and controlling the 
physical objects used in our day-to-day life by extending the web paradigm. It engenders more frequent and 
impactful human-to-machine and machine-to-machine interactions in everyday life. Smart Grid is one of the 
recent inclusions in this avenue, realizing the concept of the Internet of Energy (IoE) [43]–[44][45][46]. 

The overarching motivation behind the Internet of Energy (IoE) is assuring a flexible but highly reliable and 
resilient, cost-effective, and efficient power supply network in the combination of large-scale centralized 
generators and small-scale renewable sources. IoE can convincingly be defined as a network infrastructure that 
enables a real-time balance between the local and global generation and storage capability based on the energy 
demand of the consumer [47]. It allows for a high level of consumer awareness and involvement with the help of 
advanced analytics. From the functional point of view, IoE, de facto, integrates power distribution, energy 
storage, grid monitoring, and synchronous and asynchronous communication, as illustrated in Figure 1. This 
network infrastructure is built on the standard and interoperable communication transceivers, gateways, and 
protocols. Besides, by taking advantage of widely accepted security and privacy frameworks, it can assure 
seamless interoperability and broad connectivity. And, by leveraging the power of cloud computing systems, it 
can promote service virtualization and distribution [48]. 

 
FIGURE 1. Functional layers of IoT application, accumulating physical, data and operational layers with 
communication and power lines. 
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To benefit the new entrants and scientists in the domain of smart grid and IoE around the world, the authors of 
this article decided to take a step back and take a more in-depth look at specific research issues before delving 
into the IoE integration, challenges, and possible solutions to address these. These research issues are not only 
studied for long to understand the entire dynamics of energy production, transmission, distribution, and 
consumptions system but also anticipated to be addressed by IoE in the large scale deployment. In this paper, 
we primarily discuss the Grid Overview of the United States; Weather and Climate and its impact on the entire 
energy generation and consumption dynamics; Peak Load Forecasting and its techniques and burgeoning 
challenges; Variable Renewable Energy, its reliability challenges and how we can take advantage of this 
variability; Commodity Prices and its criticality; Energy Disaggregation and its impact in consumption awareness; 
and Generation Expansion and Decision Analysis and trade-offs before addressing IoE integration, and 
challenges. The article manifests how these research issues are correlated with each other in the energy 
internet. This qualitative study pursues a process of scientific inquiry that seeks an in-depth understanding of 
scientific phenomena and its cause and effect in respective contextual settings. It primarily concentrates on 
answering “why” rather than “what” of the scientific phenomena and entrusts on the evidence manifested in 
the literature, in addition to comments and suggestions by the domain experts at Oregon Renewable Energy 
Center (OREC) at Oregon, United States. 

The organization of this article is as follows. Section II presents an overview of the United States energy grid. 
Load forecasting is outlined in Section III, highlighting the impact of weather and climate and state-of-the-arts 
forecasting techniques. Section IV features the penetration of renewable energy, investigating the variability of 
renewables and the effect of commodity prices. Section V delves into understanding energy consumption and 
explores energy disaggregation techniques and generation expansion decision analysis. In section VI, we dissect 
our discussion on IoE into IoE architecture, broader impact, challenges, computational sustainability and IoE, 
future works, and opportunities. Considering the breadth of the article, Figure 2 summarizes each of the 
sections and subsections to help the reader navigating concepts and research issues discussed in this paper. 

 
FIGURE 2. Information flow of each of the aspects in this paper. 
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SECTION II. Grid Overview of the United States 
With the evolution of the energy industry, utility companies- for the very first time in the United States- adopted 
the joint operations in order to share the peak coverage and backup power in the 1920s after a more-than-fifty-
years-adherence to the conception electric energy needs to be produced near the device or service requiring 
that particular energy. Then, in this regard, the Public Utility Holding Company Act was passed in 1934, realizing 
the electric grid of the United States with outlined restrictions and regulatory oversight of operations. Later on, 
to date, the Energy Policy Act of 1992 and the Energy Policy Act of 2005 are considered as the stepping stone of 
the modern electric grid of the United States [49]–[50][51]. The first one granted the electric generation 
companies open access to the transmission line network and initiated competition in power generation as 
opposed to vertical monopolies, where generation, transmission, and distribution were administered by a single 
authority [52]. The later one promoted the alternative energy production and greenhouse emission free cutting-
edge technologies with incentives and loan guarantees [53], [54]. 

United States interconnects are synchronized at 60 Hz, unlike those of Asia and Europe operate at 50 Hz. The 
interconnects in the United States are tied to each other either via DC ties (HVDC power transmission lines) or 
with VFTs (variable frequency transformer), allowing a controlled flow of energy, and at the same time, isolating 
the each side’s independent AC frequencies functionally. The advantages of having synchronous zones 
consolidated by the utility grid include pooling of generation, pooling of load, common provisioning of reserves, 
opening of the markets, and collective assistance in the event of interruptions [55]. On the contrary, the 
possibility of repercussions (like a chain reaction) across the entire grid, if any problem happens in one part, is a 
certain threat in the case of synchronous grid [56]. The United States synchronous grid is presented in Figure 3, 
consisting of about 186,411 mi operated by more than 500 companies [56]. 

 
FIGURE 3. United States synchronous grid of 186, 411 miles. 
 

The United States utility electric grid is expected to confront certain challenges in the years to come posed by 
the modern power generation and distribution systems. Reference [57] identified the challenges and the 
reasons behind it, and contemplated the possible solutions of them in a comprehensive fashion. In a nutshell, 
the challenges- categorized there based on the severity and impact- are cyber threats and attacks in utility, 
challenges in transmission system, from aging infrastructure, regulatory challenges, challenges in workforce, 
challenges from distributed generation and mixed sources of generation, challenges from the intermittent 
nature of renewable energy sources, challenges from microgrid and smart grid, challenges from communication, 
challenges from energy storage systems and evolving technologies, and challenges from system complexity and 
cost issues. Here, their feasible solutions- with detailed explanation and depiction- include cyber security 
measures, upgrading the system infrastructure, new business strategies, compensating for the intermittency of 
renewables (concentrated on the law of large number, power of prediction, incentivizing energy production at 
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the right time and place), and the proper use of energy storages. Later, they presented the severity and 
frequency analysis for each of the challenges in the United States context. 

Super Grid, commonly known as Mega Grid, aims to considerably advance the transmission capacity with a 
particular policy that include effectively enabling the renewable energy industry to sell electricity to distant 
markets, increasing intermittent energy source usage by distributing them across the extensive geological 
region, and trimming the congestion that averts the electricity markets from succeeding. Then, to promote the 
concept of integrating localized generation into the centralized generation-based distribution, microgrid 
technology has been introduced. In 2010, Office of Electricity Delivery and Energy Reliability of the US 
Department of Energy (DOE) – incorporating the final amendment made in 2017 – proposed the definition of 
Microgrid (MG) as it is a group of interconnected loads and distributed energy resources within clearly defined 
electrical boundaries that acts as a single controllable entity with respect to the grid, can connect and 
disconnect from the grid to enable it to operate in both grid-connected or island-mode, considering that a 
remote MG is a variation of an MG that operates in islanded condition [58]. DOE started their major MG 
program in 2008, initiating with nine RDSIs (Renewable and Distributed Systems Integration) depicted as green 
points in Figure 4. These projects – with $100M budget equally financed by the DOE and co-funders – aimed to 
achieve a minimum 15 peak load reductions. The red points illustrate the projects under SPIDERS program 
(Smart Power Infrastructure Demonstration for Energy Reliability and Security) launched in 2010. The SPIDER 
program was introduced to meet the fact that almost all the military bases are located in the resource-limited 
setups inadequately served by the utility grid where highly reliable power is often required. The first three 
among this effort are Hickam Air Force Base and Camp Smith in Hawaii, and Fort Carson in Colorado. Though the 
federal programs are the cardinal efforts to the United States MG research in the early stage, private sector 
activities in the recent years are noteworthy. The large commercial organizations, such as educational campus, 
medical institutes, and industrial sites, focused on building self-generation projects. In a dramatic fashion, these 
efforts made 2011–2012 a pivotal year in MG development for the United States. DOE defined the next-
generation MG system with certain specific goals expected to achieve by 2020. The goals are to establish MG 
systems of a capacity<10 MW in commercial-scale capable of curtailing outage time of required loads by more 
than 98% at a cost comparable to the nonintegrated-baseline solutions, while offering more than 20% 
improvement both in emission reduction and energy efficiency. Research shows control and protection are the 
significant challenges to meet this goal [58]. 

 
FIGURE 4. Geographical distribution of Federal MG assessment and demonstration projects in the United States. 
 

According to North Carolina Clean Energy Technology Center, in 2017, 37 states – well-reflected by 82 relevant 
bills introduced in the different regions of the United States – endeavored to modernize electric grid to make it 
more interactive and resilient. These endeavors include deploying advanced metering infrastructure, smart grid, 
and offering time-varying rates for the residential consumers. Recently, in August 2018, a policy paper has been 
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published with five major recommendations to modernize the United States electric power grid. It points out 
making the federal permit process more efficient and effective for advanced energy projects, inspiring grid 
planners look at the alternatives to making investment in transmission, promoting energy efficiency and 
allowing energy storage to compete with the additional generation, allowing big consumers to adopt their own 
source for electricity, and letting both the consumers and utilities to take advantage leveraging the cloud 
computing facilities [59], [60]. 

21st Century’s electrical grid in the United States is blessed with smart grid technology that leverages the power 
of two-way communication and distributed-intelligent devices, assuring improved delivery network. With the 
objective to enable utilities predict their demand efficiently and involve customers in smart-time-of-use-tariff, 
smart grid development was facilitated in the United States by Energy Policy Act of 2005 and Energy 
Independence and Security Act of 2007. A recent surge has been observed in the literature regarding different 
systems and aspects of smart grid. We can categorize these research into three clusters: infrastructure system 
research, research on the management system, and research on the protection system. The infrastructure 
system research are aiming to meet advanced electricity generation, uninterrupted delivery, and intelligent 
consumption; smart information metering, monitoring, and management; and last but not the least, advanced 
interactive communication technology. Research on the management system- leveraging advanced machine 
learning, optimization, game-theoretical approaches- include improving energy efficiency, demand profile, cost, 
utility, and carbon emission. Most of the research on protection systems focus on grid reliability, failure, and 
privacy protection, security services [61], [62]. 

In 2017, Utility-scale facilities generated about 4.03 trillion KWh of electricity in the United States. Among them, 
majority (about 67%) of this generation was from fossil fuel, 19% was from nuclear energy, and roughly 14% was 
from renewable energy sources. Apart from that, United States Energy Information Administration reckoned an 
additional generation of 24 billion kWh from the small-scale solar photovoltaic systems, such as small-scale solar 
photovoltaic systems that are installed on building rooftops, in 2017 calendar year [63]. Figure 5 illustrates the 
distribution of generation from different sources. Then, Figure 6 shows the annual share trend in United States 
for electricity generation by source from 1950 to date and Figure 7 depicts the evolution of the generation mix 
contributing to the United States electricity generation over the time. The generation mix is highly affected by 
the resource availability of the particular state. The following figure (Figure 8) illustrates the net generation 
distribution of electricity by type and states [63]. 

 
FIGURE 5. Distribution of generation from different sources in the United States in 2017. 
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FIGURE 6. Annual share trend in United States for electricity generation by source from 1950 to date. 

 
FIGURE 7. Evolution of the generation mix contributing to the United States electricity generation over the time. 

 
FIGURE 8. Net generation distribution of electricity by type and states in the United States. 
 

This varying-nature of resources with time and region, along with other commercial factors, have a predominant 
influence on the tariff. In 2006-2007, average electricity tariff in the united states- though it varies state to state- 
was higher than Canada, Australia, France, and Sweden, but relatively lower than that of the United Kingdom, 
Germany, and Italy among the developed countries, and the average residential bill was noted $100 per month. 
A statistics of 2008 shows the United States average electricity tariff was 9.82 Cents/kWh, varying from 6.7 
Cents/kWh (in West Virginia) to 24.1 Cents/kWh (in Hawaii). Compared to that, data of October 2018 reveals 
that the average electricity tariff is 12.87 Cents/kWh, varying from 9.11 Cents/kWh (in Louisiana) to 32.46 
Cents/kWh (in Hawaii). It demonstrates a 0.5% rise in price compared to 2017 [64]. 
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United States grid is organized administratively in the following order: Reliability organizations; Balancing 
authorities that include independent system operators, regional transmission organizations, and vertically 
integrated utilities; Generators comprised of utilities and independent power providers; and Load Serving 
Entities [65]. NERC (North American Electricity Reliability Corporation) is the not-for-profit organization to assure 
reliability of the north american bulk power system. They are in charge of monitoring and enforcing compliance 
with standards, besides being the authority of the data source for system reliability and system failure. Since the 
United States power system is interconnected physically, any problem occured in one area may influence other 
interconnected systems, and NERC is centrally responsible to take care of it and assure reliability. Besides, 
NERC’s major responsibilities include working with all the stakeholders to develop well-defined standards for 
power system operation, monitoring; and enforcing compliance with those standards, assessing resource 
adequacy, and providing educational and training resources as a part of accreditation program to ensure power 
system operators remained qualified and proficient in operation. NERC oversees eight regional reliability 
entities. The sub-parts of NERC are WECC (Western Electricity Coordinating Council), MRO (Midwest Reliability 
Organization), NPCC (Northeast Power Coordinating Council), SPP (Southwest Power Pool), RFC (Reliability First 
Corporation), SERC (SERC Reliability Corporation), FRCC (Florida Reliability Coordinating Council), TRE (Texas 
Reliability Entity). Traditional wholesale electricity market, which are vertically integrated so that they own and 
are responsible for the generation, transmission and distribution systems to serve the electricity consumers, 
exists in the south east, south west, and north west. In other part of the United States, the power systems are 
managed by Independent System Operators (ISO) and Regional Transmission Organizations (RTO), facilitating 
open access to transmission. In particular, ISO operates the transmission system independently, and foster 
competition for electricity generation among the wholesale market participants [66], [67]. The extent of ISOs are 
visualized by Figure 9. 

 
FIGURE 9. Extent of ISOs in the United States. 
 

Each of the ISOs and RTOs have energy and ancillary services markets in which buyers and sellers can bid for or 
offer generation. These ancillary services include reserves, frequency regulation (grid needs to be operated at 
60Hz in the United States), and demand response. Though the vital sections of the United States operate under 
more traditional market structures, two-thirds of the nation’s electricity load is served in RTO regions [66]–
[67][68]. 

SECTION III. Load Forecasting 
A. Weather and Climate of the United States 
Weather and climate have an impact on both sides of the electricity industry- it drives the energy consumption 
demand, affects most of the noncombustible generation, and has an effect on electricity transmission and 
distribution. Before the expository narratives on the impacts, challenges, and state-of-the-art solutions, we need 
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a proper understanding of three factors and its interpretation: weather, climate, and extreme weather. Here, 
temperature change, precipitation, humidity, and wind speed are interpreted and interchangeably used as the 
weather. Climate refers to the average seasonal conditions for a particular geographical area. In our study, 
extreme weather will include droughts, floods, hurricanes, heat waves, and cold snaps; statistically rare weather 
events that have cataclysmic impacts. The weather elements that directly affect the demand are as follows: 
temperature, wind speed, cloud, visibility, and precipitation. For example, the temperature, being allied to wind 
speed, regulate heating or cooling demand. Besides, cloud, visibility, and precipitation are considered to 
estimate the level of daylight illumination, therefore affecting the lighting demand. Research shows that each of 
the attributes of these meteorological elements has weighted sensitivity to demand and the sensitivity weight 
varies with the geographical location of the representative region. To compare the impact of weather elements, 
the meteorological elements are scaled down to three specific factors: effective temperature, cooling power of 
the wind, and rate of precipitation [69]–[70][71]. 

Figure 10 shows why the demand side of the energy system is related to the weather and climate which is well-
reflected by the electricity consumption in US homes during 2018 (kWh/year). As has been observed from this 
figure, the cardinal electricity consumption in US homes is for space heating in wintertime and air conditioning 
in the summertime. Furthermore, the average length of wintertime in the US even intensifies the case. Besides, 
lighting and space heating engender a considerable amount of electricity consumption. Though lighting over the 
year is correlated with the weather and can be influenced by other factors, space heating in the wintertime and 
air conditioning in the summertime primarily depend on weather and climate. The relationship of Demand and 
Temperature is parabolically nonlinear, and the rationale behind that is when the temperature is low, it requires 
heating demand, and with the temperature rise the heating demand decreases, and there is a sweet 
temperature zone, in between 65F to 70F, when we do not need any heating and cooling. Again, after that 
point, we need cooling demand, and it increases with the rise of the temperature. Such parabolic nonlinearity 
encouraged us to study the impact of weather parameters on electricity demand separately: heating and cooling 
demand; in particular, using the concept of heating degree days and cooling degree days. 

 
FIGURE 10. Electricity consumption in US homes during 2018 (kWh/year). 
 

A degree day compares the ambient temperature to a standard temperature of 65F. The more severe the 
temperature, the higher the number of degree days. A higher number of degree days will require more energy 
for space heating or cooling. Figure 11 classifies the United States based on heating degree days [72], [73]. Here, 
the darker the red, the more the heating is required in the winter time. As has been observed from the Figure 
11, the west north central region of the United States, which includes North Dakota, South Dakota, Minnesota, 
Nebraska, Kansas, Iowa, and Missouri, requires most of the heating degree day demand. Figure 12 depicts the 
cooling degree day demand distribution over the United States [72]. Here, the darker the blue, the more the 
cooling is required in the summertime. It is evident from the figure that west south central region, which 
includes Oklahoma, Arkansas, Texas, and Louisiana, requires most of the cooling degree day demand in the 
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summertime, and conversely, east north central and west north central region exhibit the lowest cooling degree 
day requirement in summer. 

 
FIGURE 11. Region classification of the United States based on heating degree days. 

 
FIGURE 12. Region classification of the United States based on cooling degree days. 
 

There has been experiencing a continual net temperature increase in the United States over the years, so the 
electricity demand has been. The annual average temperature over the contiguous US (48 states excluding 
Alaska and Hawaii) has increased by 1.2F for the period 1986–2016 comparative to 1901–1960 and by 1.8F 
based on linear regression for the period 1895–2016. Both surface and satellite data consistently support the 
fact of rapid warming since 1979. Furthermore, Paleo-temperature evidence reveals that recent decades are the 
warmest of the preceding 1,500 years. As a result, the number of high-temperature records placed in the 
previous two decades considerably outstrips the number of low-temperature records. However, the Dust Bowl 
era of the 1930s remains the peak period for the extreme heat. Moreover, the annual average temperature over 
the contiguous US is projected to ascend about 2.5F for the period 2021–2050 corresponding to 1976–2005 in 
all RCP scenarios. In particular, much higher rises are expected by late century (2071–2100): 2.8–7.3F in a better 
case and 5.8–11.9F in the exacerbated scenario [74]. Figure 13 illustrates the temperature anomaly from 1901 
to 2015. 
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FIGURE 13. Temperature anomaly from 1901 to 2015 in the contiguous 48 states. 
 

Since population distribution is not uniform over the entire United States and population density has a strong 
impact on energy consumption, the US EIA (Energy Information Administration) use population-weighted degree 
days to model and project energy consumption. Mathematical modelings are involved in incorporating the 
impact of weather and climate on national electricity consumption. Reference [75] contributed to model the 
effect of summer temperature on electricity demand and consumption. This model includes three aspects: 
estimate the impacts of unusual weather (such as heat wave), consider the effects of governmental policies, 
assess the impacts of projected climate change on energy demand and supply. This model can be described 
as (1): 

𝐸𝐸 = 𝑎𝑎0 + 𝑎𝑎1𝐶𝐶𝐶𝐶𝐶𝐶 + 𝑎𝑎2𝐶𝐶𝐶𝐶𝐶𝐶(−1) + 𝑎𝑎3𝑌𝑌1 + 𝑎𝑎4𝑌𝑌2 − 𝑎𝑎5𝐻𝐻 

(1) 

Here, E, 𝐶𝐶𝐶𝐶𝐶𝐶, 𝐶𝐶𝐶𝐶𝐶𝐶(−1), H, 𝑌𝑌1, and 𝑌𝑌2 stand for weekly national electric output in billions of kWh, weekly 
national cooling degree day total, previous week’s national cooling degree day total, holiday factor, penultimate 
year growth factor, and last year growth factor. This is one of the earliest mathematical modeling that considers 
weather and climate change into account shows 𝑅𝑅2 of 0.96 and RMSE of 0.544. The recent models investigate 
the additional explanatory content of the weather and climate [75], [76]. Reference [77] incorporates residual 
temperature, along with specific humidity, in forecasting weather-dependent warm-season electricity demand. 
Apart from that, A hierarchical Bayesian regression model is presented in [77], [78] to predict summer 
residential electricity demand across the United States. 

The change of weather and climate directly impacts the variable renewable energy productions (hydropower, 
wind, and solar-based generation) besides that of conventional fossil fuel. A study shows that the north-west 
region of the United States confronts most of this challenge since Washington, Oregon, and Idaho essentially 
depends on renewable energy sources, particularly on hydropower. Though the blessings of immense 
hydropower resources assure extremely low carbon generation in these states, they experience a significant cut 
in their generation during drought time. Federal Columbia River Power System operated by Bonneville Power 
Administration, which extends through Canada, Montana, Idaho, Washington, and Oregon, is an excellent 
example to study the impact of weather and climate in a hydropower-based generation. Collectively, it is about 
23GW of hydropower capacity and meets 60% of the regional demand. Unlike the hydropower systems in the 
east coast, this system is snowmelt-dominated where most of the precipitation occurs as snow is stored 
throughout the winter time. Then, in the summertime, when the snow starts melting as water, and coincidently 
the demand of the electricity generation gets high, it helps in gearing up the generation. In recent years, the 
dynamics of this hydropower-based system, such as the amount of precipitation, the amount of melted water, 
and the timing of water melting, has been affected by climate change. 
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Figure 14 shows the anomaly between a normal atmospheric condition and the forecasted catastrophic 
condition (due to climate change) in the dynamics of this hydropower-based system. As has been seen for the 
normal condition, a snowmelt-dominated system naturally boosts up the resource flow to generate electricity 
when the demand is maximum [79]–[80][81][82]. Here, we observe when the electricity demand is relatively low 
in the wintertime, the flow is low as the snow precipitation is getting stored in the mountains and not 
contributing in the streams. Then, in the early summer, when the snow is melting down, we experience a sharp 
increase in the flow. In the middle of the summer, when the electricity demand is maximum, the melt rate is 
maximum, we experience the peak flow. Then, again with the decrease in the melting rate, the flow gradually 
decreases in the fall, coincidentally with the drop in the demand. In the catastrophic condition, we expect to 
experience higher temperature, which will result in less snow storage and more melting water in the flow during 
wintertime. Consequently, we will experience higher stream-flow in the winter, resulting in more generation in 
the time when the demand is not high. Whereas in the early summer, it will undergo a less sharp increase in the 
flow, and the peak flow in the middle summer is significantly dropped down, and eventually, we will not get the 
necessary flow for power generation when the demand is maximum. In short, climate change will result in less 
precipitation falls as snow, more falls as rain (no winter storage) because higher temperatures initiate spring 
snowmelt earlier [83]. 

 
FIGURE 14. Anomaly between a normal atmospheric condition and forecasted catastrophic condition in the 
dynamics of hydropower-based system. 
 

The weather and climate engender variability in wind energy. Research shows regional climate is crucial in terms 
of resource development because, in the United States, there are some parts of the country which are 
significantly more wind-rich than the others. A considerable change has been observed in year-to-year wind 
power generation due to the climate and weather variability, resulting in difficulty to plan around. The historical 
wind speed distribution for a particular region can help to plan the energy generation mix of that specific region; 
however, inadequate historical wind data to figure out the distribution and the prospective computational 
complexity are the major challenges. Figure 15 depicts the pattern of seasonal wind variability in different 
regions of the United States. Here, the dotted straight line illustrates the yearly median of the wind-energy 
generation capacity factor for each of the geographical regions. It is evident that the upper plains (dark blue) 
and the lower plains (brown) have the high average capacity factor; hence they can be considered the perfect 
area for the wind energy generation. Besides, this figure implies how the geographic wind-generation capacity 
factor pattern overlaps with the electricity demand patterns. On top of that, like the localized heating and 
cooling requirement, the wind flow and volume follows a diurnal pattern for a particular geographical 
locality [84]. 
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FIGURE 15. Patterns of seasonal wind variability in different regions of the United States. 
 

Most of the assessment and planning regarding solar energy systems assume that the amount of solar radiation 
on the Earth’s surface is more-or-less constant over the years. However, due to change in climate, along with air 
pollution as a factor, solar resources will inexorably experience substantial decadal changes. Several research 
confirms long-term changes in dimming and brightening quantity. The prospective aberrant changes in the 
surface solar radiation projected by the available climate models may unfavorably affect solar power 
production, including both PV and CSP (Concentrated Solar Power). Apart from the renewables, conventional 
fossil fuels- besides experiencing the inevitable impact of weather and climate change- exhibit strong seasonality 
in availability and cost, resulting in relatively less expensive in the winter time and more expensive in the 
summertime [85]. 

Extreme weather condition has a severely adverse effect on fossil fuel production. Figure 16 illustrates the 
impact of extreme weather condition, in particular, Hurricanes on oil and natural gas production. It shows how 
the production in those regions experienced a sharp decline just after the incidents. It is indeed notable how 
Hurricane Frances made a significant loss in oil refinery, and Hurricane Katrina came with an unprecedented loss 
in the natural gas refinery. The loss due to the strike of Hurricane Dennis in the natural gas refinery is also 
striking. Table 1 summarizes the crucial events that caused power outages in the United States from 1984 to 
2006 [85]. We observe significant research in effort to reduce storm-related outages in the literature. These 
mostly suggest tree-trimming schedules, undergrounding distribution and transmission, implementing smart 
grid improvements, distributed generation, reliability-centered maintenance regulations, and mutual assistance 
agreements to mitigate the impact of extreme weather condition. 

TABLE 1 Statistically Significant Blackouts’ Cause Categories in the United States 
 Mean size in MW Mean size in Customer % Of events 
Earthquake 1,408 375,900 0.8 
Hurricane/ Tropical Storm 1,309 782,695 4.2 
Ice Storm 1,152 343,448 5 
Wind/Rain 793 185,199 14.8 
Other External Causes 710 246,071 4.8 
Other Cold Weather 542 150,255 5.5 
Operator Error 489 105,322 JO. I 
Fire 431 111,244 5.2 
Equipment Failure 379 57,140 29.7 
Tornado 367 115,439 2.8 
Supply Shortage 341 138,957 5.3 
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FIGURE 16. Impact of Hurricanes on oil and natural gas production in the United States. 
 

Table 2 summarizes the impact of weather elements in electricity demand and generation. Here, the number of 
asterisks indicates the degree of impact in the corresponding domain of concern: three asterisks symbolize 
profound impact, two asterisks express moderate impact, and a single asterisk implies it somehow has an 
impact. 

TABLE 2 Impact of Weather Elements in Electricity Demand and Generation 
Weather Elements Demand Generation 
Temperature *** ** 
Wind Speed ** *** 
Cloud * *** 
Visibility * * 
Precipitation ** ** 

 

One interesting challenge in power system planning, particularly in a step towards replacing baseload (coal 
generation) with the variable renewable energy like wind and solar, is how to combine different variable 
renewable energy sources in such ways so that it is possible to complement each other and reduce the inherent 
uncertainty comes from the renewable energy sources. Specifically, how can we place renewable energy 
projects to take advantage of less covariance when they are producing energy? The implementation of statistical 
law of large number can be helpful. Figure 17 depicts the scenario of wind energy generation output normalized 
to mean for 200 and 15 wind turbines placed in dispersed positions [85]. 
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FIGURE 17. Variation in wind energy generation output for 200 and 15 wind turbines placed in dispersed 
positions. 
 

As can be seen, the bottom one shows more zigzag (which means more variability and uncertainty) along with 
the lesser mean value (though the mean value is self-evident) compared to the top one. This analysis provides 
an insight that the curve can even be smoother with high output mean value if we place 500 wind turbine in 
different places. The insight from the law of large number also applies for the solar power generation 
aggregation, implying the more it integrates with the solar plants located in different places, the more 
predictable the generation curve becomes. One immediate question, in this regard, can be how far apart solar 
plants need to be placed to gain the advantage in predictability from the law of large numbers because only 
building a number of wind turbines or solar panels (right next to each other) cannot guarantee optimal 
generation. Research shows we experience more covariance with the lesser distance between each plant-site. 
And after a certain range, we experience more-or-less constant covariance. This insight can be helpful in 
deciding the minimal distance to get the optimal output. 

B. Load Forecasting Techniques 
Load forecasting is a technique used by the electricity providing companies to predict the required energy to 
attain a dynamic demand-supply equilibrium. The predictive accuracy of load forecasting is of profound 
importance for the operational, as well as managerial loading, of a utility organization. Load forecasting, 
precisely peak load forecasting, is an integral and indispensable process in strategic planning and efficient 
operation of electric utilities. Primarily, reliability and low cost are the two significant motivation behind load 
forecasting since electric utility is expected to operate without having a failure in continually balancing supply 
and demand, and within as low as possible cost. In recent years, to mitigate the environmental challenges and 
promote renewable resources in the generation infrastructure, lowest possible emission is considered as one of 
the crucial factors in predicting both the load magnitude and geographical location of the load in a certain 
planning horizon. Assuring reliability is a multi-scale challenge that involves balancing between supply and 
demand on a second-to-second, minute-to-minute, hour-to-hour, daily, seasonal, and all the way up to years 
and decade. Frequency regulation is one of the most obvious reliability issues that require active dynamic 
management. It is known that different power systems may have different frequencies, and in the United States, 
all the power systems operate at 60 Hz, unlike in Europe and Asia at 50 Hz. If we do not stably balance between 
demand and supply, the frequency will increase or decrease: If the demand is greater than the supply, the 
frequency increases, and if the supply is greater than the demand, the frequency decreases. If it deviates 
considerably away from 60 Hz, we may have a grid-scale failure. Hence, to assure reliability, it requires to 
continually adjust the availability of supply to match it to demand within a certain range and keep frequency 
close to 60 Hz [86], [87]. 

From the aspect of the duration of the planning horizon, load forecasting can broadly be classified into five 
categories: VSTLF(very short-term load forecasting that ranges from few minutes to an hour ahead), STLF (short-
term load forecasting that concentrates on hourly forecasts for one day to one week ahead), MTLF (medium-
term load forecasting that ranges from few months to one year), LTLF (long-term load forecasting that includes 
from one year to five years), and VLTLF (very long-term load forecasting that includes ten years ahead) [88]. In 
short, VSTLF and STLF are mostly required for balancing operation of the grid system. Besides, they help in 
trading strategies for the day-ahead electricity market. MLTF is essential for planning major tests, commissioning 
different events, determining outage time for plants and key parts of equipments, besides the trading strategy. 
On the other hand, LTLF and LTLF are crucial for resource planning for the power system, and the subsequent 
price evaluation of the energy contracts. Table 3 points out the possible applications of different forecasting 
based on time horizon. 



TABLE 3 Applications of Different Load Forecasting in Energy Workflow 
Operations VSTLF STLF MTLF LTLF VLTLF 
Producing, purchasing and selling electric power ✓ ✓ ✓ ✓ ✓ 
Transmitting and distributing electric power ✓ ✓ ✓ ✓ ✓ 
Fuel Allocation  ✓    
Inrush current stabilizer ✓     
Security assessment and analysis ✓ ✓    
Maintenance scheduling   ✓   
Searching for renewable resources     ✓ 
Environmental policies planning     ✓ 
System planning    ✓  
Economic dispatching ✓     
Load dispatching coordination   ✓   
Staff recruitment    ✓ ✓ 
Optimal generator unit commitment  ✓    
Price deciding to meet demand with fixed capacity   ✓   
Sensitivity analysis of electrical equipment ✓     
Load flow estimations  ✓    
Scheduling construction of new generating capacity     ✓ 

 

Long term load forecasting conveys design implication in system planning. One of the critical elements of system 
planning in most power systems is the diversity of the resources. It requires different levels of flexibility with 
different types of generations so that it can meet the electricity demands that continually changes on an hour to 
hour, week-to-week, and seasonal basis that entails some resources which are flexible. It won’t be wise to have 
all the resources flexible since they are considerably costly compared to the other options. That’s why we need 
an optimal balance between the resources that are inexpensive but not flexible (such as coal and nuclear), and 
flexible but more expensive (such as natural gas and oil). Another key element in system planning is redundancy. 
It is a very pronounced trade-off in the infrastructural planning and engineering that increase in redundancy 
comes with an increase in reliability, but also increases the cost. Therefore, it is an optimization challenge to 
investigate up to how much redundancy it is worth investing to secure a balance between the cost and 
reliability. Figure 18 explains the scenario of flexible and not flexible resources where the horizontal-axis 
represents cumulative quantity supplied in MWh, and the vertical-axis means the marginal cost in $/MWh. As 
has been seen, oil, in general, is costly and suggested not to use until it is of absolute necessity [89], [90]. 



 
FIGURE 18. Trade-off in flexibility of resources, though we need flexibility in resources to address variability in 
demand, flexible resources are costly. 
 

Thermal power plants can typically be categorized into three levels: baseload, shoulder load, and peaking. 
Shoulder power plants lie in an intermediate category that can ramp up a bit but not enough to consider it a 
peaking power plant. Thermal power plants can be classified in another way: by its fuel type such as coal, 
natural gas, nuclear, and oil. Fuel type is pertinent to the capacity of the plant. Capacity factor, the fraction of 
installed capacity and of getting used throughout the year, is another parameter to distinguish thermal power 
plants. Capacity factor ranges between one and zero, and the higher value indicates more usage throughout the 
year. The value close to one implies that they are online almost every hour of every day throughout the year 
except some days when the plants are shut off for maintenance purpose. On the flip side, the peaking power 
plants, such as oil and natural gas power plants, shows capacity factors close to zero, indicating seldom usage in 
generation-flow [91]. 

Addressing the reliability and redundancy trade-off mentioned before, system planners optimize it by building 
enough plants to cover future peak demand plus a 15% reserve margin. Reserve margin is the ratio between the 
difference of total available capacity and peak annual load to the peak annual load as shown in (2). 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑎𝑎𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
𝐴𝐴𝑅𝑅𝑎𝑎𝑅𝑅𝐴𝐴𝑎𝑎𝐴𝐴𝐴𝐴𝑅𝑅𝐶𝐶𝑎𝑎𝐴𝐴𝑎𝑎𝐴𝐴𝑅𝑅𝐴𝐴𝐴𝐴 − 𝑃𝑃𝑅𝑅𝑎𝑎𝑃𝑃𝐴𝐴𝑅𝑅𝑅𝑅𝑃𝑃𝑎𝑎𝐴𝐴𝑃𝑃𝑃𝑃𝑎𝑎𝑃𝑃

𝑃𝑃𝑅𝑅𝑎𝑎𝑃𝑃𝐴𝐴𝑅𝑅𝑅𝑅𝑃𝑃𝑎𝑎𝐴𝐴𝑃𝑃𝑃𝑃𝑎𝑎𝑃𝑃
 

(2) 

The load forecasting techniques can broadly be clustered into nine categories as far as the mathematical 
approaches are concerned: Multiple Regression; Exponential Smoothing; Iteratively reweighted least-squares; 
adaptive load forecasting; stochastic time series such as Auto-Regressive (AR) model, Auto-Regressive Moving 
Average (ARMA) model, and Auto-Regressive Integrated Moving Average (ARIMA) model; Auto-Regressive 
Moving Average with eXogenous terms (ARMAX) models based on genetic algorithms; fuzzy logic; neural 
networks; and knowledge-based expert systems. 

Multiple regression analysis, leveraging the weighted least-squares estimation for each of the factor variables 
based on the statistical relationship between total load and factors’ influence, is the most common technique 
for load forecasting. References [92]–[93][94] suggested the fundamental model for the multiple regression 
analysis as shown in (3). 
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𝑌𝑌𝑡𝑡 = 𝑅𝑅𝑡𝑡𝑎𝑎𝑡𝑡 + 𝑅𝑅𝑡𝑡  

(3) 

Here, t is sampling time, 𝑌𝑌𝑡𝑡 is measured total load, 𝑅𝑅𝑡𝑡 is vector of adapted variables, at is transposed vector of 
regression coefficients, and et is model error at t. In multiple regression, 𝑅𝑅𝑡𝑡 can be expanded based on the 
different insights regarding historical metered load, expected distributed generation, calendar effects (day of 
the workdays, weekends, month of the year, etc), weather data (degree days, wind speed, humidity, light 
intensity, etc), and economic and demographic drivers. On top of that, though linear dependency demonstrates 
best results in most of the cases, multiple regression offers select the polynomial degree of influence ranged 
from 1 to 5. 

Then, exponential smoothing, one of the classical techniques used in load forecasting, with a fitting function is 
used for load forecasting as presented in (4) [93], [94]. 

𝐴𝐴(𝐴𝐴) = 𝛽𝛽(𝐴𝐴)𝑇𝑇𝑓𝑓(𝐴𝐴) + 𝑅𝑅𝑡𝑡  

(4) 

Here, 𝑓𝑓(𝐴𝐴) is fitting function vector of a process, 𝛽𝛽(𝐴𝐴) is coefficient vector, and et is white noise. Exponential 
smoothing can be augmented with power spectrum analysis, as well as adaptive autoregressive modeling, to 
address the challenges induced by a unique pattern of energy and demand in fast-growing regions. 

Iterative reweighted least-squares – through an operator that controls each variable at a time – is used to 
identify the order, including parameters as well, of the model. It initiates with an optimal starting point 
determined by the operator, and then, uses the autocorrelation, as well as partial autocorrelation, of the 
resulting differenced preceding load data to identify a suboptimal model for the load dynamics. In the case of 
iterative reweighted least-squares techniques, the weighting function, along with the tuning constants and the 
weighted sum of the squared residuals, form a three-way decision variable to determine an optimal model and 
the subsequent parameter estimates [93], [94]. 

Adaptive load forecasting is one of the commonly used techniques in recent days. In this technique, to keep 
track of the continually changing load conditions, the model parameters are automatically corrected. Here, 
regression analysis is implemented based on the Kalman filter theory that incorporates the current prediction 
error and present weather data acquisition programs to estimate the next state vector. To determine the state 
vector, it not only analyses the most recent measured load and weather data, but also takes the historical data 
into account, and the mode of operation is facilitated switching in multiple and adaptive regression 
analysis [93], [94]. 

Though time series modeling is not a suitable forecasting approach for long term load forecasting because of the 
frequent unique change in demand pattern in the developed and fast-developing regions, it is one of the most 
popular methods in short term load forecasting. In simple, time series modeling is initially generated based on 
the previous data, and then, the future load is predicted based on the model. 

The autoregressive model can be adapted to model load profile as follows if the load is considered as the linear 
combination of previous loads as presented in (5). 

𝑃𝑃
^
𝑘𝑘 = −�𝛼𝛼𝑖𝑖𝑘𝑘𝑃𝑃𝑘𝑘−1 + 𝑤𝑤𝑘𝑘

𝑚𝑚

𝑖𝑖=1
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(5) 

Here, m is the order of the model, 𝑤𝑤𝑘𝑘 is random load disturbance, aik are coefficients tuned from least mean 

squares algorithm. 𝑃𝑃
^
𝑘𝑘 represents predicted load at time 𝑃𝑃. 

In addition, the ARMA (Auto-Regressive Moving-Average) model considers the current value of the time series 
linearly regarding values from previous periods and previous white noise values. A 𝐴𝐴 and 𝑞𝑞 ordered ARMA model 
can be represented as (6). 

𝐴𝐴(𝐴𝐴) = 𝜙𝜙1𝐴𝐴(𝐴𝐴 − 1) + ⋯+ 𝜙𝜙𝑝𝑝𝐴𝐴(𝐴𝐴 − 𝐴𝐴) + 𝑎𝑎(𝐴𝐴)
−𝜃𝜃1𝑎𝑎(𝐴𝐴 − 1) −⋯− 𝜃𝜃𝑞𝑞𝑎𝑎(𝐴𝐴 − 𝑞𝑞) 

(6) 

In addition, the ARMA model considers the current value of the time series linearly regarding values from 
previous periods and previous white noise values. A maximum-likelihood approach or a recursive scheme is 
generally used for parameter identification in ARMA model. 

If the process is not stationary, it requires to transform the series to a stationary form first by a differencing 
operator. An ARIMA (autoregressive integrated moving average) model of order 𝐴𝐴, 𝑞𝑞,𝑃𝑃 can be presented 
in (7) where the series of p and q ordered autoregressive and moving average component is required to be 
differenced d times. 

𝜙𝜙(𝐵𝐵) ▽𝑑𝑑 𝐴𝐴(𝐴𝐴) = 𝜃𝜃(𝐵𝐵)𝑎𝑎(𝐴𝐴) 

(7) 

ARIMA model, using the trend component, is deployed to forecast the growth of the system load. 

Apart from the time-series-based short-term forecasting, ARMAX, leveraging genetic algorithm, is a popular 
technique for the long term load demand forecast. Through simulating the natural evolutionary process, it 
allows the ability to converge towards the global extremum of a complex error surface [93], [94]. 

Apart from that, leveraging the idea that the fuzzy logic system with a centroid defuzzification can successfully 
identify and sufficiently approximate an unknown dynamic system on the compact set to arbitrary accuracy, 
fuzzy logic can be implemented in the case of load forecasting. The fuzzy logic-based forecasting method follows 
two stages: Training, and then, On-line Forecasting. In its training stage, a 2m-input and 2n-output fuzzy-logic 
based forecaster are trained using the metered historical load data to generate patterns database and fuzzy rule 
base patterns database and a fuzzy rule base from first-order and second-order differences of the data. After the 
training stage, it will be connected with a controller to forecast the load change online. An output pattern is 
generated through a centroid defuzzifier if it attains a most probably matching pattern with the highest 
possibility [94]. 

Neural networks, such as multilayer perceptron network and self-organizing network, have a strong potential to 
overcome the sole reliance on a functional form of the predictive model. It makes the neural network-based 
forecasting a very active area of research. It facilitates improving the accuracy of load forecasting by neural 
networks integrated with several other techniques such as stochastic time series methods, weighted least 
squares procedure, a combination of fuzzy logic and expert systems, etc. Table 4 grouped the commonly used 
load forecasting techniques based on the duration of the planning horizon [93]. 

TABLE 4 Available Forecasting Methods Grouped by Forecasting Horizon 
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Methods for VSTLF and 
STLF 

Methods for MTLF and LTLF Methods for VLTLF General Usage 

Similar-day Approach 
Regression Methods 
ANN 
Expert Systems 
Fuzzy Logic 
Genetic Algorithms 
Stochastic Time Series 
✓ AR 
✓ARMA 
✓ ARlMA 
✓ Seasonal ARIMA 
SVM 

Trend Analysis 
End-use Models 
Econometric Models 
Statistical Model-based 

learning 

Trend Analysis 
Econometric 
Models 

Bayesian Hierarchical 
Model 

Fuzzy Inference Systems 
PCA 
LLE 
Isomap 

 

Different forecasting horizons, such as STLF, MTLF, and LTLF, have different challenges in forecasting. The peril 
of long term load forecasting is profound since uncertainty is rampant regarding climate, technology, population 
growth, and economic conditions. Overestimating demand might seem like the prudent modeling choice from 
the reliability aspect, but it can be costly, and hence unwise. In addition, it has been observed the usage 
behavior differs between the consumers using different types of meters, in particular between the consumers 
using smart and traditional meters along with different tariffs. The utility must take this into account and 
develop separate forecasting model for each of the metering systems and then plug-in them up for the final 
forecast value. Otherwise, they may come up with an inaccurate forecasting. In the case of STLF and MTLF, it is 
sometimes overly complicated to precisely fit various complex factors affecting demands for electricity into the 
forecasting models. In addition, it may not be easy to obtain an accurate demand forecast based on parameters 
such as change in temperature, humidity, and other factors that influence consumption. The utility may suffer 
losses if they do not understand and decide on an acceptable margin of error in load forecasting [95], [96]. 

SECTION IV. Penetration of Renewable Energy 
A. Variability of Renewables 
Electricity demand frequently fluctuates throughout the day, week, and year. Albeit having noise and 
uncertainty, how we are going to use electricity uniquely shows a tremendous amount of predictability. This 
predictability lets the generation planning and integration in a prudent manner, such as meeting the baseload 
with not-flexible and not-able-to-ramp-up resources, intermediate and peak load with must-take (like 
renewables), flexible and able-to-ramp-up resources. With the recent surge of the renewable energy-based 
generation in generation mix of the United States, variability in the renewable resources, particularly solar and 
wind, has been developing into a critical challenge in generation planning and integration. In this section, the 
discussion will be limited to the variability of solar and wind for two reasons [97]. First, apart from the fact that 
wind and solar are emission-free, compared to rest of other types of resources wind and solar are not 
dispatchable and controllable. So, we cannot consider them as baseload: turn them on and leave them on, and 
they cannot provide a steady amount of electricity. We cannot consider them as peaking resources: leaving 
them off most of the time and only turn them on when the electricity demand is highest. We consider them as 
must-take resources: when they are available, we will use them, when they are not, we won’t use them. So, 
from the grid operators’ point of view, wind and solar are considered for demand reduction since they have 
negligible operational costs, their capital cost is all about building those projects. Second, as has been noticed 
from the yearly US per capita consumption in kWh by renewable sources from 1999–2016 with trendlines and 



forecast depicted in Figure 19, only solar and wind exhibit incrementing trends with an exciting prospect to be 
the renewables of choice in generation planning [98]. 

 
FIGURE 19. Yearly US per capita consumption in kWh by renewable sources from 1999–2016 with trendlines and 
five year-forecast. 
 

When we model the solar PV production, we take the following variables into the account: size of the panel 
array, solar insolation (determined by hour of day, day of year, latitude, aspect, and tilt), efficiency (conversion 
of solar energy to electricity), and performance losses (temperature and inverter). Among these variables, solar 
insolation is not dispatchable, and hence a key driver in solar PV production. It has an immediate impact on the 
amount of generation from a particular project and distinctively varies throughout the United States. For 
example, the further south and southeast we go, the higher the availability of solar insolation is reported. 
Therefore, it is intuitive if we assume the solar installation cost in Wisconsin or New York is as same as that of 
Arizona and Florida, we would prefer to install the solar panels in the region from where we can get the most 
energy out. However, it is not the only parameter to analyze its financial viability and economic 
competitiveness [99], [100]. 

On a different perspective from the solar insolation, solar irradiation, in particular, is very predictable, at least 
theoretically. We – more or less – can perfectly model the solar irradiation as it changes throughout the day. 
However, cloud dynamics regards as the most stochastic element of solar power production, and in several 
instances, adds a tremendous amount of uncertainty in the case of incorporating large amounts of solar into 
power systems. Figure 20 portrays the impact of sky condition, in particular, cloud, on the solar generation. It is 
evident how the heavy dark clouds add noise in the electricity generation streams. Consideration of the cloud 
factor in generation makes the forecasting a way more stochastic and uncertain process, and in practice, 
exhibits a significant difference between the day-ahead-forecast, hour-ahead-forecast, and the actual 
generation. Even more, it is critical to predicting solar power even just an hour before its generation because of 
the cloud factor albeit efficient prediction of solar irradiation [101]. 

 
FIGURE 20. The effect of sky conditions on solar panel power output. 
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Now, delving into the wind-based power, power generation depends on three cardinal variables: the amount of 
air (volume), the speed of air (velocity), and the mass of air (density) flowing through the area of interest (flux). 
The generated power from the wind turbine follows the equation as presented in (8): 

𝑃𝑃 =
1
2 ∗ 𝜌𝜌 ∗ 𝐴𝐴 ∗ 𝑅𝑅

3 

(8) 

From this equation, it is apparent that power production from the wind turbine is very sensitive to the wind 
speed or the velocity (𝑅𝑅), and algorithmically, if the wind velocity increases by a small amount, power generation 
goes up by the function of this cubic relationship. However, according to the Betz limit, the power coefficient is 
the quotient of the power extracted by the turbine to the total energy contained in the wind resource [102]. 
This coefficient helps us to estimate the generated wind power in the real case scenario. Betz limit is of the 
maximal possible 𝐶𝐶𝐴𝐴 = 16 /27 which indicates 59% of efficiency for the conventional wind turbine in extracting 
power from the wind. Since it is identified from the equation that wind velocity is the most impactful parameter 
in wind power generation dynamics, Figure 21 delineates the wind velocity distribution over the United States. 

 
FIGURE 21. The wind velocity distribution over the United States. 
 

Figure 21 implies where installing wind turbines is more advantageous. Since, like other renewable energy 
resources, wind energy-based power generation only requires the capital cost for installation- requiring no cost 
for fuel- and we can presume the installation cost of wind turbine is – more or less – same across the entire 
United States, we can infer from this figure that US midwest, west-offshore, and east-offshore are the most 
convenient places to install the wind power generators [103], [104]. However, there are some additional 
confounding variables. First, financial viability of the project can be crucial since there is a notable population 
dearth in the US midwest region and it necessitates significant added cost for high voltage transmission to 
deliver the wind power to load centers or to the communities of high electricity consumption. Second, as can be 
seen from the year-to-year changes in wind power production for a single wind project depicted in Figure 22, 
the more uncertain variability and less predictable generation compared to solar energy are imperative in this 
dynamics. Though the generation variability in the case of a single plant is considerable, this evidence is not 
sufficient to have a conclusive idea regarding the impact of unpredictable variability and integrating the 
portfolio of several wind plants may come up with a different insight. On top of that, it may seem more 
uncertain in a smaller time scale, and considering a larger time scale may address a different view on this point. 
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FIGURE 22. Year to year changes in wind power production. 
 

Third, the variation in wind power generation on an hourly basis makes it confounding to incorporating into 
electric power systems. In particular, with the rising share of wind energy in the United States’ electricity 
generation mix, having the possibility that a big chunk of it goes away unexpectedly during the day is a 
significant concern, and it is intricate for utilities since it impacts the maintenance of the power system 
operations in more than one way. 

Next, to understand the grid integration challenges in variable renewables, Figure 23 – besides introducing the 
concept of duck diagram – illustrates the hourly distribution of the net demand with increasing PV penetration 
considering overall demand remains unchanged [105], [106]. As can be observed from Figure 23 and 24, with 
the increase of PV penetration, the non-PV supported portion of the net demand curve gets dropped down 
(consider the drastic drop down in case of 58% penetration) from 9 am to 5 pm when the sun is available). It- 
putting the net load in the context of increasing PV penetration- implies a trend that anticipates two major 
issues: over-generation risk and ramp requirement. 

 
FIGURE 23. Impact of increasing PV penetration and duck diagram interpretation of over-generation risk and 
ramp requirement. 

 

https://0-ieeexplore-ieee-org.libus.csd.mu.edu/mediastore_new/IEEE/content/media/6287639/8948470/9058653/hossa22-2986317-large.gif
https://0-ieeexplore-ieee-org.libus.csd.mu.edu/mediastore_new/IEEE/content/media/6287639/8948470/9058653/hossa22-2986317-large.gif
https://0-ieeexplore-ieee-org.libus.csd.mu.edu/mediastore_new/IEEE/content/media/6287639/8948470/9058653/hossa22-2986317-large.gif
https://0-ieeexplore-ieee-org.libus.csd.mu.edu/mediastore_new/IEEE/content/media/6287639/8948470/9058653/hossa23-2986317-large.gif
https://0-ieeexplore-ieee-org.libus.csd.mu.edu/mediastore_new/IEEE/content/media/6287639/8948470/9058653/hossa23-2986317-large.gif
https://0-ieeexplore-ieee-org.libus.csd.mu.edu/mediastore_new/IEEE/content/media/6287639/8948470/9058653/hossa23-2986317-large.gif
https://0-ieeexplore-ieee-org.libus.csd.mu.edu/mediastore_new/IEEE/content/media/6287639/8948470/9058653/hossa24-2986317-large.gif
https://0-ieeexplore-ieee-org.libus.csd.mu.edu/mediastore_new/IEEE/content/media/6287639/8948470/9058653/hossa24-2986317-large.gif
https://0-ieeexplore-ieee-org.libus.csd.mu.edu/mediastore_new/IEEE/content/media/6287639/8948470/9058653/hossa22-2986317-large.gif
https://0-ieeexplore-ieee-org.libus.csd.mu.edu/mediastore_new/IEEE/content/media/6287639/8948470/9058653/hossa23-2986317-large.gif
https://0-ieeexplore-ieee-org.libus.csd.mu.edu/mediastore_new/IEEE/content/media/6287639/8948470/9058653/hossa24-2986317-large.gif


FIGURE 24. Duck diagram interpretation of over-generation risk and ramp requirement. 
 

As can be interpreted from Figure 23, it requires a moderate amount of generation online to meet demand in 
the early morning and the late afternoon (when the sun goes down), and in the middle part of the day, it does 
not need much because of having greater PV penetration. In many cases, it has been observed it may be less 
costly to leave generation on around 9 am compared to achieve high ramp up, and kind of waste it throughout 
the day in order to have that generation online later on the day. This problem is called overgeneration. Since we 
have been experiencing greater penetration of PV (in general, renewables) in the conventional systems, the risk 
of overgeneration becomes greater, makes physical issues of safety and reliability. Another trade-off of having 
greater renewable-penetration is if significant changes in wind and solar availability take place very quickly – 
without warning – that can pose a challenge to system reliability. In the case of operations, it can be minute-to-
minute, hour-to-hour, and day-to-day. For minute-to-minute, frequency regulation is needed, since it requires to 
maintain 60 Hz of frequency for AC system in the United States, and undersupply of generation can cause that 
frequency to deviate from 60 Hz, and if it goes too far, then it may experience a significant instability on the grid. 
It has to be actively managed through automatic generation control at generators. To address the hour to hour 
variability, load following and reserves are crucial. It requires certain power plants to increase or decrease their 
production to follow the net electricity demand patterns. Reserves are online sometimes, and offline 
sometimes, they are not primarily producing electricity, but they can quickly ramp up and produce electricity at 
the right frequency in order to account for any unexpected change in the availability of wind and solar. For day-
to-day, unit commitment is critical to make decision to turn a plant on and off. It is crucial as it is exorbitantly 
costly to turn a plant on and off. 

In the case of planning, it is about a year-to-year basis: capacity planning based on the pick load forecasting, 
considering the likelihood that given uncertainty in electricity demand because of the weather and given the 
uncertainty in renewable energy production on year-to-year basis, and the reserve margin being below a certain 
point of inability to meet electricity demand. Another interesting point to discuss is that there has been 
observed a steady downward trend in wind speed globally over the last fifty years. The trade-off in considering 
the historical data over the recent trend in generation forecasting can pose a critical challenge in planning 
because of the third order relation of wind speed in wind energy generation, and eventually, end in a serious 
failure [107]. 

B. Effect of Commodity Prices 
Commodity prices are one of the key drivers in the dynamics of United States Internet of Energy, and hence, is 
imperative to be discussed explicitly in an individual section. Previously, energy commodities were essentially 
conceptualized as including natural gas, petroleum products, and coal. With the recent surge of renewable-
based generation, the raw materials used in the fabrication (along with cutting, bending, and assembling) of 
renewable energy and storage technologies are considered as energy commodities. In this section, we will 
briefly discuss the factors that influence commodity prices and how these propagate to electricity prices. The 
direct impact of the commodity market on electricity prices is observed in the fossil fuel power plant that 
ultimately gets incorporated into the wholesale prices, and eventually, retail prices for customers. Unlike this, 
renewable energy-based generation is considered as immune to year-to-year changes in fuel cost. The reason is 
though it is uncertain how much energy we will get from the renewable energy plant, such as solar and wind, we 
know exactly how much we will cost for it. However, it is required to factor in the availability of the renewable 
resource across the year, since it ends up impacting in the levelized cost of electricity. 

Nevertheless, commodity prices do matter – albeit in an indirect fashion – for renewable energy, since the 
majority cost (compared to the fixed operation and maintenance cost) of the renewable energy is drawn from 



compensating the annualized capital cost. If commodity prices fluctuate the capital cost of renewable energy 
projects, this capital cost aggregate into the cost of renewable energy over the entire project lifetime. So, if the 
solar plant or wind turbine is developed in a year when steel and copper prices are high, the long term electricity 
selling price to adjust this cost will be significantly high; and there is no chance for the commodity prices to go 
back and lower the price of electricity from solar or wind firm. For example, Figure 25 depicts the instances of 
how the copper and steel price reflects the levelized Power Purchase Agreement (PPA) from 1990 to 2010 across 
the different regions in the United States. As can be noticed from this figure, the price of copper and steel 
experienced a significant increase in 2006-2008, so the different regions in the United States did in their 
levelized PPA. Typically, these agreements are of twenty-five to thirty years which implies the plant developed in 
2006–2008 reflects into the higher price of electricity for the next thirty years, not just in the year it was 
developed. 

 
FIGURE 25. Commodity prices drive wind energy prices. 
 

The United States Critical Materials Institute (CMI), an entity associated with the DOE, concentrates on 
technologies that make better use of materials indispensable for the United States’ competitiveness in clean 
energy; and identify and eliminate the demand for materials that are crucial to supply disruptions. They have 
four principal objectives. First, diversifying supplies: if on geographical source goes offline or out-of-function, a 
different source can take its place in operation. Second, developing substitute materials that can functionally 
serve the same purpose compared to the materials currently used. Third, using the available materials more 
efficiently by reducing waste and adopting recycle in manufacturing. Finally, last but not least, forecasting which 
materials might become critical in the future. Table 5 reports the CMI’s investigation on materials used in clean 
energy technologies and components. It incorporates the materials including rare earth elements, and their 
applications in photovoltaic films, wind turbines, vehicles, and lighting. Red rows in Table 5 indicate the rare 
earth elements. 

TABLE 5 Materials for Clean Energy Technologies and Components 
 
 

  Vehicles  
 

  

Materials Photovoltaic Films Coatings Wind Turbines Magnets Magnets Batteries Lighting 
Phosphors 

Cerium    ✓ ✓ 
Cobalt     ✓  
Dysprosium  ✓ ✓   
Europium     ✓ 
Gallium  ✓     
Indium ✓     
Lanthanum    ✓ ✓ 
Lithium    ✓  
Manganese    ✓  
Neodymium  ✓ ✓ ✓  
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Nickel    ✓  
Praseodymium  ✓ ✓ ✓  
Tellurium ✓     
Terbium     ✓ 
Yttrium                                                                                                                                       ✓ 

 

Besides, the CMI classified the materials used in clean energy (mostly in photovoltaic cell and energy storage 
systems) into three categories based on two evaluation metrics: supply risk and how important it is in clean 
energy. Both are considered on a scale of 4, indicating low as 1 and high as 4. The materials which are of high (4) 
or high-medium (3) in both metrics are identified as critical materials, the materials which are of high-medium 
(3) or medium (2) in both metrics are considered as near-critical materials, and the materials which are of 
medium (2) or low (1) in both metrics are studied as not critical materials. The third parameter is essentially the 
time-frame of the supply availability that reflects on the categorization, and eventually, necessitates forecasting 
of resource availability. Figure 26 illustrates the criticality matrix of materials used in clean energy for the short-
term and medium-term. 

Unlike the materials used in clean energy, commodity prices have a direct short-term influence in the case of 
conventional fossil fuel-based generation. Similarly, in the case of conventional fossil fuel-based generation, 
commodity prices vary with a number of reasons such as energy crisis, natural calamities, inexplicable tracking, 
global financial crisis, polar vortex, and excess supply from fracking. 

 
FIGURE 26. Criticality matrix of materials used in clean energy for short-term and medium-term. 
 

SECTION V. Understanding Energy Consumption Dynamics 
A. Energy Disaggregation 
To meet the environmental challenges and continually depleting energy resource dilemma, energy demand 
reduction, along with improving energy efficiency, is considered as the safest and most sustainable approach. It 
has been reported that the residential sector occupies approximately 22% of total energy in the United States 
which reflects in 37.8% of total electricity consumption in the US (electricity consumption by different sectors 
and household-electricity consumption distribution of the United States depicted in Figure 27). Consequently, 
household energy usage shares about 38% of the total yearly carbon emissions in the US. Research shows 
approximately 27% of the current households’ energy, so as the electricity, can be saved through efficient 
demand-side energy management. Household-demand-side management majorly concentrates on six 
objectives, namely, peak clipping, load shifting, valley filling, strategic load growth, strategic conservation, and 
flexible load shape [108]. These require to classify the factors that affect household energy usage into different 
categories, such as demographics and socio-economics, location, temperature, energy prices, and building 
characteristics, and eventually, understand the household energy consumption behavior. Electricity 
consumption patterns of different users in different time granularity, which is affected by both objective and 
subjective factors, can be discovered through effective analysis of electricity consumption data accumulated by 
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different data acquisition terminals, such as smart meters. Therefore, energy disaggregation is essentially being 
an integral part of the Advanced Metering Infrastructure (AMI) in this effort [109], [110]. 

 
FIGURE 27. Electricity consumption by different sectors and household electricity consumption distribution in 
the United States. 
 

The benefits of energy disaggregation are manifold. It ranges from raising awareness regarding energy usage to 
empower consumers across different dimensions in making better decisions, offering sophisticated options for 
automated commissioning, diagnosis, and fault detection of residential buildings to providing simplified and 
improved load studies leading to the identification of specific end-use equipment and facilities. Thus, it 
encourages considerably more efficient, relatively cost-effective, and comprehensive quality assurance 
programs in order to achieve substantial savings from energy efficiency measures and demand 
response [108], [111]. 

In simple, energy disaggregation can be defined as an approach that allows taking a whole building (aggregated) 
energy signal into consideration, and then classifies it into appliance-specific data, such as a plug or end-usage 
data, by a set of IOT-based computational techniques. It is an effort motivated to delve into understanding 
energy usage behavior and modeling. In general, energy modeling involves iterative approaches for finding 
variables and parameters using more nuanced information and features as depicted in Figure 28 which 
eventually minimize the model error. It necessarily starts out with an extensive set of training data. Then, the 
training data set is employed to come up with models for energy consumption for individual activity based on a 
number of features across different dimensions. After that, it gradually eliminates any kind of statistically 
insignificant variable. After a certain iteration, a model is finalized which is as accurate and, at the same time, as 
parsimonious as possible [112]. 
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FIGURE 28. Iterative process for developing models to understand energy usage behavior. 
 

Different energy models of different dimensions unpack different energy usage behaviors. Among them, 
behavior that incorporates different time granularity and sectors are regarded as crucial for knowledge 
extraction for resource planners. For example, the consumption patterns of different sectors, such as industrial, 
residential, and commercial, are illustrated in Figure 29 for both monthly and sub-daily basis. It is evident 
from Figure 29 that the consumption patterns of the various sectors are strikingly different, and the residential 
electricity consumption is the critical driver, as well as the most reactive sector with changes of weather and 
climate, in total demand [113]. 

 
FIGURE 29. Energy consumption patterns of different sectors for both monthly and sub-daily basis. 
 

From this stage, it requires special techniques to acquire insights on the household level, helping individual 
consumers make a smart decision about their electricity consumptions based on multiple parameters, such as 
price and availability of renewable energies, and therefore AMI is deployed into operation. It collects 
information about electricity consumption at the household level on a minute-to-minute basis, and then, 
transmits this information back to the central console system, facilitating two-way communication and almost 
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real-time sampling. However, the information that comes from the advanced meter is not apparently 
comprehensive and it requires advanced analytics to leverage the advantages of this information. Figure 
30 explains what we receive from the advanced meter (total power) and what we desire to know for the smart 
decision (disaggregated power) [114]. 

 
FIGURE 30. Almost real-time household level total power provided by the advanced meter and the desired 
disaggregated power. 
 

The initial approach to obtaining disaggregated power was sub-metering, installing the separate individual smart 
plug in each major appliance in residents. It worked and met the fundamental objectives that we want, 
however, the cost for integrating a number of smart plugs in each house and implementing it in residential level 
in the entire United States challenges the overall purpose of efficiency and cost-effectiveness. Table 6 compares 
the hardware-based and software-based disaggregation techniques from the consumer-level costs, installation 
effort, and adoption aspects. Table 6 lets us conclude that the smart meter can be the most efficient and cost-
effective option if advanced analytics can be incorporated to obtain appliance-level information [114], [115]. 

TABLE 6 Comparison Between Hardware-Based and Software-Based Disaggregation Techniques 
 Hardware 

Disaggregation 
 Software 

Disaggregation 
 

Sensing 
Technology 

Plug Level 
Hardware Monitors 

Smart Appliances 
 

House Level Current 
Sensor 

Smart Meter 

Cost 30-50/plug 
300-600/home 

$100+ additional for other 
non-smart appliances 

$200+/home None  

Installation 
Effort 

Most plugs – 
Moderate 
240V plugs – Hard 

Easy Very Hard Not Required 

Adoption Low Moderate Low Very High 
and Fast 

 

NILM (Non-Intrusive Load Monitoring) or NIALM (Non-Intrusive Appliance Load Monitoring) is an analytic 
approach employed to disaggregate the building loads primarily based on a single metering point. This advanced 
load monitoring and disaggregation technique have the potential to come up with an alternative solution to 
high-priced sub-metering and facilitate innovative approaches for energy conservation, energy efficiency, and 
demand response. From the functional point of view, NILM can be explained as a three sequential operation, 
namely, signal acquisition, feature extraction, and finally appliance classification. The state-of-the-art NILM and 
NIALM techniques for energy disaggregation are briefly discussed below. Reference [111] proposed a cluster 
splitting approach to disaggregate the overlapping home appliances’ consumptions. It addresses the challenges 
in disaggregating energy consumption by each of the appliances when several home-appliances have power 
consumption-levels that overlap (loosely or tightly) with each other. This approach initiates with analyzing the 
cohesion between devices’ clusters to determine whether a cluster is required to be split into two or multiple 
clusters. This proposed technique – using REDD public data sets – was tested on overlapping devices’ clusters of 
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six residences, and it was evident from results that the degree of overlapping in devices’ clusters and the sizes of 
individual clusters are crucial in its performance. 

After that, for energy disaggregation, committee decision mechanisms (CDMs) have been introduced by [112] to 
disaggregate load at the metering level. Their investigation shows load signatures inherently embedded in the 
patterns of typical electricity consumptions are able to provide critical information about the characteristics of 
the appliances as well as their usage patterns. Multiple evidence bolstered that all CDMs- through Monte Carlo 
simulations- outperform any single-feature and single-algorithm-based energy disaggregation methods, and are 
considerably less sensitive to any load dynamics and noise. They reported some case studies using this 
technology in appliance usage tracking and energy consumption estimation. In [116], Misbah et al. proposed 
sparse optimization for end-use disaggregation, a novel nonintrusive appliance load monitoring (NIALM) 
algorithm, that can characterize the appliance power consumption profiles accurately over time. The primary 
assumption of this algorithm is that power consumption profiles of the unknown appliances are piecewise 
constant over time, and it leverages the knowledge on the time-of-day probability in which a particular device 
might be used. Here, it formulates the energy disaggregation problem as a least-square-error minimization 
problem, including an additional penalty term to enforce the disaggregate signals to be piecewise constant over 
time. Testing this algorithm on the household electricity data is reported in [116] with satisfactory accuracy. 

Next, in [117], the authors proposed a dictionary learning-based approach in addressing energy disaggregation 
problem. This technique is usually a synthesis formulation, involving in learning a dictionary for each device and 
then applying the learned dictionaries as evidence for the blind-source separation during energy disaggregation. 
It facilitates disaggregation as drastically reduces the sensing cost. In [118], Singh et al. presented a distributed 
and scalable method for semi-intrusive large-scale appliance load monitoring. They–with sufficient conditions 
considered for unambiguous state recovery – incorporate an SSER model (sparse switching event recovering) for 
retrieving appliances’ states from the aggregated load data stream. This approach demonstrates satisfactory 
results in improving the accuracy of load disaggregation for large-scale appliances with a small number of 
meters. Then, in [119], Xia et al. proposed a deep dilated convolution residual network- based non-intrusive 
sequence to sequence energy disaggregation approach in an effort to reduce the network optimization intricacy 
and explain the vanishing gradient problem. They, initially, normalized the primary data, and then, applied the 
sliding window to formulate the input for the residual network. Here, they met the challenges of learning long 
time series data by increasing receptive fields and capturing further data through the dilated convolution. 
Several case studies bolstered the improved efficacy of this proposed deep dilated convolution residual 
network- based sequence to sequence disaggregation method in energy disaggregation. 

On a different note, [120] presented a GSP-based approach (graph signal processing) to disaggregate the entire 
energy consumption down to individual appliances’ level. The authors addressed the complexity of general 
graph-based methods associated with large training overhead employing event-based graph approach. This 
paper showed two approaches leveraging the piecewise smoothness of the power load signal. The first one 
searches for a smooth graph signal under known label constraints following the principle of total graph variation 
minimization under some known label constraints. The second one initiates with the total graph variation 
minimizer and delves into further refinement through simulated annealing. The paper reported a competitive 
performance using the proposed approach compared to the decision tree and hidden Markov model-based 
approaches. After that, considering the fact that the aggregated or smart meter signal can be expressed as a 
linear combination of the basis vectors in a framework for matrix factorization, Alireza et al. presented a 
technique to disaggregate energy data using non-negative matrix factorization with sum-to-k constraint [121]. 
This technique – through imposing non-negative constraint as well as sum-to-k constraint – can extract 
perceptually meaningful sources efficiently from the complex mixtures. They compared its performance with the 
state-of-the-art decomposition-based disaggregation algorithms and reported superior results. In general, all the 



state-of-the-art nonintrusive energy disaggregation techniques can be broadly classified into two categories: 
optimization-based approaches and machine learning-based approaches. 

B. Generation Expansion and Decision Analysis 
Capacity expansion, in broad generation expansion, is an indispensable part of the infrastructural planning of the 
power industry, and subsequently, the internet of energy; and hence to be highlighted in this sub-section. In 
simple, capacity expansion is the process adopted by the utilities to increase their capacity of the generating-
resources gradually to meet either of the following objectives: primarily, meeting electricity demand growth, 
then, making replacement of the existing generation that comes offline or retires because of aging 
infrastructure, and confronting relatively more stringent circumstances or regulations. In other words, mostly 
from the aspect of the electric power industry, it is the process of adding additional facilities of a similar type 
over time in order to meet the rising demand. Capacity expansion is a multi-faceted decision that concerns the 
timing, scale, and location of the major projects in the face of uncertain- often with the considerable 
unpredictability- demand forecasts, costs, and completion times [122]–[123][124]. The simple pictorial depiction 
of capacity expansion is shown in Figure 31. 

 
FIGURE 31. Capacity expansion over time. 
 

In literature, it has been documented that the highly unpredictable uncertainty often resulted in surprise or 
shock to the system planners either as a critical shortage or provision of gross amounts of unwanted capacity. 
Both of them are highly undesirable. Figure 32 illustrates the impact of the critical shortage (building not enough 
capacity) challenges in the case of the Pacific Northwest of the United States. It shows the causal relation of 
unpredictable growth of electricity demand, having not enough capacity, and market deregulation to market 
manipulation; and shows how market manipulation and hot summer and drought can lead to increase in natural 
gas prices [125]. 
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FIGURE 32. Impact of the critical shortage challenges in the case of the Pacific Northwest of the United States. 
 

A popular example of the impact of building too much capacity is what happened in 1970 in the United States. 
Since the end of the World War-II till 1970, there observed an unprecedented industrial growth, and hence an 
exponential increase in electricity demand. This phenomenon inspired the utilities overbuilt the nuclear power 
capacity to meet the exponentially growing demand. After 1970, a change was observed in the pattern of 
demand growth; it started showing an almost linear behavior in contrast to the previous exponential behavior. 
When demand started increasing in a considerably slower fashion, the annualized capital costs associated with 
these plants had to be spread over fewer individual units of electricity, and eventually, retail prices 
increased. Figure 33 is the illustration of the impact of overestimating electricity demand resulted in a higher 
price. This overinvestment-underinvestment dilemma posits that If it is an overinvest, then it just sets to have 
higher electricity prices, if it is an underinvest, it sets up for the actual physical failure of the grid [125]. 
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FIGURE 33. Impact of overestimating electricity demand resulted in a higher price. 
 

Apart from the demand, there is another source of uncertainty in analyzing capacity expansion: Market, or in 
particular, fuel prices. Fluctuations in fuel prices can have a tremendous impact on which technologies are more 
preferable. Sometimes, the change in fuel prices may experience a behavior which is not predictable, or even 
statistically not well-characterized, before making decisions regarding capacity expansion. The other 
considerable sources of uncertainties are technologies, regulations, construction time, and retirement. The 
technological and industrial innovations are correlated to the price projections about future capacity costs. In 
particular, renewable energy technologies can be a crucial driver in predicting future capacity cost; and its 
predictability in generation mix over decades can change the capacity cost dynamics dramatically. After that, the 
uncertainties come with regulations are beyond the scope of describing it in a statistical manner. For instance, it 
is near to impossible describing the likelihood of the United States enacting a carbon tax or some other 
legislation that eventually makes the fossil fuel power plants more expensive. Construction time is also a crucial 
factor since the decision regarding plant construction needs to be made many years before they are actually 
built. Retirement, though studied as a factor of uncertainties, can – more or less – be planned. These 
retirements of existing capacity ultimately add to the need for new capacity. Besides, in the case of capacity 
expansion, it is incumbent to consider the scenarios, such as if the growth in electricity demand is considerably 
lower than expected, if the future electricity demand is related to the cost of solar and batteries, if the 
technological innovation happens faster than that was expected, and most importantly, if the US transportation 
is shifted to be electrified [126]–[127][128]. Addressing these all sorts of possibilities is a pressing concern of 
infrastructural planning for the power industry, and with the time being, the electric power industry is 
continually being linked to irreducible and unquantifiable uncertainty. Ensemble prediction [128], [129] followed 
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by the decision analysis is the most frequently used academic approach to address these challenges [129], [130]. 
Decision Analysis is a formal structure for decision making under uncertainty that includes numerous methods 
for adequately identifying, clearly representing, and precisely assessing the essential aspects of a decision, and 
for suggesting a course of action by applying the maximum expected value axiom [130], [131]. A decision tree is 
a commonly used tool in the decision analysis that involves decision nodes, chance nodes, and end nodes to 
interpret the flow of time, decisions, uncertainty, and consequences to come up with the evaluation measures 
realizing how well the objectives are achieved in the final outcome [131]. 

SECTION VI. Internet-of-Energy 
In the last section, we intend to capture the most crucial areas centered around the concept of Internet-of-
Energy. In a nutshell, we discuss the Grid Overview of the United States; Weather and Climate and its impact on 
the entire energy generation and consumption dynamics; Peak Load Forecasting and its techniques and 
burgeoning challenges; Variable Renewable Energy, its reliability challenges and how we can take advantage of 
this variability; Commodity Prices and its criticality; Energy Disaggregation and its impact on consumption 
awareness; and Generation Expansion and Decision Analysis and trade-offs. 

Internet-of-Energy, as well as IoT, preserves the essence of sustainability – coordinated development of life and 
its habitat, society, culture, work, and material production environment, well-reflected by the social-economic-
natural complex ecosystem theory. Though the conceptualization of the Internet of Energy is centered around 
the motivation of assuring electric mobility and full deployment of the must-take-resources, such as renewable 
sources, Internet of Energy can answer numerous energy and reliability challenges, and provide solutions and 
theoretical underpinnings leveraging the recent advancements in microsystems, nanoelectronics, embedded 
systems, control, communications, algorithms and analytics, software, and the internet technology. In the 
Internet-of-Energy, the area for IoT realization can be manifold. From the aspect of energy delivery and peak 
demand, IoT realization is incumbent for online generation monitoring, smart meter reading, and advanced 
control system for transmission and distribution. From commercial, industrial, and residential point-of-view, 
demand response modeling, electric vehicle charging, and home energy management are crucial for IoT 
effectuation. Besides that, utilities or consumers are one of the key sectors to be realized using IoT. 
Microgeneration and asset management are crucial in this regard. Figure 34 captures the essential layers of IoT 
deployment with the smart grid in the realization of the internet-of-energy. There may have multiple avenues in 
IoT deployment yet to be explored to enact smooth and effective communication between the smart meters 
attached at the consumers’ place and the sensors [37], [48], [132], [133]. 

 
FIGURE 34. Essential layers of IoT deployment with the smart grid in the realization of the internet-of-energy. 
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There are four key functionalities of IoE: Motivating consumers, self-healing, improve power quality and resist 
attack. IoE offers interactive options in transferring consumption and reliability information between the user 
and utility, and thereby, motivates users to plan their cost and select suitable tariff, creates awareness regarding 
demand response features and their impact on reliability and cost, and eventually, lets the consumers control 
their power usage more effectually. With the capacity to analyze on the fly, IoE can identify and react to the 
major faults swiftly and in a more intelligent way. In particular, smart metering approaches with wireless 
connectivity facilitate identifying black-outs immediately and in a nonintrusive manner. Next, IoE promotes 
improving power quality. The major consumer demands in all the commercial, industrial, and residential sectors 
are of constant voltage, and abrupt fluctuations in the voltage may be detrimental to electric appliances. IoE has 
tremendous potential to maintain constant voltage, thereby reducing commercial productivity loss. Apart from 
that, IoE adopted numerous privacy preservation methods for smart grids to protect itself from cyber and 
physical attacks [47], [134], [135]. 

 
FIGURE 35. Internet-of-Energy integration. 
 

The technology synthesis allows perceptive technology, advanced analytics and machine learning, advanced 
network technology, artificial intelligence and automatics to be employed together into machine-to-machine 
and human-to-machine interactive systems to realize the functional interconnection of humans and objects. It 
motivates the internet-of-energy to leverage the elements and functionalities of IoT, such as flexible structure, 
autonomous process, multi-role participants, scalability, event sharing, interconnectivity, and semantic sharing. 
Besides that, third parties are welcome to develop complex and compound applications with the provision of 
APIs. Figure 35 illustrates the concepts of the internet-of-energy integration – a framework realized by the 
approach of IoT paradigm with the smartgrid [47], [133], [136]. 

A. IoE Architecture and IoT Integration 
Internet-of-Energy architecture is dynamic and progressive, as such with respect to time factor, the system 
elements can be reconfigured. However, the myriad number of devices, functionalities, and technologies in IoT, 
and consequently, in the internet-of-energy, makes interoperability a crucial issue. Thereby, data deluge (by 
smart metering), extensibility, and scalability should be taken into consideration, resulting in enormous 
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computational tasks. Parallel computing may obtain a significant speedup and get the analyses and results 
faster. However, extrapolating the performance from the small size of the problem on small systems to the 
larger size of the problem on larger configurations is a primary concern. For a given problem size, computational 
overhead increases with the increase of the number of processing elements. Hence, the overall efficiency of the 
parallel program goes down in a meaningful manner. Besides that, according to Amdahl’s law, speedup tends to 
saturate with the increase in the number of processing elements. On the other hand, since the total overhead 
function is necessarily a function of both of the number of processing elements and the size of the problem, in 
many cases, we observe the overhead grows sublinearly with the increase of the problem size. If we keep the 
number of processing elements constant for such cases, the efficiency will increase with the increase of the 
problem size. Leveraging this insight, we can simultaneously increase the number of processing elements and 
the problem size at a particular rate to keep the efficiency of the system constant. Such a system is called the 
scalable parallel system, and assuring scalability of a system is a critical challenge in large scale IoE deployment. 
Another major concern, which may lead to severe repercussions, in this technology is privacy and security. The 
security and privacy threats are even more serious in the case of smart meters in residential buildings. The 
privacy concern with residential users are easily susceptible to the hackers, and sometimes, to other consumers 
intending their per day energy consumption reduction. These challenges and concerns come up with future 
research opportunities regarding suitable remedial measures, such as encryption methods, authentication 
schemes, public key infrastructure, and standardized application program interfaces [47], [132], [137]. 

The principal features of internet-of-energy is aquainted as follows in the lens of advantages and disadvantages. 
To begin with, automation realizes the control of numerous smart devices, leading to the uniformity of tasks. 
This secures a transparent process over the entire machine to machine communication. Then, the efficiency of 
the system can be perceived in two aspects: the ratio of useful output energy and total input energy, and the 
opportunities it creates to retarget human efforts in other fields. The internet-of-energy facilitates more 
machine to machine interaction; the more the interactions between machines, the more the opportunities are 
created to target on other jobs that require human efforts. Besides, advanced analytics help optimizing the 
efficiency (the first aspect) of the energy production and management ecosystem. It also brings cost-
effectiveness as another advantageous aspect of IoE. Again, communication is crucial to improve the quality and 
time factor; internet-of-energy facilitates a platform for daily basis communication with the devices. 
Implementation of IoE may facilitate instant data access (with proper authentication and user verification), 
which further helps the research community to conduct exploratory research in this domain and delivers useful 
data-driven insights. Figure 36 depicts the benefits of the internet-of-energy from the functional 
aspect [47], [137]–[138][139]. 
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FIGURE 36. benefits of adopting internet-of-energy from the functional aspect. 
 

One of the major disadvantages of internet-of-energy deployment is paramount privacy and security concerns. 
The more the appliances and services are dynamically connected, the more the information stored are readily 
available, the more the risks of the data-security breach as the information may get susceptible to hackers and 
unauthorized concerns. It brings a surge in multidisciplinary research opportunities regarding more robust data 
authentication tools, privacy policies and standards, and firmware standards. Again, due to the lack of sufficient 
international compatibility standards available for internet-of-energy, it is tricky and confusing both for the 
manufactures and stakeholders to interact with the services; thereby, compatibility is a significant concern in 
the massive deployment. In this regard, new standards with common protocols are being developed for 
residential, commercial, and industrial sectors. Next, as far as the complexity is concerned, an extremely large 
network is connected across in the IoE; a small failure in the software and hardware components may lead to a 
damage in the entire system. On the flip side, the immediate failures at the junction of nodes can be addressed 
through a common control center; remedial action is next to instant [47], [140], [141]. 

B. Broader Impact 
Adopting the internet-of-energy comes up with a tremendous social impact as it steps forward into the future 
energy ecosystem with smart technologies and new regulatory structures and services. First, it changes the 
classical perception regarding generation, transmission, and consumption to both the consumers and utilities. 
From the consumers’ aspect, this contemporary avenue is critical for ecological awareness and convoluted for 
energy management, underscoring their daily comfort behaviors as a dynamic factor in the complex system. 
Furthermore, the intricacy involved in adopting and controlling different smart devices with numerous distinct 
sensors governed by different operating systems leads to interoperability concerns for the consumers, in 
particular, the senior citizens and the people from a non-technical background. As technology progresses, the 
internet-of-energy – to enhance the acceptability of these new technologies – requires training as well as 
mentoring opportunities for a diverse group of consumers and operators. This new technology opens up scopes 
for researchers around the world to study and understand the concept properly. The results and insights 
generated on this new technology need to be widely disseminated through publications, professional 
presentations, and online access to raise awareness and motivate advancement. These collective efforts will – 
soon – change the understanding of consumer devices, from a black box to a source of multivariate information 
based on the pricing scheme [47], [142], [143]. 

On the bright side, the recent technology transformation makes the world propelling at a rapid and exponential 
change, creating a tremendous impetus, as well as brunt, at different avenues and courses of action, such as 
professional and personal aspects. Again, embodying the consumer in the intersection of multiple domains 
centered around embarking fourth industrial revolution, technology innovations, and social impact, the internet-
of-energy has the potential to make the user more empathetic about consumption, and hence reduce the 
wastage. The interactive energy system – enabled by internet-of-energy leveraging new intelligence in 
information technology infrastructures – makes the user not only aware of the consumption but also active in 
controlling. The advent and evolution of the internet-of-energy have an impact in other sectors of the economy, 
in particular, the development of many fast-growing smart cities. predicts a full-fledged IoT eon by 
2030 [144], [145]. 

C. Challenges and Future Research Opportunities 
Before moving on to the full capability of IoE, it is incumbent to have a proper understanding of the challenges 
that the combination of IoT in the smart grid may bring into the dynamics. The most cardinal challenge is the 
possible data leakage; consumers’ sensitive information can be revealed from the data obtained from the 



appliances scheduling. For example, heater usage data in the wintertime or air-conditioner usage data in the 
summertime implies the availability (or absence) of the residents. This data, if leaked, can lead to burglary or 
undesirable events and practices. Again, as all the consumers’ information are readily available in the central 
server of the utility provider, consumers’ privacy in the network can be compromised by cyberattacks. 
Cyberattack is another major concern. Cyberattackers can – by rifting the IoT-enabled-smart-grid-infrastructure 
– manipulate the data transferred between users and utilities and present incorrect decisions to the sensors 
connected to all the smart meters. Subsequently, the appliances operate in an incorrect way and get damaged, 
thereby causing a serious financial meltdown. Especially, these challenges involved in commercial and industrial 
sectors can lead to an economic catastrophe around the world. For instance, any industrial enterprise integrated 
with the internet-of-energy, if subjected to cyberattacks, may need to compromise their functioning, and it can 
discredit the entire production. Unreliable or unpredictable internet connectivity is another concern followed by 
swifter connectivity requirements for on-the-fly energy management analysis [47], [146], [147]. 

The future directions and research opportunities regarding the IoT enabled smartgrid are multifacted. In the 
physical layer of the internet-of-energy, energy acquisition and considering IoT based devices for different 
conditions, situations, and environment opens up research opportunities for scholars and new entrants in the 
future. In the network layer, more research is required in data fusion technologies, deployment techniques for 
new power supply products, and communication technologies. As the number of data sources grows with the 
deployment of IoE, a single source may not be effectual in providing useful insights and information. On the flip 
side, it is cumbersome and expensive – from the data collection and management point of view – to store data 
from all the available sources. Advance data fusion techniques can help integrating multiple data sources and 
deliver more accurate, consistent, and useful insights. In the transport layer of this new technology, data 
transfer at data centers avoiding network congestion and data traffic can be the future research challenge and 
directions. Network congestion is the reduced quality of service in a network due to carrying more data in its link 
or node than that it can typically handle, affecting queueing delay, blocking of new connections, and packet loss. 
In the application layer of the internet-of-energy, research challenges centered around the integration of IoT 
enabled devices, edge servers, and data handling issues are required to address more efficiently and 
consistently in the future. The integration of IoT enabled devices requires logical connectors, commonly known 
as APIs, allowing applications to communicate with other IoT devices. They expose data that enables devices to 
transmit data to applications, functioning as a data interface. The other avenues of the internet-of-energy that 
may draw the attention of the research community in the future for further research and development are 
standardization, authorization and privacy with authentication, and avoiding cyberattacks with robust security 
management [148]. 

D. IoE and Computational Sustainability 
The overarching goal of the computational sustainability network (CompSustNet) is to promote a platform that 
unites and helps more and more scholars, across the domain, use data mining techniques to solve the most 
complex and pressing problems of this time. The most compelling aspect of this virtual network – besides 
making a platform for computational science researchers to put their muscle towards making the world a more 
sustainable and livable place – is that a new method or solution created to solve one particular problem can be 
repurposed for another distinct problem. Table 7 presents the broader computational techniques addressed in 
the CompSustNet publications from 2016 to date and their prospective application in the IoE 
conceptualizations [149]. We followed a multi-blind Delphi method to extract the broader (mother) 
computational techniques from more than 175 papers indexed in the CompSustNet publication section. Besides, 
this study relied on the comments and suggestions by the domain experts at Oregon Renewable Energy Center 
(OREC) at Oregon, United States, to summarize the prospective application in the IoE conceptualizations. 

TABLE 7 Transferable Computational Techniques and Their Prospective Applications in IoE Conceptualization 



Computational Techniques Prospective Applications in loE Conceptualization 
Mathematical Modeling ✓ Physical System Modeling 

✓ IoE Characterization 
✓ Interpreting System Dynamics 

Statistical Modeling ✓ Energy Predictive Modeling 
✓ Inventory Management 
✓ Market Segmentation 

Neural Networks ✓ Generation and Demand Variability Forecasting 
✓ Machine Translation for Energy Systems 
✓ Classification, Categorization, and Clusterization of Energy 

Prosumers and Consumers 
Reinforcement Learning ✓ Understanding Consequences of Different Strategies 

✓ Resources Management in Energy Systems 
Linear and Nonlinear Algebra ✓ Matrix Representation of Physical System for Convenience of 

Analysis 
✓ Identifying Eigen Value of a System 
✓ Determining Overdetermined and Underdetermined System of 

Energy Dynamics 
✓ Dimensionality Reduction to Analyze Higher Dimensional Matrix 

Machine Learning Regression, 
Classification, and Clustering 
Techniques 

✓ Prediction/Forecasting 
✓ Machine Translation for Energy Systems 
✓ Classification, Categorization, and Clusterization of Energy 

Prosumers and Consumers 
✓ Generating Prosumers' and Consumers' Insights towards 

Efficient Energy Management 
Computer Vision ✓ Identifying Critical Objects for Solar and Wind Energy Producers 

✓ Automatically Detecting Need for Network Maintenance Using 
Regular Drone Images 

✓ Automatic Search and Information Gathering From Policies and 
Billings 

Data Mining and Visualization ✓ Data Management System 
✓ Decision Analysis 
✓ Generation Expansion 
✓ Generation and Demand Variability Forecasting 
✓ Energy Storage and Analytics 

Bayesian Modeling and Causal 
Inference 

✓ Tariff Designing 
✓ Causal Discovery 
✓ Preventive Maintenance 

Stochastic Optimization ✓ Energy Management 
✓ Generation Planning 
✓ Advanced Controlling 

Generative Modeling ✓ PhotoNideo Prediction for Fault Detection 
✓ Generate Examples for Datasets for Different Generation, 

Demand, and Maintenance Contexts 
✓ Aging Determination of Energy-related Instruments 

Time Series Analysis ✓ Seasonality and Trend Analysis for Decision-makers 



✓ Generation and Demand Variability Forecasting 
✓ Visnal Analytic Interpretation of Physical Events 

Game Theoretical Modeling 
 
Artificial Intelligence 

✓ Understanding Complex Energy Market 
✓ Developing Multiplayer Oligopoly Games to Promote Renewable 

Resources 
✓ Energy Democratization 
✓ Algorithmic Trading 
✓ Smart Home/Smart City 
✓ Coordination of Decentralized Plants 
✓ Coordination of IoE Maintenance 

Deep Learning ✓ Predicting Cataclysmic Events 
✓ Energy Market Price Forecasting 
✓ Energy Storage and Analytics 
✓ Fault Maintenance 

Unsupervised Learning ✓ Renewable Energies Intermittent Data Processing 
✓ Cluster Computing of Distributed Energy to Find 
✓ Hidden Patterns or Grouping in Data 
✓ Anomaly Detection for Preventive Maintenance 

Natural Language Processing ✓ Summarize Policy Contents for Users 
✓ Sentiment (Satisfaction) Analysis of Consumers 
✓ Scam Detection 
✓ Encryption/Decryption/Deidentification 

Parallel and Distributive Systems ✓ Analyzing Big Data and Controlling Many Generation 
✓ Units at Different Time Scales 
✓ Faster Decision Making 
✓ Bringing Concurrency in Energy Analytics 

Change Point Detection and Identifying 
Regime Switch 

✓ Identifying Failures and Problems in Energy Networks and Fixing 
Them Virtually 

✓ Addressing Cyber Security Concerns 
✓ Addressing Outlier and Anomalous Data Problems in IoE 

 

SECTION VII. Takeaways 
The theoretical underpinnings covered in this paper are discussed as follows. 

• It summarizes the evolution of the energy grid, grid distributions and it is affected by the availability of 
the resource. 

• It outlines the United States grid from the administrative point of view. 
• It highlights the impact of weather, climate, and extreme events from both demand and generation 

aspect, discussing challenges and possible solutions regarding this. 
• It contextualizes the load forecasting and its necessity in the energy workflow, classifies the time 

horizons of forecasting, and clusters and discusses the existing forecasting techniques from the 
computational aspect. 

• It infers the burgeoning computational complexity and the trade-off between (almost) exponential 
technology trend and weather impact in developing forecasting models and algorithms. 



• It delineates the variability and unpredictability of renewables (particularly, solar and wind) and how it 
poses challenges on multiple time scales, affecting planning and operations in power systems. 

• It infers growing multi-aspect reliability challenges that come with growing renewable-penetration. 
• It discusses how commodity prices end in impacting electricity prices in the case of both conventional 

and renewable energy. 
• It highlights CMI, their objectives, and categorizations of materials based on criticality for short-term and 

medium-term clean energy. 
• It contextualizes the energy disaggregation and advocates how it can bring positive impact in energy 

consumption dynamics in US residences. 
• It discusses different state-of-the-art nonintrusive load disaggregation techniques recently surged in the 

literature. 
• It discusses capacity expansion, its different avenues, such as the impact of critical shortage challenges, 

and impact of overestimating electricity demand. 
• It delineates the IoE architecture, broader impact, challenges, computational sustainability and IoE, 

future works, and opportunities. 
• It summarizes frequently used computational techniques that can be used across the domain and help 

to gather valuable insights for large scale IoE deployment and analysis, joining into the movement for 
computational sustainability. 

 

SECTION VIII. Conclusion 
This qualitative study has encompassed the elements of the energy and power management ecosystem and 
internet-of-energy in the United States. This study has addressed the sustainability issues in the lens of Grid 
Overview of the United States; Weather and Climate and its impact on the entire energy generation and 
consumption dynamics; Peak Load Forecasting and its techniques and burgeoning challenges; Variable 
Renewable Energy, its reliability challenges and how we can take advantage of this variability; Commodity Prices 
and its criticality; Energy Disaggregation and its impact on consumption-awareness; and Generation Expansion 
and Decision Analysis and unpacked useful insights on these domains. After that, it has focused on IoE 
integration, associated trade-offs, challenges, research opportunities, and transferrable computational 
techniques that can be repurposed for problems across the domain. Proper schematics and quantitative analysis 
have been presented to support this study. 
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