
Marquette University Marquette University

e-Publications@Marquette e-Publications@Marquette

Computer Science Faculty Research and
Publications Computer Science, Department of

7-2019

Spatial Data Decomposition and Load Balancing on HPC Spatial Data Decomposition and Load Balancing on HPC

Platforms Platforms

Jie Yang
Marquette University

Anmol Paudel
Marquette University

Satish Puri
Marquette University, satish.puri@marquette.edu

Follow this and additional works at: https://epublications.marquette.edu/comp_fac

Recommended Citation Recommended Citation
Yang, Jie; Paudel, Anmol; and Puri, Satish, "Spatial Data Decomposition and Load Balancing on HPC
Platforms" (2019). Computer Science Faculty Research and Publications. 40.
https://epublications.marquette.edu/comp_fac/40

https://epublications.marquette.edu/
https://epublications.marquette.edu/comp_fac
https://epublications.marquette.edu/comp_fac
https://epublications.marquette.edu/comp
https://epublications.marquette.edu/comp_fac?utm_source=epublications.marquette.edu%2Fcomp_fac%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
https://epublications.marquette.edu/comp_fac/40?utm_source=epublications.marquette.edu%2Fcomp_fac%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages

Marquette University

e-Publications@Marquette

Computer Science Faculty Research and Publications/College of Arts and
Sciences

This paper is NOT THE PUBLISHED VERSION.
Access the published version via the link in the citation below.

PEARC '19: Proceedings of the Practice and Experience in Advanced Research Computing
(July 28 – August 1, 2019): 1-4. DOI. This article is © Association for Computing
Machinery (ACM) and permission has been granted for this version to appear in e-
Publications@Marquette. Association for Computing Machinery (ACM) does not grant
permission for this article to be further copied/distributed or hosted elsewhere without
the express permission from Association for Computing Machinery (ACM).

Spatial Data Decomposition and Load
Balancing on HPC Platforms

Jie Yang
MSCS department, Marquette University, Milwaukee, Wisconsin
Anmol Paudel
MSCS department, Marquette University, Milwaukee, Wisconsin
Satish Puri
MSCS department, Marquette University, Milwaukee, Wisconsin

ABSTRACT
We are in the era of Spatial Big Data. Due to the developments of topographic techniques, clear
satellite imagery, and various means for collecting information, geospatial datasets are growing in
volume, complexity and heterogeneity. For example, OpenStreetMap data for the whole world is about

https://doi.org/10.1145/3332186.3333266
http://epublications.marquette.edu/
http://epublications.marquette.edu/

1 TB and NASA world climate datasets are about 17 TB. Spatial data volume and variety makes spatial
computations both data-intensive and compute-intensive. Due to the irregular distribution of spatial
data, domain decomposition becomes challenging. In this work, we present spatial data partitioning
technique that takes into account spatial join cost. In addition, we present spatial join computation
using Asynchronous Dynamic Load Balancing (ADLB) library. ADLB is a software library designed to help
rapidly build scalable parallel programs using MPI. We evaluated the performance of ADLB-based MPI-
GIS implementation. In our existing work, spatial data movement cost from ADLB server to worker MPI
processes limited the scalability of MPI-GIS.

CCS CONCEPTS
Computing methodologies→Parallel algorithms, Information systems→Geographic information
systems

KEYWORDS
Message Passing Interface, Parallel IO, HPC, Spatial Join, Spatial Data

1 INTRODUCTION
With the increasing volume and complexity of spatial data, there is an increasing demand for efficient
geo-spatial techniques for parallelizing spatial computations. This paper presents modeling of spatial
join complexity, challenges encountered in spatial data partitioning, and experience of using
Asynchronous Dynamic Load balancing library (ADLB) [3] to build MPI-based GIS [4, 5]. Much of our
research on big spatial data has been done on a supercomputer named Bridges at the Pittsburgh
Supercomputing Center. Our implementations use Geometry Engine OpenSource (GEOS) library which
provides 1) spatial data indices such as R-Tree, 2) computational geometry algorithms, and 3) parser
for geometric data.

The datasets used in this paper are in Well-Known Text (WKT) format, which records geometry objects
on a map as a text markup language. For example, a polygon with 3 vertices is represented as
POLYGON((10 20, 30 40, 50 60, 10 20)). A geometry collection can be represented as
GEOMETRYCOLLECTION(POINT((12 17)), LINESTRING((3 3, -10 10))).

Organization of this paper is as follows. In section 2, we model polygon intersection costs and reveal
one of the causes of load-imbalance in parallel spatial join implementations. In section 3 and 4, we
present two contributions of this paper which are 1) spatial join cost-based partitioning and 2)
asynchronous dynamic load balancing for geospatial computations. Compared to our earlier work on
MPI-based spatial computations, these sections describe new research contributions [2, 4–6].

Figure 1: The execution time of polygon intersection using GEOS. In (a), all geometry collections are kept
intact; in (b), all geometry collections are broken down into single geometries.

2 MODELING THE COSTS OF SPATIAL COMPUTATIONS
The number of vertices in a polygon/polyline shape varies widely. The number of vertices in the largest
feature is about five orders of magnitude higher than smaller features that contain few vertices. Spatial
operations like polygon overlay and spatial join where two layers of GIS data are merged together to
produce a third layer as output are specially challenging to model. Execution time depends on the
degree of overlap between the two input layers. Elementary operations that include cross-layer
geometric intersections need to partitioned across MPI processes in balanced way in order to use the
processors efficiently. The worst case time complexity to check if two geometric shapes with 𝑛𝑛 and 𝑚𝑚
vertices overlap or not is 𝑂𝑂(𝑛𝑛 ∗ 𝑚𝑚). However, a tighter bound on time complexity is dictated by the
number of actual segment-intersection points which is a variable quantity depending on input shapes.
This makes modeling task harder.

We performed intersection operation on pairs of geometries which are taken from Lakes (8.4 million
polygons) and Sports (1.8 million polygons) datasets [1]. The execution times for different pairs of
geometries are distributed as shown in Figure 1 (a). After analysis, we figured out that geometry
collections cause the distribution to be more scattered. We performed another intersection operation
on the same pairs of geometries with all geometry collections being split to single geometries. After
geometry collections are divided, the intersection time shows a better correlation with the theoretical
time complexity shown as Figure 1 (b).

3 ADAPTIVE SPATIAL DATA PARTITIONING
For domain decomposition, here we study the partitioning of a layer of spatial data containing
polygons/polylines. Similar to join operation in databases, we have spatial join operation that is used in
spatial databases and Geographic Information System (GIS). Spatial join finds all-to-all topological
relationship between two geometry layers based on whether two shapes overlap or not. With
partitioned data, not only the join task is divided into many sub-tasks, but also the spatial query for a
single geometry becomes more efficient.

We have embedded our computational cost model inherent in spatial join algorithms to do better
partitioning on top of adaptive grid partitioning. We split one grid cell into four grid cells if the cost
exceeds a threshold value. For both Quadtree partitioning and uniform grid partitioning, two spatial
datasets - Lakes (8.4 M polygons) and Sports (1.8 M polygons), are partitioned into 8192 grid cells. MPI-
GIS implementation performs the join tasks that are scheduled in round robin manner to check the
quality of different partitioning techniques.

The implementation ran on regular Bridges computing nodes with two E5-2695 v3 CPUs, i.e. 28 cores
per node. Figure 2 shows the performances of two partitioning techniques by comparing the maximum
execution times and the minimum execution times of the MPI-GIS program. Maximum execution time
determines the overall job completion time. The maximum execution times for the data partitioned
based on Quadtree partitioning are 20% to 35% lower than the maximum execution times for the data
partitioned based on uniform partitioning. With more processes, the minimum execution times are
closer to 0 for both partitioning methods.

4 DYNAMIC LOAD-BALANCING
First, we describe our system based on Asynchronous Dynamic Load Balancing Library (ADLB) library
[3]. We chose this library because it allows multiple MPI processes to be server process using master-
slave strategy. Moreover, it supports asynchronous communication and work stealing among MPI
processes. Among 𝑃𝑃 MPI processes, we employ few of them as ADLB servers and the rest are
employed as workers.

Figure 2: Spatial Join time using Quadtree and Uniform grid partitioning. Maximum and minimum spatial join
execution time is shown for different MPI processes using Lakes and Sports.

Figure 3: Architecture of ADLB library. The server(s) maintain distributed shared queue. Put and Get operations
are used by the workers to add tasks and retrieve tasks to/from the queue. Data can migrate to arbitrary servers
depending on the load.

Figure 3 shows the architecture of ADLB. The workers read small input layer entirely in memory and
build an R-tree index with geometries in the file. However, only a file split from the larger layer is read
in parallel by the workers. These geometries are parsed and enqueued in the distributed shared queue
provided by ADLB. The server processes are responsible for load-balancing and do not participate in
spatial computations. The workers put all the polygons read from the larger file split in the queue.
Finally, geometries are retrieved from the queue and spatial join is carried out. Figure 4 shows the
multi-server, multi-worker algorithm in more detail. In this algorithm, we follow a data-parallel
approach, where we partition the large file into smaller file splits. However, there is no spatial
partitioning done.

ADLB Server ADLB Worker
1. Allocate memory for distributed

queue.
2. Maintain queue: communicate

among servers to distribute
polygons dynamically for load
balancing.

3. Wait for task completion by ADLB
workers.

1. Read polygons from small file and build an
Rtree index indx using min imum bounding
rectangles of polygons.

2. Read a file split from the large file of size
N bytes .

File split size f = N
#𝐰𝐰𝐰𝐰𝐫𝐫𝐤𝐤𝐤𝐤𝐫𝐫𝐬𝐬

3. Add tasks to the queue

For each polygon p inf ADLB_ Put(p);
4. Retrieve task from the queue unt il it is

empty
while(!q.isEmpty()) { strings= ADLB_Get() ;
list<polygon >* plist = parse(s);
perform spatial Join (pli st, ind x);
}

Figure 4: Spatial Join Algorithm using ADLB library. The steps followed by each server and worker process is
shown. The input to this algorithm is a large spatial data file that gets split across workers and a smaller file.

Figure 5: Execution time of ADLB-based spatial join system using two layers - 1) Sports (1.8 million polygons) and
2) Roads (72 million polylines).

As we can see in Figure 5, the spatial join time decreases as the number of workers increases upto
twelve compute nodes. In Figure 6, the overhead of adding tasks by the workers is shown. The task
here consists of polygons from the large layer. The size of the polygons/polylines vary from few bytes
to few megabytes. In this experiment, as we increase the number of workers, we also increase the
number of servers from 10 to 20. We can observe a sudden slowdown in task creation phase from
Figure 6. This is due to the overhead caused by queue maintenance in ADLB. Beyond 240 MPI
processes, ADLB put operations take longer time to finish even though the number of put operations
decreases per process.

Inspite of the queue maintenance overhead, we observed that ADLB does a good job of load balancing
the tasks among workers. However, the ADLB-based system takes almost double time compared to the
single-server multi-worker MPI-GIS system that does not use ADLB (more details in the next
paragraph). We found that for ADLB-based spatial join implementation, transferring and parsing data
by put and get operations on the distributed queue are the overheads that increase the end-to-end
time considerably.

Load-balancing with partitioned data:
In order to improve the performance of parallel spatial computation in MPI-GIS, instead of working
directly with original datasets, now we first partition the data adaptively among grid cells as described
in the earlier section and then use our own dynamic load balancing implementation. If user selects
8192 grid cells for spatial partitioning, then the original file is broken down into 8192 files i.e. one file
for each grid cell data. This version uses a single-sever multi-worker strategy to implement parallel
spatial join. A single server works well in this case because the message size is small and due to the
coarse granularity of partitions, the server does not become a point of contention.

In this version, a task is defined as a pair of cross-layer and overlapping grid cells. The server sorts
these tasks in descending order of computational cost generated by our model and schedules the
remaining tasks among workers as they become idle. The program has been tested using two spatial
datasets: Roads (72 million polylines stored) and Sports (1.8 million polygons). The WKT file for Roads
is 24 GB and the WKT file for sports is 590 MB. We found this implementation that leverages the
partitioned data to be faster than ADLB-based implementation.

Figure 6: Time taken due to workers adding tasks to the shared ADLB queue using put function.

ACKNOWLEDGMENTS
This work is partly supported by the National Science Foundation Grant No. 1756000.

REFERENCES
[1] [n. d.]. SpatialHadoop, http://spatialhadoop.cs.umn.edu. Website. ([n. d.]).

http://spatialhadoop.cs.umn.edu/
[2] Dinesh Agarwal, Satish Puri, Xi He, and Sushil K Prasad. 2012. A system for GIS polygonal overlay

computation on linux cluster-an experience and performance report. In 2012 IEEE 26th
International Parallel and Distributed Processing Symposium Workshops & PhD Forum. IEEE,
1433–1439.

[3] Ewing L Lusk, Steve C Pieper, Ralph M Butler, et al. 2010. More scalability, less pain: A simple
programming model and its implementation for extreme computing. SciDAC Review 17, 1
(2010), 30–37.

[4] Satish Puri. 2019. SpatialMPI: Message Passing Interface for GIS Applications. Geographic
Information Science & Technology Body of Knowledge 2019, Q2 (2019).

[5] Satish Puri, Anmol Paudel, and Sushil K Prasad. 2018. MPI-Vector-IO: Parallel I/O and Partitioning
for Geospatial Vector Data. In Proceedings of the 47th International Conference on Parallel
Processing, ICPP. 13.

[6] Satish Puri and Sushil K Prasad. 2015. A parallel algorithm for clipping polygons with improved
bounds and a distributed overlay processing system using mpi. In 2015 15th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing. IEEE, 576–585.

	Spatial Data Decomposition and Load Balancing on HPC Platforms
	Recommended Citation

	ABSTRACT
	CCS CONCEPTS
	KEYWORDS
	1 INTRODUCTION
	2 MODELING THE COSTS OF SPATIAL COMPUTATIONS
	3 ADAPTIVE SPATIAL DATA PARTITIONING
	4 DYNAMIC LOAD-BALANCING
	Load-balancing with partitioned data:

	ACKNOWLEDGMENTS
	REFERENCES

