
Marquette University Marquette University

e-Publications@Marquette e-Publications@Marquette

Computer Science Faculty Research and
Publications Computer Science, Department of

11-2020

Efficient Filters for Geometric Intersection Computations using Efficient Filters for Geometric Intersection Computations using

GPU GPU

Yiming Liu
Marquette University

Satish Puri
Marquette University, satish.puri@marquette.edu

Follow this and additional works at: https://epublications.marquette.edu/comp_fac

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Liu, Yiming and Puri, Satish, "Efficient Filters for Geometric Intersection Computations using GPU" (2020).
Computer Science Faculty Research and Publications. 43.
https://epublications.marquette.edu/comp_fac/43

https://epublications.marquette.edu/
https://epublications.marquette.edu/comp_fac
https://epublications.marquette.edu/comp_fac
https://epublications.marquette.edu/comp
https://epublications.marquette.edu/comp_fac?utm_source=epublications.marquette.edu%2Fcomp_fac%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=epublications.marquette.edu%2Fcomp_fac%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
https://epublications.marquette.edu/comp_fac/43?utm_source=epublications.marquette.edu%2Fcomp_fac%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages

Marquette University

e-Publications@Marquette

Computer Sciences Faculty Research and Publications/College of Arts and
Sciences

This paper is NOT THE PUBLISHED VERSION.
Access the published version via the link in the citation below.

SIGSPATIAL '20: Proceedings of the 28th International Conference on Advances in Geographic
Information Systems, (November 2020): 487-496. DOI. This article is © Association for Computing
Machinery (ACM) and permission has been granted for this version to appear in e-
Publications@Marquette. Association for Computing Machinery (ACM) does not grant permission for
this article to be further copied/distributed or hosted elsewhere without the express permission from
Association for Computing Machinery (ACM).

Efficient Filters for Geometric Intersection
Computations using GPU

Yiming Liu
Marquette University, USA
Satish Puri
Marquette University, USA

Geometric intersection algorithms are fundamental in spatial analysis in Geographic Information
System (GIS). Applying high performance computing to perform geometric intersection on huge
amount of spatial data to get real-time results is necessary. Given two input geometries (polygon or
polyline) of a candidate pair, we introduce a new two-step geospatial filter that first creates sketches
of the geometries and uses it to detect workload and then refines the sketches by the common areas
of sketches to decrease the overall computations in the refine phase. We call this filter PolySketch-
based CMBR (PSCMBR) filter. We show the application of this filter in speeding-up line segment

https://doi.org/10.1145/3397536.3422264
http://epublications.marquette.edu/
http://epublications.marquette.edu/

intersections (LSI) reporting task that is a basic computation in a variety of geospatial applications like
polygon overlay and spatial join.

We also developed a parallel PolySketch-based PNP filter to perform PNP tests on GPU which reduces
computational workload in PNP tests. Finally, we integrated these new filters to the hierarchical filter
and refinement system to solve geometric intersection problem. We have implemented the new filter
and refine system on GPU using CUDA. The new filters introduced in this paper reduce more
computational workload when compared to existing filters. The processing rate of the new filter and
refine system for line segment intersection reporting task is 61 million/sec on average.

Keywords
Theory of computation→Computational geometry, Information systems→Geographic information
systems, Computing methodologies→Massively parallel algorithms, HPC, Parallel Algorithms, CUDA,
Spatial Operations

1 Introduction
Filter and refine strategy is used in many spatial computing algorithms for spatial query, spatial join
and overlay in geographic information system [10]. Given two input layers of geometries, filter step
uses minimum bounding rectangle (MBR) approximation of a geometry and refine step uses the actual
vertices that represent it. Typically, filter step is lightweight and refinement step is compute-intensive
because of complex computational geometry algorithms. Filter step produces candidate pairs which
may result in false hits. The refinement step further examines the candidates sequentially to eliminate
false hits by using computational geometry algorithms on each candidate. Geometric intersection
algorithms are fundamental in spatial computing [7, 9, 13, 17, 22]. Here we study GPU-based
implementation of filter and refine strategy which is relevant to spatial join and polygon overlay
algorithms.

Geometric intersection algorithms for polygons use line segment intersection (LSI) and point-inpolygon
(PNP) operations as building blocks. Here, we are interested in the LSI reporting problem which means
that all the points of intersection between two polygons should be reported. Moreover, for all the
points of two polygons corresponding to a candidate, the inside/outside status needs to be
determined. LSI and PNP operations are useful for implementing boolean set operations like union,
intersection, and difference for a pair of polygons. Polygon intersection and polygon clipping
algorithms internally invoke LSI and PNP tests [7, 9, 24]. Depending on the variation in size of line
segments and its spatial distribution, planesweep [14] and grid-based algorithms on CPU [12] and GPU
[21, 23] have been reported in literature. In addition, there are data structures like segment tree and
R-tree that have been used to speedup LSI problems [19].

(a) (b) (c)

Fig. 1. Two input polygons with (a) CMBR (green rectangle), (b) PolySketch showing the tiles and (c)
only overlapping tiles after applying PolySketch filter.

In addition to MBR, other approximations which are used as filter are rotated minimum bounding box,
convex hull, minimum bounding circle and ellipse, n-cornered bounding polygon, etc [5, 6, 20]. Recent
approaches for implementing spatial computations using GPU, include a variety of filters, for instance,
Common MBR Filter (CMF) [2, 4], two-level uniform grid [12], Grid-CMF [1], and PolySketch [11]. A
collection of filters applied in a hierarchical manner for speeding up geometric intersection on GPUs
was presented as Hierarchical Filter and Refine (HiFiRe) technique [11]. In this paper, we extend the
filter and refine technique by adding two efficient filters for speeding up LSI and PNP operations. The
filters are designed to exploit the parallel GPU architecture and minimize the workload inherent in the
refinement step of spatial computations by improving the filter efficiency.

PolySketch filter uses sketch of a geometry represented by a set of contiguous MBRs (tiles) that
approximate the geometry [11] instead of a single MBR. Common MBR filter is based on the common
area of overlap between MBRs of the two input polygons of a candidate. The first new filter proposed
here combines the strengths of PolySketch and CMBR filters and thus we refer to it by PolySketch-
based CMBR (PSCMBR) filter. The second new filter is a PNP filter that uses PolySketch representation
of the geometries to quickly find whether the points of a geometry are inside or outside of a given
polygon. The contributions of this paper are as follows.

• PSCMBR Filter: Compared to standard R-tree filter, the PSCMBR filter discards on average 76%
of candidate pairs which do not have line segment intersection points. The workload after using
it is on average 98% and 90% smaller than using CMF and PolySketch filter respectively.

• PolySketch-based PNP filter: The workload after using it is on average 60% smaller than using
Stripe-based PNP filter [11]. The workload after using tile-based PNP filter is on average 98%
smaller than using constant vertex PNP filter [11].

• With the improved HiFiRe system equipped with new filters, we get on average 7.96X speedup
compared to our prior version of HiFiRe system. The processing rate of this new filter and refine
system for reporting line segment intersection is 61 million/sec on average for real datasets.

The rest of the paper is organized as follows. Section 2 describes the background and related work.
Section 3 describes PSCMBR. Section 4 describes the PNP filter based on PolySketch. Section 5 shows
the experimental results. Finally, we conclude the paper.

2 Background and Relatedwork
Filter and refine is a widely used technique that takes a two-step approach of first filtering the
geometries that can potentially become part of the output using rectangular approximations (MBR).
Given a collection of geometries in an input dataset (layer), each geometry is represented as one
rectangle that encloses it completely in the filter phase. It has been shown that approximations
excluding MBR are costly to construct [20]. After the filter phase, refinement is done using actual line
segments of the input. This idea has been shown to be effective on a GPU which is a massively parallel
hardware that accelerates the filter and refine computations. Using PolySketch as one of the filters, a
hierarchical filter and refinement system (HiFiRe) [11] was implemented which is essentially a
collection of filters to speedup geospatial intersection algorithms on a GPU. As shown in HiFiRe, the
filter step is the key to improve the performance.

An algorithm for polygon intersection with N and M line segments require s𝑂𝑂(𝑁𝑁.𝑀𝑀) line segment
intersection tests. This quadratic time complexity makes it an expensive operation. In GIS, millions of
polygon intersections are common. As such, filters are designed which acts as proxy for polygons. One
such filter is an MBR filter. Minimum bounding rectangle is the smallest axis-aligned rectangle that
encloses a spatial object, such as a polygon. It only requires two multi-dimensional points to store a
MBR. Computing a MBR and checking a MBR with other MBRs are much cheaper than checking the
intersection points between line segments so MBR is widely used to the filters of basic spatial
operations, such as the intersection test.

Common Minimum Bounding Rectangle (CMBR) is an approach based on MBRs and it is the
overlapping area of MBRs of two polygons. The paper [2] introduces and applies it to perform spatial
join for real datasets. As shown in Figure 1(a), the blue and red rectangles are MBRs that each encloses
a polygon and the green rectangle is their CMBR. Common MBR filter (CMF) is an efficient filter based
on the idea of CMBR for line segment intersection because it can ignore the line segments that do not
overlap with the CMBR, which can reduce the computational workload in LSI refinement. In addition, it
is possible that two polygons do not overlap but their MBRs overlap. CMF can identify this scenario and
avoid expensive polygon intersection. This is the rationale of using a filter. However, the feature of
CMBR makes it less effective if the CMBR is large as shown in Figure 1(a). Most of line segments are
still in CMBR and cannot be ignored. In addition to CMF method, to improve the efficiency of MBR, the
paper [18] introduces the clipped bounding box (CBB) that includes a set of clip points that clip away
empty corners of MBRs. Danial et al. presented two spatial filters, namely, CMF and Grid-CMF. CMF is
based on common MBR area between two cross-layer polygonal MBRs [1, 2]. Grid-CMF further
partitions the Common MBR area. Both filters have been used in spatial join using GPU to filter out
candidate pairs that do not need further refinement.

PolySketch is a representation of a spatial object by a set of tiles [11]. A tile is a subset of consecutive
vertices of a geometry and tile-size is the number of vertices in the tile. Once tile-size is fixed, then a
MBR is calculated which is known as tile-MBR. If a geometry has 𝑛𝑛 vertices and the tile size is set as 𝑏𝑏, it
consists of 𝑛𝑛/𝑏𝑏 tiles. The basic idea is to first do tile intersections that are cheap and then to do
expensive refinement on tiles that have overlap. Figure 1(b) shows an example of PolySketch. We can
see that each polygon contains some tiles which contain different line segments. The performance of
PolySketch is affected by the tile-size. Using different tile-sizes, we can get more or fewer tiles.

Generally, by using smaller tiles, we may discard more parts of polygons. We can discard the tiles
whose MBRs do not overlap with others. Figure 1(c) shows the candidate tiles. The line segments
within one tile should be compared with the line segments of other overlapping tiles.

CMF vs PolySketch: CMF is different from PolySketch filter because all line segments overlapping the
CMBR of two polygons should be compared against each other in CMF. PolySketch can better handle
the case where CMBR is large [11]. PolySketch filter checks every tile of a polygon with all tiles of
another polygon. By using smaller tiles, the line segments within a tile are only compared with the line
segments of the overlapping tiles. Most parts of polygons which cannot have intersection points can be
safely ignored. However, the line segments within a tile cannot be discarded if a tile overlaps with
others. All line segments within this tile should be tested. In short, there is room for further
improvement in PolySketch filter when the number of candidate tile pairs is high and each tile contains
a large number of line segments. In contrast to PolySketch, CMBR can contain any number of line
segments. All line segments which do not overlap with the CMBR will be discarded. PolySketch has
been compared to CMF in [11].

Another prior work in this area uses PixelBox technique which is pixel approximation of polygons for
computation [21]. Geometries represented as 2D co-ordinates are converted to raster format (pixels)
to leverage image processing using a GPU [8]. Another work by Audet et al. [3] uses uniform grid for
polygon overlay. Space division techniques like gridding can potentially increase the problem size by
replicating the line segments crossing the grid boundaries. In a filter and refine algorithm, planesweep
technique is used in the refine phase when the dataset fits in the memory. Geometric intersection
using GPU has been studied earlier for planesweep algorithm [15].

3 Polysketch-Based Common Mbr (Pscmbr) Filter
3.1 Overview of PSCMBR Filter
As we discussed before, CMF and PolySketch filter were used in the geometric intersection
computations. These filters have their advantages and drawbacks. Our new PSCMBR filter is a more
efficient filter that can handle various types of polygons with varying degree of overlaps. It combines
the strength of CMF and PolySketch Filter. PSCMBR first creates sketches of the geometries. Then, it
checks which tiles of a polygon overlap with tiles of another polygon and the overlapping tiles are
candidate tile pairs. The tiles that do not overlap with other tiles are discarded. After this, we calculate
the common area of overlap for every candidate tile pairs and check whether both tiles have line
segments overlapping with the CMBR. Those candidate tile pairs that do not have any line segments in
the CMBR are discarded. If they do, we will perform LSI function only for the line segments overlapping
with the CMBR instead of all line segments within the tiles. So, in essence, CMBR filtering is used at the
granularity of tiles instead of polygonal MBRs.

We illustrate PSCMBR filter in Figure 1. Figure 1(b) is the first step in using PSCMBR where we create
sketches of polygons. There are four candidate tile pairs shown in Figure 1(c), where one tile of a
polygon overlaps with four tiles of another polygon. Then, PSCMBR filter calculates the CMBRs of a pair
of tiles corresponding to the four candidate pairs. The four rectangles in Figure 2 are their CMBRs. The
two candidate tile pairs whose CMBRs are yellow do not need further refinement because only one tile
has line segments overlapping the CMBR. Since another polygon does not have any line segment

overlapping the CMBR, there cannot be any line segment intersection. Therefore, we do not need to
perform refinement phase. Another two candidate tile pairs whose CMBRs are purple need further
refinement because both polygons have line segments overlapping their CMBRs. In addition, only line
segments overlapping the purple rectangles need to be checked instead of all line segments within the
tiles. This leads to reduction in workload in the refinement phase.

Fig. 2. PSCMBR filter with four tile-CMBRs. Only the common area of overlap between the candidate tile pairs
are retained (see Figure 1(c)).

Fig. 3. PSCMBR filter for reporting line segment intersections (LSI). Two polygons A1 and B1 are the input and
the output is list of intersections.

Execution time model of intersection of two geometries using PSCMBR:We describe the workload first
in terms of tile-MBR intersections (two filters) and refinement using LSI. Table 1 defines the symbols
used in the time complexity of intersection of two geometries (polygons). 𝑇𝑇𝑃𝑃 and 𝑇𝑇𝑄𝑄 are tile-counts for

two polygons with P and Q numbers of line segments respectively. 𝑃𝑃
𝑇𝑇𝑃𝑃

 and 𝑄𝑄
𝑇𝑇𝑄𝑄

 are number of line

segments in a tile (tile-size) of the respective geometries.

Figure 3 shows the data-flow and control-flow in PSCMBR filter and refine system. Input of PSCMBR is
the candidate tasks. As shown in Figure 3, A1 and B1 are two polygons of a task. Output of the ‘check
tiles’ step is a collection of candidate tile-pairs of size 𝐶𝐶. Output of the ‘check CMBR’ step is a collection
of candidate tile-pairs of size �̂�𝐶. Because of CMBR filtering on candidate tile pairs, we have �̂�𝐶 <= 𝐶𝐶.
Moreover, 𝑃𝑃� <= 𝑃𝑃 and 𝑄𝑄� <= 𝑄𝑄. Using PolySketch, the time complexity is given by the following
equation:

𝒯𝒯 = 𝑇𝑇𝑃𝑃.𝑇𝑇𝑄𝑄 .𝒯𝒯𝑀𝑀𝑀𝑀𝑀𝑀 + 𝐶𝐶. 𝑃𝑃
𝑇𝑇𝑃𝑃

. 𝑄𝑄
𝑇𝑇𝑄𝑄

.𝒯𝒯𝐿𝐿𝐿𝐿𝐿𝐿 (1)

In Figure 4, we show the relationship between tile-size and effectiveness of the PolySketch filter.
Maximum number of tiles in a polygon is bounded by the number of line segments in the polygon

Table 1. Symbol Table

𝑆𝑆𝑦𝑦𝑚𝑚𝑏𝑏𝑜𝑜𝑙𝑙 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑛𝑛𝐷𝐷𝐷𝐷𝐷𝐷𝑜𝑜𝑛𝑛
𝒯𝒯𝑀𝑀𝑀𝑀𝑀𝑀 Time for checking if two MBRs overlap
𝒯𝒯𝐶𝐶𝑀𝑀𝑀𝑀𝑀𝑀 Time for checking if a line segment overlaps CMBR
𝒯𝒯𝐿𝐿𝐿𝐿𝐿𝐿 Time to find intersection point of two line segments
𝑃𝑃,𝑄𝑄 Number of line segments in two input geometries
𝑇𝑇𝑃𝑃 ,𝑇𝑇𝑄𝑄 Number of tiles in the two input geometries
C Number of candidate tile pairs after PolySketch
�̂�𝐶 Number of candidate tile pairs after CMBR
𝑃𝑃�,𝑄𝑄� Number of line segments in CMBR

Fig. 4. Effect of tile-size on the number of candidate tile-pairs. Input Tile-pairs% = 𝑇𝑇𝑝𝑝∗𝑇𝑇𝑞𝑞

𝑃𝑃∗𝑄𝑄
 ∗ 100. Candidate tile-

pairs% = 𝐶𝐶
𝑇𝑇𝑝𝑝∗𝑇𝑇𝑞𝑞

 ∗ 100. Each line denotes the output candidate tile-pairs% for a given input polygon-pair.

because we do not split a line segment. Therefore, for calculating the input tile percentage, we use the
product of P and Q. Tile-size determines the number of tiles used in the filter. Large (small) tile-sizes
correspond to very small (large) number of input tiles. In general, small tile sizes lead to better filter
efficiency. However, small tile size means a larger number of tiles which increases the overhead of the
filter. So, there is a tradeoff between filter efficiency and time complexity of the filter. The polygon
pairs used here have been taken from Classic1, Ocean2 and Water (described in Subsection 5.1). Table 2
shows an example of input polygon pair of Figure 4. For spatial join and polygon overlay workloads, it is
difficult to estimate good tile size because as we can see the output-size varies from one candidate pair
to another.

Finding whether two rectangles overlap requires a single line of code. However, finding the point of
intersection of two line segments is more than 10 lines of code. As such, 𝒯𝒯𝑀𝑀𝑀𝑀𝑀𝑀«𝒯𝒯𝐿𝐿𝐿𝐿𝐿𝐿. In addition,
𝒯𝒯𝐶𝐶𝑀𝑀𝑀𝑀𝑀𝑀«𝒯𝒯𝐿𝐿𝐿𝐿𝐿𝐿. From Equation 1, the LSI workload depends on the candidate tile-pairs.

Table 2. An example of input polygon pair in Figure 4

P Q Tile-size
for A1

Tile-size
for B1

Input
tile-pairs %

72997 101242 128 128 0.006%
72997 101242 15 15 0.44%

Overall performance depends on the delicate balance between the tile-MBR intersections and line
segment intersections as shown in Equation 1.

Using PSCMBR, the time complexity is given by the following equation:

𝒯𝒯 = 𝑇𝑇𝑃𝑃.𝑇𝑇𝑄𝑄 .𝒯𝒯𝑀𝑀𝑀𝑀𝑀𝑀 + 𝐶𝐶. 𝑃𝑃
𝑇𝑇𝑃𝑃

. 𝑄𝑄
𝑇𝑇𝑄𝑄

.𝒯𝒯𝐶𝐶𝑀𝑀𝑀𝑀𝑀𝑀 + �̂�𝐶.𝑃𝑃� .𝑄𝑄� .𝒯𝒯𝐿𝐿𝐿𝐿𝐿𝐿 (2)

3.2 Advantages of PSCMBR Filter
As we discussed before, the existing CMF is not efficient if the CMBR of two polygons is very large. In
contrast to CMF, PolySketch can handle this case well by using small tiles. In addition, using CMF also
requires calculation and storage of the line segments overlapping the CMBR, which also takes more
time if the CMBR is large. However, if the CMBR of two polygons is small, CMF works better than
PolySketch because the tiles of PolySketch contain a fixed number of line segments and we can only
ignore or keep all line segments within the same tile. CMBR can contain any number of line segments.

PSCMBR can solve the previous problems. Since it creates the sketches of polygons, it can discard most
parts of polygons, which do not overlap with another polygon. Then, checking whether both tiles have
line segments overlapping with their CMBR can reduce the number of candidate tile pairs. The new
filter can potentially reduce the number of false hits compared to the classical filter and refine
strategy, CMF and PolySketch filter. Moreover, if both tiles still have line segments overlapping with
their CMBR, we only need to perform the refinement phase for the line segments inside the CMBR,
instead of all line segments in a tile. Therefore, the refinement phase has to handle fewer line
segments.

For CMF, storing all line segments overlapping with the CMBR of two polygons for all tasks has
significant memory overhead, especially on GPU. There are variations in vertex count and degree of
overlap in real-world datasets. For example, some polygons are huge (about 50,000 vertices) and some
polygons are small (about 50 vertices). The CMBR of two huge polygons can be also huge. The global
memory in a GPU is limited. PSCMBR can handle this scenario because it calculates the CMBR of only
candidate tiles which leads to better space complexity. In addition, different GPU threads can be
assigned to process different tiles of the same polygon, which increases the parallelization.

3.3 The Implementation of PSCMBR Filter
In CUDA programming model, the threads are organized as blocks of threads. A thread block may
include up to 1024 threads. 𝐷𝐷ℎ𝑟𝑟𝐷𝐷𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 variable stores a unique thread ID assigned by CUDA to each
GPU thread. It is the index of the current thread within its block. 𝑏𝑏𝑙𝑙𝑜𝑜𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟𝑟𝑟 variable is a unique block ID
assigned by CUDA to each GPU thread block. A CUDA kernel is a function that runs on a GPU. It is
executed in parallel by different threads. Threads in the same block can communicate by shared
memory or global memory.

Figure 5 shows the pseudo-code of PSCMBR filter applied to LSI function using CUDA. Each candidate
polygon pair (task) will be assigned a thread block. Here we are showing how the filter is implemented
for a single task that uses a single GPU thread block for simplicity. Our actual kernel applies the same
filter on thousands of such tasks by mapping one thread block to one candidate pair. For
parallelization, we define a task as a pair of polygons whose MBRs overlap.

In the CUDA pseudo-code, the number of tiles for the two polygons are stored in arrays 𝑛𝑛𝑛𝑛𝑚𝑚𝑇𝑇𝐷𝐷𝑙𝑙𝐷𝐷𝑛𝑛1
and 𝑛𝑛𝑛𝑛𝑚𝑚𝑇𝑇𝐷𝐷𝑙𝑙𝐷𝐷𝑛𝑛2, and the number of line segments in a tile are stored in 𝐷𝐷𝐷𝐷𝑙𝑙𝐷𝐷𝑆𝑆𝐷𝐷𝑡𝑡𝐷𝐷1 and 𝐷𝐷𝐷𝐷𝑙𝑙𝐷𝐷𝑆𝑆𝐷𝐷𝑡𝑡𝐷𝐷2. Given
the line segments of the two input polygons denoted by arrays 𝑠𝑠𝐷𝐷𝑠𝑠𝑚𝑚𝐷𝐷𝑛𝑛𝐷𝐷1 and 𝑠𝑠𝐷𝐷𝑠𝑠𝑚𝑚𝐷𝐷𝑛𝑛𝐷𝐷2, a tile needs
two offsets to mark the starting and ending points in the arrays. We can find the corresponding line
segments within the tiles by using them. These offsets are stored in the arrays 𝑝𝑝𝑟𝑟𝐷𝐷𝐷𝐷𝐷𝐷𝑟𝑟𝑆𝑆𝑛𝑛𝑚𝑚1 and
𝑝𝑝𝑟𝑟𝐷𝐷𝐷𝐷𝐷𝐷𝑟𝑟𝑆𝑆𝑛𝑛𝑚𝑚2. The MBRs of tiles are stored in 𝐷𝐷𝐷𝐷𝑙𝑙𝐷𝐷𝑀𝑀𝑡𝑡𝑡𝑡1 and 𝐷𝐷𝐷𝐷𝑙𝑙𝐷𝐷𝑀𝑀𝑡𝑡𝑡𝑡2 arrays.

1 #define SIZEl 30
2 #define SIZE2 30
3 __ global__ void PSCMBR(int num TileLl,int num TileL2,
4 int tileSizel , int tileSize2 , int *prefixSuml,
5 int *prefixSum2 , MBR *tileMBRl , MBR *tileMBR2 ,
6 LineSegment *segmentl, LineSegment *segment2, ...){
7 //We consider the larger polygon as the 1st polygon
8 //numTilell is the number of tiles of the 1st polygon
9 for (int j=thr eadidx .x; j<num TileLl; j+=blockDim. x){
10 for (int k= ; k<num TileL2; k++)
11 if(tileMBRl[j] overlaps tileMBR2[k]){
12 LineSegment subSegmentl[SIZE1],subSegment2[SIZE2];
13 int count1=0;
14 int count2=0;
15 //calculate the CMBR of two tiles
16 MBR cmbr=getCMBR (tileMBRl [j], tileMBR2 [k]);
17 for (int jj=0; jj<tileSizel; jj++){
18 if (segmentl [prefixSuml [j]+jj] overlaps cmbr){
19 storeSegment (subSegmentl [countl],
20 segmentl [prefixSuml [j]+jj]);
21 countl++;
22 }
23 }
24 if (count1 !=0){

25 for (int kk=0; kk<tileSize2; kk++){
26 if (segment2 [prefixSum2 [k]+kk] overlaps cmbr){
27 storeSegment (subSegment2 [count2],
28 segment2 [prefixSum2 [k]+kk]);
29 count2++;
30 }
31 }
32 if (count2 !=0){
33 //Calculate and store intersection points
34 LSI (subSegmentl, subSegment2, countl, count2);
35 }
36 }
37 }
38 }
39 }
40 }

Fig. 5. CUDA Implementation of PSCMBR Filter

For simplicity, given a candidate pair, let us assume that the 1st polygon in the algorithm is the one
that has more tiles as described in Subsection 3.4. When we use CUDA, the first step is to create
different thread blocks for different tasks. Then, we assign the threads to the polygon which has more
tiles and every tile will be compared with all tiles of another polygon. If two tile-MBRs overlap, we will
calculate their CMBR and check if both tiles have line segments overlapping with the CMBR. The
implementation follows the algorithm that we discussed earlier. SIZE1 and SIZE2 in Figure 5 are always
larger than the tile-size to prevent buffer overflow.

In the CUDA algorithm, it is possible to increase the number of threads to avoid the 𝑏𝑏 loop which is
sequential. However, the kernel handles a large number of tasks with different polygon sizes and we
assign one thread block to one task. In the real-world datasets, candidate polygon-pairs (tasks) have
different vertex count (e.g., 50K or 100), so it is difficult to decide how many threads to be used in each
block for a huge number of tasks. While mapping tiles to threads, we make sure that the inner 𝑏𝑏 loop
goes over fewer number of tiles from the smaller polygon.

3.4 Optimization: Mapping tiles to threads
In the implementation, given a candidate pair, a thread picks a tile of a polygon and compares it with
all tiles of another polygon. When mapping computations associated with tiles to GPU threads, we
assign threads to the tiles of the larger polygon. Our implementation dynamically swaps the order of
polygons in a candidate pair based on the number of tiles in a polygon. This leads to a better division of
work among threads and it leads to better mapping of the computations to different levels of GPU
parallelism. For example, to illustrate this optimization, let us assume that we have a thread block with
128 threads and we have two polygons A with 256 tiles and B with 16 tiles. If we assign 128 threads to
A, a tile of A should be compared with only 16 tiles of B by each thread. However, if we assign 128
threads to B, we cannot make full use of the threads and a tile of B should be compared with 256 tiles

of A by each thread. This increases the workload for all threads. Therefore, we compare the number of
tiles of two polygons from layer 1 and layer 2. Then, we assign threads to the polygon which has more
tiles. This helps us in making better use of the GPU resources and implement the algorithm efficiently.
In addition, the workload in every thread is more balanced.

4 Point-In-Polygon Filter Using Polysketch
Point-in-Polygon (PNP) tests are necessary for polygon-polygon intersection algorithms to create the
output polygon. For instance, when a polygon is completely inside another polygon, there are no
intersection points. A brute-force algorithm requires running PNP test for every point, which is an
expensive operation. Therefore, we have designed a PNP filter based on PolySketch approximation. We
assume that PNP filter is invoked after LSI function as discussed earlier.

For a candidate polygon pair (A,B), the input to the algorithm are 1) two list of vertices from each
polygon and 2) information about intersecting points found by the LSI function. The goal is to find
which points of a polygon A fall inside/outside of polygon B and vice versa. The classical point-in-
polygon (PNP) test for a point is 𝑂𝑂(𝑁𝑁) where 𝑁𝑁 is the number of points in a polygon. The basic idea is to
create a filter that minimizes the number of expensive PNP tests using PolySketch.

Basic Idea: Using Jordan curve theorem, we can show that the inside/outside status of points of a
polygon A changes when its line segments intersect with the line segments of polygon B. This idea is
utilized in polygon clipping algorithms [9, 16] to avoid expensive PNP tests by first inserting the
segment intersections into the original polygons to create a graph and then traversing the graph to find
the inside/outside status of the points of input polygons. When polygons are represented as tiles (a
subset of contiguous vertices), this idea leads to a new PNP filter.

4.1 Algorithm Overview
There are three cases that need to be handled for a candidate pair.

Case I: If a tile’s MBR overlaps with another tile’s MBR and there are line segment intersections, the
vertices inside these two tiles need further processing. This is the case where the filter does not help.
So, PNP tests are required for all the vertices in the tiles.

Case II: If a tile’s MBR overlaps with another tile’s MBR but there is no line segment intersection, the
inside/outside status of the vertices in a tile should be the same.

Fig. 6. An example of intersection tile (red rectangle) and no-intersection tile (yellow rectangle)

Case III: If a tile’s MBR does not overlap with any other tiles, then the inside/outside status of the
vertices in a tile should also be the same.

In the second and the third cases, the filter works in reducing the number of PNP tests because only
one PNP test is required for an entire tile. The status of the remaining vertices of a tile is the same.
Therefore, PolySketch-based PNP function divides the tiles into two types: 𝐷𝐷𝑛𝑛𝐷𝐷𝐷𝐷𝑟𝑟𝑠𝑠𝐷𝐷𝑏𝑏𝐷𝐷𝐷𝐷𝑜𝑜𝑛𝑛 𝐷𝐷𝐷𝐷𝑙𝑙𝐷𝐷 and 𝑛𝑛𝑜𝑜 −
𝐷𝐷𝑛𝑛𝐷𝐷𝐷𝐷𝑟𝑟𝑠𝑠𝐷𝐷𝑏𝑏𝐷𝐷𝐷𝐷𝑜𝑜𝑛𝑛 𝐷𝐷𝐷𝐷𝑙𝑙𝐷𝐷. If a tile does not have any line segment intersection, we consider this tile as the
𝑛𝑛𝑜𝑜 − 𝐷𝐷𝑛𝑛𝐷𝐷𝐷𝐷𝑟𝑟𝑠𝑠𝐷𝐷𝑏𝑏𝐷𝐷𝐷𝐷𝑜𝑜𝑛𝑛 𝐷𝐷𝐷𝐷𝑙𝑙𝐷𝐷. If a tile has at least one line segment intersection, we consider this tile as the
𝐷𝐷𝑛𝑛𝐷𝐷𝐷𝐷𝑟𝑟𝑠𝑠𝐷𝐷𝑏𝑏𝐷𝐷𝐷𝐷𝑜𝑜𝑛𝑛 𝐷𝐷𝐷𝐷𝑙𝑙𝐷𝐷. For 𝑛𝑛𝑜𝑜 − 𝐷𝐷𝑛𝑛𝐷𝐷𝐷𝐷𝑟𝑟𝑠𝑠𝐷𝐷𝑏𝑏𝐷𝐷𝐷𝐷𝑜𝑜𝑛𝑛 𝐷𝐷𝐷𝐷𝑙𝑙𝐷𝐷, we need a single PNP test and then we know whether
all vertices within this tile are inside another polygon or not. For 𝐷𝐷𝑛𝑛𝐷𝐷𝐷𝐷𝑟𝑟𝑠𝑠𝐷𝐷𝑏𝑏𝐷𝐷𝐷𝐷𝑜𝑜𝑛𝑛 𝐷𝐷𝐷𝐷𝑙𝑙𝐷𝐷, we test all vertices
within a tile because there are line segment intersections; so the status of the points before the
intersection-point will be different from the status of the points that are after it if we traverse the
points in a clockwise order. We have observed that the number of intersection-points are far less than
the input size of the overlapping polygons. Therefore, this limitation has very less impact on the
performance.

As shown in Figure 6, there are two polygons C1 (black) from layer1 and D1 (blue) from layer 2. The
tile-size is set as 5 line segments. We can see there are five tile-MBR overlap pairs. For two tile-MBR
overlap pairs, they have line segment intersections. For the other three tile-MBR overlap pairs, they do
not have any line segment intersection. Therefore, we should do the PNP test for all vertices of only
one tile of C1 and two tiles of D1. For other tiles, we run the PNP test for only a few vertices within
every tile.

4.2 Comparison of PNP workload reduction

Fig. 7. Illustration of PNP functions. Two polygonal chains extracted from input polygons is highlighted by red
and blue colored tiles. The space is divided into two stripes S1 and S2. Dotted line is an imaginary ray parallel to
X-axis and passing through the test point shown as yellow point.

Comparsion with our prior work: In our previous work [11], we had used space division (striping) to
decrease the PNPworkload wherewe divided the space occupied by the two overlapping polygons into
horizontal stripes and mapped the line segments of the polygons to the stripes based on overlap. This
mapping step used extra memory to store the line segments contained in the stripes and was done on
a multi-core CPU as a pre-processing step. In addition, if the area to be divided is very large or the
number of stripes is high, then the performance degrades. For real datasets with a variety of candidate
pairs, using a static number of stripes limited the performance. Another idea that we utilized was to do
only a few PNP tests when it was determined that a polygon is contained completely inside another
polygon. Overall, the PNP part was the bottleneck in earlier work [3, 11]. The for-loop in the ray-

shooting algorithm was parallelized in [2] to improve the performance. Therefore, we revisited the
parallel PNP algorithm in this paper. We do not use CPU-based preprocessing in this paper using a
novel approach. Our new algorithm reduces the workload considerably and performs better than [11].

Stripe-based PNP function: Stripe-based PNP function was proposed in the paper [11]. Using ray
casting algorithm for the PNP test, a point is tested whether it is inside another polygon based on how
many times an imaginary ray from a test point crosses the polygon boundary. For a test point, we can
reduce the PNP test workload by discarding those line segments which the ray could not cross. This is
implemented by comparing y-coordinates of line segments with the test point. Figure 7 shows how
Stripe-based PNP function works. In this example, the area is divided into two stripes S1 and S2 (area
between two green lines). In short, we divide the area considering the y-coordinates of the polygonal
vertices. For both polygons, we check every vertex whether it is inside any stripe and every line
segment whether it crosses the stripe boundaries. Then, the vertex inside one stripe is compared to
another polygon’s line segments corresponding to the same stripe.

Tile-based PNP function: In our new approach, we compare the test point only with the line segments
within the tiles whose MBRs overlap with the y-coordinate of the test vertex. If a tile’s MBR does not
overlap with it, we can discard the line segments within the tile for this vertex. If a tile’s MBR overlaps
with it, we compare the vertex with all line segments within this tile. The situation is different for
different tiles and different tasks according to the tile size and the number of vertices of polygons. This
technique can reduce a lot of line segments even if the polygon is large or huge. For small polygons, it
can also reduce a similar number of line segments compared with using striping. Figure 7 shows a part
of two polygons. The areas between green lines are different stripes and there are two stripes. If we
use striping, the test vertex (yellow) should be compared with all line segments of another polygon in
S1. By using tile-based PNP function, it should be compared with the line segments within only two
tiles (considering y coordinate of the test vertex).

4.3 The implementation of PNP filters
For our system, we have two different kernels to perform PNP tests. One kernel (K1) is for the tasks
where one polygon may be completely inside another polygon since two polygons do not have any line
segment intersection. Another kernel (K2) is for the tasks where two polygons have intersection points.
For K1, tile-based PNP function is used since two polygons do not have any line segment intersection.
PolySketch-based PNP function cannot be used here. For K2, PolySketch-based PNP function is used for
tasks where two polygons have line segment intersection points. In addition, tile-based PNP function
can be also used here to reduce the workload. Therefore, we apply these two filters together in the
same kernel.

5 Experimental Result
5.1 Data sets
We have used three datasets to evaluate our system: (1) Water, (2) Urban, and (3) Lakes. The details
are shown in Table 3. Urban and Water are from http://www.naturalearthdata.com and
http://resources.arcgis.com. The third dataset (Lakes) is from
http://spatialhadoop.cs.umn.edu/datasets.html.

Table 3. Three real datasets used in our experiments
Label Dataset Polygons Size
Water USA_Water_Bodies

USA_Block_Boundaries
463,591
219,831

520MB
1300MB

Urban ne_10m_urban_areas
ne_10m_states_provinces

11,878
4,647

20MB
50MB

Lakes Lakes
Sports

7.5M
1.8M

9GB
590MB

5.2 Hardware Description
We have used a single Nvidia Titan V GPU to run the experiments. Titan V has Volta architecture. It has
12 GB HBM2 memory, 5120 CUDA cores and its memory bandwidth is 652.8 GB/s. We have also used
Intel Xeon E5-2695 multi-core CPU with 45MB cache and base frequency of 2.10GHz.

5.3 PSCMBR Filter Performance Results
Given two layers of polygons, the input to all the filters is the set of candidate polygon pairs obtained
from R-tree query using standard MBR filter. To compare the performance of filters, let us consider
that we have 𝐷𝐷 tasks and each task has two cross-layer polygons. A task refers to a candidate polygon
pair. In this paper, we compare the new filter PSCMBR with PolySketch (PS) filter and Common MBR
filter (CMF).

First, we show the results of the workload in the refinement phase after the application of a filter. We
calculate the refinement workload for each task first and then add the workload for all tasks to get
total workload which is shown in the tables. For CMF, refinement workload for one task is the number
of line segments overlapping the CMBR of a polygon multiplied by the number of line segments
overlapping the CMBR of another polygon. For the definition of the workload, we usedthe symbols as
described in Table 1.

After using PolySketch: 𝑊𝑊𝑃𝑃𝐿𝐿 = 𝐶𝐶 ∗ 𝑃𝑃
𝑇𝑇𝑃𝑃

. 𝑄𝑄
𝑇𝑇𝑄𝑄

After using PSCMBR: 𝑊𝑊𝑃𝑃𝐿𝐿𝐶𝐶𝑀𝑀𝑀𝑀𝑀𝑀 = �̂�𝐶.𝑃𝑃�.𝑄𝑄�

To illustrate the workload calculation, suppose we have two tiles of a polygon, where one tile overlaps
with three tiles and another tile overlaps with 10 tiles of another polygon. Assuming the tile sizes for
both polygons are 5, the refinement workload for this task is 1*3*5+1*10*5=65.

Table 4, 5 and 6 show the performance of PSCMBR for three real datasets. Workload means the actual
computational workload in LSI function. To show the filter efficiency on top of standard filtering using
R-tree, the percentage of candidate tasks discarded is calculated using candidates produced by R-tree
as a baseline. We subtract the number of candidates produced by R-tree with the remaining number of
candidates after using a given filter and then divide the difference by the baseline. We do not need to
perform further refinement on the discarded tasks. Candidate tile pairs need further refinement using
LSI function. Run-time is expressed in seconds and it includes execution time for the filter and refine
phases for the real datasets. For the run-time of CMF, we show two execution time results. The first

number is the time of checking and storing line segments overlapping CMBR on CPU. The second
number is the time of only refinement phase using LSI function on GPU after applying CMF.

Table 4. Different filters effect on the LSI function for Water dataset
Water Workload Candidate

Tasks Discarded
Candidate tile pairs Run-time (s)

CMF 16,327,012,938 73.13% NA 10.36+4.53
PS 1,789,226,826 68.48% 18,792,164 1.39
PSC-MBR 154,187,055 75.46% 17,417,707 0.62

Table 5. Different filters effect on the LSI function for Urban dataset
Urban Workload Candidate

Tasks Discarded
Candidate tile pairs Run-time(s)

CMF 25,737,640 71.53% NA 0.23+0.03
PS 7,489,801 66.09% 152,219 0.06
PSC-MBR 540,240 72.83% 100,052 0.02

According to the Table 4, 5 and 6, we can see PSCMBR can reduce much more workload in LSI function
for all three datasets when compared to the other two filters. After using PSCMBR, the LSI workload is
99.1%, 97.9% and 98.1% smaller than using CMF for Water, Urban and Lake datasets. The LSI function
workload is 91.4%, 92.8% and 86.7% smaller than using PolySketch for the three datasets. PSCMBR
combines the strength of CMF and PolySketch so it can handle more general cases. It can also discard
the line segments which are inside the same tile. PSCMBR can also discard more candidate tasks in
total compared to other filters so there are fewer candidate tasks that need refinement phase. In
addition, the number of candidate tile pairs after using PSCMBR is on average 29.73% smaller than
using PolySketch.

Table 6. Different filters effect on the LSI function for Lake dataset
Lake Workload Candidate

Tasks Discarded
Candidate tile pairs Run-time(s)

CMF 260,210,378 80.81% NA 9.4+0.51
PS 37,464,000 70.96% 1,286,389 1.17
PSC-MBR 4,972,603 82.21% 674,667 0.80

In the first step, PSCMBR discards more candidate tasks which do not need further refinement. In the
second step, it discards more candidate tile pairs and it reduces the false hits which do not need
further refinement. According to Table 6, it reduces up to 47.6% candidate tile pairs by using PSCMBR
instead of PolySketch. For the run-time also, we can see PSCMBR works well. Compared to PolySketch,
PSCMBR filter yielded 2.24X, 3X, and 1.46X speedup for Water, Urban and Lake datasets. Even if we
only compare the refinement time of PSCMBR with LSI function to the refinement time with LSI
function after using CMF, PSCMBR also works well. The size of Lake dataset is huge which leads to
higher overhead of copying the Lake data from CPU memory to the GPU memory for PSCMBR filter.
However, the data copy overhead is lower for CMF because we do pre-processing on CPU, so the size

of data copied to GPU is much smaller because it only contains the line segments overlapping the
CMBRs. This explains why PSCMBR-based refinement with LSI function is little slower than the
refinement time of LSI function after using CMF.

5.4 Results for different PSCMBR tile-sizes
Table 7. Performance variation while using different tile-sizes for Water dataset

Tile-size Current
Workload

Candidate
Tasks

Run-time(s)

15-5 139,698,900 250,064 0.715
15 154,158,443 258,703 0.719
20 178,527,782 261,640 0.671
20-10 164,191,106 256,226 0.627
30 232,956,052 265,858 0.644
30-10 198,688,474 257,191 0.627
40 292,387,187 269,139 0.670
50 355,278,337 272,016 0.726

The real-world datasets are complicated since it contains different sizes of polygons. Therefore, the
tile-size used in the first step for filtering is a factor that affects the performance. Table 7 shows the
performance of using different tile-size for Water dataset. Similar to PolySketch, we can either use one
tile-size for all polygons or use two tile-sizes for different polygons. In Table 7, for some rows, there are
two numbers in ‘tile-size’ column. The first and second numbers are the tile sizes for large and small
polygons. In the experiments, if we use two tile-sizes for the polygons, we use larger tile-size for the
large polygons (with more than 400 vertices) and smaller tile-size for the small polygons (with less than
400 vertices). We found that smaller tile-sizes perform better in our prior work [11]. We use different
tile-sizes for Water dataset to test the performance of PSCMBR.

According to Table 7, we can see that the range of tile-sizes that can be chosen is large since we can
get similar run-time results by setting tile-size as 20, 30 or 40. Although the current workload is
increasing, the run-time results are similar. Using two tile-sizes at the same time can reduce more
workload compared to only using one tile size. Run-time results are also better. In addition, using
smaller tile-size can reduce more workload in LSI function.

5.5 System Performance with PNP Filters
Table 8 shows the whole system run-time results. To be fair, we compare them with the results of
using one GPU. We can see the performance of the whole system is much improved. The new system
gets 6.36X and 9.56X speedup compared to HiFiRe system for the Urban and Water data sets. One
reason is that we use GPU to pre-process data for PNP test instead of CPU. In our improved system
equipped with new PNP filters, we do not need to store the line segments and vertices for PNP test
because we can make full use of the tiles used in LSI function and do more calculations within the
PolySketch-LSI function to get the information that will be used in PNP test. This also avoids using more
memory and data movement between CPU and GPU. Another reason is that the new algorithm can
handle different types of polygons, such as very small, medium or huge polygons.

Table 8. End-to-end run-time (does not include R-tree time)
 HiFiRe runn-

ing time(s) [11]
New HiFiRe
running time(s)

Urban 0.35 0.055
Water 10.63 1.109

5.6 Filters with PNP TestWorkload
To show the efficiency, we compare PolySketch-based PNP function with Stripe-based PNP function
(using 8 stripes). We also compare tile-based PNP function with constant vertex PNP function. For the
workload of PNP test using polygons of size P and Q, every vertex from A1 should be compared with all
line segments from B1 and every vertex from B1 should be compared with all line segments from A1.
Therefore, the workload is 2 ∗ 𝑃𝑃 ∗ 𝑄𝑄 for every task. In addition, the total workload for PNP test is the
summation of workload of individual tasks. Table 9 is about the workload of the tasks where two
polygons have line segment intersections. Since the PolySketch-based PNP workload in each polygon of
the same task are different, we also update the workload of stripe-based PNP [11]. We can see that the
workload is still much reduced by using PolySketch-based PNP function even compared with Stripe-
based PNP test. For Urban and Water, it reduces 41.2% and 79.2% of the workload of Stripe-based PNP
function.

Table 9. Workload using different methods in tasks where two polygons have line segment
intersections.

 Stripe-based
PNP workload

PolySketch-based
PNP workload

Urban 28,642,336 16,854,370
Water 10,602,276,252 2,200,221,374

PolySketch-based PNP function classifies the tiles into two categories, namely, 𝐷𝐷𝑛𝑛𝐷𝐷𝐷𝐷𝑟𝑟𝑠𝑠𝐷𝐷𝑏𝑏𝐷𝐷𝐷𝐷𝑜𝑜𝑛𝑛 𝐷𝐷𝐷𝐷𝑙𝑙𝐷𝐷 and
𝑛𝑛𝑜𝑜 𝐷𝐷𝑛𝑛𝐷𝐷𝐷𝐷𝑟𝑟𝑠𝑠𝐷𝐷𝑏𝑏𝐷𝐷𝐷𝐷𝑜𝑜𝑛𝑛 𝐷𝐷𝐷𝐷𝑙𝑙𝐷𝐷. Figure 8 shows the percentage of how many tiles are considered as the
intersection tile and no-intersection tile. We can see 96.8% and 97.7% tiles are considered as
𝑛𝑛𝑜𝑜 𝐷𝐷𝑛𝑛𝐷𝐷𝐷𝐷𝑟𝑟𝑠𝑠𝐷𝐷𝑏𝑏𝐷𝐷𝐷𝐷𝑜𝑜𝑛𝑛 𝐷𝐷𝐷𝐷𝑙𝑙𝐷𝐷 for Urban and Water. This definitely reduces the workload and increases the
efficiency of PNP filter.

For the 𝐷𝐷𝑛𝑛𝐷𝐷𝐷𝐷𝑟𝑟𝑠𝑠𝐷𝐷𝑏𝑏𝐷𝐷𝐷𝐷𝑜𝑜𝑛𝑛 𝐷𝐷𝐷𝐷𝑙𝑙𝐷𝐷, we can see the percentage is 3.2% and 2.3%. Although we have to do PNP
test for all vertices within intersection tiles, the total number of such tiles is not large. In addition,
PolySketch-based PNP function can still reduce more workload for these tiles because we compare a
test vertex only with the line segments within the tiles whose MBR overlaps with the horizontal ray
passing through the test vertex by considering y-coordinate.

According to Table 10, we can see tile-based PNP function can also reduce the workload. For Urban
and Water, it can reduce 98.8% and 98.6% of the workload when compared to the constant vertex PNP
workload. The advantage is that we can keep the constant vertex PNP test’s strengths and discard the
line segments within the tiles which can not overlap with test vertex by only considering y-coordinate.

(a) (b)

Fig. 8. Percentage of 𝑟𝑟𝑛𝑛𝐷𝐷𝐷𝐷𝑟𝑟𝑠𝑠𝐷𝐷𝑏𝑏𝐷𝐷𝐷𝐷𝑜𝑜𝑛𝑛 𝐷𝐷𝐷𝐷𝑙𝑙𝐷𝐷 and 𝑛𝑛𝑜𝑜 𝐷𝐷𝑛𝑛𝐷𝐷𝐷𝐷𝑟𝑟𝑠𝑠𝐷𝐷𝑏𝑏𝐷𝐷𝐷𝐷𝑜𝑜𝑛𝑛 𝐷𝐷𝐷𝐷𝑙𝑙𝐷𝐷 for tasks where two polygons have
line segment intersections

Table 10. The workload in PNP test for the tasks where one polygon may be totally inside another
polygon

 Constant vertex
PNP workload [11]

Tile-based
PNP workload

Urban 277,495,510 3,452,066
Water 10,352,636,305 145,693,382

5.7 New Hierarchical Filter and Refine System
For this new filter and refine system, since we also use R-tree to index input datasets, the total overlay
processing time should also include the time of using R-tree. For Water and Urban datasets, the time
taken by R-tree filter on CPU is 2.27s and 0.065s. Therefore, the end-to-end time of the new HiFiRe
System is 3.379s and 0.12s.

To show the performance of PSCMBR HiFiRe system, we define the processing rate:

Processing rate = Input line segments/Overlay processing time.

For Water dataset, the number of line segments in layer 1 and layer 2 are 24,739,074 and 60,305,435.
Therefore, the number of input line segments is 85044509. The processing rate is 77 million/sec. For
Urban dataset, the number of line segments in layer 1 and layer 2 are 1,153,348 and 1,332,830.
Therefore, the number of input line segments is 2,486,178. The processing rate is 45 million/sec.

6 Conclusion
We have developed new filters used in filter and refine technique and demonstrated the benefits in
our improved HiFiRe system. The new filters make geometric intersection computations faster on a
GPU. Compared to CMF, the new PSCMBR filter can efficiently handle the case where the CMBR of two
polygons is large. Compared to PolySketch, the new filter is more efficient in minimizing the false hits
and decreases the workload in the refinement phase. For line segment reporting and point-in-polygon

tests inherent in spatial join and polygon overlay algorithms, we have shown considerable workload
reduction and better run-time using a GPU accelerator. Moreover, our PNP filter leverages PolySketch
and this has resulted in significant end-to-end performance improvement in HiFiRe system.

REFERENCES
[1] Danial Aghajarian and Sushil K Prasad. 2017. A spatial join algorithm based on a non-uniform grid

technique over GPGPU. In Proceedings of the 25th ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems. ACM, 56.

[2] Danial Aghajarian, Satish Puri, and Sushil Prasad. 2016. GCMF: an efficient end-to-end spatial join
system over large polygonal datasets on GPGPU platform. In Proceedings of the 24th ACM
SIGSPATIAL International Conference on Advances in Geographic Information Systems. ACM, 18.

[3] Samuel Audet, Cecilia Albertsson, Masana Murase, and Akihiro Asahara. 2013. Robust and efficient
polygon overlay on parallel stream processors. In Proceedings of the 21st ACM SIGSPATIAL
International Conference on Advances in Geographic Information Systems. 304–313.

[4] Wael M Badawy and Walid G Aref. 1999. On local heuristics to speed up polygon-polygon
intersection tests. In Proceedings of the 7th ACM international symposium on Advances in
geographic information systems. 97–102.

[5] Thomas Brinkhoff, H-P Kriegel, and Ralf Schneider. 1993. Comparison of approximations of complex
objects used for approximation-based query processing in spatial database systems. In
Proceedings of IEEE 9th International Conference on Data Engineering. IEEE, 40–49.

[6] Thomas Brinkhoff, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger. 1994. Multi-step
processing of spatial joins. Acm Sigmod Record 23, 2 (1994), 197–208.

[7] Erich L Foster, Kai Hormann, and Romeo Traian Popa. 2019. Clipping Simple Polygons with
Degenerate Intersections. Computers & Graphics: X (2019), 100007.

[8] Chao Gao, Furqan Baig, Hoang Vo, Yangyang Zhu, and Fusheng Wang. 2018. Accelerating Cross-
Matching Operation of Geospatial Datasets using a CPU-GPU Hybrid Platform. In 2018 IEEE
International Conference on Big Data (Big Data). IEEE, 3402–3411.

[9] Günther Greiner and Kai Hormann. 1998. Efficient clipping of arbitrary polygons. ACM Transactions
on Graphics (TOG) 17, 2 (1998), 71–83.

[10] Edwin H Jacox and Hanan Samet. 2007. Spatial join techniques. ACM Transactions on Database
Systems (TODS) 32, 1 (2007), 7–es.

[11] Yiming Liu, Jie Yang, and Satish Puri. 2019. Hierarchical Filter and Refinement System Over Large
Polygonal Datasets on CPU-GPU. In 2019 IEEE 26th International Conference on High
Performance Computing, Data, and Analytics (HiPC). IEEE, 141–151.

[12] Salles VG Magalhães, Marcus VA Andrade, W Randolph Franklin, and Wenli Li. 2015. Fast exact
parallel map overlay using a two-level uniform grid. In Proceedings of the 4th International ACM
SIGSPATIAL Workshop on Analytics for Big Geospatial Data. 45–54.

[13] David M Mount. 1997. Geometric intersection. In Handbook of Discrete and Computational
Geometry, chapter 33. Citeseer.

[14] Jürg Nievergelt and Franco P. Preparata. 1982. Plane-sweep algorithms for intersecting geometric
figures. Commun. ACM 25, 10 (1982), 739–747.

[15] Anmol Paudel and Satish Puri. 2018. OpenACC Based GPU Parallelization of Plane Sweep Algorithm
for Geometric Intersection. In International Workshop on Accelerator Programming Using
Directives. Springer, 114–135.

[16] Satish Puri and Sushil K Prasad. 2015. A parallel algorithm for clipping polygons with improved
bounds and a distributed overlay processing system using mpi. In 2015 15th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing. IEEE, 576–585.

[17] Michael Ian Shamos and Dan Hoey. 1976. Geometric intersection problems. In 17th Annual
Symposium on Foundations of Computer Science (sfcs 1976). IEEE, 208–215.

[18] Darius Sidlauskas, Sean Chester, Eleni Tzirita Zacharatou, and Anastasia Ailamaki. 2018. Improving
Spatial Data Processing by Clipping Minimum Bounding Boxes. In 2018 IEEE 34th International
Conference on Data Engineering (ICDE). IEEE, 425–436.

[19] Peter van Oosterom. 1994. An R-tree based map-overlay algorithm. In Proc. EGIS, Vol. 94. 318–
327.

[20] Hein Veenhof, Peter Apers, and Maurice Houtsma. 1995. Optimisation of Spatial Joins Using
Filters. In Advances in Databases, 13th British National Conference on Databases, Manchester,
United Kingdom. Springer, 136–154.

[21] Kaibo Wang, Yin Huai, Rubao Lee, Fusheng Wang, Xiaodong Zhang, and Joel H Saltz. 2012.
Accelerating pathology image data cross-comparison on CPU-GPU hybrid systems. In
Proceedings of the VLDB Endowment International Conference on Very Large Data Bases, Vol. 5.
NIH Public Access, 1543.

[22] Simin You, Jianting Zhang, and Le Gruenwald. 2016. High-performance polyline intersection based
spatial join on GPU-accelerated clusters. In Proceedings of the 5th ACM SIGSPATIAL
International Workshop on Analytics for Big Geospatial Data. 42–49.

[23] Eleni Tzirita Zacharatou, Harish Doraiswamy, Anastasia Ailamaki, Cláudio T Silva, and Juliana
Freiref. 2017. GPU rasterization for real-time spatial aggregation over arbitrary polygons.
Proceedings of the VLDB Endowment 11, 3 (2017), 352–365.

[24] Jianting Zhang and Simin You. 2012. Speeding up large-scale point-in-polygon test based spatial
join on GPUs. In Proceedings of the 1st ACM SIGSPATIAL International Workshop on Analytics
for Big Geospatial Data. 23–32.

Notes
1https://rogue-modron.blogspot.com/2011/04/polygon-clipping-wrapper-benchmark.html

2https://www.naturalearthdata.com/downloads/10m-physical-vectors/10m-ocean/

	Efficient Filters for Geometric Intersection Computations using GPU
	Recommended Citation

	Keywords
	1 Introduction
	2 Background and Relatedwork
	3 Polysketch-Based Common Mbr (Pscmbr) Filter
	3.1 Overview of PSCMBR Filter
	3.2 Advantages of PSCMBR Filter
	3.3 The Implementation of PSCMBR Filter
	3.4 Optimization: Mapping tiles to threads

	4 Point-In-Polygon Filter Using Polysketch
	4.1 Algorithm Overview
	4.2 Comparison of PNP workload reduction
	4.3 The implementation of PNP filters

	5 Experimental Result
	5.1 Data sets
	5.2 Hardware Description
	5.3 PSCMBR Filter Performance Results
	5.4 Results for different PSCMBR tile-sizes
	5.5 System Performance with PNP Filters
	5.6 Filters with PNP TestWorkload
	5.7 New Hierarchical Filter and Refine System

	6 Conclusion
	REFERENCES
	Notes

