Synthetic studies directed toward guianolides: an organoiron route to the 5,7,5 tricyclic ring system

Jayapal Reddy Gone
Marquette University

Nathaniel J Wallock
Marquette University

Sergey Lindeman
Marquette University, sergey.lindeman@marquette.edu

William Donaldson
Marquette University, william.donaldson@marquette.edu

Follow this and additional works at: https://epublications.marquette.edu/chem_fac

Part of the Chemistry Commons

Recommended Citation
Gone, Jayapal Reddy; Wallock, Nathaniel J; Lindeman, Sergey; and Donaldson, William, "Synthetic studies directed toward guianolides: an organoiron route to the 5,7,5 tricyclic ring system" (2009). *Chemistry Faculty Research and Publications*. 44.
https://epublications.marquette.edu/chem_fac/44
Synthetic Studies Directed Toward Guianolides: An Organoiron Route to the 5,7,5 Tricyclic Ring System

Jayapal Reddy Gone
Department of Chemistry, Marquette University, Milwaukee, WI
Nathaniel J. Wallock
Department of Chemistry, Marquette University, Milwaukee, WI
Sergey Lindeman
Department of Chemistry, Marquette University, Milwaukee, WI
William A. Donaldson
Department of Chemistry, Marquette University, Milwaukee, WI

Abstract
A diastereoselective route to the 5,7,5-tricyclic core of the guianolides is presented. This route relies on Cope rearrangement of a divinylcyclopropane prepared by alkenyl Grignard addition to a (pentadienyl)iron(+1) cation, followed by oxidative decomplexation. An additional key reaction involves oxidative rearrangement of a 3,4-
epoxy-1,7-diol to generate a γ-lactone. The relative stereochemistry of this product was established by X-ray crystallography.

Graphical abstract

The guianolides are a family of sesquiterpenes characterized by a 5,7,5-fused tricyclic skeleton. The majority of these compounds possess a trans-γ-butryolactone ring, but differ with respect to the oxygenation and oxidation state(s) of carbons 2–5, 8, 10, and 11. Representative members of this family include chinesiolide B (1, Fig. 1), 10a-hydroxy-3-oxoguian-4-eno-12,6a-lactone (2), cladantholide (3), cynaropikrin (4), and estafiatin (5). While numerous syntheses of the pseudoguianolides have been reported, there are considerably fewer total syntheses of the guianolides.

Figure 1. Representative guianolide natural products.

We have demonstrated that the exo-addition of alkenyl Grignard reagents to (1-methoxycarbonylpentadienyl)Fe(CO)₃⁺ (6), followed by oxidative decomplexation affords divinylcyclopropanes (7, Scheme 1). Ester reduction and Cope rearrangement of 7 generate cycloheptadienes (8). We herein report a route to the 5,7,5-fused tricyclic skeleton which utilizes this reactivity to generate the hydroazulene skeleton.

Scheme 1. (E = CO₂Me).

Protection of 1,6-heptadien-4-ol, followed by ring-closing metathesis afforded the cyclopentene 9 (Scheme 2). Addition of bromine gave the crystalline dibromide which upon syn-elimination with sodium amide gave the known cyclopentenyl bromide 10.
Generation of the Grignard reagent from 10 in THF, followed by addition to a solution of the known12 (1-methoxycarbonylhexadienyl)Fe(CO)3+ cation (rac-11) in CH2Cl2 at −78 °C afforded the (pentenediyl)iron complex rac-12 (Scheme 3). The presence of a doublet at δ 0.45 ppm in the 1H NMR spectrum13 of 12 is characteristic of a proton on a carbon σ-bound to iron. While the iron complex was formed as a ca. 1:1 mixture of diastereomers at the ether carbon (C3, guianolide numbering), this is inconsequential to the overall synthesis as this carbon will eventually become an sp² carbonyl carbon. Decomplexation of 12 with alkaline hydrogen peroxide gave an inseparable mixture of divinylcyclopropanes 13, which were reduced with LiAlH₄ and subjected to thermal rearrangement to afford the hydroazulene 14.13 The relative stereochemistry at C1, C7, and C10 was tentatively assigned as indicated based on our previous results on the formation of 8 and other cycloheptadienes.10

With the formation of the bicyclo[5.3.0]decane skeleton in place, our attention turned to appropriate functionalization of this scaffold. After considerable experimentation, the following pathway was successfully realized. Selective hydrogenation of the less substituted olefin with Wilkenson’s catalyst gave the hexahydroazulene 15 (Scheme 4).14 Extension of the C3 side chain was accomplished by tosylation followed by cyanide displacement to afford the nitrile 17.15 Cleavage of the silyl ether gave alcohol 18, epoxidation of which occurs on the less hindered face to afford 19.16 Twofold reduction of 18 with DIBAL gave a diol 20.
Scheme 4. Reagents and conditions: (a) H₂ (45 psi), 5% RhCl(PPh₃)₃, EtOH; (b) TsCl, DMAP, NEt₃, CH₂Cl₂; (c) NaCN, NaI, DMSO, 60 °C; (d) TBAF, THF; (e) mCPBA, NaHCO₃, CH₂Cl₂; (f) DIBAL, CH₂Cl₂, −78 °C to −40 °C (2×).

Oxidation of 20 with catalytic TPAP¹⁷ in the presence of NMO (3.2 equiv) gave the lactone 21 (Scheme 5). This transformation presumably proceeds via oxidation of both the 1° and 2° alcohols to afford 22, followed by β-elimination of the epoxide¹⁸, and generation of the lactol 23; oxidation of the lactol affords 21. The relative configuration of 21 was unambiguously established by single crystal X-ray diffraction (Fig. 2)¹⁹, which also corroborated the stereochemical assignments of hexahydroazulene 14 and epoxide 19. Catalytic reduction of enone 21 gave a single ketone 24. The relative configuration of 24 was assigned on the basis of its ¹H NMR spectral data;²⁰ in particular the signal for H-6 appears as a doublet of doublets (δ 4.07, J = 9.6, 9.6 Hz). The larger couplings are indicative of a trans-diaxial disposition of H-5, H-6, and H-7.

Scheme 5.
Figure 2. Molecular structure of 21.

In summary, the 5,7,5-tricyclic core of the guianolides has been prepared, including 5 contiguous stereocenters about the seven-membered ring. This route utilized nucleophilic attack on a (pentadienyl)iron(1+) cation followed by oxidative decomplexation for the generation of a divinylcyclopropane which upon Cope rearrangement gave the hydroazulene skeleton. Further elaboration included oxidation/ring opening of a β,γ-epoxy alcohol, subsequent lactol formation, and further oxidation to install the trans-γ-butyrolactone.

Acknowledgments
This work was supported by the National Science Foundation (CHE-0415771) and an NSF instrumentation grant (CHE-0521323). High-resolution mass spectra were obtained at the University of Nebraska-Center for Mass Spectrometry.

References and notes
11 W. Yong, M. Vandewalle, Synlett (1996), pp. 911-912
13 Selected spectral data: 1H NMR (300 MHz, CDCl3) δ 0.45 (d, J = 9.0 Hz, 1H), 1.02 and 1.03 (2 × s, 9H total), 1.84 (d, J = 6.0 Hz, 3H), 2.03–2.34 (m, 4H), 3.25–3.37 (m, 1H), 3.55–3.65 (m, 1H), 3.66 and 3.68 (2 × s, 3H total), 4.13–4.22 (m, 1H), 4.36–4.53 (m, 2H), 4.96–5.03 (m, 1H), 7.32–7.46 (m, 6H), 7.60–7.68 (m, 4H); FAB-HRMS m/z 607.1784 (calcld for C32H36O6SiFeLi (M+Li+) m/z 607.1791). Compound 14: 1H NMR (300 MHz, CDCl3) δ 0.81 (d, J = 9.0 Hz, 3H), 1.08 and 1.09 (2 × s, 9H total), 1.52–1.74 (m, 2H), 1.87–1.99

15. **Compound 17**: 1H NMR (400 MHz, CDCl$_3$) δ 0.71 (d, $J = 7.2$ Hz) and 0.92 (d, $J = 7.2$ Hz) total 3H, 1.04 and 1.05 (2 x s, 9H total), 1.19–2.02 (m, 7H), 2.15–2.44 (m, 5H), 2.49–2.65 and 3.01–3.08 (m, 1H total), 3.96–4.06 and 4.27–4.35 (m, 1H total), 5.25 (d, $J = 2.4$ Hz) and 5.35 (d, $J = 1.6$ Hz) 1H total, 7.34–7.48 (m, 6H), 7.62–7.74 (m, 4H); FAB-HRMS m/z 450.2793 (calcd for C$_{29}$H$_{37}$NOSiLi (M+Li$^+$) m/z 450.2804).

16. Repeated chromatography of the mixture of diastereomers lead to a small sample greatly enriched in one diastereomer. The relative configuration of this diastereomer was unassigned, and in general the mixture of diastereomers was used in the synthesis. **Compound 19**: 1H NMR (400 MHz, CDCl$_3$) δ 1.06 (d, $J = 7.2$ Hz, 3H), 1.44 (dt, $J = 13.5$, 8.0 Hz, 1H), 1.49–1.90 (m, 8H), 2.01 (dd, $J = 13.4$, 9.8 Hz, 1H), 2.19 (br t, $J = 8.0$ Hz), 2.44–2.54 (m, 1H), 2.55–2.59 (m, 2H), 2.90 (d, $J = 6.0$ Hz, 1H), 4.39–4.48 (m, 1H); FAB-HRMS m/z 228.1586 (calcd for C$_{13}$H$_{19}$NOSiLi (M+Li$^+$) m/z 228.1576).

19. The crystallographic data for 21 has been deposited with the CCDC (CCDC 690098). This data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB12 1EZ, UK; fax: +44(1223)336033; e-mail: deposit@ccdc.ccdc.cam.ac.uk.

20. **Compound 24**: 1H NMR (300 MHz, CDCl$_3$) δ 0.89 (d, $J = 7.8$ Hz, 3H), 1.39–1.54 (m, 2H), 1.56–1.70 (m, 1H), 1.90–2.11 (m, 3H), 2.18–2.43 (m, 5H), 2.44–2.59 (m, 2H), 2.65 (dd, $J = 7.2$, 16.2 Hz, 1H), 4.07 (dd, $J = 9.6$, 9.6 Hz, 1H); 13C NMR (75 MHz, CDCl$_3$) δ 20.3, 28.3, 30.1, 34.5, 37.5, 40.5, 40.7, 43.0, 44.1, 45.5, 86.6, 176.0, 217.7. FAB-HRMS m/z 223.1336 (calcd for C$_{13}$H$_{19}$O$_3$ (M+H$^+$) m/z 223.1334).