
Marquette University Marquette University

e-Publications@Marquette e-Publications@Marquette

Computer Science Faculty Research and
Publications Computer Science, Department of

7-2020

Combinatorial and Rectangular Layouts as Building Blocks for Combinatorial and Rectangular Layouts as Building Blocks for

Local Reconstruction Codes Local Reconstruction Codes

Thomas Schwarz
Marquette University, thomas.schwarz@marquette.edu

John Rose
Xavier Institute of Engineering

Follow this and additional works at: https://epublications.marquette.edu/comp_fac

Recommended Citation Recommended Citation
Schwarz, Thomas and Rose, John, "Combinatorial and Rectangular Layouts as Building Blocks for Local
Reconstruction Codes" (2020). Computer Science Faculty Research and Publications. 46.
https://epublications.marquette.edu/comp_fac/46

https://epublications.marquette.edu/
https://epublications.marquette.edu/comp_fac
https://epublications.marquette.edu/comp_fac
https://epublications.marquette.edu/comp
https://epublications.marquette.edu/comp_fac?utm_source=epublications.marquette.edu%2Fcomp_fac%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
https://epublications.marquette.edu/comp_fac/46?utm_source=epublications.marquette.edu%2Fcomp_fac%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages

Marquette University

e-Publications@Marquette

Computer Science Faculty Research and Publications/College of Arts and
Sciences

This paper is NOT THE PUBLISHED VERSION.
Access the published version via the link in the citation below.

2020 3rd International Conference on Communication System, Computing and IT Applications (CSCITA),
(April 3-4, 2020): 7-12. DOI. This article is © Institute of Electrical and Electronics Engineers and
permission has been granted for this version to appear in e-Publications@Marquette. Institute of
Electrical and Electronics Engineers does not grant permission for this article to be further
copied/distributed or hosted elsewhere without the express permission from Institute of Electrical and
Electronics Engineers.

Combinatorial and Rectangular Layouts as
Building Blocks for Local Reconstruction
Codes

Thomas Schwarz
Marquette University, Milwaukee, WI, United States of America
John Rose
Xavier Institute of Engineering, Mumbai, Maharashtra, India

Abstract:
Modern data centers protect the contents of their data using erasure correcting codes. In recent years,
locally repairable codes have been proposed that allow dealing with the most frequent case, a single
unavailable disk or a single unreadable sector by only using redundant information in the rack where
the failure has been detected. Recently, Pâris proposed a simple method for creating locally repairable

https://doi.org/10.1109/CSCITA47329.2020.9137775
http://epublications.marquette.edu/

layouts where several local layout in different racks are “bundled” together by creating additional
inter-rack reliability stripes that provide protection against rack failure and offer additional
opportunities for recovery if a local layout fails in its protection task. We propose here a flat rack-
internal layout that is more dispersed than a rectangular layout that also provides fast recovery for
single failures. The research question is to what extent dispersion improves reliability. As we will see by
example, dispersion does provide better robustness, but fails to significantly improve the five year
probability that inter-rack codes have not to be used.

SECTION I. Introduction
As the world's generation of data increases, its proportion of data stored decreases according to
research group IDC. The same source reckons that 19 ZB of data generated between 2017 until 2025
will be stored [1]. Some of this data is mission critical, some of high value and the majority of it will be
stored in large data centers. To protect the data there against storage media failure, typically erasure
control codes are deployed. Such a code gathers equally sized blocks of data on different devices into
reliability stripes and then adds to each stripe a number of parity stripes. While this technology lowers
the overhead of protecting data against failure to a fraction compared with replication, it also
introduces two problems.

First, changing data in one block of a stripe requires recalculating the parity. Modern practices avoid
this by choosing small block sizes, storing the same file over several blocks, and thus evade the need to
rewrite blocks. Second, in case of a failure, a large number of devices needs to be accessed in order to
reconstruct the data originally on the failed device, which is then stored elsewhere. Since 2010, codes
have been invented that limit the necessary reconstruction traffic for the most common case, where a
single block in a stripe needs to be reconstructed. As data centers place devices into racks, and as
usually the network bandwidth within a rack far exceeds the bandwidth between racks, we also want
to limit data reconstruction limit as much as possible. Recently Pâris proposed to bundle racks using a
separate code while still using a rack-internal erasure control code [12]. In this vain, we investigate a
variant of the rectangular layout that minimizes both reconstruction traffic and the number of disks
accessed in case of a single failed device.

After reviewing shortly relevant work, in the next section, we define the “combinatorial layout”,
followed by an evaluation of the robustness – the probability that an array with f failures still stores all
the original data – and the five year survival probability, which in our case means the probability that
data outside the rack does not need to be used in order to reconstruct data lost on failed devices. Our
calculations show that difference in robustness do not necessarily lead to large differences in survival
probabilities and thus contributes to the understanding of the interplay between survival probability,
code layout, and robustness.

SECTION II. Related Work
Large data storage systems have reliability requirements beyond the capabilities of RAID Level 6 arrays.
For example, the Google File System as well as Windows Azure Storage replicate their active data
three-fold [3], [8]. Unfortunately, triple replication consumes also large hardware resources. Erasure
control codes have emerged as the preferred solution to protect data against storage failures. An
erasure control code adds parity data to a collection of user data blocks. Each parity block is calculated

from some or all the data blocks. For example, the popular Reed-Solomon type linear code uses Galois
field operations to calculate the contents of a parity block as a linear combination of the contents of
the data blocks in the code, Figure 1. A number of data objects, in Figure 1 𝐷𝐷1, 𝐷𝐷2, 𝐷𝐷3, and 𝐷𝐷4 of
equal size are complemented with two parity objects 𝑃𝑃 and 𝑄𝑄 of the same size. 𝑃𝑃 contains the bitwise
exclusive-or of 𝐷𝐷1,𝐷𝐷2,𝐷𝐷3, and 𝐷𝐷4, 𝐷𝐷4,𝑃𝑃 = 𝐷𝐷1 + 𝐷𝐷2 + 𝐷𝐷3 + 𝐷𝐷4, whereas the contents of 𝑄𝑄 are
calculated by interpreting the bytes as elements of a Galois Field and calculating the contents byte for
byte as a linear combination of the contents of the data objects using certain Galois field
elements 𝛼𝛼1,𝛼𝛼2,𝛼𝛼3, and 𝛼𝛼4 as scalar coefficients, i.e., 𝑄𝑄 = 𝛼𝛼1𝐷𝐷1 + 𝛼𝛼2𝐷𝐷2 + 𝛼𝛼3𝐷𝐷3 + 𝛼𝛼4𝐷𝐷4. If any data
object is unavailable, its contents can be calculated from the other data objects and the Q parity,
whereas the contents of any two objects can be calculated from all the other ones. As we can see from
this discussion, the introduction of erasure correcting coding introduces two problems. First, if we
change the contents of any data block, we need to update the contents of all the parity blocks. Second,
in case of failure, we need to access the contents of all or all but one objects in such a reliability stripe.
In large data centers with thousands of disks, the first problem is solved by forming reliability stripes of
relatively small contiguous objects in order to create a single, larger storage object. The contents of
such an object are not changed, but later removed. For high reliability, it is only important that all
constituent objects are placed on different storage devices. Ceph is a successful example for such an
object-oriented storage system [17].

The second problem is a challenge for large data centers. Data centers use racks of highly connected
disks or flash drives. Provisioning large bandwidth between racks is more expensive than within racks
and so typically, bandwidth between racks is limited. The reconstruction traffic after device failures can
interfere with normal data operations. This would induce us to select the components of a reliability
stripe among the devices of a single rack. However, racks as a whole can fail. In the case of disks, it is
known that vibrations in a failing disk can cause neighboring disks to fail. For this reason, it is desirable
to provide for inter-rack reliability, selecting components in different racks for a reliability stripe. To
reconcile these diametrically opposed motivations, various types of codes have been proposed or
utilized. The idea is to allow the use of data in the same rack for the most frequent failure situation,
where a few sectors on a single disk have become inaccessible or a single disk has failed. Some codes in
this list are Regenerating Codes [2], Pyramid Codes [7], MDS Array codes [16], and Locally Repairable
Codes [11], [14]. The literature has three major metrics, the repair bandwidth, the disk I/O measured in
the number of bits read, and the repair locality the number of nodes that participate in a repair as
proposed by [4], [10], [11].

While this codes are quite intricate and sophisticated, the basic idea can explained with a simple two-
level pyramid code based on the RAID Level 6 and depicted in Figure 2. The Pyramid code calculates
the 𝑄𝑄 parity of a stripe of 16 data objects. The 𝑃𝑃 (aka XOR) parity is however distributed over four
parity object, each one contains the exclusive-or of the data in only four objects. The ensemble can
tolerate at least two failures. If all the individual 𝑃𝑃-parity objects are available, we can calculate the
exclusive-or to obtain the 𝑃𝑃 parity as defined for a normal Reed Solomon linear code. If there is only
one lost data object in the small group of four data objects plus a parity object, then we can recover
using only local data. In the example, we can recover the contents of 𝐷𝐷1,3 using
the 𝐷𝐷1,1,𝐷𝐷1,2,𝐷𝐷1,4 and 𝑃𝑃1. Similarly, we can recover the contents of 𝐷𝐷3,2 and 𝑃𝑃4. However, using
exclusive-or calculations, it is not possible to recover either 𝐷𝐷2,2 and 𝑃𝑃2, because the sub-stripe only

has three out of five objects that are available. In this case we are so far lucky as we can recover
quickly using only exclusive-or parity. Unfortunately, we did not recover all of the data and need to
invoke the underlying Reed-Solomon code. It recovers using the 𝑄𝑄-parity and all data objects but
for 𝐷𝐷2,2. As we can see, the additional parity objects created for a Pyramid code can be used to recover
more failures than the Raid Level 6 stripe is capable of recovering. This becomes at the cost of having
to store additional redundant data.

Fig. 1. A small reed-solomon linear code as used in a RAID level 6 stripe.

Fig. 2. Reliability stripe with a recoverable pattern of disk failures. Failed disks are shown in red. The P-
and Q-parity disks are marked with a letter P or Q, respectively.

The Pyramid code as it stands is not yet capable of being divided up over several racks. To achieve this,
we can store the components of the small reliability stripes in separate racks and then provide
enough 𝑄𝑄-parity in order to recover from a complete loss of a rack. This means, that we replace the
single 𝑄𝑄 parity with four parities whose contents are calculated using Galois field operations.

We are investigating here in-rack layouts. For this reason, the work of Pâris that “bundles” several in-
rack layouts in a flexible manner to create a a very robust total layout, is most relevant to our
work [12].

SECTION III. Layout Definition
We now present our two in-rack layouts. Both are based on flat XOR-codes [6]. Thus, the data objects
are organized into reliability stripes that consist of a number of data objects and one additional parity
object. The contents of the parity object are the bitwise exclusive-or (XOR) of the data objects. Our
layouts provide two failure tolerance within a rack to deal with latent sector failures or up to two disk
failures without cross-rack traffic and in the case of one failure, uses one short reliability stripe in order
to minimize reconstruction traffic and disturbance. We assume that an additional layer of protecting is
provided by bundling one data object per rack into additional reliability stripe, as recently proposed by
Pâris [12].

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/9130789/9137768/9137775/p02-fig-1-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/9130789/9137768/9137775/p02-fig-2-source-large.gif

Fig. 3. Left: The two-dimensional layout for a storage array. 𝐴𝐴, 𝐵𝐵, … , 𝐼𝐼 are data devices and 1, 2,…, 6
parity objects. Right: The corresponding graph visualization.

Fig. 4. Graph presentation of a combinatorial layout.

Fig. 5. The double rectangle layout used in the experiments. Top: The graph representation. Bottom:
The layout itself.

We use a graph presentation developed by Xu and collegues for the definition of B-codes [18]. For our
layouts, each data object needs to be in two different reliability stripes and two reliability stripes are
either disjoint or intersect in exactly one data object. This implies that each data object is uniquely
characterized by the two stripes to which it belongs. Mathematically, the data objects are the edges
and the stripes are the vertices of a Mathematical graph. We present an example in Figure 3. There we
have nine data objects (A,…, I) and six parity objects (1, … , 6). The left shows the data layout, where
each data object is located in a vertical and a horizontal reliability stripe. The right side shows the
graph presentation. For example, data object 𝐸𝐸 is located in the same stripes as parity objects 2
(horizontally) and 5 (vertically). Correspondingly, the edge 𝐸𝐸 is connecting the vertices 2 and 5. We
adopt the convention to identifying the reliability stripe with the parity object.

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/9130789/9137768/9137775/p02-fig-3-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/9130789/9137768/9137775/p02-fig-4-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/9130789/9137768/9137775/p02-fig-5-source-large.gif

Fig. 6. Graph presentation (top) of and the combinatorial layout itself used in our experiments.

The graph in Figure 3 is bipartite, that is, its vertices are partitioned into two sets and edges are located
only between vertices from the two partitions. In our setting, we have two types of vertices
(corresponding to reliability stripes), those will a small edge rank (the number of edges adjacent to a
given vertex) and those with a larger edge rank. Since each disk object forms part of a small and a large
reliability stripe, the edges of the graph are between the small and the larger rank vertices. Thus the
graph has to be bipartite.

It makes sense to only choose graphs with only two edge ranks 𝑘𝑘1 and 𝑘𝑘2. The smallest layout with
these two ranks is the rectangular layout such as the one presented in Figure 3. A small layout is
however vulnerable to a moderate number of objects on failed storage devices, whereas a larger one
dilutes the impact of a moderate number of failures, but has of course also a higher chance of suffering
from such a moderate number of failures. We propose here an alternative to the strict rectangular
layout which we call the combinatorial layout. Its graph definition is presented in Figure 4. For the
vertices with high edge rank, we choose s disks labeled from 0 to 𝑠𝑠 − 1. The vertices with low edge

rank are then labeled by the Mathematical combinations of 𝑟𝑟, (𝑟𝑟 < 𝑠𝑠) elements. Thus, there are �𝑠𝑠𝑟𝑟� of
them. We then join a low-rank vertex with label {𝑎𝑎1,𝑎𝑎2, … ,𝑎𝑎𝑟𝑟} to each of high-rank vertices

labeled 𝑎𝑎1,𝑎𝑎2, …, and 𝑎𝑎𝑟𝑟. The low rank is therefore equal to r. The high rank is equal to �𝑠𝑠 − 1
𝑟𝑟 − 1�. The

number of data objects is 𝑟𝑟 �𝑠𝑠 − 1
𝑟𝑟 − 1�. We label them

as {𝑎𝑎1,𝑎𝑎2, … ,𝑎𝑎𝑟𝑟 , 𝑖𝑖} connecting {𝑎𝑎1,𝑎𝑎2, … ,𝑎𝑎𝑟𝑟} with 𝑎𝑎𝑖𝑖.

For our experiments, we choose a layout with 𝑠𝑠 = 6 and 𝑟𝑟 = 3. This layout has exactly the same

number of parity objects and data objects as a double rectangular layout with ranks r and �𝑠𝑠 − 1
𝑟𝑟 − 1�.

The combinatorial layout in a sense spreads the parity information of the same set of data objects
more evenly over the same set of parity objects, as a comparison of the bottom of Figures
5 and 6 shows. Consequentially, we expect its robustness and also its resilience to be larger.

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/9130789/9137768/9137775/p02-fig-6-source-large.gif

Recall that robustness is the probability of loosing data when 𝑓𝑓 layout components have failed. It is
such a function and it is calculated based on the assumption that each disk is equally likely to be one of
the failed disks. Traditionally, resilience has been measured in Mean Time to Failure (MTTF), a notion
that has suffered its share of criticism and discussion [5], [9]. We calculate resilience as the probability
of data loss in a five year interval using simulation under simplifying assumptions.

SECTION IV. Experimental Evaluation
We used two measures to evaluate the resilience of layouts. First, we calculate robustness. For this
purpose, we created a Python program for the combinatorial layout and the rectangular layout
represented by the 10 × 3 rectangular layout, i.e., half of our double rectangular layout. The program
randomly selected 𝑓𝑓 objects for failure and then modeled the attempt to reconstruct the data of the
failed objects. We called the probabilities 𝑝𝑝𝑓𝑓 that 𝑓𝑓 failures do not lead to dataloss the robustness of
the layout. From the data for the single rectangular layout we then calculated the robustness of the
double rectangular layout. As Figure 8 shows, the robustness of the combinatorial layout is always
higher than that of the double rectangular layout, confirming the old addage ‘to not put all one's eggs
into the same basket’ in order to spread the risk. Of course, 𝑝𝑝𝑓𝑓 is one for 𝑓𝑓 = 0,1,2, since the layout is
two failure tolerant, and 𝑝𝑝𝑓𝑓 is zero if 𝑓𝑓 exceeds the number of parity objects, i.e. 26 in our case.

Fig. 7. The result of dispersion. In the combinatorial layout (top), there are only four vertical reliability
stripes that have disks in positions 2 and 3, whereas in the double rectangular layout (bottom), all
vertical stripes contain disks in positions 1 and 2. Since each pair in a vertical stripe combined with
another pair in a vertical stripe forms a four-cycle, there are many more four cycles in the double
rectangular layout.

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/9130789/9137768/9137775/p02-fig-7-source-large.gif

Fig. 8. Robustness of the combinatorial and the double rectangular layout.

We can identify sets of disks whose failure no longer allows all data to be reconstructed, the so-
called failure patterns. A failure pattern in a flat layout contains either a cycle of failed edges or a path
of failed edges between two failed vertices [13]. This means that the smallest failure pattern in both
layouts consists of a failed edge between two failed vertices, or with other words, a failed data object
where the parity object in both the data object's reliability stripes have failed as well. Since the number

of data objects is 60, and there are �86
3 � = 102340 patterns of three failed objects, the probability

that three randomly chosen, failed objects can be survived is 0.999414.

We now count the number of four-failure patterns that lead to dataloss. Our first category are the 60
three-failure patterns plus an additional failed object. There are 60 ∗ 83 = 4980 of them in both
layouts.

The next pattern is the four-cycle, consisting of four failed adjacent edges. This is a quadrangle of data
objects 𝑑𝑑1,𝑑𝑑2, ,𝑑𝑑3, and 𝑑𝑑4 such that the pairs (𝑑𝑑1,𝑑𝑑2), (𝑑𝑑2,𝑑𝑑3), (𝑑𝑑3,𝑑𝑑4), and (𝑑𝑑4,𝑑𝑑1) all share a
reliability stripe. By necessity, two of the stripes are large and two of them are short. In the double
rectangular pattern, Figure 5, we can select any pair of rows and any pair of adjacent columns for such

a quadrangle. This means that there are 2 �10
2 � �

3
2� = 270 of them. In the combinatorial layout, a

quadrangle would contain two data objects in the same vertical reliability stripe. The other two data
objects would also be in a different vertical reliability stripe. The first object in the first pair and the
first object in the second pair share the same horizontal reliability stripe and the same is true for the
second objects. To count them all, we first select two horizontal stripes. Two of the data objects in a
vertical reliability stripe are then determined, there are 6 − 2 = 4 possibilities for the third one and by
construction, all of them correspond to a vertical reliability stripe. Thus, we choose two out of six

horizontal and then two out of four candidate vertical stripes. This gives us a total of �6
2� �

4
2� =

90 possibilities. Figure 7 graphically explains the difference between the two layouts and also suggests
a different, but equivalent way of counting them.

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/9130789/9137768/9137775/p02-fig-8-source-large.gif

The final pattern is the two-path, consisting of two failed vertices connected by two failed edges. In the
double rectangle layout, any pair of the ten upper vertices and any pair of the three lower vertices is

connected through each of the other vertices. This gives us 2 ∗ ��3
2� 10 + �10

2 �3� = 330 patterns.

For the combinatorial layout, we obtain the same number. First, we select a random horizontal parity
object, then one of the 10 data objects in its stripe, then one of the two other data objects in the
vertical stripe, which gives us the vertical parity object that needs to be selected for a total of 6 ∗ 10 ∗
2 paths, each counted exactly twice, so that the number of paths is 60. Second, we start with a random
vertical parity object among the 20, then select one of the three data objects in the vertical stripe, then
one of the remaining nine data objects in the horizontal stripe, which leads us to the other vertical
parity object. As we counted each path twice, the total number is 20 ⋅ 3 ⋅ 9/2 or 270 for the same total
of 330.

Together, we have 5580 combinations of four objects that lead to dataloss for the double rectangular
as opposed to 5400 for the combinatorial layout. Our counting examplifies the reason why the
robustness of the combinatorial layout is always at least as good as that of the double rectangular
layout.

To recap, we can calculate the robustness 𝑝𝑝𝑓𝑓 exactly for 𝑓𝑓 ≤ 4 and approximately, but with confidence
intervals too small to depict in Figure 8, through simulation.

However, what are the ramifications of the differences in robustness? To do so, we use the standard
Markov model depicted in Figure 9. There, we have 26 non-failure states 0, … , 26 and an absorbing
failure state 𝐹𝐹. We denote the failure rate of an individual object by 𝜆𝜆, so that 1/𝜆𝜆 is the Mean Time
Between Failures (MTBF) of the objects, which is the MTBF of the individual disks. We have transitions
out of state i at a rate (86 − 𝑖𝑖)𝜆𝜆 corresponding to a failure of any of the (86 − 𝑖𝑖) alive objects.
Depending whether the additional object failure leads to data loss or not, the transition moves to the
next state 𝑖𝑖 + 1 or to the failure state. From each state 𝑖𝑖, 𝑖𝑖 > 0, we have a repair transition to state 𝑖𝑖 −
1. We model repair transitions as having an exponentially distributed repair time ρ and assume that
repairs are independent from each other. We obtain the probabilities that the 𝑖𝑖th failure does not lead
to the failure state from the robustness.

Fig. 9. Markov model to assess data loss probability.

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/9130789/9137768/9137775/p02-fig-9-source-large.gif

Fig. 10. Number of nines in the five-year data survival of the combinatorial and the double rectangular
layout. The black and the red graphs differ by so little, that the red ones are obfuscated by the black
graphs. Since we assume the existence of a bundling inter-rack code, data loss only means that we
need to use this outer code to reconstruct the data.

Fig. 11. Difference in the number of nines in the five-year survival of the combinatorial and the double
rectangular layout.

With these model, we can calculate the probability that our two layouts by themselves cannot
reconstruct any data on lost devices. We use the Euler approximation of the state probabilities. In
order to reduce the accumulation of numerical errors, we use the high floating-point-precision library
Apflot [15]. We use two conservative reconstruction time of 36 hours and 10 hours, a time interval of a
second and a precision of 50 decimal digits. We varied the MTBF of the devices between 10000 hours
and 2,000,000 hours. Industry experience shows that sometimes device MTBF are more oriented
towards the lower range, while for example, many disk manufacturers' data sheets promise 2,000,000
MTBF. To represent our probabilities that the ensemble preserves data for five years over this large
range of MTBF, we give the probability in number of nines, that is, if the probability that all data
survives without using inter-rack reliability is 𝑝𝑝, then we display −log10 (𝑝𝑝). For instance, if the
probability is 0.999, then we have three nines of reliability.

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/9130789/9137768/9137775/p02-fig-10-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/9130789/9137768/9137775/p02-fig-11-source-large.gif

Our results are depicted in Figure 10, where to our initial surprise, the curves are almost on top of each
other. Figure 11 shows the difference between the curves for repair times of 10 hours and 36 hours,
respectively. It is only substantial for very low MTBF values and the difference gets smaller with faster
repair times. We can attribute this to the fact that the system is the vast majority of its life in State 0,
occasionally ventures into State 1, and finds itself in the other states with exponentially smaller
probability. Consequentially, the robustness mostly matters for small number of failures. As our two
layouts have the same robustness for States 0, 1, 2, and 3 and only differ by a small fraction for States
4, this behaviour in retrospect should not come as a surprise. Furthermore, if the repair rates is
smaller, than the differences should be even less pronounced. This calculation in fact contributes to
our understanding of the interplay between erasure control codes and longevity of data. For instance it
justifies the frequent approximation that assumes that all failures of more than 𝑁𝑁 objects lead to
dataloss.

SECTION V. Conclusions
We compared the impact of two erasure controlling layouts for inner-rack protection of stored data in
a data center. Both layouts limit the amount of traffic read in order to reconstruct data on a failed
device and should be used in conjunction with another code that gathers blocks from devices in
different racks into reliability stripes protected with additional parity data. The first layout is a classic
rectangular layout considered many times in the literature. The second takes the data and parity
objects from two rectangular layouts and mixes them up, resulting in significant improvement in
robustness. However, calculation of 5-year survival probability (where survival is understood to
avoiding recourse to the inter-rack protection) show very little difference in the probabilities. This is to
our knowledge the first example that demonstrates that robustness differences for larger number of
failures can have very little effect on survival probability.

References
1. A. Cave, What will we do when the world's data hits 163 zettabytes in 2025?, 2017, [online]

Available: https://www.forbes.com/sites/andrewcave/2017/04113/what-will-we-do-when-the-
worlds-data-hits-163-zettabytes-in-2025.

2. A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright and K. Ramchandran, "Network coding for
distributed storage systems", IEEE transactions on information theory, vol. 56, no. 9, pp. 4539-
4551, 2010.

3. S. Ghemawat, H. Gobioff and S.-T. Leung, "The Google file system", Proceedings 19 th ACM
Symposium on Operating System Principles (SOSP) , 2003.

4. P. Gopalan, C. Huang, H. Simitci and S. Yekhanin, "On the locality of codeword symbols", IEEE
Transactions on Information theory, vol. 58, no. 11, pp. 6925-6934, 2012.

5. K. Greenan, J. Plank and J. Wylie, "Mean time to meaningless: MTTDL Markov models and
storage system reliability", HotStorage, pp. 1-5, 2010.

6. K. M. Greenan, E. L. Miller and J. J. Wylie, "Reliability of flat XOR-based erasure codes on
heterogeneous devices", Dependable Systems and Networks With FTCS and DCC 2008. DSN
2008. IEEE International Conference on, pp. 147-156, 2008.

7. C. Huang, M. Chen and J. Li, "Pyramid codes: Flexible schemes to trade space for access
efficiency in reliable data storage systems", ACM Transactions on Storage (TOS), vol. 9, no. 1,
pp. 3, 2013.

8. C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, et al., "Erasure coding in Windows
Azure storage", Proceedings USENIX Annual Technical Conference (USENIX ATC 12), pp. 15-26,
2012.

9. I. Iliadis and V. Venkatesan, "Rebuttal to “beyond mttdl: A closed-form raid-6 reliability
equation”", ACM Trans. Storage, vol. 11, no. 2, Mar. 2015.

10. F. Oggier and A. Datta, "Self-repairing homomorphic codes for distributed storage
systems", 2011 Proceedings IEEE INFOCOM, pp. 1215-1223, 2011.

11. D. S. Papailiopoulos and A. G. Dimakis, "Locally repairable codes", IEEE Transactions on
Information Theory, vol. 60, no. 10, pp. 5843-5855, 2014.

12. J.-F. Pâris, "Bundling together RAID disk arrays for greater protection and easier repairs", 2019
IEEE 27th International Symposium on Modeling Analysis and Simulation of Computer and
Telecommunication Systems (MASCOTS), pp. 256-261, 2019.

13. T. Schwarz, A. Amer and J. Rose, "Resar: Reliable storage at exabyte scale reconsidered", 2017
2nd International Conference on Communication Systems Computing and IT Applications
(CSCITA), pp. 84-89, 2017.

14. I. Tamo, D. S. Papailiopoulos and A. G. Dimakis, "Optimal locally repairable codes and
connections to matroid theory", IEEE Transactions on Information Theory, vol. 62, no. 12, pp.
6661-6671, 2016.

15. M. Tommila, Apfloat arbitrary precision library, [online] Available: www.apfloat.org.
16. Z. Wang, I. Tamo and J. Bruck, "Long MDS codes for optimal repair bandwidth", 2012 IEEE

International Symposium on Information Theory Proceedings, pp. 1182-1186, 2012.
17. S. A. Weil, S. A. Brandt, E. L. Miller, D. D. Long and C. Maltzahn, "Ceph: A scalable high-

performance distributed file system", Proceedings of the 7th symposium on Operating systems
design and implementation, pp. 307-320, 2006.

18. L. Xu, V. Bohossian, J. Bruck and D. G. Wagner, "Low-density MDS codes and factors of
complete graphs", Information Theory IEEE Transactions on, vol. 45, no. 6, pp. 1817-1826, 1999.

	Combinatorial and Rectangular Layouts as Building Blocks for Local Reconstruction Codes
	Recommended Citation

	Abstract:
	SECTION I. Introduction
	SECTION II. Related Work
	SECTION III. Layout Definition
	SECTION IV. Experimental Evaluation
	SECTION V. Conclusions
	References

