
Marquette University Marquette University

e-Publications@Marquette e-Publications@Marquette

Computer Science Faculty Research and
Publications Computer Science, Department of

4-15-2021

A Scalable Private Bitcoin Payment Channel Network with Privacy A Scalable Private Bitcoin Payment Channel Network with Privacy

Guarantees Guarantees

Enes Erdin

Mumin Cebe

Kemal Akkaya

Eyuphan Bulut

Selcuk Uluagac

Follow this and additional works at: https://epublications.marquette.edu/comp_fac

https://epublications.marquette.edu/
https://epublications.marquette.edu/comp_fac
https://epublications.marquette.edu/comp_fac
https://epublications.marquette.edu/comp
https://epublications.marquette.edu/comp_fac?utm_source=epublications.marquette.edu%2Fcomp_fac%2F52&utm_medium=PDF&utm_campaign=PDFCoverPages

Marquette University

e-Publications@Marquette

Computer Sciences Faculty Research and Publications/College of Arts and
Sciences

This paper is NOT THE PUBLISHED VERSION.
Access the published version via the link in the citation below.

Journal of Network and Computer Applications, Vol. 180 (April 15, 2021): 103021. DOI. This article is ©
Elsevier and permission has been granted for this version to appear in e-Publications@Marquette.
Elsevier does not grant permission for this article to be further copied/distributed or hosted elsewhere
without express permission from Elsevier.

A scalable private Bitcoin payment channel
network with privacy guarantees

Enes Erdin
Computer Science Department, University of Central Arkansas, Conway, AR
Mumin Cebe
Computer Science Department, Marquette University, Milwaukee, WI
Kemal Akkaya
Electrical and Computer Engineering Department, Florida International University, Miami, FL
Eyuphan Bulut
Computer Science Department, Virginia Commonwealth University, Richmond, VA
Selcuk Uluagac
Electrical and Computer Engineering Department, Florida International University, Miami, FL

Abstract
While Bitcoin heavily dominates the cryptocurrency markets, its use in micropayments is still a
challenge due to long transaction confirmation times and high fees. Recently, the concept of off-chain
transactions is introduced that led to the idea of establishing a payment channel network called

https://doi.org/10.1016/j.jnca.2021.103021
http://epublications.marquette.edu/

Lightning Network (LN), which utilizes multi-hop payments. Off-chain links provide the ability to make
instant payments without a need to writing to Blockchain. However, LN's design still favors fees, and it
is creating hub nodes or relays that defeat the purpose of Blockchain. In addition, it is still not reliable,
as not all transactions are guaranteed to be delivered to their destinations. These issues hinder its wide
adoption by retailers. To address this issue, in this paper, we argue that the retailers could create a
private payment channel network among them to serve their business needs, just like the concept of
private Blockchains. The goal is to build a pure peer-to-peer topology that will prevent the formation of
hub nodes while also eliminating the need for any relays to increase the robustness of the payments.
Assuming off-chain links as edges and retailers as nodes, we formulate the problem as a multi-flow
commodity problem where transactions represent the commodities from various sources to
destinations. As the multi-flow commodity problem is NP-Complete, we propose a heuristic approach
that utilizes Dijkstra's shortest path algorithm for payments in a dynamic way by updating the edge
weights when new paths need to be found. The order of transactions is randomized to provide fairness
among the retailers. We further extend this approach to guarantee the privacy of payments by forcing
all the payments to travel at least three hops. We utilized k-shortest path algorithm to choose
from k options that will meet our criterion. The evaluations indicate that the proposed heuristic comes
close to an optimal solution while providing scalability and guaranteeing user privacy.

Keywords
Blockchain, Bitcoin, Payment channel networks, Shortest path, Lightning network

1. Introduction
Some welcome Bitcoin as the next big innovation since the introduction of the Internet (Zebpay, 2017).
Undoubtedly, Bitcoin has not only revolutionized the way payment systems can be designed in a purely
distributed manner but it has also offered the novel Blockchain data structure that is now endorsed as
an innovative solution in many areas such as healthcare, finance, government operations, logistics, etc.
(Kuo, 2017; Hackius and Petersen, 2017; Cebe, 2018).

The idea in Bitcoin is to process batches of transactions and once they are validated by miners, they are
stored in a chain of blocks maintained as a distributed ledger. Therefore, once a transaction is written
in a block in the Blockchain after a consensus, it cannot be deleted or changed. This persistent,
transparent and append-only structure of the Blockchain uncovers a strong platform where the
shareholders can store or transfer ownership of their assets in a trustless way.

For sure, Bitcoin has unfolded many new opportunities. However, it has been widely criticized for its
long transaction confirmation times and high fees charged for the transactions (Bloomberg,
2017; BitInfoCharts, 2017). The Bitcoin network, by design, tries to adjust the confirmation time of a
block to 10 min. In general, a block is accepted to be valid after the confirmation of the 6th subsequent
block, which yields the confirmation time of a transaction to be around 60 min. Therefore, such long
transaction confirmation times are not suitable for applications where timely payment evidence is
critical. In addition, the transaction fees are not proportional to the amounts being transferred. These
challenges make Bitcoin impractical for many day-to-day micropayment schemes such as buying a cup
of coffee or paying for lunch.

Despite the mentioned impracticalities, Bitcoin is still the most widely used digital currency, and its
market cap is above 50% among all digital currencies. So, it makes perfect sense to try to alleviate the
above problems of Bitcoin. To this end, as a solution, the concept of off-chain payment channels (Poon
and Dryja, 2015) was introduced where transactions are done through escrow-like accounts. In this
way, in the duration of an agreement, two parties can perform many instant payments in real-time
without a need to always write them to the Blockchain. Thus, one can save the on-chain transaction
fees that are conducted within the agreed term just because the off-chain mechanism requires
typically two on-chain transactions; one for opening the escrow account and one for closing it.

Due to such advantages of off-chain payments, payment channel networks (PCNs) started to evolve by
applying the off-chain concept widely such that a network of retailers and off-chain links can be
created just like an Internet backbone to link every retailer and customer and allow multi-
channel/multi-hop payments. A PCN is essentially a network topology that allows routing of payments
from any source to any other destination.

Lightning Network (LN) is a PCN proposed in 2016 and deployed for Bitcoin in late 2017 which serves
for, as of today, more than 10,000 nodes. The introduction of LN also introduced another level of
privacy to the cryptocurrency users. In LN, when a channel is established between two parties for off-
chain transactions, it has a certain capacity and can be either private or public. In the case of a private
channel, the peers do not need to advertise their intent to the network. For a public channel, while it is
known to everyone, the directional capacities (i.e., one-way transaction capacity to the other party) of
the channel are still not disclosed to the network. The capacity information advertised by the peers is
the total capacity of the peers who own the channel. In this way, the total assets of the users are kept
private to a certain extent. Additionally, when there is a transaction following a multi-hop path, the
intermediary nodes do not know the source and the destination nodes of the payment. They only
know the next hop.

However, there are several issues with the current LN. First of all, instead of connecting retailers and
customers directly, LN relies on relay nodes which act as bridges between retailers and customers. For
the retailers this is a major shortcoming since this leads to a hub-and-spoke topology where some of
the nodes hold the most of the connections and capacity of the network. Consequently, this defeats
the very idea of decentralization. A recent experiment where a practitioner was questioning the
capacity of the channels in LN revealed interesting results (diar.co, 2018). During the time of that
experiment, the average channel capacity was around $20 and the success rate for sending $5 and
$0.43 was around 50% and 90% respectively. These numbers indicate that adoption of LN by current
retailers will not be possible if success rates do not improve significantly. Second, allowing the relay
nodes to become monopolies in forwarding poses vulnerabilities for denial of service (DoS) attacks
(TrustNodes, 2018) and privacy analysis of customers’ transactions assuming that some of these nodes
are compromised to monitor transactions passing through them.

Hence, we advocate formation of a private PCN that will bring together retailers under a consortium
rather than opening it to public as in the case of LN. This suggests that there will be a need for
developing a highly decentralized topology which will be reliable and can support the needed amount
of transactions with additional privacy constraints for the participants. In this paper, we propose to
build such a private PCN from scratch that will utilize off-chain payment channels with the objectives of

distributing the forwarding loads evenly among all the nodes while minimizing the number of their off-
chain channels to decrease the total fee cost of the network. Inspired by the multi-commodity flow
problem (Haghani and Oh, 1996), the problem can be modeled as such where commodities will be our
transactions. However, since the multi-commodity flow problem is NP-complete (Even et al., 1975), an
optimization model will not scale.

We thus came up with a heuristic idea which will form a network topology by relying on the
transaction intents between nodes using the shortest path algorithm. As nodes start to transfer money
to each other, weights (or interchangeably referred to as costs) on the edges will be updated so that
the shortest path formations can be influenced in such a way that existing channels are favored to a
certain extent. There are three components in the weight of an edge, namely, link-establishment cost,
transaction cost, and the new channel forcing cost. When all of the transactions are completed, we
obtain a final topology by creating off-chain links on the used paths. We consider several criteria while
initializing and changing the weights of the edges that will enable a highly decentralized topology.

Finally, we propose to extend this approach for guaranteeing the privacy of the payments inspired by
the approach in Tor where each message travels at least 3-hops. Similarly, we aim to achieve at least 3-
hops for each payment path to satisfy privacy for the payments (Dingledine et al., 2004). To force this,
we utilized k-shortest path algorithm for the paths that have path length less than 3 and conduct a re-
routing.

The evaluations using Python and Gurobi solver indicate that our proposed heuristics can provide
comparable performance to that of the optimal solution while allowing scalability and fairness. We also
achieved 3-hops payments with similar topology features with a slight increase in the computational
time.

This paper is organized as follows: The next section summarizes the related work and in Section 3 we
provide the background for the related concepts and the motivation for the problem.
Section 4 explains the proposed algorithm and Section 5 explains the extension of the proposed
algorithm with guaranteed privacy. Section 6 presents the experimental setup and corresponding
results. Paper is concluded in Section 7.

2. Related work
2.1. Payment channel networks
High transaction fees and long confirmation times are the major issues for the cryptocurrencies and
there is a substantial interest in these issues from both the industry and academic community. Most of
these efforts are concentrated around Bitcoin. Building PCNs is a part of these efforts. PCNs can be
classified into two categories. The first category relies on building a PCN for intra-blockchain
operations. It allows transferring money between parties over already existing off-chain links without
any confirmation delay but with some forwarding fees. LN and Raiden are examples that fall into this
category (Poon and Dryja, 2015; Raiden, 2018). The second category of works relies on building inter-
blockchain operations to allow transfers between different cryptocurrencies without expensive on-
chain confirmation. Examples include Inter-Ledger (Thomas and Schwartz, 2015) and Atomic-
CrossChain (Team).

2.2. Lightning Network
Among the current PCNs, LN is the most widely adopted solution since the introduction of the off-chain
payment channel by the Bitcoin community (Bitcoin wiki). However, the LN framework is in its early
phases and has many problems including reliability, scalability, privacy, and routing. While some of
these problems such as privacy and efficient routing are being targeted by the Blockchain community
(Roos, 2017; Malavolta and others, 2017; Prihodko, 2016; Miller et al., 2017), all of these solutions
revolve around the existing LN structure and topology. In (Seres et al., 2019) the authors make a
topological analysis of a snapshot of the LN taken in March 2018. They claim that LN is formed around
a very small number of central nodes where periphery nodes are loosely connected to the center. The
author of (Martinazzi, 2019) statistically looks at the development of the LN in the course of 12 months
since its establishment. With the findings, he suggests the capacity development of LN is not strongly
correlated with the development of the size of the network where capacity grows more slowly.

Works targeting the privacy of the LN is not common. Right now, due to being in the early
development stage, LN enthusiasts have been discussing the privacy brought by LN on public forums or
in communication channels. An attack to the undisclosed directional balance is introduced in (Herrera-
Joancomarti et al., 2019). In this study, the authors send transactions with a never existing signature
and observe the reaction of the nodes on the path. They increase the payment amount until they get
an unsuccessful transfer information. Authors in (Rohrer et al., 2019) studies on three different
snapshots of LN and calculates the robustness of the topology with respect to different known attacks
and node failures in terms of privacy and transaction success rate.

Our work in this paper has a different goal assuming that private PCNs can be created and offers
efficient solutions from scratch to address the aforementioned issues.

2.3. Multi-commodity flow problem
The flow portion of our problem can be formulated similar to the multi-commodity flow problem
which deals with the assignment of commodity flows from sources to destinations in a given network.
However, multi-commodity flow problem has been shown to be NP-Complete (Even et al., 1975) even
if the number of commodities is two. When the problem becomes fractional and can be modeled with
linear programming, it can be solved in polynomial time (Karakostas, 2008). Nonetheless, in a multi-
commodity flow problem, the flows are optimized on a given network topology. Our problem is
different from the multi-commodity flow problem as we do not have the topology in hand and try to
jointly optimize the topology and the total costs by respecting the flow constraints.

The same problem in the context of electric vehicle (EV) charging coordination has been studied and
solved with an optimization model in (Erdin et al., 2018). However, as the number of charging stations,
channels and EVs increase, the time for solving the problem increases dramatically. The solution in that
work does not scale beyond 10 nodes. Our work in this paper aims to offer a scalable solution to the
same problem through a heuristic approach.

3. Background and motivation
3.1. Background on off-chain links
Off-chain transaction channels mechanism is used for saving transaction fees and time in the
current Bitcoin system which constitutes the main motivation of this study. Specifically, an in-advance
payment transaction is provided to the Blockchain for establishing a 2-of-2 multi-signature trustless
escrow account, and future successive transactions take place using this shared account. The account
activities are signed and tracked by the peers without being written to Bitcoin's public ledger. The
amount put in the multi-signature account is decided individually by the participants and unless that
amount is reached, the transactions can continue. In this scheme, the peers only pay fees for two on-
chain transactions: one to open the channel and one to close it.

The example shown in Fig. 1 depicts this concept. Alice opens an off-chain channel with Bob. They both
sign the new account separately. Alice then deposits 5 Bitcoins to the escrow account by performing an
on-chain transaction which determines a directional channel capacity, from Alice to Bob, as 5 Bitcoins.
From now on, Alice can make payments to Bob simply by giving the ownership of some of her Bitcoins
to Bob until the capacity of the channel is reached. In the figure, we see only 3 transactions at different
times: 1, 2, and 1 Bitcoins. Eventually, when the channel is closed, only the remaining Bitcoins and the
total transferred Bitcoins are committed respectively to Alice and Bob and written to the public ledger.
The payment channel provides guarantees to Alice and Bob to refund the balance in the escrow
account at any time or at a mutually agreed channel expiration time. This guarantee is satisfied by a
smart contract called “Hash Time Locked Contracts (HTLC)” (Hash Time Locked Contracts). With every
HTLC created by the peers, a peer gives ownership of some of her assets to the other if and only if she
can fulfill the contract with a proof. The proof should be satisfied in a limited period of time. Keeping
the state of the channel up-to-date is the duty of the channel owners.

Fig. 1. Off-chain mechanism between two Blockchain nodes.

LN exploits the off-chain concept to create multi-hop payment paths between participants. To enable
this idea in practice, users are supposed to route their payments to any destination through a series of
payment channels in a network of nodes. If such a channel/link series exist among the nodes, then a
user can utilize one or more of these links (i.e., multi-hop links) to reach another node for making a
payment. A sample payment network is shown in Fig. 2.

Fig. 2. An overview of the envisioned Payment Channel Network among retailers.

3.2. Privacy in Lightning Network
Bitcoin network is believed to be completely private by some of the Bitcoin enthusiasts. On the other
hand, people with sceptical thoughts criticize Bitcoin to have no privacy. Although they put tangible
ideas to prove their claims denying or accepting both are not suitable. For example, in Bitcoin Network
tracing a series of payments might give clues about the assets of a user to some extent, but hiding
those information is also possible when the pseudonymity idea is utilized properly.

By design, LN offers an additional level of anonymity for the user. In LN, the route for a payment is
calculated by the sender by source-routing (Ethereum, 2019). The sender who has a topological view of
the network, calculates the best route. The sender, then, encapsulates the route and sends the packet
to the first node in the route. Thanks to encapsulation, all of the intermediary nodes only know the
previous node from which the packet was sent and the next node to which the packet will be
forwarded. This idea is very similar to the Tor network.

3.3. Problem motivation and definition
In this paper, we argue that current LN structure and features are not attractive for retailers to join it
for their daily transactions. Specifically, we claim that retailers from certain business domains who
would like to attract more business from cryptocurrency users could come together to form
a private PCN that can be controlled and managed by them so that it can better satisfy customers’
needs. In what follows, we explain the shortcomings of LN and justify the need for such a private PCN:

● Network connectivity: In LN there is a basic assumption that a payment network can be
formed by ad-hoc connections and without a specific topology plan. This ad-hoc assumption
is not effective since there will be a certain probability of connectivity success which means
that the final payment network may not be connected. The proposed topology for a private
PCN needs to guarantee network connectivity.

● Network topology: Even though the concept of LN is very attractive, its current structure
requires the deployment of relay nodes between payers and payees. These relay nodes will
eventually become major hubs in the network creating the risk of experiencing DDoS attacks
to stop the payments in the network at any time. Another risk here is regarding customer
privacy. If these big relay nodes are compromised, the attackers can easily analyze the
payments passing through them which will expose the privacy of the customers using them

as relays. The proposed topology for a private PCN needs to carry P2P features to prevent
these issues.

● Investment for each channel: In LN, we mentioned that there is no guarantee for network
connectivity. However, forming a connected network for our proposed PCN will not be free.
A valid channel means two mandatory on-chain transactions. Hence, the number of channels
established by a node should be kept in an optimum level, namely, high enough to keep the
transaction requests in the network to flow through but low enough to decrease the total
on-chain transaction fees.

● Partial usage of available payment capacity: A node in our proposed PCN may assume that it
needs, say 100 Bitcoins, worth of total transaction volume for its own business. However,
that capacity will be used by other nodes which use this node as a relay. Thus, at a given
time, only a portion of the capacity will be available for the node itself to accept transactions
from its own customers. This implies that one should invest much more than its anticipated
transaction volume.

● Diminishing channel capacity over time: The capacity of channels in LN diminishes over time
and thus some transactions which are set to use those channels may get stuck. Therefore,
there may not be any payment guarantee as already shown in (diar.co, 2018). For resolving
this issue in the proposed PCN, either more investment should be planned in the channels in
advance or there should be a reverse payment to balance the forward capacities. The
proposed topology needs to guarantee that any payment will reach its destination at any
time.

Based on these discussions, our problem can be formally defined as follows: Let us assume N nodes
(retailers). Let us also assume that a PCN among these retailers can be represented as a graph G =
(V, E), where V represents nodes (of N retailers) and E represents all payment channels
among N retailers. Every edge between retailers has a capacity that denotes the amount of depositable
Bitcoins. We assume that every vertex (retailer) v ∈ V will make an initial total investment that
represents the maximum Bitcoins that can be transmitted or forwarded over it. In other words, we are
considering the maximum possible instantaneous payments that can be made from a retailer or
forwarded by it. This can also be described as the maximum possible business capacity of a retailer
within a certain time. Note that we assume that for each retailer there are N − 1 registered customers
making a unique transaction to another retailer. So, for example from Node1, there exists N −
1 transactions to other N − 1 retailers.

Based on these inputs, how can we create a scalable virtual topology PCN among the retailers in such a
way that 1) the total investment made by a retailer for creating channels with its neighbors will be
minimized; 2) the topology will be close to an ideal P2P topology with no hub nodes but still satisfy all
payment requests; and 3) the standard deviation of total investment costs among the retailers will be
minimized to ensure fairness.

4. Proposed heuristic algorithm
In this section, we describe our proposed heuristic in more detail.

4.1. Approach overview
Our heuristic of PCN formation is based on the idea of in-advance planning of payments and flows. As
every retailer has an idea of their business capacity and expectation, we use it to plan payment flows
among the customers and retailers. We first start distributing the flows in advance from various
retailers to others in the best way we can (i.e., fair load and P2P distribution) assuming that there are
already available channels among them at the beginning. We then look at the final used channels
among retailers, set up the actual off-chain links and remove any other channels.

In this heuristic, finding the path between a source and a destination retailer is crucial. When we look
at today's LN, if there is a path between the payer and the payee, the payer can use that path if it is
convenient to use, meaning, if there is enough capacity on the planned path. Otherwise, the other
alternative is to establish a direct channel with the payee. However, in that case, there will be on-chain
transaction fees for opening and closing channels. Therefore, one needs to weigh these two options
when finding a path.

We follow a similar rationale for our heuristic. Specifically, if there is a path from one retailer to
another one, our heuristic uses that path by relying on a shortest path algorithm, namely Dijkstra's. If
there is none, we open a new channel. Additionally, if total cost on the path will start to create
inconveniences for intermediate retailers (i.e., adding a burden of forwarding), then we force our
approach to open a new channel by adjusting the edge weights in the Dijkstra's shortest path
algorithm. In a sense, we strive to find a sub-optimal approach for opening channels so that the
participants of the network neither suffer from unfair load distribution nor pay excessive on-chain
transaction fees. Next, we describe our heuristic details.

4.2. Finding paths
In order to find the best possible routes, Dijkstra's shortest path algorithm is used (Dijkstra, 1959). In
Dijkstra's algorithm, the path with the lowest total weight is found between a source and a destination
node. In our case, we have an a priori payment list. From the payment list, transactions are read one by
one. At each reading, meaning iteration, a shortest (i.e., lowest weight) path from the source to the
destination is found. After a path is found, the weights on the edges are updated according to the flow
(i.e., payment amount) which will be detailed in the next subsection. The algorithm is shown in
Algorithm 1 which utilizes the notation in Table 1.

Algorithm 1. Network Establishment
1: Input: P=Payment List, H=fully connected directed graph, Lc = Link establishment

cost, Wi = New connection forcing cost
2: for every edge, e, in H do
3: He.weight = Wi + Lc
4: He.flow = 0
5: end for//Initial assignments are done
6: for every payment in P do//A payment is defined by a source, a destination and the

transfer amount Ta
7: Path = ShortestPath(H, from = a, to = b)
8: for Each edge, e, in Path do

9: He.flow + = Ta
10: He.weight = Wi + He.flow
11: end for
12: end for
13: for All edges in H do
14: if He.flow = 0 then
15: Remove edge from H
16: end if
17: end for
18: Output: H

Table 1. Notations and their explanations.
Symbol Meaning
H Directed Graph
He Edge e in graph H
Lc Link establishment cost
Wi New connection forcing cost
γ Parameter to control unfairness between the nodes
Ta Transaction amount
TAB Transaction amount on edge (A, B)
He.weight Weight of edge e
He.flow Flow on edge e
UAB Binary var. represents existence of flow on edge (A, B)
E Initial number of edges in the experiments

Note that here the payments are picked in a round-robin fashion (i.e., finish a particular retailer's
payments and move on to the next) which may greatly influence the resultant topology as we followed
a certain order. This may create unfair load distributions and undesirable topologies.

In order to come up with a topology in which the loads are more evenly distributed, the randomly
selected customers execute their transactions in a random round-robin fashion. Specifically, in order to
minimize the impact of dependence on the order, at each round, the order of the retailers is renewed
with a new distribution. This approach is shown in Algorithm 2.

Algorithm 2. List Establishment.
1: Input: S=Set of Retailers
2: while All required payments are not fulfilled do
3: TempS=S
4: while TempS is not Empty do
5: Pick 2 random retailers (a,b) from TempS
6: if Transaction from a to b was not fulfilled then
7: Add a as source, b as target in P

8: Remove (a,b) from TempS
9: end if
10: end while
11: end while
12: Output: P=Payment List

According to this approach, first, two nodes are selected randomly, one of which is the source, a, and
the other is the destination, b. If there is an intended transaction from a to b, and if it is not fulfilled
yet, a transaction from a to b with the transaction amount is added to a payment list, P.
Afterward, a, b pair is removed from the list of retailers. This removal is important because we want
every node to be visited equally either as a source or as a destination. Whenever every retailer visit is
complete, meaning the list of retailers is an empty set, the procedure is repeated. This new random list
of payments is then fed to Algorithm 1.

4.3. Defining edge weights
As mentioned, after finding a path the edge weights need to be updated to inject the desired influence
to topology formation. To achieve this, we define a sophisticated weight function, on an edge, e.g., the
weight between A and B, WAB. Specifically, three components of the WAB are defined: link
establishment cost, transaction cost, and new connection forcing cost. Below, we explain them next in
more detail.

Link Establishment Cost (Lc): In LN, establishing a channel means doing at least two on-chain
transactions on Bitcoin blockchain, which incur on-chain transaction fees. For a fully connected mesh
network of N nodes, there will be N × (N − 1)/2 edges. With increasing N, the total fee paid by the
network participants will be tremendously high. Instead of full connection in the network, a lower
number of edges will be more acceptable as it lowers the total on-chain transaction fee. The edges
should be reused cleverly to distribute the transactions among nodes in an acceptable way.

In order to encourage the reuse of the edges, a parameter called LinkCost, denoted as Lc is
introduced. Lc mainly relates to the on-chain transaction fee. In the proposed heuristic, all edges in the
network have a non-negative Lc set to some value. Whenever an edge is used (i.e., there is a flow on
the edge), the Lc on that edge is nullified (set to 0 to indicate that the channel is already open). So
further transactions can use that edge on their paths. Nullifying the Lc encourages other transactions in
such a way that other transactions will prefer low-cost edges instead of opening a new one.

Transaction Cost: When an edge is used (or channel is established), Lc will be nullified, and thus all later
transactions will tend to use that channel since other yet-never-used channels will have a higher
weight due to higher Lc. As some edges will have lower weight due to nullified Lc, they will be used
heavily. This high usage of the channel contradicts with the aim of establishing a flat network to
execute all of the transactions. For that reason, whenever there is a transaction through an edge, the
amount transferred incurs a weight on that edge which is basically a transaction cost induced by
channel usage. So, when there are edges with heavier loads, the transactions will start to look for new
routes or open new channels. This helps to distribute the loads more evenly. Hence the weight, WAB, is
revised as follows to accommodate this transaction cost:(1)WAB=Lc(1−UAB)+∑TABwhere UAB is a

binary variable and equals to 1 if there happens to be a flow on edge AB anytime during the procedure,
and 0 otherwise, and TAB is the amount of all transactions (from all nodes in the network) passing on
edge (A, B).

New Connection Forcing Cost: In some cases, when the links are established, during the algorithm run,
the future transactions in the list tend to use those links which will increase the investment need to be
made by intermediate nodes for maintaining these links. In such cases, we need an additional force to
further increase these links' weights so that the Dijkstra's algorithm will not choose these links
anymore.

As an example consider an initially fully connected mesh network topology shown in Fig. 3(a) where all
of the edge weights are initialized accordingly, with Lc = 500. If we look at the established links after the
first run of payments, we see that half of the nodes initiate transactions to the remaining half of the
nodes randomly in one hop as shown in Fig. 3(b), and the effect of Lc is nullified and the weights are
updated with the flows on the edges. Note that, for simplicity, not all of the Lc = 500 wt are shown in
the figures. In the second round of transactions, new randomly selected half of the nodes will initiate
new transactions to other nodes. This will form new connections as shown in Fig. 3(c) but still the
opened links will be in use. However, now unused edges in the topology will still have a higher weight
of Lc (500 in this example), while other edges will have the weights only created by the transaction
amounts. In the later rounds, no matter how random the nodes are picked, all of the transactions will
follow the already established edges since they will have lower weights due to their Lc being set to 0.
Thus, the topology will continue to be as shown in Fig. 3(c), resulting in no significant change. For a
larger N, we will observe longer paths in the network and the topology will stay unchanged although
more transactions are added. In order to prevent transactions traversing always through the same
paths, we introduce a constant weight, Wi, for each edge to increase the total weight on the path and
thus surpass the edges with Lc ((i.e., forcing new connections). In this way, the longer paths will be
hampered. Thus, the weight on edge (A, B) will be updated as follows:(2)WAB=Lc(1−UAB)+∑TAB+Wi

Fig. 3. Initially fully connected mesh network topology.

The effect of Wi can be better seen with an example shown in Fig. 4. In this sample experiment Lc is set
to 3000, and the number of nodes, N, is 20. The payment lists are the same for both of the resulting

topologies. Basically, without Wi, we will get a topology in Fig. 4(a). Introducing Wi and setting it to
1000 causes the topology to change to the one in Fig. 4(b). We argue that Fig. 4(a) is not a desired
topology because it is weak against node failures, and some nodes are highly centralized.

Fig. 4. Effect of Wi for a network of 20 nodes, Lc = 3000.

5. Extending the heuristic for privacy guarantees
The higher the number of hops a payment is traversing through, the better the privacy is. This is
inspired by the idea of privacy in the Tor network where each message needs to traverse at least 3-
hops (Dingledine et al., 2004). In LN the payments are transferred from a source to a destination within
encapsulated messages. If a node in the center knows that it is the node in between the source and the
destination it will be able to gather information about the users. This also comes with additional
traceability of the payments because there is a possibility that the nodes can be traced back from
the Bitcoin network. However, if at least 3-hops transaction mechanism is utilized or enforced by the
users, a node on the route of the payment will not be able to get a clear view of the source and the
destination about the payment (Dingledine et al., 2004).

While the Dijkstra's shortest path algorithm is highly efficient in finding the shortest path from a source
to a target in weighted directed graphs, it cannot guarantee a minimum number of hops for a path. In
order to increase the privacy of payments, we propose an extension to it by relying on re-routing.
Specifically, the proposed extension method is comprised of two steps. In the first step, Dijkstra's
algorithm is run with the default configuration as defined Algorithm 1, and all the shortest paths for
payments are found. Note that, in this configuration, there is no dictated number of hops requirement.
Among all of those paths, the ones with lower than R hops are saved in a temporary list, which will be
used in the second step of the method.

In the second step, the shortest path algorithm is run again for the payments in the temporary list.
However, in this case, instead of finding the shortest path, k-shortest paths algorithm is utilized. k-
shortest path algorithm basically lists top k shortest paths from a source to destination which requires
more computation. The computational complexity of the k-shortest path algorithm is shown to
be O(E + kNlogN) (Bouillet et al., 2007) where E represents the number of edges and N is the number
of vertices in the graph, and k is the number of hops required. The goal here is to look for paths with at
least R-hops, essentially forcing the paths that are in our list to perform a re-routing. Among all of the
paths with R or more hops, the path with the minimum weight is picked as the solution. This process is
hypothetically shown in Fig. 5. Based on this figure, during the Dijkstra's algorithm run, a 3-hop path
between node-1 and node-4 is found as shown in Fig. 5(a). As the iterations carry on, a 1-hop algorithm

is found between node-1 and node-5 as shown in Fig. 5(b) and in the next iteration another 3-hop path
is found between node-1 and node-7 as illustrated in Fig. 5(c). Thus, when the first step is over, the re-
routing with the k-shortest path algorithm starts for the 1-hop path found in Fig. 5(b). This 1-hop path
should be forced for a re-route via more than R hops between node-1 and node-5 as shown in Fig. 5(d).

Fig. 5. Explanation of the rerouting mechanism.

One might question why the first step of the proposed method is not directly utilizing k-shortest paths
algorithm instead of following a two-step approach. This choice is due to the computational complexity
that comes with k-shortest path algorithm with the initial topology. It takes a lot of time to find a path
for the payments essentially turning the approach into a brute force search. The proposed privacy
guaranteed method is shown in Algorithm 3.

Algorithm 3. Network Establishment for Privacy Guarantees.
1: Input: P=Payment List, H=fully connected directed graph, Lc = Link establishment

cost, Wi = New connection forcing cost
2: for every edge, e, in H do
3: He.weight = Wi + Lc
4: He.flow = 0
5: He.Tempflow = 0
6: end for//Initial assignments are done
7: for every payment in P do//A payment is defined by a source, a destination and the

transfer amount Ta
8: Path = ShortestPath(H, from = a, to = b)
9: if length(Path) < R then

10: Add payment to Temp list
11: for Each edge, e, in Path do
12: He.Tempflow + = Ta
13: He.weight = Wi + He.Tempflow + He.flow
14: end for
15: else
16: for Each edge, e, in Path do
17: He.flow + = Ta
18: He.weight = Wi + He.flow + He.Tempflow
19: end for
20: end if
21: end for
22://Remove effect of He.Tempflow in H
23://Nullify Tempflow and make edge weights Lc + Wi of edges with only positive Tempflow
24: for every payment in Temp do
25: AllPaths = AllSimplePaths(H, from = a, to = b)
26: Path = x where x ∈ AllPaths if length(x) ≥ R and weightx is the minimum
27: for Each edge, e, in Path do
28: He.flow + = Ta
29: He.weight = Wi + He.flow
30: end for
31: end for
32: for All edges in H do
33: if He.flow = 0 then
34: Remove edge from H
35: end if
36: end for
37: Output: H

6. Evaluation
In this section, we describe the experiment setup, performance metrics and discuss the evaluation
results.

6.1. Experimental setup and implementation
N nodes (retailers) are assumed in the network. A single customer is assumed to be attached to a
single node and it will create 10 unit worth transactions to every other node. So, the supply from a
single customer to the network is (N − 1) × 10. Total money traversing in the network
is N × (N − 1) × 10. In LN channel formation, the peers can independently decide on the amount they
want to put in the channel. However, for the completeness of the study, we assume that peers of a
channel put the same amount in the channel they created. The proposed approach is implemented in

Python and its performance is assessed extensively through various experiments. All the experiments
are carried out on a computer with an Intel Xeon E5-2630 v4 @ 2.20 GHz CPU and 64 GB of RAM.

6.2. Metrics and benchmarks
The results of the experiments are assessed based on the following metrics:

● Betweenness Centrality of nodes: Betweenness centrality of a node in a network is a
measurement showing how many times a node is visited while traveling between other
nodes using the shortest path traversal. In a hub-and-spoke network model, hubs will have
the highest betweenness score.

● Total Capacity of the Network: This metric shows the total amount of investment to be put
by the vendors to the channels for the formation of the network.

● Number of Edges: This metric shows the number of edges established in the resultant
topology.

● Standard deviation among the nodes: This metric shows the standard deviation among the
outbound flows of the nodes. A high standard deviation hints that some of the nodes are
used more like a relay compared to the other nodes. A zero standard deviation means all of
the loads on the nodes are equal.

● Total Computation time: This metric is the measure to show how long it takes, in seconds, to
finish all necessary computations for the final results.

● Utilization: This metric is the ratio of the total flow in the network to the total capacity of the
network. It is calculated by dividing the sum of all transactions to sum of all established
capacity in the network.

● Histogram of Number of Hops: This metric shows the histogram of the transactions in terms
of the number of hops they follow calculated in percentage.

● Cut Nodes: Cut nodes are the nodes whose removal entirely makes the network
disconnected. The higher the better for a topology since this means more nodes need to be
removed/failed to disconnect the network.

We compared our approach against certain benchmarks and methods as listed below:

● MIOP model: The results of the heuristic are compared with an optimization model in (Erdin
et al., 2018).

● Random network topology: The results of the heuristic are also compared with the results of
a randomly connected network. The heuristic is run on the random network to get the flows
in the network.

6.3. Experiment results and discussion
6.3.1. Comparison of heuristic with the MIOP model
In this section, the results of the proposed heuristic approach are presented and compared with that of
the MIOP model studied in (Erdin et al., 2018). The objective is to assess our approach's performance
with respect to the ideal one. The optimization model was solved by Gurobi Solver. However, in the
setup of this experiment, only 10 nodes are used since the MIOP model does not scale beyond 10 and

thus in practice is not useable. Only for this experiment, different than the general scenario
assumption, we assumed that these 10 nodes are serving to 80 customers which are distributed to
these nodes randomly. Each customer sends money to 6 different nodes and each is of a value of 10
units. Hence, the total supply by the customers to the network is 4800 units. From the experiment
results of the MIOP model, best ones are used in regards to betweenness centrality, standard deviation
and number of edges. For the results of the heuristic approach, the same scenario is inherited. All the
related results are shown in Fig. 6. In those figures, γ is a control parameter for the unfairness among
node outbound flows, and linkcost is the link establishment cost, Lc in MIOP.

Fig. 6. Optimal vs. Heuristic Comparisons.

As can be seen from Fig. 6(b) and (c), our heuristic's performance almost matches the performance of
the MIOP solution in terms of total capacity and edges. It is also only 20% short of the utilization of
MIOP (Fig. 6(d)). For the standard deviation metric, as MIOP has a significant control on unfairness, the
standard deviation in MIOP solutions is lower than that of the heuristic approach as seen in Fig. 6(e).
However, when Wi is 100 and Lc is 650 in the heuristic approach, standard deviation comes to a more
comparable level, where the number of edges has a significant effect on this. This is because as the
number of edges increases, the flows tend to be distributed more evenly since the flows can find
shorter routes compared to a network with a lower number of edges. Finally, compared to MIOP
solutions the betweenness centrality for our approach in Fig. 6(a) is slightly increasing but still
maintains a topology close to P2P.

The obvious advantage of our approach is computational overhead. It reduces the computational time
100 to thousands folds (i.e., it scales much better) while still getting very close to the MIOP's overall
performance (Fig. 6(f)). In summary, the proposed approach provides the same features as MIOP in a
much faster/scalable manner but with some slight deviation from an ideal P2P topology.

6.3.2. Ideal Parameter Selection for the heuristic
Apparently, picking different parameters highly affects the resulting network topology for the heuristic
approach. In this section, we conducted a series of experiments to determine the ideal parameters for
our heuristic to run. The experiments are evaluated for different Lc and Wi cases and a fixed number of
nodes, N = 100, which yields traversal of 99000 units of money in the network, with an exact amount
of 990 units per node. The results are shown in Fig. 7.

Fig. 7. Ideal parameter selection.

Considering all of the different parameters visited in the course of this experiment, with the payment
scenario assumption and under 100 nodes, we obtain a good topology when Lc is 4000 and Wi is 700.
We call the topology good because, the standard deviation is around 600, with an average load per
node around 3000. The total number of edges in the network is close to 300 implying on average every
node has 6 connections. Additionally, the maximum number of hops does not exceed 6 and resides
around 3. These parameters are used in the remaining experiments.

6.3.3. Scalability of the heuristic
In this experiment, we assessed the scalability features of the proposed heuristic. Specifically, the
heuristic approach is run with different numbers of nodes, namely 250 and 500 nodes. However, as the
number of nodes increases, the computation time required to finish the calculations increases
drastically due to the time complexity of Dijkstra algorithm which is, if implemented in simple
form, O(|E|log|N|), where E is the number of edges and N is the number of nodes. Since our heuristic
starts with the assumption that all nodes are connected to each other, the number of edges
becomes E = N2. So the time complexity of the heuristic translates into O(N2logN). In order to decrease
the effect of the assumption of an initially fully connected mesh network, we also created networks
with random initial connections as an alternative approach for comparison. To differentiate these two,
in the figures, the initial number of edges are depicted with the E parameter where E = All indicates our
approach with a fully connected network.

The results are shown in Fig. 8. Pre-pruned topologies (i.e., randomly connected) give an advantage in
terms of total computation time, as expected, especially with 500 nodes. However, other results are
generally slightly better for the initially fully connected mesh network setup. In particular, standard
deviation of our approach with a fully connected topology is significantly reduced. Additionally, based
on the results, we argue that making random connections may not degrade the total investment
capacity in the network but comes with unfairness among the nodes as standard deviation among
nodes changes too much.

Fig. 8. Scalability test results.

As part of this experiment, we also looked at the number of cut nodes. Fig. 8(g) represents the results
of the cut nodes for different parameters. As can be seen, when the network is randomly connected,
we observe a lower number of cut nodes compared to our heuristic topology. That means, for a
randomly connected network, the possibility of taking down the network is easier because attacking
fewer nodes will be enough. This is not the case in our heuristic with the fully connected mesh network
as its betweenness centrality is more stable and thus more nodes need to be taken down in order to
disconnect the network. As the network size doubles, this number also increases linearly indicating
that our heuristic maintains a similar behavior as new nodes are added. This is one of the main
strengths of our approach in terms of producing a good topology against DDoS attacks. We can
conclude that up to a certain number fully connected topology might be a better choice. However,
when we move beyond a certain number of nodes, for time savings, pre-pruned topologies may be
preferred based on their cut node performance.

6.4. Heuristic with privacy considerations
In this subsection, we present results related to privacy extension of our approach presented in
Section 5 which guarantees payment privacy with at least 3-hop payments. In these experiments, we
compared two other baseline approaches with ours: The first baseline approach utilizes our Dijkstra
heuristic without any privacy guarantees starting with a fully connected initial topology shown
with E = All in the figures. The second baseline is the same as the first except that it starts with a
randomly connected initial topology with 4500 edges (shown as E = 4500). Our approach which
guarantees privacy is shown as E = All, Reflow. We conducted the experiments with 500 nodes. The
results are shown in Fig. 9 for the following metrics: betweenness centrality, total investment capacity,
the total number of edges, the number of hops, the standard deviation and total processing time.

Fig. 9. Results for the Privacy aware method for 500 nodes.

As seen in Fig. 9(a), with a randomly connected initial topology, the betweenness centralities of the
nodes change drastically, which is expected. This is because with the random connection some of the
nodes will be apparently dominant compared to others. However, betweenness centrality of the
initially fully connected mesh network topologies gives a more flat measure. This behavior assures that
the dominance of some of the nodes is decreased significantly. The initial fully connected mesh
network topology and pseudo-random payment distribution is effective in getting that result.
However, our approach with privacy guarantees is slightly better than the one without privacy for
betweenness centrality. As shown in 9(c), while the number of edges did not change, the betweenness
centrality measure is maintained. This is because some of the channels opened in the first step of the
privacy approach are discarded in the second step which eventually helped in establishing a more
balanced network.

The other results for the experiment with the privacy guarantee are promising too. Although the
number of edges does not change, the main factor for the slight increase in the total capacity with
respect to the approach where privacy is not guaranteed is the forcing of minimum 3 hops in the
transfers which causes each node to invest more, meaning an additional investment for the others’
payments too. Nonetheless, our privacy-guaranteed approach comes with the best standard deviation,
even surpassing the non-privacy one as shown in Fig. 9(e). The one-time cost for these improvements
comes with some time overhead as seen in Fig. 9(f). The total calculation time for the setup with the
random connection network is the lowest because the complexity of the Dijkstra is directly related to
the number of edges. For the privacy guaranteed approach, the time is the highest because all of the 1
and 2 hops payments were converted to at least 3 hops transfers by the k-shortest path algorithm
which in turn brings an additional overhead to the total computation time.

7. Conclusion
Cryptocurrency based payment channel networks using the idea of off-chain payments has been
emerging recently. This is not only because they reduce confirmation times but they also let users send
micro-payments in a very affordable way. Therefore, forming a reliable and scalable P2P payment
network is an open question assuming a private consortium of retailers (nodes). In this study, based on
some scenarios and assumptions, we developed a heuristic approach to form such a payment network
topology using Bitcoin's off-chain concept and Dijkstra's shortest path routing and compared the
results with the results of an optimal solution. We further extended this heuristic to guarantee privacy-
aware routing in the network with at least 3 hops and compared its performance with the non-privacy
case.

Compared to the optimal solution, the heuristic reduces the computational time significantly.
Additionally, the fair distribution of the load among nodes, centrality measures and the total number
of edges obtained in the networks are satisfying to ensure a truly P2P network topology features.
When privacy is to be guaranteed with at least 3 hops, the results show that the network topology
becomes even better in terms of the considered topological metrics with some additional computation
time overhead.

Declaration of competing interest
The authors declare that they have no known competing financial interests or personal relationships
that could have appeared to influence the work reported in this paper.

Acknowledgment
This study was partially funded by the National Science Foundation under award number NSF-CNS-
1663051.

References
Bitcoin wiki. Bitcoin Contract. en.bitcoin.it/wiki/Contract.
BitInfoCharts, 2017. bitinfocharts.com/comparison/bitcoin-transactionfees.
Bloomberg, 2017. www.bloomberg.com/view/articles/2017-11-14/bitcoin-s-high-transaction-fees-

show-its-limits.
Bouillet, E., Ellinas, G., Labourdette, J.F., Ramamurthy, R., 2007. Path Routing–Part 2: Heuristics.
Cebe, M., others, 2018. Block4forensic: An integrated lightweight blockchain framework for forensics

applications of connected vehicles. IEEE Commun. Mag. 56 (10), 50–57.
diar.co, 2018. Lightning Strikes, but Select Hubs Dominate Network Funds. https://diar.co/volume-2-

issue-25.
Dijkstra, E.W., 1959. A note on two problems in connexion with graphs. Numer. Math. 1 (1), 269–271.

https://doi.org/10.1007/BF01386390.
Dingledine, R., Mathewson, N., Syverson, P., 2004. Tor: the second-generation onion router. In:

SSYM’04. USENIX Association. Berkeley, CA, USA: 21–21.
Erdin, E., Cebe, M., Akkaya, K., Solak, S., Bulut, E., Uluagac, S., 2018. Building a private Bitcoin-based

payment network among electric vehicles and charging stations. IEEE International Conference
on Blockchain.

Ethereum, 2019. BOLT 4: Onion Routing Protocol. https://github.com/lightningnetwork/lightning-
rfc/blob/master/04-onion-routing.md.

Even, S., Itai, A., Shamir, A., 1975. On the complexity of time table and multi-commodityflow problems.
IEEE 184–193.

Hackius, N., Petersen, M., 2017. Blockchain in logistics and supply chain: trick or treat? epubli 3–18.
Haghani, A., Oh, S.C., 1996. Formulation and solution of a multi-commodity, multimodal network flow

model for disaster relief operations. Transport. Res. Pol. Pract. 30 (3), 231–250.
Hash Time Locked Contracts. en.bitcoin.it/wiki/Hash_Time_Locked_Contracts.
Herrera-Joancomarti, J., Navarro-Arribas, G., Pedrosa, A.R., Cristina, P.S., Garcia-Alfaro, J., 2019. On the

Difficulty of Hiding the Balance of Lightning Network Channels. AsiaCCS.
Karakostas, G., 2008. Faster approximation schemes for fractional multicommodity flow problems.

ACM Trans. Algorithm 4 (1), 13.
Kuo, T.T., others, 2017. Blockchain distributed ledger technologies for biomedical and health care

applications. J. Am. Med. Inf. Assoc. 24 (6), 1211–1220.
Malavolta, G., others, 2017. Concurrency and privacy with payment-channel networks. In: ACM, pp.

455–471.
Martinazzi, S., 2019. The Evolution of Lightning Network’s Topology during its First Year and the

Influence over its Core Values arXiv preprint arXiv:1902.07307.
Miller, A., Bentov, I., Kumaresan, R., McCorry, P., 2017. Sprites: Payment Channels that Go Faster than

Lightning. CoRR abs/1702.05812.

Poon, J., Dryja, T., 2015. The Bitcoin Lightning Network: Scalable Off-Chain Instant Payments. Technical
Report (draft).

Prihodko, P., others, 2016. Flare: an Approach to Routing in Lightning Network. Raiden, 2018.
raiden.network/.

Rohrer, E., Malliaris, J., Tschorsch, F., 2019. Discharged payment channels: quantifying the lightning
network’s resilience to topology-based attacks. In: 2019 IEEE European Symposium on Security
and Privacy Workshops.

Roos, S., others, 2017. Settling Payments Fast and Private: Efficient Decentralized Routing for Path-
Based Transactions arXiv preprint arXiv:1709.05748.

Seres, I.A., Guly´as, L., Nagy, D.A., Burcsi, P., 2019. Topological Analysis of Bitcoin’s Lightning Network
arXiv preprint arXiv:1901.04972.

Team LN. Atomic Cross-Chain Trading….
Thomas, S., Schwartz, E., 2015. A Protocol for Interledger Payments interledger.org/interledger.pdf.
TrustNodes, 2018. Lightning Network DDoS Sends 20% of Nodes Down

trustnodes.com/2018/03/21/lightning-network-ddos-sends-20-nodes.
Zebpay, 2017. Bitcoin the Next Big Thing since the Internet Itself: Christine Lagarde.

https://blog.zebpay.com/bitcoin-the-next-big-thing-since-the-internet-itself-christine-lagarde-
4d4ba71d80dc.

	A Scalable Private Bitcoin Payment Channel Network with Privacy Guarantees
	Abstract
	Keywords
	1. Introduction
	2. Related work
	2.1. Payment channel networks
	2.2. Lightning Network
	2.3. Multi-commodity flow problem

	3. Background and motivation
	3.1. Background on off-chain links
	3.2. Privacy in Lightning Network
	3.3. Problem motivation and definition

	4. Proposed heuristic algorithm
	4.1. Approach overview
	4.2. Finding paths
	4.3. Defining edge weights

	5. Extending the heuristic for privacy guarantees
	6. Evaluation
	6.1. Experimental setup and implementation
	6.2. Metrics and benchmarks
	6.3. Experiment results and discussion
	6.3.1. Comparison of heuristic with the MIOP model
	6.3.2. Ideal Parameter Selection for the heuristic
	6.3.3. Scalability of the heuristic

	6.4. Heuristic with privacy considerations

	7. Conclusion
	Declaration of competing interest
	Acknowledgment
	References

