
Marquette University Marquette University

e-Publications@Marquette e-Publications@Marquette

Clinical Lab Sciences Faculty Research and
Publications Clinical Lab Sciences, Department of

2021

Confidential Machine Learning on Untrusted Platforms: a Survey Confidential Machine Learning on Untrusted Platforms: a Survey

Sharma Sagar

Keke Chen

Follow this and additional works at: https://epublications.marquette.edu/clinical_lab_fac

 Part of the Laboratory and Basic Science Research Commons

https://epublications.marquette.edu/
https://epublications.marquette.edu/clinical_lab_fac
https://epublications.marquette.edu/clinical_lab_fac
https://epublications.marquette.edu/clinical_lab
https://epublications.marquette.edu/clinical_lab_fac?utm_source=epublications.marquette.edu%2Fclinical_lab_fac%2F60&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/812?utm_source=epublications.marquette.edu%2Fclinical_lab_fac%2F60&utm_medium=PDF&utm_campaign=PDFCoverPages

CybersecuritySagar and Keke Cybersecurity (2021) 4:30
https://doi.org/10.1186/s42400-021-00092-8

SURVEY Open Access

Confidential machine learning on
untrusted platforms: a survey
Sharma Sagar1,2† and Chen Keke1*†

Abstract

With the ever-growing data and the need for developing powerful machine learning models, data owners increasingly
depend on various untrusted platforms (e.g., public clouds, edges, and machine learning service providers) for scalable
processing or collaborative learning. Thus, sensitive data andmodels are in danger of unauthorized access, misuse, and
privacy compromises. A relatively new body of research confidentially trains machine learning models on protected
data to address these concerns. In this survey, we summarize notable studies in this emerging area of research. With a
unified framework, we highlight the critical challenges and innovations in outsourcingmachine learning confidentially.
We focus on the cryptographic approaches for confidential machine learning (CML), primarily on model training,
while also covering other directions such as perturbation-based approaches and CML in the hardware-assisted
computing environment. The discussion will take a holistic way to consider a rich context of the related threat models,
security assumptions, design principles, and associated trade-offs amongst data utility, cost, and confidentiality.

Keywords: Confidential computing, Cryptographic protocols, Machine learning

Introduction
Data-driven methods, e.g., machine learning and data
mining, have become essential tools for numerous
research and application domains. With abundant data,
data owners can build complex analytic models for areas
ranging from social networking, healthcare informat-
ics, entertainment, and advanced science and technol-
ogy. However, limited in-house resources, inadequate
expertise, or collaborative/distributed processing needs
force data owners (e.g., parties that collect and analyze
user-generated data) to depend on somewhat untrusted
platforms (e.g., cloud/edge service providers) for elastic
storage and data processing. As a result, cloud services
for data analytics, such as machine-learning-as-a-service
(MLaaS), have been rapidly growing during the past few
years. While untrusted platforms refer to all non-in-house
resources not directly owned by the data owner, we will
use Cloud Services to represent them here forth.

*Correspondence: keke.chen@marquette.edu
†Sharma Sagar and Chen Keke contributed equally to this work.
1Northwestern Mutual Data Science Associate Professor Director of
Trustworthy and Intelligent Computing Lab Department of Computer Science
Marquette University Milwaukee, Wisconsin, USA
Full list of author information is available at the end of the article

When outsourcing sensitive data (e.g., proprietary,
human-related, or confidential data), data owners have
raised concerns in privacy, confidentiality, and owner-
ship (Sharma et al. 2018; Duncan et al. 2012). On the
one hand, cloud users cannot verifiably prevent the cloud
provider from accessing their data; i.e., in practice, using
public clouds often means one must fully trust the cloud
provider. On the other hand, public cloud providers
are not immune to security attacks leading to sensitive
data breaches. Recent security incidents, including insider
attacks (Chen 2010; Duncan et al. 2012) and external secu-
rity breaches at the service providers (Mansfield-Devine
2015; Unger 2015), show the risks are aggravating by day.
Researchers and practitioners have developed solutions to
protect the confidentiality of cloud data at rest. For exam-
ple, Google Cloud Platform has allowed users to include
an external key manager to store encrypted data on the
cloud with a third party (e.g., Fortanix) stores and man-
ages keys off the cloud. However, it remains a critical
challenge for data owners and cloud providers to pro-
tect confidentiality in computing, i.e., training models on

© The Author(s). 2021Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://crossmark.crossref.org/dialog/?doi=10.1186/s42400-021-00092-8&domain=pdf
http://orcid.org/0000-0002-9996-156X
mailto: keke.chen@marquette.edu
http://creativecommons.org/licenses/by/4.0/

Sagar and Keke Cybersecurity (2021) 4:30 Page 2 of 19

the cloud, while protecting the confidentiality of both the
training data and the learned models.
In the past few years, researchers have made some

progress in developing novel confidential machine learn-
ing (CML) approaches for model training with encrypted
data. A successful CML approach is not straightforward.
Unlike traditional machine learning approaches, a practi-
cal CML framework wrestles in balancing security (con-
fidentiality) guarantees, costs, and model quality, while
allocating appropriate workload distributions between
cloud and client. Direct application of cryptographic and
privacy-protection methods such as fully homomorphic
encryption (FHE) (Gentry 2009) and garbled circuits (GC)
(Yao 1986) in a homogeneous fashion do not usually meet
the criteria for practical CML approaches. Most efficient
approaches have been using hybrid methods that combine
multiple primitives instead of a homogeneous composi-
tion. Recent studies (Nikolaenko et al. 2013; Nikolaenko et
al. 2013; Demmler et al. 2015; Mohassel and Zhang 2017;
Sharma et al. 2019; Sharma and Chen 2019) have followed
the hybrid direction to effectively reduce performance
bottlenecks and other practicality issues in developing
CML solutions. However, the underlying techniques in
these studies scatter among several papers making the
basic principles unclear. The purpose of this survey is
to uncover these basic principles and accurately orga-
nize the existing techniques under a unified framework so
that researchers and practitioners can quickly grasp the
development and challenges in this new area of research.
Contributions and Organization Overview. Captur-

ing a comprehensive view of a complex and new topic
like confidential machine learning is challenging. We pri-
marily focus on frameworks for model training using
cryptographic techniques that guarantee strong (seman-
tic) security with practical cost overburden. A complete
machine learning service usually includes a model appli-
cation (or model inference) component that applies the
trained model to generate a prediction for new input
data, equivalent to secure function evaluation. The con-
fidential model inference is much simpler and in a more
mature state than confidential model training, therefore,
not covered in this survey. Interested readers may refer to
the related studies about confidential inference with pre-
trained models, such as Gilad-Bachrach et al. (2016), Bost
et al. (2015), Hesamifard et al. (2017), and Rouhani et al.
(2018).
This survey paper presents a unified perspective

on designing and implementing different CML model
learning methods with state-of-the-art cryptographic
approaches. Despite numerous machine learning meth-
ods (Hastie et al. 2001), the studies on CML methods
have focused on only a few specific machine learning
methods. On the other hand, researchers have applied
several cryptographic methods to realize CML frame-

works. We observe that many clever CML techniques
apply to specific machine learning algorithms without
clear guidance or framework on extending these basic
principles to broader machine learning algorithms. To
systematically understand the set of developed techniques
in CML, we summarize them under a general frame-
work, the decomposition-mapping-composition (DMC)
procedure + design and selection of crypto-friendly algo-
rithms. The DMC procedure involves: decomposing the
target machine learning algorithm into several compo-
nents, mapping these components to their cryptographic
constructions, and finally composing the CML solution
with the confidential component counterparts. More-
over, several CML approaches adopting the DMC process
development exhibit a unique additional feature: they
use “crypto-friendly” alternative machine learning algo-
rithms or components to achieve more efficient protocols.
Keeping these observations in mind, we develop a system-
ization framework to summarize the design principles,
strategies, cryptographic techniques, and optimization
measures, which have been applied to solve the chal-
lenging problems in confidential machine learning over
protected data.
We organize the survey based on underlying design

principles of CML rather than any specific machine learn-
ing problems. As part of the survey, we summarize the
experiences and learnings in each category of CML top-
ics as insights and gaps. This work promotes practical
aspects of applying cryptographic primitives in CML at
their current level of maturity. Focuses will be on how
different frameworks balance the associated trade-offs
amongst cost, confidentiality, and data utility or model
quality in different threat models and privacy settings.
The survey, however, does not cover the orthogonal line
of research that aims to optimize fully expressive primi-
tives such as FHE and GC schemes. This survey will be
a great resource for researchers to adopt and advance
privacy-enhancing technologies in solving novel research
questions and for practitioners to learn the best practices
and avoid common pitfalls.
In the following sections, first, we will include the

necessary background knowledge, notations, definitions,
and the targeted threat model in Preliminaries of CML
approaches section. Then, in Systematization frame-
work section, we present the systematization frame-
work along with the basic principles and methodolo-
gies in the CML development. After that, we briefly
discuss the homogeneous approaches that aim to trans-
late any machine learning algorithm into a confiden-
tial one with a single cryptographic primitive (Homo-
geneous cryptographic approaches section). Next, we
move to the main theme of this survey: the compositional
hybrid approaches (Hybrid composition section), which
have resulted in more efficient protocols for complex

Sagar and Keke Cybersecurity (2021) 4:30 Page 3 of 19

machine learning algorithms. We will also cover sev-
eral topics, such as security proofs and common eval-
uation methods for cryptographic protocols in Security
proofs, attacks, and correctness and Evaluation methods
sections. Finally, we briefly review other non-crypto-
graphic-protocol approaches, including the perturbation
methods and hardware-assisted (e.g., SGX) methods in
Other CML approaches section.

Related work
A few survey papers are related to the topic of this
paper. Shan et al. (2018) focus on techniques for practical
secure outsourced computation, using machine learning
as a sample application. However, it does not compre-
hensively cover the major approaches as we do. Attacks
on the integrity of machine learning models have also
raised serious concerns due to the wide applications of
machine learning in real-life scenarios such as self-driving
cars (Grigorescu et al. 2019). Different from our sur-
vey focusing on the confidentiality of the model learning
process, Papernot et al. (2018) focus on the integrity
of training data, learning process, models, and model
application.
There are also several survey papers on a specific cat-

egory of cryptographic primitives. Since the first fully
homomorphic encryption scheme was published in 2009
(Gentry 2009), it has been an active research area dur-
ing the past decade. Acar et al. (2018) have a compre-
hensive review about the current development of homo-
morphic encryption schemes. Secure multi-party com-
putation methods, including the garbled circuits and
secret sharing methods, have been actively developed
for the past two decades. Readers may find more infor-
mation from other sources (Lindell 2020; Evans et al.
2018).
Differentially private machine learning frameworks are

somewhat related to CML but hold a distinct thread
model that aims to share data and models. They assume
that the data consumer (i.e., model developer or model
users) is not trusted and may try to, who may try to
reveal private information in the training data shared
by data owners or data contributors. Differential Privacy
does not protect the ownership of data and models as
the purpose is to share them without breaching indi-
viduals’ privacy in the training data. Along with recent
developments on differentially private deep learning such
as Abadi et al. (2016) and Shokri and Shmatikov (2015),
Ji et al. (2014) and Sarwate and Chaudhuri (2013) also
provide excellent surveys on this topic. Other studies in
privacy-preserving data mining (PPDM) (Aggarwal and
Yu 2008; Matwin 2013; Aldeen et al. 2015; Sachan et al.
2013) also aim to share the data (and the models) while
preserving individual’s privacy, thus excluded from our
survey.

Preliminaries of CML approaches
In this section, we review the terms and concepts used
in the literature. First, we look at the representative sys-
tem architectures considered in the published confidential
machine learning (CML) approaches based on crypto-
graphic protocols. Then, we examine how different threat
models, associated confidential assets, and considered
attacks affect CML designs. Finally, we briefly describe
prevailing cryptographic and privacy primitives that serve
as the skeleton of most CML approaches.

System architectures
The CML research is motivated by the cloud comput-
ing paradigm and then extended to additional scenarios,
such as edge computing and services computing. Thus,
we use “Cloud” as the representative of untrusted plat-
forms in CML system architectures henceforth. Such a
system may involve cloud providers, optional crypto-
graphic service providers, data owners or application ser-
vice providers, and data and model consumers. Figure 1
shows an architecture with a data owner outsourcing its
data and computation to a single cloud provider. The
data owner must ensure the cloud provider does not
compromise any proprietary and privacy-sensitive data.
A few homomorphic-encryption-based frameworks, e.g.,
Graepel et al. (2012) and Lu et al. (2016), present proto-
cols for training machine learning models over encrypted
data outsourced to a cloud provider without almost any
engagement of the data owner. However, the associated
cost makes these protocols unrealistic in real-life scenar-
ios. An alternate strategy would involve the data owner
in minimal tasks intermediately to simplify the single
cloud architecture framework (Sharma et al. 2019). As
long as the cloud takes the majority of the workload and
the client’s cost is practical, e.g., linear or sublinear to

Fig. 1 A data owner outsourcing to an untrusted cloud provider for
learning a model. The data contributors directly submit their
encrypted data to the cloud. The cloud carries out the major
expensive computations over the encrypted data and data owner
can assist with some lightweight work

Sagar and Keke Cybersecurity (2021) 4:30 Page 4 of 19

the number of records, more efficient protocols can be
possible.
As some protocols become too expensive for the data

owner to assist in cloud-centric learning, the architecture
was evolved to amulti-server(cloud) setting. A data owner
may choose to rely on two or more cloud providers to
reduce the overall expense of learning. The second party
may be as equally capable as the first party (Mohassel and
Zhang 2017), or in the case of a cryptographic service
provider (CSP), which manages keys and assists the cloud
with intermediate decryption operations and light-weight
computations (Nikolaenko et al. 2013; Nikolaenko et al.
2013; Sharma and Chen 2019). The two untrusted parties
in such an architecture carry out secure multi-party com-
putations without any of the parties learning the training
data or the trained model. This setting also assumes that
the two parties do not collude with each other, thus is
slightly more vulnerable than the client-cloud two-party
setting. Figure 2 shows such a framework that uses a
garbled circuit.

Threat models
In this section, we examine the widely accepted threat
models in the context of CML. We focus on the follow-
ing aspects: the assumptions on the adversaries and the
related confidential assets in CML.
Assumptions on Adversaries. Most CML approaches

(Sharma and Chen 2019; Mohassel and Zhang 2017;
Nikolaenko et al. 2013; Nikolaenko et al. 2013; Grae-
pel et al. 2012) adopt the honest-but-curious (or semi-
honest) adversary model to describe the untrusted cloud
provider. Honest-but-curious parties, by definition, per-
form their share of tasks obediently, i.e., guarantee data
and model integrity and follow the pre-defined proto-
cols exactly. However, they might clandestinely snoop the

Fig. 2 A data owner outsources data storage and machine learning
tasks to the Cloud. The Cryptographic Service Provider (CSP) manages
the keys, decrypts intermediate results, and assists the Cloud with
other relatively lightweight computations

storage, interactions, and computations to learn private
information. Data owners and data contributors’ concerns
about data and model leakages, even when the infras-
tructure platforms are reputed, are alleviated by preserv-
ing the confidentiality of data and models. Many CML
approaches also use an honest-but-curious cryptographic
service provider to design more efficient protocols.
Some CML approaches additionally address an adver-

sary which actively seeks to compromise data and model
confidentiality by performing additional probing tasks,
e.g., by inserting crafted records or secretively running
the algorithms on a selected record set offline. Sharma
and Chen (2019) address the possibility of an adversary
who may actively track identifiable training records to
the datasets and follow the computations to infer the
information about other training records. Nikolaenko et
al. (2013) consider an adversary that selectively runs the
machine learning protocol over an individual’s data to
draw personal inferences from the learned models.
Nevertheless, with either passive or active adversaries,

CML approaches assume that the data andmodel integrity
are not compromised at the end of the training. This
assumption distinguishes CML from other studies such as
attacks on machine learning by polluting training data or
modifying learned models (Liu et al. 2018).
Moreover, the CML approaches often assume non-

collusion between the involved parties, for example,
between the cloud provider and the CSP (Nikolaenko et al.
2013; Nikolaenko et al. 2013; Sharma and Chen 2019) or
the two cloud providers (Mohassel and Zhang 2017) in the
two-server architecture. Collusion between the two par-
ties in these frameworks directly compromises the privacy
of the training data and learned models.
Most CML approaches assume that data and model

consumers are trusted, which is orthogonal to the applica-
tions of differential privacy (Shokri and Shmatikov 2015;
Abadi et al. 2016) that specifically targets untrusted data
and model consumers. Furthermore, CML approaches
assume properly secured infrastructures and communica-
tion channels to exclude external attacks and focus on the
CML-specific challenges.
Confidential Assets at Risk. An adversarial party may

be interested in the confidentiality of sensitive data and
the generated models. All CMLmethods protect the train-
ing data feature vectors. Some methods designed for
supervised learning (Graepel et al. 2012; Nikolaenko et
al. 2013) expose the training data labels to simplify their
secure modeling algorithms with the assumption that
knowing the labels will not leak significantly more infor-
mation to adversaries, which might be false for some
applications. Some CML studies also expose unprotected
models (Graepel et al. 2012; Nikolaenko et al. 2013; Lu et
al. 2016). However, recent studies (Fredrikson et al. 2014;
Fredrikson et al. 2015; Hitaj et al. 2017; Shokri et al. 2017;

Sagar and Keke Cybersecurity (2021) 4:30 Page 5 of 19

Song and Shmatikov 2019) have shown that an adver-
sary may use crafted data derived from trained models to
infer sensitive training data or use the advanced features
in deep learning models to breach data privacy. Further-
more, the intermediate results of outsourcing computa-
tions in the setting of federated learning, for example, the
intermediate representation in a convolutional neural net-
work learning, may reveal information about the private
training data (Shokri and Shmatikov 2015). Thus, CML
methodsmust protect both data andmodel confidentiality.

Cryptographic primitives
The cryptographic primitives are the fundamental build-
ing blocks for CML approaches. Some of these primitives
are more expressive – meaning they can implement more
types of functions or higher-level functions. On the other
hand, some primitives are more cost-efficient than oth-
ers. To make this survey self-contained, in this section,
we briefly cover the most frequently-used primitives in
existing CML approaches.
Additive Homomorphic Encryption (AHE). AHE

schemes (e.g., Paillier encryption (Paillier 1999)) allow
the additive operation over encrypted messages with-
out decryption. For any two integers α and β , an
AHE scheme allows the additive homomorphic opera-
tion: E(α + β) = f (E(α),E(β)) where the function f
works on encrypted values. Conceptually, with one of the
operands unencrypted, a “pseudo-homomorphic” multi-
plication between two messages can be expressed as a
series of additions1, i.e.,E(αβ) = E(

∑β
i=1 α). With homo-

morphic addition and pseudo-homomorphic multiplica-
tion, one can derive pseudo-homomorphic dot-product of
vectors, matrix-vector multiplication, and matrix-matrix
multiplication. However, the unencrypted operands in
these operations either need to be non-sensitive infor-
mation or protected with some masking and de-masking
mechanism (Sharma et al. 2019; Sharma and Chen 2019).
ElGamal, Goldwasser-Micali, Benaloh, and Okamoto-
Uchiyama cryptosystems are some additional examples of
AHE schemes (Acar et al. 2018).
Somewhat Homomorphic Encryption (SHE). There

are many encryption schemes in this category (e.g., BV,
BGV, NTRU, GSW, BFV, and BGN (Acar et al. 2018) and
their variations such as TFHE (Chillotti et al. 2020) and
CKK (Cheon et al. 2017)). SHE schemes allow both homo-
morphic additions and multiplications over encrypted
messages, while the number of consecutive multiplica-
tions is limited to a few. A popular SHE scheme used
in CML is the ring learning-with-error (RLWE) scheme
that relies on the intractability of the learning-with-errors
(LWE) problem on polynomial rings (Brakerski et al.
2014). Theoretically, RLWE supports arbitrary levels of

1Some methods like Paillier encryption (Paillier 1999) allow more efficient
pseudo-homomorphic multiplication.

multiplications. Therefore, it is considered to be fully
homomorphic. However, due to the associated high cost
for deeper levels ofmultiplications, RLWE ismore suitable
as a SHE scheme only (i.e., 1-3 levels of multiplications). A
ciphertext in RLWE is represented as a two-tuple (c0, c1),
where c0 and c1 are polynomials. Let Ci = (c0,i, c1,i) and
Cj be the ciphertext of any two values. The encrypted
addition of the two values is simply (c0,i + c0,j, c1,i + c1,j).
The encrypted multiplication is translated to a series of
polynomial operations on the ciphertext elements. RLWE
allows multiple levels of multiplication at a certain cost.
For details, please refer to the paper (Brakerski et al. 2014).
Message packing (Brakerski et al. 2014) enables packing
multiple ciphertexts into one polynomial, which consid-
erably reduces RLWE’s ciphertext size and optimizes lin-
ear algebra operations (Garay and Gennaro 2014). HELib
library (Garay and Gennaro 2014) is a popular implemen-
tation of the RLWE scheme.
Garbled Circuits (GC). Garbled Circuits (GC) (Yao

1986) allow two parties, each holding an input to a func-
tion, to securely evaluate a function without revealing any
information about the respective inputs. GC can express
arbitrary functions using several basic gates such as AND
and XOR gates in a secure two-party computation setting
(usually with a Cryptographic Service Provider (CSP)).
One party constructs the circuit, whereas the other eval-
uates it. Despite several GC cost optimization techniques,
such as Free XOR gates (Kolesnikov and Schneider 2008),
Half AND gates (Zahur et al. 2015), and OTExtensions
(Asharov et al. 2013), GC still incurs high communica-
tion costs. Therefore, one must carefully examine its use
in composing CML frameworks. FastGC (Huang et al.
2011) and ObliVM (Liu et al. 2015) are two popular GC
libraries.
Randomized Secret Sharing (SecSh). The randomized

secret sharing method (Demmler et al. 2015) protects
data by splitting it into two (or multiple) random addi-
tive shares outsourced to two (or more) non-colluding
untrusted parties. The two parties compute on the respec-
tive shares and return the results also as random shares.
Addition is straightforward as α+β = (α0+β0)+(α1+β1)
with α and β distributed between two parties 0 and 1.
Multiplication, however, is expensive as it depends on the
beaver triplet generation method (Demmler et al. 2015;
Mohassel and Zhang 2017), which further depends on
expensive AHE or Oblivious Transfer (OT) schemes to
exchange the intermediate results securely.
Random Additive Masking. A data owner may gen-

erate a random mask to hide the sensitive data, which
will be stripped off at a certain step in the CML proto-
col to recover the desired result. Due to its low cost, it
frequently serves as an auxiliary tool for a complex proto-
col, for instance, in CML for spectral clustering (Sharma

Sagar and Keke Cybersecurity (2021) 4:30 Page 6 of 19

et al. 2019), boosting (Sharma and Chen 2019), andmatrix
factorization (Nikolaenko et al. 2013).

Systematization framework
It is challenging to have a clear understanding of the whole
body of CMLmodel trainingmethods due to the following
reasons. First, the number of machine learning models is
huge (Hastie et al. 2001) and even the most used ones are
around tens (Wu et al. 2007). They are so different that no
unified framework can be used to describe them. Second,
security researchers are often more interested in a spe-
cific utility-preserving cryptographic primitive method
and pick the machine learning algorithms they are most
familiar with. As a result, the important developments
are scattered with focuses on either a specific machine
learning model or the application of a novel cryptographic
primitive. There is no thorough understanding of which
primitive method (or framework) is best for a specific
machine learning method or whether a CML method can
be extended to other machine learning models. The fun-
damental principles are missing for solving all (or most)
CML model training methods.
Categories of CML approaches. We believe this sur-

vey is the first effort to systematically organize and analyze
the whole body of most representative CML approaches.
We focus on the major category of methods: the pure
software-based cryptographic protocols, while also briefly
reviewing the perturbation-based approaches and the
hardware-assisted approaches. Figure 3 shows the sys-
tematization framework. The fundamental features of the
three categories are as follows.

• The cryptographic protocols are the focus of this
survey, which can be further divided into two
categories: those using one cryptographic primitive

homogeneously and those employing novel hybrid
compositions of multiple primitives. The
homogeneous approaches take one of the
homomorphic encryption (HE) schemes or garbled
circuits to develop the solution. The hybrid
approaches involve multiple primitives and often a
clever composition strategy to achieve lower overall
costs. We will analyze them in more detail.

• The perturbation-based CML approaches depend on
novel data transformations to preserve a certain type
of data utility, e.g., Euclidean distance, that is critical
to one or multiple machine learning methods. The
security of perturbation-based CML approaches
mainly depends on secret transformation parameters
and random noise addition, holding a different and
somewhat weaker security notion compared to
cryptographic protocols. However, they are often
much more efficient and thus appealing for many
applications that seek better protection than
plaintext-based approaches while not taking
significantly more overhead.

• The third category depends on trusted execution
environment, such as Intel SGX (Costan and Devadas
2016), which demands hardware-level supports and
are thus distinct from the former two categories of
pure software approaches. The hardware-level
features enforce secure enclaves, in which the
adversaries cannot observe the running programs
and data.

Common CMLDevelopment Strategies.We look into
a unified framework to analyze both the homogeneous
and hybrid approaches. Fundamentally, most approaches
aim to design an efficient and secure transformation of
the specific (or a class of) machine learning algorithms for

Fig. 3 The systematization framework for confidential machine learning (CML) approaches

Sagar and Keke Cybersecurity (2021) 4:30 Page 7 of 19

the setting of two or three distributed parties (see System
architectures section). To make the transformation eas-
ier, researchers often implicitly use the Decomposition-
Mapping-Composition (DMC) procedure depicted in
Fig. 4: decomposing the target algorithm into different
subcomponents, mapping the sub-components to crypto-
primitives, and composing the CML framework with the
confidential sub-components. Many approaches skip the
description of this whole procedure and only present the
final composition, which creates difficulties for newcom-
ers to fully appreciate the fundamental ideas scattered in
several approaches.
Beyond the straightforward DMC procedure, we have

also noticed a unique feature (Sharma and Chen 2019)
specific to the CML development: finding “crypto-
friendly” alternative machine learning algorithms or com-
ponents. This feature is unique to machine learning algo-
rithms because all machine learning algorithms essentially
try to find an approximate model fitting the training data,
and there is no unique model for a specific problem, only
better or worse ones. In general, machine learning meth-
ods can be roughly categorized into two types: supervised
learning that depends on labeled datasets and unsuper-
vised learning (Hastie et al. 2001). For each type, there
are numerous algorithms working under the same set-
ting but performing differently for specific applications
or datasets. Even for the same algorithm, there are many
variants. For example, different base classifiers can be
used to make ensemble classifiers (Schapire 1999), and
different activation functions can be used for neural net-
works (LeCun et al. 2015). Among so many machine
learning algorithms, some are more crypto-friendly, i.e.,
they can be converted to more efficient CML solutions.
With all these features in mind, we reassemble the

common development framework behind most CML
approaches (Procedure 1).

Note that most of the steps in this procedure cannot be
automated, and thus each specific approach represents a
result of enormous efforts behind the scene. Next, we ana-
lyze the homogeneous and hybrid approaches under this
unified procedure.

Homogeneous cryptographic approaches
Homogeneous approaches rely on a single primitive to
construct the framework protocols. The primitives used
in the homogeneous composition of CML are broadly in

Procedure 1 A common procedure for developing CML
methods
1: procedure GENERALIZED PROCEDURE FOR CML

DEVELOPMENT(A)
2: A: the target algorithm
3: Identify the desired architecture and involved par-

ties.
4: Identify a list of alternative algorithms of A
5: for Each candidate algorithm do
6: decompose the algorithm to basic components
7: for Each component do
8: identify possible approximate/equivalent

solutions
9: for Each solution do

10: identify candidate crypto-primitive
mappings

11: end for
12: select the best solution and mapping.
13: end for
14: find the best composition method.
15: end for
16: evaluate the candidate alternative algorithms and

identify the best one.
17: end procedure

Fig. 4 The decomposition-mapping-composition (DMC) process for constructing hybrid CML solutions

Sagar and Keke Cybersecurity (2021) 4:30 Page 8 of 19

two categories: (1) Fully Homomorphic Encryption (FHE)
and Garbled Circuits (GC) and (2) Additively Homomor-
phic Encryption (AHE) and Somewhat Homomorphic
Encryption (SHE). Since FHE implements arbitrary lev-
els of homomorphic addition and multiplication and GC
implements the boolean gates, in theory, they can indi-
vidually construct all CML algorithms. FHE and GC are,
therefore, the most expressive privacy primitives. How-
ever, both FHE and GC are too expensive to be practi-
cal when mapped to for training complex CML models.
Oppositely, AHE and SHE schemes provide limited sup-
port for encrypted operations, therefore, less expressive
and can only enable relatively simple algorithms. Most
approaches we discuss next are relatively simple, and thus
AHE or SHE scheme is sufficient. The decomposition and
mapping steps of the DMC procedure described in the last
section are still at play in the homogeneous approaches,
but the composition step is trivial.
AHE and SHE are widely used to construct homoge-

neous solutions for applications involving only one or a
few multiplications, including the elementary statistical
aggregation functions, such as average, sum, and variance.
Graepel et al. (2012) present a SHE-based framework for
learning Fisher’s linear discriminant analysis and Linear
Means Classifier models on encrypted data. However,
the implemented models are limited to linearly separable
datasets. Lu et al. (2016) apply SHE for more sophisti-
cated principal component analysis, and linear regression
training (Hastie et al. 2001). However, due to the lim-
ited message space of the selected SHE implementation
(60-bits in HELib) and the limited number of possible
multiplications, only low data dimensionality (about 20)
and a few training iterations were used in their evaluation.
Such restrictions, however, resulted in only sub-optimal
models.
More sophisticated machine learning algorithms often

result in expensive homogeneous solutions. Phong et al.
(2018) employ LWE and Paillier encryption in encrypt-
ing the gradients in their privacy-preserving deep learning
framework. The framework, however, takes over 2.5 h to
complete one iteration of a simple neural network train-
ing for 20,000 MNIST images. Researchers also aim to
provide libraries for homogenous learning based on Gar-
bled Circuits (GC). However, their uses are limited in
practicality due to huge costs (Liu et al. 2015). Liu et
al. (2015) present a GC-based KMeans learning frame-
work that involves two untrusted servers. The associated
cost overburden, however, is far from efficient in real-
world settings. For example, the KMeans implementation
required over 2,000 million AND gates and more than 200
GB communication for clustering just 6,000 data points.
Rouhani et al. (2018) propose a deep learning model infer-
ence frameworks using garbled circuits to protect both
the model’s parameters and test data samples. Similar to

other homogoenous frameworks, the costs are stagger-
ingly high.
Insight.Homogeneous solutions are often limited to sim-

ple functions involving only additions (for AHE), a few
multiplications (SHE), or a few comparisons (GC). Individ-
ually, these crypto primitives are not practical to construct
complex CML algorithms. However, even the less expres-
sive primitives can be valuable components for hybrid
solutions, as we will see later.

Hybrid composition
As discussed above, depending on a single cryptographic
primitive to compose a sophisticated CML algorithm
is impractical. However, each primitive has its unique
strengths and shortcomings (e.g., performance, storage,
bandwidth advantage, etc.) in attaining certain opera-
tions. This realization leads to an interesting strategy:
can we combine different primitives in such a manner
to compose secure yet more optimized protocols? The
idea of hybrid composition is thus, mixing and switching
amongst several privacy primitives to avoid the associ-
ated cost bottlenecks and restrictions of any individual
primitive.
This section will look into the details of specific steps

of the DMC procedure. First, we dissect the common
sub-components and underlying operations in machine
learning algorithms. We examine the various ways to
implement these sub-components and operations confi-
dentially. Then, we explore the different switching and
mixing strategies, including some recent automated ones,
essential to hybrid CML frameworks in practice. Finally,
we discuss the unique feature or desired requirement
of CML development: designing crypto-friendly machine
learning algorithms or sub-components for cost-efficient
and practical CML solutions.

Basic operations
We devote this subsection to inspecting the mapping of
the foundational sub-components of the target machine
learning algorithms to their confidential versions. We
observe that some of these mappings are practical or
crypto-friendly, whereas others may face cost bottlenecks
and limitations. The understanding of the different imple-
mentations of basic operations will affect the composition
strategies.
Simple Arithmetic Operations With AHE or a SHE

encryption scheme, one can conveniently add two
encrypted integers. Adding two b bit integers with the
Paillier cryptosystem involves modular multiplication
with O(b2) complexity. Additions with an RLWE-like
scheme involve polynomial additions linear to the num-
ber of bits for the given polynomial degree (Chakarov
and Papazov 2019). With a specific integer encod-
ing, subtraction becomes trivial expressed as encrypted

Sagar and Keke Cybersecurity (2021) 4:30 Page 9 of 19

additions. SHE schemes allow homomorphic multiplica-
tions over encrypted integers. RLWE-like crypto-systems
allow several rounds of multiplications and additions.
However, with each additional multiplications, the cipher-
text noise, cipher size, and cost increase. Generally, multi-
plying two b bit integers with RLWE-like crypto-systems
involves homomorphically computing O(b2) AND cir-
cuits (Chakarov and Papazov 2019). On the other hand,
the AHE scheme requires one of the operands to be unen-
crypted to realize multiplication expressed as summa-
tions. With Paillier encryption, multiplication is modular
exponentiation of encrypted b-bit message by the unen-
crypted b-bit operand with a cost complexity of O(b3).
The only caveat of using AHE-multiplication is that if the
unencrypted operand is privacy-sensitive, a mechanism to
mask it needs to be augmented, the masking recoverable
after the multiplication is complete (Sharma et al. 2019;
Nikolaenko et al. 2013).
Additions and subtractions are trivial with randomized

secret sharing in the multi-party setting with constant
time complexity. Each party performs additions and sub-
tractions on respective shares of data and shares the
results for recovery. A GC protocol for addition requires
two parties to construct O(b) many AND gates and carry
out O(b) communication, encryptions, and decryptions
along with O(b) oblivious transfers when adding two b bit
integers. Multiplication with randomized secret sharing
involves a costly multiplicative triplet generation scheme
that relies on Oblivious transfer or AHE (Demmler et al.
2015; Mohassel and Zhang 2017). For example, the AHE-
based scheme incurs transmission of two encrypted inte-
gers between the parties and performing two homomor-
phic encryptions, multiplications, additions, and decryp-
tions by each party. Multiplying two integers of b bits with
GC, on the other hand, requires construction and evalua-
tion of O(b2) AND gates involving O(b2) communication,
encryption, and decryption.
Comparison. Comparison is essential in many opera-

tions, such as sorting vectors and applying activation func-
tions in training neural networks. Unfortunately, com-
paring two encrypted or protected integers is not trivial.
Graepel et al. (2012) pose the complexity of comparison
as the reason to avoid algorithms like perceptrons and
logistic regression in their SHE-based confidential ML
framework. Veugen (2014) presents a client-server inter-
active comparison protocol for two encrypted integers
based on the AHE scheme, which involves computation
and transfer of bmany AHE encrypted bits. Each compar-
ison incurs O(b) homomorphic multiplications for both
client and server. Lu et al. (2016) use the technique of
“greater than” protocol (Golle 2006) optimized with the
message packing of the RLWE scheme for comparing
two encrypted messages in a two-party setting. However,
the associated complexity is an astonishing O(2b/h) of

homomorphic additions when comparing two b-bit inte-
gers while packing h messages in a ciphertext. With GC,
a comparison between two b-bit integers is possible with
O(b) AND gates and O(b) communication, encryption,
and decryption by two parties. Since GC-based compar-
ison for full integers is expensive, one may use an effi-
cient one-bit sign checking protocol (Mohassel and Zhang
2017; Sharma and Chen 2019) by encoding negative inte-
gers as two’s complement, making the comparison cost is
constant to the number of bits. Note that the GMW pro-
tocol of Goldreich et al. (1987) can perform comparisons
just as garbled circuits but with O(b) rounds. A similar
sign-checking protocol is possible with GMW. However,
the GC-based comparison seems the popular choice in
current solutions.
Division. Division can be essential to many analytics

algorithms, e.g., from the computation of mean to the
implementation of complex algorithms such as K-means
(Bunn and Ostrovsky 2007) and Levenshtein distance
(Rane and Sun 2010). Despite its prevalence and impor-
tance, translating division to its confidential version is
expensive and often results in a performance bottleneck
(Lazzeretti and Barni 2011). Veugen (2014) presents a pro-
tocol for exact division in a client-server scenario, using
the AHE scheme and additive noise masking. However,
the protocol requires the divisor to be public knowledge.
On top of that, the protocol requires O(b) homomor-
phic comparisons andO(b) encrypted communication for
division between two b-bit integers. Dahl et al. (2012)
present two AHE-based division schemes that rely on Tay-
lor approximation in a secure multi-party setting. The
schemes brought expensive O(b) encrypted communica-
tion. It is possible to perform integer divisions with GC
when the two parties hold the numerator and denomina-
tor respectively in a 2-party setting (Lazzeretti and Barni
2011; Nikolaenko et al. 2013). However, even with sev-
eral optimizations, a division between two b-bit integers
involves the construction and evaluation of a circuit with
O(b) non-XOR gates (Lazzeretti and Barni 2011). A more
practical solution would be to decrypt the operands at a
crypto-service provider and conduct division on plaintext
before finally encrypting the result.
Linear Algebra Operations. Linear algebra operations,

such as vector dot products, matrix-vector multiplication,
andmatrix-matrixmultiplications, are the core operations
for many machine learning algorithms. They are com-
monly implemented with the cryptographic versions of
additions and multiplications with some tricks in RLWE-
based SHE for improved efficiency. Among all available
methods, the AHE and SHE-based implementations are
the most efficient ones.
A dot product xTk yk involves O(k) element-wise

homomorphic multiplications and additions. Similarly,
a matrix-vector multiplication An×kxk involves O(nk)

Sagar and Keke Cybersecurity (2021) 4:30 Page 10 of 19

homomorphic multiplications and additions, and a
matrix-matrix multiplication An×kBk×m involves O(nkm)

multiplications and additions. With the AHE scheme, one
of the operands must remain unencrypted for these multi-
plicative operations. Therefore, the unencrypted operand
needs some level of protection, e.g., novel randomized
masking (Sharma et al. 2019) with a minimized cost.
With the message packing feature for the RLWE-like SHE
scheme, one can easily vectorize the vector and matrix
operations with message packing to gain more efficiency
(Garay and Gennaro 2014). With such facilities, Jiang
et al. (2018) can optimize matrix-matrix multiplication
with only O(k) complexity for symmetric matrices of k
dimensions.
Randomized secret sharing enables linear algebraic

operations with the multiplicative triplet generation
approach in a multi-party setting. However, this involves
the expensive AHE orOT-basedmultiplicative triplet gen-
eration schemes as used in Mohassel and Zhang (2017);
Demmler et al. (2015). In computing a matrix-vector mul-
tiplication Ab, each party is responsible for O(n + k)
encryptions and upload, O(nk) homomorphic multipli-
cations, O(nk + n) homomorphic additions, and O(n)

decryptions.
One can easily map linear algebra operations to

garbled circuits. GC-based vector and matrix addi-
tion/subtraction require O(kb) and O(nkb) AND gates
where b is the number of bits in the vector and matrix
elements. They also result in O(kb) and O(nkb) commu-
nication, encryption, and decryption operations, respec-
tively. GC-based dot product for two b bit vectors with k
dimensions is a collection of sub-circuits for multiplica-
tion and additions, which consist of O(kb2) AND gates.
The cost also involves O(b2) encryption and decryption,
and O(b2) encrypted communication. The GC-based dot
product can easily extend to matrix-vector and matrix-
matrix multiplication. However, GC-based linear algebra
solutions are more expensive than HE-based ones.

Empirical cost comparison
We have formally analyzed different crypto implementa-
tions for each of the major operations. However, some
of them look close in terms of bigO complexity lev-
els. To have a better idea how the cost differences look
like for the different implementations of the same oper-
ator, we also prepare Table 1. Since this comparison
rests on a specific hardware configuration and software
implementation, readers should only focus on the rel-
ative differences rather than the actual numbers. After
a careful study of available AHE and SHE implementa-
tions, we choose the most efficient one for each category:
we use the HELib library (Halevi and Shoup 2013) for
the RLWE encryption scheme and implement the Pail-
lier cryptosystem (Paillier 1999) for the AHE encryption

scheme. We adopt the ObliVM (oblivm.com) library for
the garbled circuits. We also take the AHE scheme for the
multiplicative triplet generation when using the random-
ized secret sharing (SecSh) method. We pick crypto-
graphic parameters2corresponding to 112-bit security. All
schemes allow at least 32-bit messages-space overall. The
RLWE parameters allow one full vector replication and
at least two levels of multiplication. Note that the GC
and SecSh costs are for the two-party setting, which has
to involve communication costs between the two parties.
Thus, we also include the bytes of exchanged messages for
these methods. We run the experiments on an Intel i7-
4790K CPU running at 4.0 GHz using 32 GB RAM with
Ubuntu 18.04.
Table 1 compares the related costs of arithmetic oper-

ations over integers. We have observed that the AHE
scheme has the most efficient arithmetic additions and
multiplications. However, for comparison and division,
the 2-party garbled circuits are the only viable option.
The table also shows the costs for the linear algebraic
operations. The observation is consistent with the simpler
arithmetic operation of additions and multiplications. As
we can fit multiple messages in a ciphertext when using
the RLWE scheme, the vectorized additions and multipli-
cations are much more efficient than the non-vectorized
additions and multiplications. The RLWE with message
packing realizes homomorphic additions more efficiently
when compared to the Paillier scheme. The RLWE costs
for dot product and matrix-vector multiplication involve
the ciphertext replication costs. Although better than
without message packing, the RLWE scheme with the vec-
torized linear algebraic operation is still slower than the
Paillier solutions. Randomized secret sharing is almost
free for vector addition but involves higher computation
and communication costs for the dot product and matrix-
vector multiplication. Garbled circuits appear to be the
worst solution for the confidential versions of the linear
algebraic operation with higher computation and commu-
nication costs between the two parties. Although the Pail-
lier implementation shows performance advantages over
RLWE on arithmetic operations, it requires one operand
to be plaintext. Paillier’s encryption and decryption costs,
however, are higher than that of RLWE (Sharma et al.
2019).When CSP is involved in a solution, encryption and
decryption costs will become a critical performance fac-
tor. These cost comparisons on the basic operations will
be useful for readers to analyze and compare a pair of
CML protocols, especially when not all CMLmethods are
open-source.

2The Paillier cryptosystem uses a 2048-bit key size. We set the degree of the
corresponding cyclotomic polynomial in the RLWE scheme to φ(m) = 12, 000
and c = 7 modulus switching matrices, which gives us h = 600 slots for
message packing.

Sagar and Keke Cybersecurity (2021) 4:30 Page 11 of 19

Table 1 Real cost comparison for confidential arithmetic and linear algebra operations at 112-bit security, v100×1 andM100×100

AHE (Paillier) SHE (RLWE) Garbled Circuits Secret Sharing

Comp Comp Comp Comm Comp Comm

Addition/Subtraction 0.01 ms 0.2 ms 37 ms 2 KB 0.0 ms 0.0 KB

Multiplication 0.05 ms 39 ms 138 ms 40 KB 1 s 2 KB

Comparison 429 h 105h 37 ms 2 KB - -

Division - - 208 ms 46 KB - -

Vector Addition 0.6 ms 0.2 ms 36 ms 192 KB 0.0 ms 0.0 KB

Dot Product 6 ms 39 ms 5 s 4 MB 7 s 195 KB

Matrix-vector Multiplication 1 s 3 m 8 m 396 MB 7 s 290 KB

We do not experimentally compare complete CML
approaches because 1) different approaches often solve
different ML problems, which makes the comparison
difficult, and 2) not all approaches have open-sourced
their implementation or shared executable binaries. How-
ever, we hope the empirical comparison between different
implementations for basic operators gives an intuitive
understanding of the rationales behind different CML
design strategies and optimization methods. We refer
readers to the papers describing CML approaches that
often contain detailed performance comparisons between
selected CML approaches.
Insight. Based on most studies, the most efficient con-

structions for confidential comparison are GC-based, while
SHE and AHE are better candidates for linear algebra
operations. Since most division schemes are too expensive,
one should consider transforming the functions/algorithms
with divisions to the equivalent (often approximately) ones
that involve no division.

Switching and composing strategies
When composing the confidential versions of operations
implemented with different primitives, there is an impor-
tant step: switching computation flows between the prim-
itives. This switching often requires a second party in the
CML frameworks, i.e., either the data owner, the second
non-colluding cloud, or a cryptographic service provider
(CSP) to achieve better performance.
HE to/from GC. Switching from a HE component to

a GC component involves a second server (e.g., a CSP)
in the framework. A straightforward approach would
be including a data decryption circuit inside a garbled
circuit to be evaluated by the two parties. However,
such an approach is super-expensive (Nikolaenko et al.
2013). A more practical strategy (Nikolaenko et al. 2013;
Nikolaenko et al. 2013; Sharma and Chen 2019) is to
have the party holding the encrypted data, denoted PA,
mask it homomorphically before sending it to the sec-
ond party, PB for decryption. The second party con-
structs the desired garbled circuit, where the first step

of the garbled circuit is de-masking the data with inputs:
the decrypted masked data from PB and the mask
from PA.
SecSh to/from GC. Switching from a SecSh compo-

nent to a GC component is straightforward in a two-party
architecture. The two random shares in possession of
the two parties can be their respective private inputs to
the desired garbled circuits (Mohassel and Zhang 2017;
Sharma and Chen 2019; Riazi et al. 2018). Similarly,
switching from GC to SecSh involves evaluating the GC
and randomly distributing the output to two parties (Riazi
et al. 2018).
SecSh to/from HE. A switch from randomized secret

sharing to a HE component needs two involved parties to
encrypt their respective shares. Then, one of the parties
homomorphically reconstructs the protected value from
the shares. Similarly, a switch from a HE component to
a randomized secret sharing protocol includes a masking
mechanism (homomorphic noise addition) similar to the
HE-to-GC switch discussed above. These two switches
are relevant in the AHE-based multiplicative triplet gen-
eration protocol for randomized secret sharing (Mohassel
and Zhang 2017; Demmler et al. 2015).
Table 2 provides some examples of switching between

cryptographic primitives in well-known CML approaches.
These switchings lead to simplification of the CML frame-
work and cost optimizations, as explained in the “Justifica-
tion” column of the table. The ABY framework (Demmler
et al. 2015) covers different adapter-like switching proto-
cols for the multi-party computation settings, where two
servers hold the training data as arithmetic, boolean, or
Yao’s garbled shares. The ABY3 (Mohassel and Rindal
2018) and BLAZE(Patra and Suresh 2020) framework
extend the switches to 3-party scenarios. These works,
however, do not cover the switching from and to the
homomorphic encryption schemes.
Manual vs. Automated Composition. Most existing

CML approaches using the hybrid composition strat-
egy (Mohassel and Zhang 2017; Sharma and Chen 2019;
Sharma et al. 2019; Nikolaenko et al. 2013) are manually

Sagar and Keke Cybersecurity (2021) 4:30 Page 12 of 19

Table 2 Examples for primitive switching strategies in hybrid composition of CML frameworks

Framework Primitive Switch Operation Switch Justification

Sharma and Chen (2019) SHE → GC Matrix vector multiplication → Sign Check Sign checking is impractically expensive
with SHE whereas tolerable with GC.

Nikolaenko et al. (2013) AHE → GC Matrix Additions → Cholesky’s decomposition The operations of division and square root
in Cholesky’s decomposition were not
feasible with the AHE scheme.

Nikolaenko et al. (2013) AHE → GC Matrix Additions → Gradient Descent Gradient descent involved multiplications,
additions, and subtractions not entirely
feasible with the AHE scheme.

Mohassel and Zhang (2017) SecSh → GC Matrix-vector multiplication → Comparison Comparison is impossible over randomly
shared secrets leading the switch to the
garbled circuits.

Mohassel and Zhang (2017) GC → SecSh Comparison → Vector Subtraction Use of garbled circuits for comparison was
unavoidable however continuing GC on to
vector subtraction would result in excessive
cost overhead.

Demmler et al. (2015) SecSh → AHE/OT Data at rest → Multiplication Multiplication with random shares required
switching to either AHE or OT protocol
involving the two parties in the frameworks.

Riazi et al. (2018) SecSh → GC Matrix matrix multiplication → ReLu computation Sign checking is impossible over randomly
shared secrets leading the switch to garbled
circuits.

Riazi et al. (2018) GC →SecSh ReLu → Matrix vector multiplication Use of garbled circuits for matrix vector
multiplication is impractical.

composed as there are myriads of problem-specific details
to address. A line of research explores the possibil-
ity of automatically composing the CML frameworks
(Dreier and Kerschbaum 2011; Henecka et al. 2010).
Although promising, the automatic composition strat-
egy of Dreier and Kerschbaum (2011) depends on the
availability of an extensive performance matrix for the
different confidential versions of the target algorithms’
components. Henecka et al. (2010) propose the TASTY
compiler that automatically compiles a given machine
learning problem as a mixture of garbled circuits and
homomorphic encryption in a secure two-party compu-
tation framework. However, the process is still not fully
automated - it requires a privacy expert to design and
specify the components as well as the recommended
mappings.
Gap. Due to the high complexity of formulating the

component-wise costs and profiling the switching costs,
the automated composition approaches are not yet fully
mature. More importantly, as we will see in the next
section, the construction of a practical CML solution
involves one more crucial step that automated composi-
tion methods cannot help much. One must establish an
in-depth understanding and analysis of the target ML
algorithm to redesign a “crypto-friendly” algorithm.

Crypto-friendly ML algorithms
So far, the DMC framework seems straightforward: one
decomposes the target machine-learning algorithm to its
sub-components and maps them to cryptographic cons-

tructions, and the final composition becomes almost triv-
ial except that the primitive switching requires some
clever steps. With enough experimentation, one can find
an optimal set of confidential components for the tar-
get ML algorithm. However, this straightforward strategy
may only work for some problems. Despite the best opti-
mization of mapping and composition, one may still end
up with an impractical protocol, although better than
the homogeneous or other suboptimal compositions. The
fundamental reason is that the original machine learning
algorithms do not account for confidential computation.
ML algorithms are optimized to achieve the best model
prediction power rather than to be crypto-friendly. On
the other hand, a less-known slightly-under-performing
ML algorithm that attains the same learning goal might be
more cost-effective to translate to its confidential version.
Thus, an advanced design step critical to the DMC pro-
cedure is replacing or redesigning some of the underlying
ML components or even the entire ML algorithm to find
the most efficient CML protocols. Table 3 summarizes
some example CML frameworks that incorporate strate-
gies to make their protocols crypto-friendly and hence
more cost-effective.
Mohassel and Zhang (2017), in their SecureML work,

substitute the expensive softmax operation involving
inverses with a ReLU-based function involving only one
division. This way, the framework significantly reduces the
cost bottlenecks in their protocol. Graepel et al. (2012)
cleverly avoid division of encrypted data in the framework
for confidential linear means classifier and Fisher’s linear

Sagar and Keke Cybersecurity (2021) 4:30 Page 13 of 19

Table 3 Example CML methods that replace the expensive algorithmic components with their crypto-friendly versions

Framework ML Algorithm Original Component Crypto-friendly
Component

Benefits

Mohassel and Zhang
(2017)

Logistic Regression, Neural
Networks

Sigmoid, Softmax ReLu Avoids inversion and limits
expensive confidential
divisions to one.

Graepel et al. (2012) LMC, Fisher’s LDA Divisions Multiplications with
incorporated division
factors

Avoids division costs and
simplifies the protocol.

Nikolaenko et al. (2013) Ridge Linear Regression LU decomposition Cholesky’s decomposition Reduces the cost
complexity by half.

Nikolaenko et al. (2013) Matrix Factorization Cholesky’s Decomposition Sorting based matrix
factorization

Reduces the overall
complexity from quadratic
to within a
polylogarithmic factor of
the complexity in the
plaintext

Sharma and Chen (2019) Boosting Decision Stumps Random Linear Classifiers Reduced number of
comparisons and
simplicity in learning.

Naehrig et al. (2011) Logistic Regression Exponentiation Taylor Expansion Avoids costs involved in
multiple levels of
multiplications.

Sharma et al. (2019) Spectral Clustering Eigen decomposition Eigen-approximation by
Lanczos and Nystrom

Reduces complexity of the
problem from O(N3) to
O(N2).

discriminant analysis by replacing divisions with a multi-
plicative factor. Nikolaenko et al. (2013) use the more effi-
cient Cholesky’s decomposition instead of the expensive
LU decomposition in solving a system of linear equations
in their linear regression framework. Similarly, Niko-
laenko et al. (2013) adopt the sorting-based matrix factor-
ization solution to reduce the overall complexity of com-
puting gradient descent with Cholesky’s decomposition-
based matrix factorization. Sharma and Chen (2019) pro-
pose to train a boosting classifier over encrypted data with
an ensemble of random linear classifiers (RLC) instead of
decision stumps. An RLC takes mere N encrypted com-
parisons, whereas a decision stump takes far too many
comparisons. Naehrig et al. (2011) replace the exponential
function (the sigmoid) in their logistic regression protocol
with the Taylor approximation of exponentiation. Com-
puting the exact exponential function would have led to
the computation of many levels of multiplications over
the encrypted message – which would have been intol-
erably expensive with SHE schemes. Similarly, Sharma et
al. (2019) replace the inherently expensive eigendecom-
position O(N3) with cheaper O(N2) approximation algo-
rithms of Lancozs andNystrom in their spectral clustering
framework.
Data reduction techniques such as subsampling and

preserving the sparsity of matrix are also critical to per-
formance. Nikolaenko et al. (2013), in their matrix factor-
ization framework, use a sorting network that optimizes
the garbled circuit-based gradient descent algorithm by
only updating it for the user ratings that are present in the

training dataset. Similarly, Sharma et al. (2019) propose
a differential privacy-based graph submission mechanism
that reduced total storage by over 15 times and costs
involving encryptions and the associated homomorphic
operations by over 20 times on the graph drastically when
running the secure Nystrom method for spectral clus-
tering. To sum up, although the approximate algorithms
introduce some degradation to the learned models, they
deliver desired cost practicality justifying the tolerable
quality sacrifice.
Insight. For the same learning problem, there are numer-

ous algorithms. Even for the same learning algorithm, there
are many variants (Hastie et al. 2001). The search space
for optimal composition can be quite large. More diffi-
cultly, most well-known ML algorithms are best known
for model quality or learning efficiency and none specif-
ically designed with optimal CML in mind. Even worse,
some crypto-friendly alternatives might have been forgot-
ten or become obsolete due to their suboptimal quality
or efficiency. The design of a good CML solution heav-
ily depends on the designer’s deep understanding of the
ML algorithms and even the history of ML algorithm
development.
Gap.There is no systematic way to explore crypto-friendly

alternative ML algorithms. The current practice is to
heuristically design a problem/algorithm-specific crypto-
friendly solution. Although the problem-specific design
experiences and learnings can extend to a new solution
design, there are no well-known rules or general frame-
works for exploring such alternative ML algorithms yet.

Sagar and Keke Cybersecurity (2021) 4:30 Page 14 of 19

Security proofs, attacks, and correctness
In this section, we summarize the three aspects: security
proofs, attack analysis, and correctness for existing CML
approaches.
Security Proofs. Homogeneous approaches do not use

complex protocols other than the cryptographic primitive
they use. For example, homomorphic encryption-based
approaches involve only simple interactions between the
client and the cloud - the client submitting the data and
the cloud computing and returning the result; the GC-
based methods have two involved parties following the
fundamental GC protocols. Thus, most such homoge-
nous approaches simply skip the security proof step, fully
depending on the proven security and privacy guarantees
provided by the underlying primitives.
For hybrid approaches, it is more sophisticated to prove

their security, as they may include complex interactions
among parties. We have observed two security proof
frameworks are in prevalence. SecureML (Mohassel and
Zhang 2017) utilizes the Universally Composable Secu-
rity (UC) framework (Canetti and Canetti 2001). The UC
security framework defines security-preserving universal
composition operation and allows for modular design and
bottom-up analysis of complex cryptographic protocols
from simpler building blocks. PrivateGraph (Sharma et al.
2019), SecureBoost (Sharma and Chen 2019), and Lu et
al. (2016) adopt the simulation-based security proof (Lin-
dell 2017). Both approaches need to show the existence of
a simulator in the ideal scenario that corresponds to the
adversary in the real scenario, such that it is impossible
to distinguish the interactions in the ideal scenario from
those in the real scenario. The assumption of semi-honest
parties held by most CML approaches makes the secu-
rity proofs much easier (Lindell 2017; Canetti and Canetti
2001). As a result, many CML approaches ignore the steps
of security proof.
Attacks. To our knowledge, attacks on the confidential-

ity of cryptographic CML approaches have not been fully
explored. Most works we covered in this category did not
mention any potential attacks on their approaches, par-
tially due to the well-known security guarantees provided
by the underlying primitives or formal security proofs pro-
vided by a few approaches. While all approaches want
to fully protect feature vectors in the training data, some
approaches require the labels (in supervised learning) to
be exposed for easier modeling (Graepel et al. 2012), and
some even expose the final learned models (Nikolaenko
et al. 2013; Lu et al. 2016). However, recent studies have
shown that exposed models may lead to serious attacks,
such as model inversion attacks (Fredrikson et al. 2015;
Tramèr et al. 2016), and membership inference attacks
(Shokri et al. 2017).
Correctness. Contrary to some cryptographic proto-

cols and encryption systems that need to prove their

correctness (e.g., encrypted values can be correctly
decrypted), the correctness of CML protocols is attached
to the correctness of the original machine learning algo-
rithms. The DMC procedure honestly reassembles the
original learning algorithm with the cryptographic com-
ponents. Thus, as long as the primitives preserve the
correctness and the composition strategy does not change
the correctness (see Switching and composing strategies
section), the correctness property is guaranteed. However,
when researchers adopt a crypto-friendly alternative algo-
rithm or component, they must justify whether the alter-
native methods warrant/attain the desired learning objec-
tive. SecureBoost (Sharma and Chen 2019) depends on
the basic boosting theory (Schapire 1999) that states any
weak base classifier, including random weak linear clas-
sifiers, can be used for the boosting framework. Naehrig
et al. (2011) utilize the Taylor approximation of exponen-
tiation to approximate the sigmoid function, which is a
well-accepted mathematical method. While these alter-
native methods may affect the model quality, implying a
potential trade-off between model quality and costs, they
are all considered correct algorithms.
Gap. Security proofs are missing for some existing CML

approaches, which raise a concern that they may con-
tain flaws leading to significant information leaks. Further
studies are needed to rigorously analyze these approaches.

Evaluationmethods
Researchers evaluate their proposed CML methods pri-
marily based on costs and model quality. Some CML
methods also involve trade-offs between these two
aspects.
Costs. CML researchers primarily concern about the

costs of protocol, striving to find the most efficient secure
protocols. Sincemultiple parties are involved, the costs for
each party, i.e., the cloud provider, the client, and possibly
the crypto-service provider or the second cloud provider,
are all essential to the design of CML protocols. For a
given CML method, each party’s costs are the outcome of
the cost for comparing the encryption/ decryption, data
transmission, and other computation overhead. Because
of the original motivation of outsourcing large-scale com-
putation, a skewed cost distribution between the client
and the cloud is fundamental, i.e., the client should take
much lower overheads compared to the cloud (Sharma
et al. 2019; Sharma and Chen 2019; Mohassel and Zhang
2017). However, the clientmay still takemuch higher costs
when running CML protocols when compared to running
the original non-secure ML solution. The cost of external
storage and related I/O operations are also critical to the
cloud-side components as they are responsible for stor-
ing the encrypted data, which often is much larger than
the plaintext version and cannot reside in memory. It is
also highly desired that the cloud-side computation can

Sagar and Keke Cybersecurity (2021) 4:30 Page 15 of 19

be done parallelly with a popular processing framework
such as MapReduce (Dean and Ghemawat 2008; Sharma
et al. 2019). Besides, when GC is adopted as a primitive to
implement some components, additional communication
cost related to the GC protocol is also significant, includ-
ing the cost of transmitting the circuit and one-party’s
input data obliviously to the other party (Liu et al. 2015;
Huang et al. 2011). As a result, the use of GC is limited to a
few operations, such as comparison (Demmler et al. 2015).
The overall computation and communication costs of dif-
ferent approaches are frequently compared and used as a
measure to show the novelty of a new method. For exam-
ple, Mohassel and Zhang (2017) show their work is more
computation efficient than the GC-based framework con-
sidered by Nikolaenko et al. (2013) by about two orders
of magnitude. Similarly, Sharma and Chen (2019) show
their boosting solution is about three times faster than the
neural network CML in Mohassel and Zhang (2017).
Model Quality.Model quality, a unique feature of CML

evaluation, is often tightly related to the cost of model
training. Many machine learning algorithms are itera-
tive, such as logistic regression, neural networks, and
many clustering algorithms. As a result, model quality
increases with the number of iterations until the process
converges. However, a large number of iterations implies
the increased overall costs. Some CML methods, e.g., Lu
et al. (2016), may only report the overall costs for one/few
iterations of a specific learning algorithm, which is insuf-
ficient unless the number of iterations necessary for opti-
mal results is specified. More precisely, many works miss
the requirement that model evaluation should be tied
to the cost evaluation, i.e., how much cost is needed to
reach a certain model accuracy (Mohassel and Zhang
2017; Sharma and Chen 2019). The discussion on crypto-
friendly alternative algorithms also holds the assumption
that model quality can be possibly traded off with costs,
with the expectation that the crypto-friendly alternative
may perform comparably or slightly worse than the origi-
nal machine learning algorithm (Sharma and Chen 2019;
Sharma et al. 2019; Mohassel and Zhang 2017; Graepel et
al. 2012).

Other CML approaches
So far, we focused on cryptographic methods based
on well-known primitives. To cover a panoramic view
of development in the growing area of confidential
machine learning, we briefly discuss two closely related
approaches, the perturbation-based approach and the
hardware-assisted approach in this section.

Perturbation methods
Most practical CML solutions that carefully follow the
DMC process with some innovative uses of crypto-
friendly ML algorithms still cost magnitudes more than

the original plaintext algorithms. Especially if the learn-
ing algorithm is intrinsically expensive or relies on a
massive-scale training dataset, the cryptographic primi-
tives that provide semantic security may become imprac-
tically expensive, discouraging users from adopting the
outsourcing paradigm. Another category of work: the
perturbation-based approach offers much more efficient
solutions with some weaker security notions. Often, these
methods do not guarantee semantic security andmay only
be resilient to ciphertext-only attacks. Nevertheless, they
can be interesting for users who are willing to make a
practical trade-off between efficiency and the level of pro-
tection. We briefly discuss this body of work to extend
readers’ interests to this unique domain.
The basic idea of perturbation is injecting random

noises into the outsourced data while (approximately) pre-
serving some specific properties machine learning models
rely upon. The most well-known properties are geometric
and topological structures in the multidimensional space.
Therefore, one can still train a model from the perturbed
data on the untrusted platform with preserved confi-
dentiality of both data and model. Typical perturbation
methods include randomized response (Erlingsson et al.
2014; Du and Zhan 2003), additive perturbation (Agrawal
and Srikant 2000), geometric perturbation (Chen and Liu
2011), random projection perturbation (Liu et al. 2006),
and random space perturbation (Xu et al. 2012). They
have been applied to decision tree learning (Du and Zhan
2003; Agrawal and Srikant 2000), clustering (Chen and
Liu 2011; Liu et al. 2006), kNN classifier (Chen and Liu
2011), support vector machines (Chen and Liu 2011), lin-
ear classifier (Chen and Liu 2011; Chen and Guo 2018),
and boosting (Chen and Guo 2018). The perturbation
mechanisms can also disguise the training images in deep
learning frameworks (Sharma and Chen 2018) to achieve
much lower training costs than cryptographic protocols
(Mohassel and Zhang 2017). Furthermore, the pertur-
bation methods often do not involve expensive cryp-
tographic primitives. Consequentially, one can observe
significant cost savings in the entire life cycle of data
analytics, including data submission, computation, and
communication amongst the involved parties.
Insight. The key idea of perturbation approaches is to

identify a certain high-level utility in training datasets and
preserve it in secure randomized transformations. Similar
ideas have also been explored in the cryptographic domain,
such as order-preserving encryption (Boldyreva et al. 2011;
Boldyreva et al. 2009; Kerschbaum 2015) and encrypted
keyword search (Golle et al. 2004; Curtmola et al. 2011).
Gap. Despite their efficiency, perturbation approaches

face two critical weaknesses. First, perturbation methods
may cause significant degradation to the data quality and
introduce significant trade-offs between utility and con-
fidentiality. Second, there is no systematic framework for

Sagar and Keke Cybersecurity (2021) 4:30 Page 16 of 19

analyzing the protection level guaranteed by a pertur-
bation method. Some of them are known not to provide
provable semantic security (Chen and Liu 2011; Xu et al.
2012). However, under a clear, rigorous threat model defi-
nition and thorough analysis, these methods will have high
practical values in the venues where users can accept the
specific threat model.

Hardware-Assisted approaches
During the past few years, hardware-assisted trustworthy
computing has made a significant breakthrough. In par-
ticular, several CPU manufactures have implemented the
trusted execution environment (TEE) platforms, among
which the most popular one is Intel’s Software Guard
Extensions (SGX) (Costan and Devadas 2016). We will
take SGX as an example in the following. SGX defines
a specific memory area (e.g., the enclave). Only the
authorized owner can run programs and access data in
the enclave via special instructions. Owners and users
gain access rights via an attestation protocol. SGX min-
imizes the trust boundary to the enclave, which means
even though the entire operating system is compro-
mised, adversaries cannot access the enclave. The physical
enclave memory is limited (less than 100MB is usable
by users). When the enclave memory pages are swapped
out/in by the virtual memory management subsystem of
the OS3, they are encrypted/decrypted by the SGX library
functions implicitly. SGX uses AES encryption, and thus
the encryption and decryption costs are much lower than
the primitives we have discussed so far. Besides, since
the enclave program works on decrypted data, there is
no need to develop special CML algorithms for running
inside the enclave, making SGX an appealing platform
for developing CML solutions for complex algorithms
working with large data.
However, there are a few challenges for migrating algo-

rithms to the SGX environment. First, users need to learn
the whole SGX working mechanism and learn to use spe-
cial instructions and APIs, which can be inconvenient.
A few efforts have simplified the migration of applica-
tions to SGX, among which the Graphene-SGX library
OS (Tsai et al. 2017), SCONE (Arnautov et al. 2016), and
Panoply (Shinde et al. 2017) are the most well-known.
With a tool like Graphene-SGX, developing CML solu-
tions becomes more straightforward. Lee et al. (2020)
have tried to migrate machine learning algorithms to SGX
based on Graphene-SGX. However, these methods do not
address side-channel attacks.
Second, side-channel attacks are considered the pri-

mary threat to SGX-based applications. As TEEs have
prevented many traditional attacks and the assumption

3The enclave virtual memory management is only enabled on the Linux system
for early versions of SGX, which might be changed in newer versions of SGX

is now changed to adversary-controlled OS, side-channel
attacks are active research areas. Memory side channels
and cache side channels are the two types that researchers
mostly examined. Memory side-channel attacks are pri-
marily access pattern attacks (Sasy et al. 2018; Ahmad
et al. 2018; Shinde et al. 2016). As the encrypted data
have to be loaded from the file to the untrusted area
first and then accessed by the enclave, the access pattern
attacks seem inevitable for data-intensive applications like
CML. The well-known approach addressing this problem
is the Oblivious RAM technique (Goldreich and Ostro-
vsky 1996), which has been applied to SGX by ZeroTrace
(Sasy et al. 2018) and Obliviate (Ahmad et al. 2018). Ohri-
menko et al. (2016) also uses oblivious access techniques
for multi-party machine learning with SGX. Branching
attacks (Shinde et al. 2016) utilize the branching state-
ments and manipulate page faults to extract information,
often addressable with oblivious branching instructions
such as CMOV (Shinde et al. 2016; Sasy et al. 2018; Alam
et al.). Cache side-channel attacks such as cache timing
and transient execution state (Bulck et al. 2018; Risten-
part et al. 2009; Kocher et al. 2019; Lipp et al. 2018) utilize
the unique CPU architectural features and thus depend on
the manufacturers’ firmware and software patches to fix.
More studies are necessary to explore the full potential
and unique problems with SGX-based CML.
Insight. The TEE, e.g., SGX, techniques can significantly

boost CML’s performance on untrusted platforms, as the
solutions do not involve expensive crypto primitives or pro-
tocols. We consider the SGX based CML as a promising
direction because it achieves a strong confidentiality guar-
antee with significant performance benefits compared to
other approaches.
Gap. The most critical challenge TEEs face is side-

channel attacks, especially the access pattern attacks. Also,
machine learning algorithms have unique features (e.g.,
data access, batching, etc.) that may lead to specific attacks
that have not been fully explored yet. Another practical
concern is that most recent Intel server CPUs still have not
had SGX enabled. A few cloud platforms such as Microsoft
Azure and IBM Cloud have started offering SGX-enabled
instances, and thus we consider this gap of missing public
SGX resources will be filled up soon.

Conclusion
Despite the potential risk of data and model leakages,
many resource-constrained data owners use untrusted
platforms (e.g., clouds and edges) for training machine
learning models. Researchers have been designing
and developing confidential machine learning (CML)
approaches for outsourced data using cryptographic
primitives and various composition strategies. The
overall goal of CML is to protect the confidentiality of
data, model, and intermediate results from the untrusted

Sagar and Keke Cybersecurity (2021) 4:30 Page 17 of 19

platforms while also preserving the trained model quality
with acceptable costs.
We have reviewed the recent significant CML devel-

opments under a systemization framework, focusing on
the cryptographic approaches. We have briefly described
the cryptographic primitives that are the backbone of the
CML approaches and compared their costs in implement-
ing basic operations. While the homogeneous methods
that rely on a single cryptographic primitive are straight-
forward, their solutions are too expensive to be practi-
cal. Thus, we focus on the primary design trend of the
hybrid composition framework under the decomposition-
mapping-composition (DMC) procedure and the selec-
tion of crypto-friendly alternative learning algorithms.
We describe the critical issues such as the switching
betweenmultiple primitives and the principles of identify-
ing crypto-friendly machine learning algorithms. Finally,
we include a brief discussion of related approaches and
new directions, including the perturbation and hardware-
assisted methods. At the end of most sections, we have
also included a concise summary area labeled with Insight
and Gap for readers to get the section gist conveniently.
We believe this survey can be valuable to both researchers
and practitioners in building more complex and practical
CML solutions in the future.

Acknowledgements
Not applicable.

Authors’ contributions
The authors have contributed equally to this work. The author(s) read and
approved the final manuscript.

Funding
This work is partially supported by the National Science Foundation under
grant no. 1245847 and the National Institute of Health under grant no.
1R43AI136357-01A1.

Availability of data andmaterials
Not applicable.

Declarations

Competing interests
Not applicable.

Author details
1Northwestern Mutual Data Science Associate Professor Director of
Trustworthy and Intelligent Computing Lab Department of Computer Science
Marquette University Milwaukee, Wisconsin, USA. 2HP Inc., USA.

Received: 14 January 2021 Accepted: 27 April 2021

References
Abadi M, Chu A, Goodfellow I, McMahan HB, Mironov I, Talwar K, Zhang L

(2016) Deep learning with differential privacy. In: Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security CCS
’16. ACM, New York, NY, USA. pp 308–318. http://doi.org/10.1145/2976749.
2978318.http://doi.acm.org/10.1145/2976749.2978318

Acar A, Aksu H, Uluagac AS, Conti M (2018) A survey on homomorphic
encryption schemes: Theory and implementation. ACM Comput Surv
51(4). https://doi.org/10.1145/3214303

Aggarwal CC, Yu PS (2008) Privacy-preserving data mining: models and
algorithms. Springer Science & Business Media

Agrawal R, Srikant R (2000) Privacy-preserving data mining. In: Proceedings of
ACM SIGMOD Conference. ACM, Dallas, Texas. pp 439–450

Ahmad A, Kim K, Sarfaraz MI, Lee B (2018) OBLIVIATE: A Data Oblivious
Filesystem for Intel SGX. In: NDSS, San Diego

Alam AKMM, Sharma S, Chen K Sgx-mr: Regulating dataflows for protecting
access patterns of data-intensive sgx applications. Proc Priv Enhancing
Technol 2021(1):5–20. https://doi.org/10.2478/popets-2021-0002.
Accessed 01 Jan 2021

Aldeen YAAS, Salleh M, Razzaque MA (2015) A comprehensive review on
privacy preserving data mining. SpringerPlus 4(1):694. https://doi.org/10.
1186/s40064-015-1481-x

Arnautov S, Trach B, Gregor F, Knauth T, Martin A, Priebe C, Lind J,
Muthukumaran D, O’Keeffe D, Stillwell ML, Goltzsche D, Eyers D, Kapitza R,
Pietzuch P, Fetzer C (2016) Scone: Secure linux containers with intel sgx. In:
Proceedings of the 12th USENIX Conference on Operating Systems Design
and Implementation OSDI’16. USENIX Association, Berkeley, CA, USA.
pp 689–703

Asharov G, Lindell Y, Schneider T, Zohner M (2013) More efficient oblivious
transfer and extensions for faster secure computation. In: 2013 ACM
SIGSAC Conference on Computer and Communications Security, CCS’13,
Berlin, Germany, November 4-8, 2013. pp 535–548. https://doi.org/10.
1145/2508859.2516738

Boldyreva A, Chenette N, Lee Y, O’Neill A (2009) Order preserving symmetric
encryption. In: Proceedings of EUROCRYPT Conference

Boldyreva A, Chenette N, O’Neill A (2011) Order-preserving encryption
revisited: Improved security analysis and alternative solutions. In: Annual
Cryptology Conference. Springer, Santa Barbara. pp 578–595

Bost R, Popa RA, Tu S, Goldwasser S (2015) Machine learning classification over
encrypted data. In: NDSS, vol 4324, San Diego. p 4325

Brakerski Z, Gentry C, Vaikuntanathan V (2014) (Leveled) fully homomorphic
encryption without bootstrapping. ACM Trans Comput Theory (TOCT)
6(3):1–36

Bulck JV, Minkin M, Weisse O, Genkin D, Kasikci B, Piessens F, Silberstein M,
Wenisch TF, Yarom Y, Strackx R (2018) Foreshadow: Extracting the keys to
the intel SGX kingdom with transient out-of-order execution. In: 27th
USENIX Security Symposium (USENIX Security 18). USENIX Association,
Baltimore, MD. pp 991–1008. https://www.usenix.org/conference/
usenixsecurity18/presentation/bulck

Bunn P, Ostrovsky R (2007) Secure two-party k-means clustering. In:
Proceedings of the 14th ACM Conference on Computer and
Communications Security CCS ’07. ACM, New York, NY, USA. pp 486–497.
https://doi.org/10.1145/1315245.1315306

Canetti R, Canetti R. (2001) Universally composable security: a new paradigm
for cryptographic protocols. In: Proceedings 42nd IEEE Symposium on
Foundations of Computer Science. pp 136–145. https://doi.org/10.1109/
SFCS.2001.959888

Chakarov D, Papazov Y (2019) Evaluation of the complexity of fully
homomorphic encryption schemes in implementations of programs. In:
Proceedings of the 20th International Conference on Computer Systems
and Technologies CompSysTech ’19. Association for Computing
Machinery, New York, NY, USA. pp 62–67. https://doi.org/10.1145/3345252.
3345292

Chen A (2010) Gcreep: Google engineer stalked teens, spied on chats. Gawker
September

Chen G, Guo S (2018) RASP-Boost: Confidential Boosting-Model Learning with
Perturbed Data in the Cloud. IEEE Trans Cloud Comput 6(2):584–597

Chen K, Liu L (2011) Geometric data perturbation for privacy preserving
outsourced data mining. Knowl Inf Syst 29(3):657–695. https://doi.org/10.
1007/s10115-010-0362-4

Cheon JH, Kim A, Kim M, Song Y (2017) Homomorphic encryption for
arithmetic of approximate numbers. In: Takagi T, Peyrin T (eds). Advances
in Cryptology – ASIACRYPT 2017. Springer, Cham. pp 409–437

Chillotti I, Gama N, Georgieva M, Izabachène M (2020) TFHE: fast fully
homomorphic encryption over the torus. J. Cryptology 33(1):34–91.
https://doi.org/10.1007/s00145-019-09319-x

Costan V, Devadas S (2016) Intel sgx explained. IACR Cryptol ePrint Archive
2016:86

Curtmola R, Garay J, Kamara S, Ostrovsky R (2011) Searchable symmetric
encryption: improved definitions and efficient constructions. J Comput
Secur 19(5):895–934

http://doi.org/10.1145/2976749.2978318
http://doi.org/10.1145/2976749.2978318
http://doi.acm.org/10.1145/2976749.2978318
https://doi.org/10.1145/3214303
https://doi.org/10.2478/popets-2021-0002
https://doi.org/10.1186/s40064-015-1481-x
https://doi.org/10.1186/s40064-015-1481-x
https://doi.org/10.1145/2508859.2516738
https://doi.org/10.1145/2508859.2516738
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck
https://doi.org/10.1145/1315245.1315306
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1145/3345252.3345292
https://doi.org/10.1145/3345252.3345292
https://doi.org/10.1007/s10115-010-0362-4
https://doi.org/10.1007/s10115-010-0362-4
https://doi.org/10.1007/s00145-019-09319-x

Sagar and Keke Cybersecurity (2021) 4:30 Page 18 of 19

Dahl M, Ning C, Toft T (2012) On secure two-party integer division. In:
Keromytis AD (ed). Financial Cryptography and Data Security. Springer,
Berlin, Heidelberg. pp 164–178

Dean J, Ghemawat S (2008) MapReduce: simplified data processing on large
clusters. Commun ACM 51(1):107–113

Demmler D, Schneider T, Zohner M (2015) ABY - A framework for efficient
mixed-protocol secure two-party computation. In: 22nd Annual Network
and Distributed System Security Symposium, NDSS 2015, San Diego,
California, USA, February 8-11, 2015. https://www.ndss-symposium.org/
ndss2015/aby---framework-efficient-mixed-protocol-secure-two-party-
computation

Dreier J, Kerschbaum F (2011) Practical privacy-preserving multiparty linear
programming based on problem transformation. In: 2011 IEEE Third
International Conference on Privacy, Security, Risk and Trust and 2011 IEEE
Third International Conference on Social Computing. IEEE, Los Alamitos.
pp 916–924

Du W, Zhan Z (2003) Using randomized response techniques for
privacy-preserving data mining. In: Proceedings of the ninth ACM SIGKDD
international conference on Knowledge discovery and data mining,
Washington, DC. pp 505–510

Duncan AJ, Creese S, Goldsmith M (2012) Insider attacks in cloud computing.
In: 2012 IEEE 11th international conference on trust, security and privacy in
computing and communications. IEEE, Liverpool. pp 857–862

Erlingsson U, Pihur V, Korolova A (2014) Rappor: Randomized aggregatable
privacy-preserving ordinal response. In: Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security CCS ’14.
ACM, New York, NY, USA. pp 1054–1067. https://doi.org/10.1145/2660267.
2660348

Evans D, Kolesnikov V, Rosulek M (2018) A Pragmatic Introduction to Secure
Multi-Party Computation. Found Trends Priv Secur 2(2-3):70–246. https://
doi.org/10.1561/3300000019

Fredrikson M, Jha S, Ristenpart T (2015) Model inversion attacks that exploit
confidence information and basic countermeasures. In: Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communications
Security, Denver. pp 1322–1333

Fredrikson M, Lantz E, Jha S, Lin S, Page D, Ristenpart T (2014) Privacy in
pharmacogenetics: An end-to-end case study of personalized warfarin
dosing. In: 23rd USENIX Security Symposium USENIX Security. USENIX
Association, San Diego, CA. pp 17–32

Gentry C (2009) Fully homomorphic encryption using ideal lattices. In: Annual
ACM Symposium on Theory of Computing. ACM, New York, NY, USA.
pp 169–178

Gilad-Bachrach R, Dowlin N, Laine K, Lauter K, Naehrig M, Wernsing J (2016)
Cryptonets: Applying neural networks to encrypted data with high
throughput and accuracy. In: International Conference on Machine
Learning. PMLR, New York City. pp 201–210

Goldreich O, Micali S, Wigderson A (1987) How to play any mental game. In:
Proceedings of the Nineteenth Annual ACM Symposium on Theory of
Computing STOC ’87. ACM, New York, NY, USA. pp 218–229. https://doi.
org/10.1145/28395.28420

Goldreich O, Ostrovsky R (1996) Software protection and simulation on
oblivious ram. J ACM 43:431–473

Golle P (2006) A private stablematching algorithm. In: International Conference
on Financial Cryptography and Data Security. Springer, Anguilla. pp 65–80

Golle P, Staddon J, Waters B (2004) Secure Conjunctive Keyword Search over
Encrypted Data. In: Jakobsson M, Yung M, Zhou J (eds). Applied
Cryptography and Network Security, Second International Conference,
ACNS 2004, Yellow Mountain, China, June 8-11, 2004, Proceedings, vol
3089. Springer. pp 31–45. https://doi.org/10.1007/978-3-540-24852-1_3

Graepel T, Lauter K, Naehrig M (2012) ML confidential: Machine learning on
encrypted data. In: International Conference on Information Security and
Cryptology. Springer, Seoul. pp 1–21

Grigorescu S, Trasnea B, Cocias T, Macesanu G (2019) A survey of deep learning
techniques for autonomous driving. J Field Robot 37:3

Garay JA, Gennaro R (2014) Algorithms in HElib. In: Advances in Cryptology -
CRYPTO 2014 - 34th Annual Cryptology Conference, Santa Barbara, CA,
USA, August 17-21, 2014, Proceedings, Part I. Lecture Notes in Computer
Science, vol 8616. Springer. pp 554–571. https://doi.org/10.1007/978-3-
662-44371-2_31

Halevi S, Shoup V (2013) Design and implementation of a
homomorphic-encryption library. IBM Res (Manuscr) 6(12-15):8–36

Hastie T, Tibshirani R, Friedman J (2001) The Elements of Statistical Learning.
Springer, New York City, New York

Henecka W, K ögl S, Sadeghi A-R, Schneider T, Wehrenberg I (2010) Tasty: Tool
for automating secure two-party computations. In: Proceedings of the
17th ACM Conference on Computer and Communications Security CCS
’10. ACM, New York, NY, USA. pp 451–462. https://doi.org/10.1145/
1866307.1866358

Hesamifard E, Takabi H, Ghasemi M (2017) Cryptodl: Deep neural networks over
encrypted data. CoRR abs/1711.05189. http://arxiv.org/abs/1711.05189

Hitaj B, Ateniese G, Perez-Cruz F (2017) Deep models under the gan:
Information leakage from collaborative deep learning. In: Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications
Security CCS ’17. ACM, New York, NY, USA. pp 603–618. https://doi.org/10.
1145/3133956.3134012

Huang Y, Evans D, Katz J, Malka L (2011) Faster secure two-party computation
using garbled circuits. In: USENIX Security Symposium, vol 201. USENIX,
San Francisco. pp 331–335

Ji Z, Lipton ZC, Elkan C (2014) Differential Privacy and Machine Learning: a
Survey and Review. CoRR abs/1412.7584. http://arxiv.org/abs/1412.7584

Jiang X, Kim M, Lauter K, Song Y (2018) Secure outsourced matrix computation
and application to neural networks. In: Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security CCS ’18.
ACM, New York. pp 1209–1222. https://doi.org/10.1145/3243734.3243837

Kerschbaum F (2015) Frequency-hiding order-preserving encryption. In:
Proceedings of ACM Conference on Computer and Communication
Security

Kocher P, Horn J, Fogh A, Genkin D, Gruss D, Haas W, Hamburg M, Lipp M,
Mangard S, Prescher T, et al. (2019) Spectre attacks: Exploiting speculative
execution. In: 2019 IEEE Symposium on Security and Privacy (SP). IEEE, San
Francisco. pp 1–19

Kolesnikov V, Schneider T (2008) Improved garbled circuit: Free XOR gates and
applications. In: International Colloquium on Automata, Languages, and
Programming, Springer, Reykjavik. pp 486–498

Lazzeretti R, Barni M (2011) Division between encrypted integers by means of
garbled circuits. In: 2011 IEEE International Workshop on Information
Forensics and Security. pp 1–6. https://doi.org/10.1109/WIFS.2011.6123132

LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444
Lee D, Kuvaiskii D, Vahldiek-Oberwagner A, Vij M (2020) Privacy-preserving

machine learning in untrusted clouds made simple. CoRR abs/2009.04390.
http://arxiv.org/abs/2009.043902009.04390

Lindell Y (2017) How to Simulate It – A Tutorial on the Simulation Proof
Technique. In: Lindell Y (ed). Tutorials on the Foundations of Cryptography
(2017). Springer, Cham. pp 277–346

Lindell Y (2020) Secure Multiparty Computation (MPC). Cryptology ePrint
Archive, Report 2020/300. https://eprint.iacr.org/2020/300

Lipp M, Schwarz M, Gruss D, Prescher T, Haas W, Fogh A, Horn J, Mangard S,
Kocher P, Genkin D, et al. (2018) Meltdown: Reading kernel memory from
user space. In: 27th {USENIX} Security Symposium ({USENIX} Security 18),
Baltimore. pp 973–990

Liu K, Kargupta H, Ryan J (2006) Random projection-based multiplicative data
perturbation for privacy preserving distributed data mining. IEEE Trans
Knowl Data Eng (TKDE) 18(1):92–106

Liu Q, Li P, Zhao W, Cai W, Yu S, Leung VCM (2018) A survey on security threats
and defensive techniques of machine learning: A data driven view. IEEE
Access 6:12103–12117. https://doi.org/10.1109/ACCESS.2018.2805680

Liu C, Wang XS, Nayak K, Huang Y, Shi E (2015) Oblivm: A programming
framework for secure computation. In: 2015 IEEE Symposium on Security
and Privacy. pp 359–376. https://doi.org/10.1109/SP.2015.29

Lu W, Kawasaki S, Sakuma J (2016) Using Fully Homomorphic Encryption for
Statistical Analysis of Categorical, Ordinal and Numerical Data. IACR Cryptol
ePrint Arch 2016:1163

Mansfield-Devine S (2015) The Ashley Madison affair. Netw Secur 2015(9):8–16
Matwin S (2013) Privacy-Preserving Data Mining Techniques: Survey and

Challenges. In: Custers B, Calders T, Schermer B, Zarsky T (eds).
Discrimination and Privacy in the Information Society. Springer, Berlin.
pp 209–221

Mohassel P, Rindal P (2018) ABY3: A Mixed Protocol Framework for Machine
Learning. In: Lie D, Mannan M, Backes M, Wang X (eds). Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communications

https://www.ndss-symposium.org/ndss2015/aby---framework-efficient-mixed-protocol-secure-two-party-computation
https://www.ndss-symposium.org/ndss2015/aby---framework-efficient-mixed-protocol-secure-two-party-computation
https://www.ndss-symposium.org/ndss2015/aby---framework-efficient-mixed-protocol-secure-two-party-computation
https://doi.org/10.1145/2660267.2660348
https://doi.org/10.1145/2660267.2660348
https://doi.org/10.1561/3300000019
https://doi.org/10.1561/3300000019
https://doi.org/10.1145/28395.28420
https://doi.org/10.1145/28395.28420
https://doi.org/10.1007/978-3-540-24852-1_3
https://doi.org/10.1007/978-3-662-44371-2_31
https://doi.org/10.1007/978-3-662-44371-2_31
https://doi.org/10.1145/1866307.1866358
https://doi.org/10.1145/1866307.1866358
http://arxiv.org/abs/1711.05189
https://doi.org/10.1145/3133956.3134012
https://doi.org/10.1145/3133956.3134012
http://arxiv.org/abs/1412.7584
https://doi.org/10.1145/3243734.3243837
https://doi.org/10.1109/WIFS.2011.6123132
http://arxiv.org/abs/2009.04390
https://eprint.iacr.org/2020/300
https://doi.org/10.1109/ACCESS.2018.2805680
https://doi.org/10.1109/SP.2015.29

Sagar and Keke Cybersecurity (2021) 4:30 Page 19 of 19

Security, CCS 2018, Toronto, ON, Canada, October 15-19, 2018. ACM.
pp 35–52. https://doi.org/10.1145/3243734.3243760

Mohassel P, Zhang Y (2017) Secureml: A system for scalable privacy-preserving
machine learning. In: 2017 IEEE Symposium on Security and Privacy (SP).
IEEE, San Jose. pp 19–38

Naehrig M, Lauter K, Vaikuntanathan V (2011) Can homomorphic encryption
be practical?. In: Proceedings of Cloud Computing Security Workshop.
ACM, New York, NY, USA. pp 113–124

Nikolaenko V, Ioannidis S, Weinsberg U, Joye M, Taft N, Boneh D (2013)
Privacy-preserving matrix factorization. In: ACM SIGSAC Conference on
Computer and Communications Security. pp 801–812

Nikolaenko V, Weinsberg U, Ioannidis S, Joye M, Boneh D, Taft N (2013)
Privacy-preserving ridge regression on hundreds of millions of records. In:
IEEE Symposium on Security and Privacy. pp 334–348

Ohrimenko O, Schuster F, Fournet C, Mehta A, Nowozin S, Vaswani K, Costa M
(2016) Oblivious multi-party machine learning on trusted processors. In:
Holz T, Savage S (eds). 25th USENIX Security Symposium, USENIX Security
16, Austin, TX, USA, August 10-12, 2016. USENIX Association. pp 619–636.
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/
presentation/ohrimenko

Paillier P (1999) Public-key cryptosystems based on composite degree
residuosity classes. In: International conference on the theory and
applications of cryptographic techniques. Springer, Berlin. pp 223–238

Papernot N, McDaniel P, Sinha A, Wellman MP (2018) Sok: Security and privacy
in machine learning. In: 2018 IEEE European Symposium on Security and
Privacy (EuroS&P). IEEE, London. pp 399–414

Patra A, Suresh A (2020) BLAZE: Blazing Fast Privacy-Preserving Machine
Learning. In: 27th Annual Network and Distributed System Security
Symposium, NDSS 2020, San Diego, California, USA, February 23-26, 2020.
The Internet Society, San Diego. https://www.ndss-symposium.org/ndss-
paper/blaze-blazing-fast-privacy-preservingmachine-learning/

Phong LT, Aono Y, Hayashi T, Wang L, Moriai S (2018) Privacy-preserving deep
learning via additively homomorphic encryption. IEEE Trans Inf Forensics
Secur 13(5):1333–1345. https://doi.org/10.1109/TIFS.2017.2787987

Rane S, Sun W (2010) Privacy preserving string comparisons based on
levenshtein distance. In: 2010 IEEE International Workshop on Information
Forensics and Security. pp 1–6. https://doi.org/10.1109/WIFS.2010.5711449

Riazi MS, Weinert C, Tkachenko O, Songhori EM, Schneider T, Koushanfar F
(2018) Chameleon: A hybrid secure computation framework for machine
learning applications. In: Proceedings of the 2018 on Asia Conference on
Computer and Communications Security ASIACCS ’18. Association for
Computing Machinery, New York, NY, USA. pp 707–721. https://doi.org/10.
1145/3196494.3196522

Ristenpart T, Tromer E, Shacham H, Savage S (2009) Hey, you, get off of my
cloud: exploring information leakage in third-party compute clouds. In:
Proceedings of the 16th ACM conference on Computer and
Communications Security. ACM, New York. pp 199–212

Rouhani BD, Hussain SU, Lauter K, Koushanfar F (2018) Redcrypt: Real-time
privacypreserving deep learning inference in clouds using fpgas. ACM
Trans Reconfigurable Technol Syst (TRETS) 11(3):1–21

Rouhani BD, Riazi MS, Koushanfar F (2018) Deepsecure: Scalable
provably-secure deep learning. In: Proceedings of the 55th Annual Design
Automation Conference DAC ’18. Association for Computing Machinery,
New York, NY, USA. https://doi.org/10.1145/3195970.3196023

Sachan A, Roy D, Arun PV (2013) An analysis of privacy preservation techniques
in data mining. In: Meghanathan N, Nagamalai D, Chaki N (eds). Advances
in Computing and Information Technology. Springer, Berlin, Heidelberg.
pp 119–128

Sarwate AD, Chaudhuri K (2013) Signal processing and machine learning with
differential privacy: Algorithms and challenges for continuous data. IEEE
Signal Proc Mag 30(5):86–94. https://doi.org/10.1109/MSP.2013.2259911

Sasy S, Gorbunov S, Fletcher CW (2018) ZeroTrace: Oblivious Memory
Primitives from Intel SGX. In: NDSS, San Diego

Schapire RE (1999) A brief introduction to boosting. In: Proceedings of the 16th
International Joint Conference on Artificial Intelligence - Volume 2 IJCAI’99.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA. pp 1401–1406

Shan Z, Ren K, Blanton M, Wang C (2018) Practical secure computation
outsourcing: A survey. ACM Comput Surv 51:2

Sharma S, Chen K (2018) Image disguising for privacy-preserving deep
learning. In: Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, New York. pp 2291–2293

Sharma S, Chen K (2019) Confidential boosting with random linear classifiers
for outsourced user-generated data. In: European Symposium on Research
in Computer Security. Springer, Cham. pp 41–65

Sharma S, Chen K, Sheth A (2018) Toward practical privacy-preserving analytics
for iot and cloud-based healthcare systems. IEEE Internet Comput
22(2):42–51. https://doi.org/10.1109/MIC.2018.112102519

Sharma S, Powers J, Chen K (2019) Privategraph: Privacy-preserving spectral
analysis of encrypted graphs in the cloud. IEEE Trans Knowl Data Eng
31(5):981–995. https://doi.org/10.1109/TKDE.2018.2847662

Shinde S, Chua ZL, Narayanan V, Saxena P (2016) Preventing page faults from
telling your secrets. In: Proceedings of the 11th ACM on Asia Conference
on Computer and Communications Security ASIACCS16. Association for
Computing Machinery, New York, NY, USA. pp 317–328. https://doi.org/10.
1145/2897845.2897885

Shinde S, Tien DL, Tople S, Saxena P (2017) Panoply: Low-TCB Linux
Applications With SGX Enclaves. In: NDSS, San Diego

Shokri R, Shmatikov V (2015) Privacy-preserving deep learning. In: Proceedings
of the 22nd ACM SIGSAC conference on computer and communications
security, New York City. pp 1310–1321

Shokri R, Stronati M, Song C, Shmatikov V (2017) Membership inference attacks
against machine learning models. In: 2017 IEEE Symposium on Security
and Privacy (SP). IEEE, San Jose. pp 3–18

Song C, Shmatikov V (2019) Overlearning reveals sensitive attributes. arXiv
preprint arXiv:1905.11742

Tramèr F, Zhang F, Juels A, Reiter MK, Ristenpart T (2016) Stealing machine
learning models via prediction apis. In: Proceedings of the 25th USENIX
Conference on Security Symposium SEC’16. USENIX Association, USA.
pp 601–618

Tsai C, Porter DE, Vij M (2017) Graphene-sgx: A practical library OS for
unmodified applications on SGX. In: Silva DD, Ford B (eds). 2017 USENIX
Annual Technical Conference, USENIX ATC 2017, Santa Clara, CA, USA, July
12-14, 2017. pp 645–658

Unger L (2015) Breaches to customer account data. Comput Internet Lawyer
32(2):14–20

Veugen T (2014) Encrypted integer division and secure comparison. Int J Appl
Crypt 3(2):166

Wu X, Kumar V, Ross Quinlan J, Ghosh J, Yang Q, Motoda H, McLachlan GJ, Ng
A, Liu B, Yu PS, Zhou Z-H, Steinbach M, Hand DJ, Steinberg D (2007) Top 10
algorithms in data mining. Knowl Inf Syst 14(1):1–37

Xu H, Guo S, Chen K (2012) Building confidential and efficient query services in
the cloud with RASP data perturbation. IEEE Trans Knowl Data Eng
26(2):322–335

Yao AC (1986) How to generate and exhange secrets. In: IEEE Symposium on
Foundations of Computer Science. pp 162–167

Zahur S, Rosulek M, Evans D (2015) Two Halves Make a Whole. In: Annual
International Conference on the Theory and Applications of Cryptographic
Techniques. Springer, Berlin

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://doi.org/10.1145/3243734.3243760
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/ohrimenko
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/ohrimenko
https://www.ndss-symposium.org/ndss-paper/blaze-blazing-fast-privacy-preservingmachine-learning/
https://www.ndss-symposium.org/ndss-paper/blaze-blazing-fast-privacy-preservingmachine-learning/
https://doi.org/10.1109/TIFS.2017.2787987
https://doi.org/10.1109/WIFS.2010.5711449
https://doi.org/10.1145/3196494.3196522
https://doi.org/10.1145/3196494.3196522
https://doi.org/10.1145/3195970.3196023
https://doi.org/10.1109/MSP.2013.2259911
https://doi.org/10.1109/MIC.2018.112102519
https://doi.org/10.1109/TKDE.2018.2847662
https://doi.org/10.1145/2897845.2897885
https://doi.org/10.1145/2897845.2897885

	Confidential Machine Learning on Untrusted Platforms: a Survey
	Abstract
	Keywords

	Introduction
	Related work
	Preliminaries of CML approaches
	System architectures
	Threat models
	Cryptographic primitives

	Systematization framework
	Homogeneous cryptographic approaches
	Hybrid composition
	Basic operations
	Empirical cost comparison

	Switching and composing strategies
	Crypto-friendly ML algorithms

	Security proofs, attacks, and correctness
	Evaluation methods
	Other CML approaches
	Perturbation methods
	Hardware-Assisted approaches

	Conclusion
	Acknowledgements
	Authors' contributions
	Funding
	Availability of data and materials
	Competing interests
	Author details
	References
	Publisher's Note

