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Abstract  

We study a new distribution called the Marshall-Olkin Power Lomax distribution. A comprehensive account of its 

mathematical properties including explicit expressions for the ordinary moments, moment generating function, order 

statistics, Renyi entropy, and probability weighted moments are derived. The model parameters are estimated by the 

method of maximum likelihood. Monte Carlo simulation study is carried out to estimate the parameters and the 

performance of the estimates is judged via the average biases and mean squared error values. The usefulness of the 

proposed model is illustrated via real-life data set. 

Keywords: lifetime data, Marshall-Olkin family, maximum likelihood estimation, Lomax distribution, moments, order 

statistic 

1. Introduction 

The Lomax distribution introduced by Lomax (1954), (also known as Pareto Type II distribution) is one of the 

well-known distributions used for modeling of actuarial sciences, business failure, size of cities, medical and biological 

sciences, income and wealth inequality, engineering, lifetime and reliability datasets. Lomax distribution has been 

considered as a heavy tailed alternative to the exponential, Weibull and gamma distributions (Bryson, 1974). It is also 

associated with Burr family of distributions (Tadikamalla, 1980). In the lifetime, the Lomax model belongs to the 

family of decreasing failure rate (Chahkandi & Ganjali, 2009). Lomax distribution has been used for modeling income 

and wealth data (Atkinson & Harrison, 1978), for firm size data (Corbellini et al. 2010), for reliability and life testing 

(Harris, 1968), receiver operating characteristic (ROC) curve analysis (Campbell & Ratnaparkhi, 1993) and 

Hirsch-related statistics (Glänzel, 1987). 

Moreover, many authors derived and studied the generalized forms of the Lomax distribution. For example, transmuted 

exponentiated Lomax (Ashour & Eltehiwy, 2013), McLomax distribution (Lemonte & Cordeiro, 2013), Weibull-Lomax 

distribution (Tahir et al. 2015), gamma-Lomax distribution (Cordeiro et al. 2015), transmuted Weibull Lomax 

distribution (Afify et al. 2015), weighted Lomax distribution (Kilany, 2016) and the power Lomax (PLx) distribution 

(Rady et al. 2016).    

The cumulative distribution function of PLx distribution is given by  

   1 ? 0,? , ,, 0.G x x x


     


                             (1) 

The corresponding probability density function is 

   
1

1 ,g x x x


   
 

                                 (2) 

In this study, we proposed a more flexible extension of the Power Lomax distribution by considering the distribution 

above as baseline model in Marshall and Olkin family (Marshall & Olkin, 1997), hereafter referred as Marshall-Olkin 
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Power Lomax (MOPLx). Additionally, we also discuss its theoretical properties. The maximum likelihood method is 

considered to estimate the parameters using complete and type II censored sampling. We considered real-life data to 

illustrate the usefulness of the proposed model. The real data application shows that the suggested distribution performs 

superior when compared with other important distributions. 

The cumulative distribution function (cdf) of Marshall and Olkin (MO) family is defined by 

 
 

    
, ,

1 1 1

G x
F x x

G x
 

  
                             (3) 

with probability density function  

 
 

    
2

, ,
1 1 1

g x
f x x

G x




 
    

                           (4) 

Where  G x  and  g x are cdf and pdf of the baseline distribution. Using this approach an additional shape 

parameter (γ) is added which is responsible for the skewness, kurtosis and tail weights. Moreover, this new model can 

be used as an alternative to gamma and Weibull distributions. 

Many authors have proposed distributions using MO scheme. Marshall and Olkin (1997) developed Marshall-Olkin 

Exponential and Weibull distributions, Marshall–Olkin extended Lomax distribution by (Rao et al. 2009), 

Marshall-Olkin extended uniform distribution by (Jose & Krishna, 2011), Marshall-Olkin Fréchet distribution by 

(Krishna et al. 2013), Marshall-Olkin exponential Weibull distribution by (Pogány et al. 2015), Marshall-Olkin 

extended inverted Kumaraswamy distribution by (Usman & Haq, 2018), Marshall-Olkin length biased exponential 

distribution by (Haq et al. 2017) and Marshall-Olkin logistic-exponential distribution by (Mansoor et al. 2018).  

2. The MOPLx Distribution 

We define the four parameter Marshall-Olkin Power Lomax distribution by inserting (1) into (3) obtaining the cdf of the 

MOPLx distribution 

 
 

    
1

, 0.
1 1

x
F x x

x


 

 

 

  





 
 

  
                          (5) 

The corresponding pdf is  

 
 

   

1
1

2
, 0,

1 1

x x
f x x

x


  


 

 

  

 





 
   
  

                       (6) 

where , , ,    are positive parameters. 

3. Mathematical Properties of MOPLx Distribution 

The mathematical properties of MOPLx distribution including shapes of the pdf and hrf, linear representations of the 

cdf and pdf, quintile function (qf), random number generator, ordinary moments, incomplete moments, moment 

generating function, mean residual life, probability weighted moments and reversed residual life are investigated in this 

section.  

3.1 Shape Characteristics of the Pdf and Hrf of MOPLx Distribution  

In this subsection, the limiting behavior of the pdf and hrf of MOPLx distribution at the origin are calculated.  

Fact: As x approaches the origin, limits of the MOPLx pdf and hrf are as follows 

lim
𝑥→0

𝑓(𝑥) = lim
𝑥→0

ℎ(𝑥) = {

∞                                 𝑓𝑜𝑟                        𝛽 < 1
𝛼

𝛾𝜆
                                  𝑓𝑜𝑟                         𝛽 = 1    

0                                   𝑓𝑜𝑟                        𝛽 > 1 
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Figure 1. Pdf and hrf curves for selected parameter values 

It is observed from the Fact above and Figure 1: 

i. The pdf and hrf are decreasing if 0, 1, 0, 0.        

ii. The pdf and hrf are unimodal if 0, 0, 0, 0.        

3.2 Useful Representations 

Here we present two linear representations of the pdf and cdf of MOPLx distribution. Consider the following 

well-known binomial expansions (for 0 < α < 1),  

 
 

   0

Γ n k
1

Γ Γ 1
.

n k

k

a a
n k







 


                                  (7) 

Using (7), the numerator of (6) can be expressed as 

   
 

   
   

2

0

Γ 2 k
1 1 1

Γ 2 Γ 1
.

kk k

k

x x
k

 
        


 



      
   

              (8) 

Therefore, from (6) and (8) the pdf of MOPLx can be expressed as 

    
 1 1

1

0

1 .1 1

k

k

k

x
f x k x





 

  






 
    

 
                         (9) 

3.3 Quantile Function and Random Number Generator 

The quantile function, say 1( ) ( ),Q u F u  of X is given by 

  
    

1
.

1 1

Q u
u

Q u







 

  





 


 
   

 

 

Upon some simplifications, it reduces to the following form 

1

1

1
( ) 1 ,

1 (1 )

u
Q u

u








  
           
  

                                (10) 

where uis obtained from a uniform random variable on the unit interval  0,1 . 

3.4 Moments 

In this subsection, we derive the expressions for ordinary moments, incomplete moments and the moment generating 

function.  

3.4.1 Ordinary Moments  

If X is a continuous random variable with the MOPLx distribution, then the rth moment of X is given by  

"' 

0 

a.= 0.5 p = 0.5 l. = 0.5 y = 0.5 
a.= 0.5 p = 1.0 l. = 0.5 y = 1.5 
a.= 0.5 p = 1.5 l. = 0.5 y = 1.5 
a.= 15P= 15 l. =15 y = 15 
a.=25P= 15 l. =25 y = 15 
a.=15P= 15 l. =25 y = 15 

2 3 4 

" :c 

"' 

"' 

0 2 4 

a.= 0.5 p = 0.5 J. = 0.5 y = 0.5 
a.= 0.5 p = 1.0 J. = 0.5 y= 1.5 
a.= 0.5 p = 1.5 J. = 0.5 y= 1.5 
u. = 1.5 p = 1.5 ), = 1.5 y = 1.5 
u. = 2.5 p = 1.5 J. = 2.5 y = 1.5 
a.= 3.5 p = 1.5 1. = 2.5 y= 1.5 

6 8 10 



 

 

http://ijsp.ccsenet.org                  International Journal of Statistics and Probability                 Vol. 9, No. 1; 2020 

51 

    
0
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                         (11) 

Thus, 
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Using the following transformation,

1 1
11

          ,
x

y dx y dy


 
 



    we arrive at 

    
 1 1
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´ 1 1 1 ,

r r
k k

r

k

k y y dy
    


  



      

Again using the transformation, 
 

2
      ,

1 1

w dw
y dy

w w
  

 
we have 

    
 

1
1 1

0 0

´ 1 1 1

r r
r

k k

r

k

k w w dw
 

   


  



      

and the result follows. 

3.4.2 Moment Generating Function 

The moment generating function (mgf) of the MOPLx distribution is 

      
0 0

1 1 1,? 1
!

rr
k

X

r k

t r r
M t k B k

r

   
 

 

 

 
      

 
   

The cumulants  sk  of the MOPLx distribution are attained from the above expression as  

 
1

' ' ' '

, 1

1 0

1
1

1

s s
k k

s s k s k s s k

k k

s s
k k

k k
   



 

 

   
      

   
   

where
'

1 .µ k  Thus, 

 
2

' '

2 2 1 ,k     

 
3

' ' ' '

3 3 2 1 13 2 ,k        

     
2 2 4

' ' ' ' ' ' '

4 4 3 1 2 2 1 14 3 12 .6k             

The coefficients of skewness and kurtosis for the MOPLx distribution can also be obtained from the third and the fourth 

standardized cumulants by using formulae 3

1 3/2

4

 
k

k
  and 4

2 2

2

k

k
   respectively. 

3.4.3 Incomplete Moments 

If X is a continuous random variable with the MOPLx distribution, then the incomplete moment of X is given by  

      
0

φ x 1 1 ; 1,  1 .

r
k

k

x r r
k B k

x





  

  





 
      

 
  

4. Rényi Entropy 

If X is a continuous random variable with the MOPLx distribution, then the Rényi Entropy of X is given by  

 
 

1 1
1 1

0

1 1 1 1 1
log 1 , .

1
R k

k

I B
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To obtain such result note that 

       
 

   
2

11

0

1 1 .I x x x dx
            

 
        

    

After simplification, the expression becomes 

     

 1

1

,

, 0 0

1 ,

k

i j
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x
I x dx

  
    



  




 
  

 
   

Where                               
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Hence, we have that 

 
 

 

1 1
1 1

1 11 1 11 1
1

0 0

1 ,k

k
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after some algebra, we have that 

 
 

1 1
1 1

0

1 1 1 1
1 ,k

k

I B

   
    

    

 
   

  



    
        

    
 . 

Substitution completes the proof. 

5. The Probability Weighted Moments 

The probability weighted moments can be obtained from the following relation 

, [ ( ) ] ( )( ( )) .r s r s

r s E X F x x f x F x dx




  
                              (12) 

Substituting (9) and (10) into (12) and replacing h  with s , leads to: 

  
 1 1

1

,

, 0 0

1 1 1 .

i j k

k r

r s i

i k

x
w k x dx




 
 

    
 



 
    

 
   

Hence, the PWM of MOPLx distribution takes the following form 

    ,

0

1 1 ? 1,? 1 .

r
k

r s

k

r r
k B i j k    

 





 
        

 
  

5.1 Stress Strength Reliability 

In this subsection, we derive the stress strength reliability R when X1and X2 are independent random variables, X1 

follows MOPLx(α1, λ, β, γ1) and X2 follows MOPL(α2, λ, β, γ2), then R=P(X1<X2) is the measured as;  

2 1 1 2
0

( ) ( ) ( ) .R P X X f x F x dx


     

Then,  

   

1 1 2

1

2 2
1

0

1 1 1 1 1

 

1 1 2 11 1 1 1

x x
x

R dx
xx

  


 

  
 




  








   
     

   


            
    


. 

Applying the binomial theory, we can rewrite the previous equation as  
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     1 1 2 1 1 1 2 1 1

1 1

, 0 0

1 ? ,?

k i k i

i
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x x
R C x x dx

    
 

 

        
 



    
       
     

   

where    1 1 ( 1) 1 2 1 1 .
i k

iC i k        Then, for the form of R we obtain 

     , 0

1 1
.

1 1 2 1 1 1 2
i

i k

R C
k i k i


   





 
        
  

6. Order Statistics 

The kth order statistics of MOPLx distribution is 

1

:

1
( ) ( ) ( ) [1 ( )] .

( , 1)

k n k

k nf x f x F x F x
B r n k

  
 

 

The binomial expansion yields 

  1

:

0

( )
( ) 1 ( ) ,

( , 1)

n k
v v k

k n

v

n kf x
f x F x

vB k n k


 



 
   

   
          (13) 

where, (.,.)B is the beta function. Substituting (9) and (10) in (13) and replacing h with 1,v k   leads to 

 
 

  
 1 1

1

:

, 0

1 1 1
1

,
,

i j k
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x
f x k x
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    (14) 

Where  1 .
v

i

n k
w

v


 
   

 
 

Setting 1k   and ,k n  in (14), we obtain the pdfs of the first and largest order statistics of the MOPLx distribution. 

Further, the thr  moment of thk order statistics for MOPLx distribution is defined by: 

 
 

    :

0

1 1 ? 1,? 1 .
, 1

r
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Lorenz and Bonferroni curves are the most widely used inequality measures in income and wealth distribution ( see 

Kleiber 1999). The Lorenz, Bonferroni and Zenga curves are obtained, respectively, as follows 
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after some algebraic manipulation, we have that 
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7. Characterization 

This section deals with the characterizations of the MOPLx distribution based on: (i) a simple relation between two 

truncated moments; (ii) hazard function and (iii) reverse hazard function. It is worth mentioning that the 
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characterization (i) can be employed when the cdf does not have a closed form. We present the characterizations (i) - (iii) 

in three subsections. 

7.1 Characterizations (i) 

This subsection deals with the characterizations of MOPLx distribution based on two truncated moments. For the first 

characterization we use Theorem 1 of (Glänzel, 1987). The result holds when the interval H is not closed. 

Proposition 7.1.1. Let  : 0,X    be a continuous random variable and let,      
2

1 1 1q x x
   

    
    and 

    
1

2 1q x q x x


   for 0.x   The random variable X has the pdf (6) if and only if the function  defined in 

Theorem 7.1.1. has the form 

    
1

, 0.
1

x x x
 





  


 

Proof: Let X be a random variable with pdf (6), then  

      11 , 0,F x E q x X x x x
  


      
 

and 

      
1

21 , 0,
1

F x E q x X x x x







 

       
 

and 

        
1

1 2 1

1
0, 0.

1
x q x q x q x x for x 





     


 

Conversely, if  is as above, then 

 
   

     
 

'
11' 1

1 2

, 0,
x q x

s x x x x
x q x q x

 
 




   


 

and hence 

    log , 0.s x x x





     

Now, in view of Theorem 1 of (Glänzel, 1987), X has density (6). 

Corollary 7.1.1. The continuous random variable  : 0,X   has the pdf (6) if and only if there exist function 2q  

and  defined in theorem 1 of (Glänzel, 1987)satisfying the following differential equation 

   

     
 

'
11 1

1 2

, 0,
x q x

x x x
x q x q x

 
 




  


 

The general solution of the differential equation in Corollary 9.1.1 is 

          
1 11 1

1 2 ,x x x x x q x q x D
 

      
        

    

in where D is a constant. For the functions given in Proposition 7.1.1 with D = 0.  

7.2 Characterization (ii) 

For the hazard function, ,Fh of a twice differentiable distribution function, F, we have  

 

 

 

 
 

' '

.
F

F

F

f x h x
h x

f x h x
   

The following proposition presents a non-trivial characterization of MOPL distribution based on the hazard function.  

Proposition 7.2.1.The continuous random variable  : 0,X    has density on the hazard function.  
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1
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1

1
, 0,

1 1
F F
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x dx x x






  




   








   
   

    

 

with the initial condition  0 0Fh  , for 1.   

Proof. Is straightforward and hence omitted. 

Remark 7.2.1. For  1  , the above differential equation has the following simple form 

       
22 1' 21
, 0.F Fh x h x x x x

x

 
 


      

7.3 Characterization (iii) 

The reverse hazard function, Fr , of a twice differentiable distribution function, F , is defined as  

  
 

 
, support of F.F

f x
r x x

F x
   

Hence, a characterization of the MOPL distribution, for 1  , based on the reverse hazard function is stated. 

Proposition 7.3.1. The continuous random variable  : 0,X    has density (6) if and only if, for γ = 1, its reverse 

hazard function  Fr x  is a solution of  

   
 

 

1

' 11
, 0,

1
F F
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r x r x x x
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with the initial condition  0 0Fr  , for 1.   

8. Maximum Likelihood Estimation  

8.1 The ML Estimators for Complete Samples 

Here, we discuss the estimation of the unknown parameters of the MOPLx distribution by the maximum likelihood 

method. The log-likelihood function for the vector of parameters  , , ,
T

     can be expressed as  

           
1 1 1
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l n x x x


         


  

               
    

Now differentiate the log-likelihood function with respect to the unknown parameters  
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The estimates of the unknown parameters ˆ ˆˆ ˆ, ,  and      can be estimated by equating the derived simultaneous 

equations to zero. Since the structure of the equations is complex therefore, it is hard to get unique solution without 
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iterative procedure. Therefore, we use statistical software to get the estimates numerically and used Newton-Raphson 

algorithm for this purpose. 

8.2 The ML Estimators for Type-II Censored Samples 

The occurrence of type-II censoring is very common in many applications in survival analysis, for instance, the lifetime 

of electronic devices are usually finished after a fixed number of failures r, hence, 𝑛 −  𝑟 are be the number of 

censored data. In this case the logarithm of the likelihood function is given by 

𝑙𝑛 𝐿 = 𝑙𝑛 (
𝑛!

(𝑛 − 𝑟)!
) + 𝑛𝑙𝑛𝛾 + 𝑟𝑙𝑛𝛼 + 𝑟𝑙𝑛𝛽 + 𝑟𝛼𝑙𝑛𝜆 + (𝛽 − 1) ∑ 𝑙𝑛𝑥𝑖

𝑟

𝑖=0

− (𝛼 + 1) ∑ 𝑙𝑛(𝜆 + 𝑥𝑖
𝛽)

𝑟

𝑖=0

− 2 ∑ 𝑙𝑛(1 − (1 − 𝛾)𝑇𝑖
−𝛼)

𝑟

𝑖=0

    − 𝛼(𝑛 − 𝑟)𝑇𝑟 − (𝑛 − 𝑟)𝑙𝑛(1 − (1 − 𝛾)𝑇𝑟
−𝛼) .     

Where                               𝑇𝑖 = (1 +
𝑥𝑖

𝜆
) and𝑇𝑟 = (1 +

𝑥𝑟

𝜆
). 

Now differentiate the log-likelihood function with respect to the unknown parameters the likelihood equations are 

respectively given by 

𝑈𝛼 =
𝑟

𝛼
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− (𝑛 − 𝑟)𝑙𝑛𝑇𝑟 − (𝑛 − 𝑟)(1 − 𝛾)
𝑇𝑟

−𝛼𝑙𝑛𝑇𝑟

1 − (1 − 𝛾)𝑇𝑟
−𝛼 , 

𝑈𝛽 =
𝑟

𝛽
+ ∑ 𝑙𝑛𝑥𝑖

𝑟

𝑖=0

− (𝛼 + 1) ∑
𝑥𝑖

𝛽𝑙𝑛𝑥𝑖

𝜆 + 𝑥𝑖
𝛽

𝑟

𝑖=0

− 2𝛼(1 − 𝛾) ∑
𝑇𝑖

−𝛼−1𝑥𝑖
𝛽𝑙𝑛𝑥𝑖

𝜆(1 − (1 − 𝛾)𝑇𝑖
−𝛼)

𝑟

𝑖=0

− 𝛼(𝑛 − 𝑟)
𝑥𝑟

𝛽𝑙𝑛𝑥𝑟

𝜆𝑇𝑟
        

− 𝛼(𝑛 − 𝑟)(1 − 𝛾)
𝑇𝑟

−𝛼−1𝑥𝑟
𝛽𝑙𝑛𝑥𝑟

𝜆(1 − (1 − 𝛾)𝑇𝑟
−𝛼)

, 

𝑈𝜆 =
𝑟𝛼

𝜆
− (𝛼 + 1) ∑

1

𝜆 + 𝑥𝑖
𝛽

𝑟

𝑖=0

+ 2𝛼(1 − 𝛾) ∑
𝑇𝑖

−𝛼−1𝑥𝑖
𝛽

𝜆2(1 − (1 − 𝛾)𝑇𝑖
−𝛼)

𝑟

𝑖=0

− 𝛼(𝑛 − 𝑟)
𝑥𝑟

𝛽

𝜆2𝑇𝑟
− 𝛼(𝑛 − 𝑟)(1 − 𝛾)

𝑇𝑟
−𝛼−1𝑥𝑟

𝛽𝑙𝑛𝑥𝑟

𝜆2(1 − (1 − 𝛾)𝑇𝑟
−𝛼)

, 

𝑈𝛾 =
𝑛

𝛾
− 2 ∑

𝑇𝑖
−𝛼

1 − (1 − 𝛾)𝑇𝑖
−𝛼

𝑟

𝑖=0

− (𝑛 − 𝑟)
𝑇𝑟

−𝛼𝑥𝑟
𝛽𝑙𝑛𝑥𝑟

1 − (1 − 𝛾)𝑇𝑟
−𝛼 . 

8.3 Simulation Study 

In this section, we present a simulation study for the purpose of estimation of unknown parameters of MOPLx 

distribution via maximum likelihood method for complete and censored samples. The algorithm for estimation used 

here is designed as follows;  

 Random samples of sizes 30,50,100 and 300n  are generated form MOPLx distribution under complete and 

type II censored samples.  

 We generate the samples using the following parametric space; 

 0.5,? .5,? .5,? .5        

 0.5,? .0,? .5,? .5        

 1.5,? .0,? .5,? .5        

 1.5,? .0,? .5,? .5        

 For type-II censoring we censored 20% and 50% observations.  

 We repeat this process 10,000 times and estimate the parameters.  

 Simulation results are presented in Table 1-3.   

The evaluation is done based on two criteria: the empirical bias and the estimated Mean Square Error (MSE) of the 

estimated parameters computed from the maximum likelihood estimation. The estimated results are shown in Table 1-3. 

It should be noted that the performance of estimators get better and converge to the true parameter values as sample size 

increases. Overall the estimates under uncensored data are better than those under censored samples because the MSE, 
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for same sample size, under uncensored data set has minimum values than MSE under censored data.  

Table 1. Average Estimates, absolute Bias and MSE 

(𝛼 = 0.5, 𝛽 = 0.5, 𝜆 = 0.5, 𝛾 = 0.5) (𝛼 = 0.5, 𝛽 = 0.5, 𝜆 = 0.5, 𝛾 = 1.5) 

Scheme Estimates Bias MSE Scheme Estimates Bias MSE 

30 

0% 

�̂� 0.51104 0.01104 0.00682 

30 

0% 

�̂� 0.52176 0.02176 0.01292 

�̂� 0.52757 0.02757 0.01744 �̂� 0.52560 0.02560 0.01561 

�̂� 0.50687 0.00687 0.00314 �̂� 1.51789 0.01789 0.02833 

�̂� 0.51906 0.01906 0.01042 �̂� 0.51305 0.01305 0.00732 

20% 

�̂� 0.58941 0.08941 0.01737 

20% 

�̂� 0.60239 0.10239 0.02801 

�̂� 0.67353 0.17353 0.07105 �̂� 0.66298 0.16298 0.05698 

�̂� 0.63695 0.13695 0.02647 �̂� 1.90651 0.40651 0.23559 

�̂� 0.66147 0.16147 0.05523 �̂� 0.64915 0.14915 0.04157 

50% 

�̂� 0.76504 0.26504 0.08828 

50% 

�̂� 0.77421 0.27421 0.10141 

�̂� 1.18924 0.68924 0.93011 �̂� 1.09802 0.59802 0.49866 

�̂� 1.04534 0.54534 0.35863 �̂� 3.13534 1.63534 3.22188 

�̂� 1.18111 0.68111 2.18177 �̂� 1.13235 0.63235 0.87580 

50 

0% 

�̂� 0.50731 0.00731 0.00383 

50 

0% 

�̂� 0.51311 0.01311 0.00691 

�̂� 0.51583 0.01583 0.00893 �̂� 0.51497 0.01497 0.00825 

�̂� 0.50346 0.00346 0.00175 �̂� 1.50887 0.00887 0.01584 

�̂� 0.50989 0.00989 0.00541 �̂� 0.50680 0.00680 0.00399 

20% 

�̂� 0.58393 0.08393 0.01243 

20% 

�̂� 0.58862 0.08862 0.01714 

�̂� 0.65602 0.15602 0.04478 �̂� 0.64646 0.14646 0.03735 

�̂� 0.63225 0.13225 0.02194 �̂� 1.89812 0.39812 0.19821 

�̂� 0.64640 0.14640 0.03605 �̂� 0.64137 0.14137 0.03041 

50% 

�̂� 0.75701 0.25701 0.07651 

50% 

�̂� 0.76321 0.26321 0.08484 

�̂� 1.09547 0.59547 0.49762 �̂� 1.05882 0.55882 0.38101 

�̂� 1.02495 0.52495 0.30662 �̂� 3.07409 1.57409 2.74599 

�̂� 1.09619 0.59619 0.57072 �̂� 1.06604 0.56604 0.41768 

100 

0% 

�̂� 0.50374 0.00374 0.00187 

100 

0% 

�̂� 0.50702 0.00702 0.00335 

�̂� 0.50660 0.00660 0.00412 �̂� 0.50826 0.00826 0.00385 

�̂� 0.50153 0.00153 0.00087 �̂� 1.50478 0.00478 0.00778 

�̂� 0.50446 0.00446 0.00258 �̂� 0.50366 0.00366 0.00191 

20% 

�̂� 0.57929 0.07929 0.00890 

20% 

�̂� 0.58309 0.08309 0.01142 

�̂� 0.63821 0.13821 0.02781 �̂� 0.63689 0.13689 0.02630 

�̂� 0.62859 0.12859 0.01869 �̂� 1.88447 0.38447 0.16639 

�̂� 0.63509 0.13509 0.02485 �̂� 0.63222 0.13222 0.02217 

50% 

�̂� 0.74932 0.24932 0.06723 

50% 

�̂� 0.75336 0.25336 0.07168 

�̂� 1.04236 0.54236 0.34493 �̂� 1.02857 0.52857 0.30949 

�̂� 1.01218 0.51218 0.27551 �̂� 3.03357 1.53357 2.46947 

�̂� 1.04074 0.54074 0.34341 �̂� 1.02917 0.52917 0.31544 

300 

0% 

�̂� 0.50131 0.00131 0.00061 

300 

0% 

�̂� 0.50213 0.00213 0.00108 

�̂� 0.50226 0.00226 0.00126 �̂� 0.50244 0.00244 0.00118 

�̂� 0.50041 0.00041 0.00028 �̂� 1.50173 0.00173 0.00261 

�̂� 0.50128 0.00128 0.00079 �̂� 0.50124 0.00124 0.00063 

20% 

�̂� 0.57664 0.07664 0.00673 

20% 

�̂� 0.57800 0.07800 0.00759 

�̂� 0.62969 0.12969 0.01959 �̂� 0.62934 0.12934 0.01913 

�̂� 0.62613 0.12613 0.01660 �̂� 1.87799 0.37799 0.14915 

�̂� 0.62825 0.12825 0.01845 �̂� 0.62730 0.12730 0.01774 

50% 

�̂� 0.74506 0.24506 0.06170 

50% 

�̂� 0.74656 0.24656 0.06331 

�̂� 1.01485 0.51485 0.27982 �̂� 1.01013 0.51013 0.26962 

�̂� 1.00372 0.50372 0.25784 �̂� 3.00988 1.50988 2.31722 

�̂� 1.01235 0.51235 0.27614 �̂� 1.00868 0.50868 0.26902 
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Table 2. Average Estimates, absolute Bias and MSE 

(𝛼 = 0.5, 𝛽 = 1.0, 𝜆 = 0.5, 𝛾 = 0.5) (𝛼 = 1.5, 𝛽 = 1.0, 𝜆 = 1.5, 𝛾 = 1.5) 

Scheme Estimates Bias MSE Scheme Estimates Bias MSE 

30 

0% 

�̂� 0.51225 0.01225 0.00680 

30 

0% 

�̂� 1.56196 0.06196 0.11520 

�̂� 1.05171 0.05171 0.06839 �̂� 1.05357 0.05357 0.07075 

�̂� 0.50608 0.00607 0.00310 �̂� 1.51819 0.01819 0.02798 

�̂� 0.51751 0.01751 0.01026 �̂� 1.51122 0.01122 0.01640 

20% 

�̂� 0.58962 0.08961 0.01726 

20% 

�̂� 2.38103 0.88103 1.27093 

�̂� 1.34498 0.34498 0.27219 �̂� 1.33381 0.33381 0.24225 

�̂� 0.63684 0.13684 0.02640 �̂� 1.90953 0.40953 0.23717 

�̂� 0.66133 0.16133 0.05541 �̂� 1.89541 0.39541 0.19562 

50% 

�̂� 0.76623 0.26623 0.08878 

50% 

�̂� 5.30389 3.80389 96248.5 

�̂� 2.31203 1.31203 38.9622 �̂� 2.19571 1.19571 1.95728 

�̂� 1.04455 0.54455 0.36125 �̂� 3.14016 1.64016 3.22548 

�̂� 1.26053 0.76053 37.6338 �̂� 3.07383 1.57383 2.72584 

50 

0% 

�̂� 0.50713 0.00713 0.00381 

50 

0% 

�̂� 1.54138 0.04138 0.06352 

�̂� 1.03129 0.03129 0.03601 �̂� 1.03368 0.03368 0.03704 

�̂� 0.50344 0.00344 0.00179 �̂� 1.50895 0.00895 0.01595 

�̂� 0.50999 0.00998 0.00553 �̂� 1.50506 0.00506 0.00945 

20% 

�̂� 0.58380 0.08380 0.01242 

20% 

�̂� 2.31791 0.81791 0.92839 

�̂� 1.30591 0.30591 0.17276 �̂� 1.29438 0.29438 0.15477 

�̂� 0.63207 0.13207 0.02183 �̂� 1.89062 0.39062 0.19174 

�̂� 0.64545 0.14545 0.03540 �̂� 1.88372 0.38372 0.16977 

50% 

�̂� 0.75515 0.25515 0.07529 

50% 

�̂� 9.34680 7.84680 67797.3 

�̂� 2.19218 1.19218 1.98401 �̂� 2.10481 1.10481 1.47961 

�̂� 1.02631 0.52631 0.30645 �̂� 3.07059 1.57059 2.73022 

�̂� 1.10933 0.60933 1.29192 �̂� 3.03693 1.53693 2.49545 

100 

0% 

�̂� 0.50256 0.00256 0.00184 

100 

0% 

�̂� 1.52058 0.02058 0.03020 

�̂� 1.01408 0.01408 0.01586 �̂� 1.01870 0.01870 0.01773 

�̂� 0.50232 0.00232 0.00086 �̂� 1.50509 0.00509 0.00776 

�̂� 0.50568 0.00568 0.00252 �̂� 1.50286 0.00286 0.00463 

20% 

�̂� 0.57954 0.07954 0.00896 

20% 

�̂� 2.25810 0.75810 0.69367 

�̂� 1.27344 0.27344 0.11030 �̂� 1.27511 0.27511 0.10697 

�̂� 0.62823 0.12823 0.01855 �̂� 1.88701 0.38701 0.16888 

�̂� 0.63416 0.13416 0.02434 �̂� 1.88233 0.38233 0.15742 

50% 

�̂� 0.74888 0.24888 0.06685 

50% 

�̂� 7.71486 6.21486 72813.5 

�̂� 2.08498 1.08498 1.38057 �̂� 2.04946 1.04946 1.21119 

�̂� 1.01227 0.51227 0.27532 �̂� 3.03594 1.53594 2.47640 

�̂� 1.04042 0.54042 0.34251 �̂� 3.01962 1.51962 2.37152 

300 

0% 

�̂� 0.50114 0.00114 0.00061 

300 

0% 

�̂� 1.50672 0.00672 0.00971 

�̂� 1.00499 0.00499 0.00522 �̂� 1.00554 0.00554 0.00529 

�̂� 0.50056 0.00056 0.00028 �̂� 1.50159 0.00159 0.00261 

�̂� 0.50160 0.00160 0.00080 �̂� 1.50091 0.00091 0.00157 

20% 

�̂� 0.57668 0.07668 0.00674 

20% 

�̂� 2.23018 0.73018 0.56911 

�̂� 1.25879 0.25879 0.07854 �̂� 1.25824 0.25824 0.07630 

�̂� 0.62602 0.12602 0.01657 �̂� 1.87703 0.37703 0.14826 

�̂� 0.62798 0.12798 0.01837 �̂� 1.87596 0.37596 0.14494 

50% 

�̂� 0.74507 0.24507 0.06169 

50% 

�̂� 8.16368 6.66368 49.4472 

�̂� 2.02545 1.02545 1.11010 �̂� 2.02014 1.02014 1.07601 

�̂� 1.00353 0.50353 0.25758 �̂� 3.00986 1.50986 2.31658 

�̂� 1.01175 0.51176 0.27519 �̂� 3.00474 1.50474 2.28431 
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Table 3. Average Estimates, absolute Bias and MSE 

(𝛼 = 1.5, 𝛽 = 1.5, 𝜆 = 1.5, 𝛾 = 1.5) (𝛼 = 1.5, 𝛽 = 2.0, 𝜆 = 1.5, 𝛾 = 1.5) 
Scheme Estimates Bias MSE Scheme Estimates Bias MSE 

30 

0% 

�̂� 1.56381 0.06381 0.11292 

30 

0% 

�̂� 1.56765 0.06765 0.11651 
�̂� 1.59316 0.09316 0.16978 �̂� 2.11379 0.11379 0.28091 
�̂� 1.51821 0.01821 0.02750 �̂� 1.51621 0.01621 0.02790 
�̂� 1.51082 0.01082 0.01601 �̂� 1.50942 0.00942 0.01625 

20% 

�̂� 2.39566 0.89566 1.33681 

20% 

�̂� 2.38617 0.88617 1.30414 
�̂� 1.99582 0.49582 0.52410 �̂� 2.65726 0.65726 0.93033 
�̂� 1.90875 0.40875 0.23893 �̂� 1.90867 0.40867 0.23742 
�̂� 1.89455 0.39455 0.19633 �̂� 1.89483 0.39483 0.19567 

50% 

�̂� 3.13762 1.63762 604013. 

50% 

�̂� 4.32377 2.82377 478724. 
�̂� 3.26336 1.76336 4.21266 �̂� 4.38404 2.38404 7.72803 
�̂� 3.13020 1.63020 3.20415 �̂� 3.13539 1.63539 3.22149 
�̂� 3.06706 1.56706 2.70376 �̂� 3.07043 1.57043 2.71411 

50 

0% 

�̂� 1.53479 0.03479 0.06471 

50 

0% 

�̂� 1.53968 0.03968 0.06462 

�̂� 1.54467 0.04467 0.08378 �̂� 2.06516 0.06516 0.15165 

�̂� 1.51228 0.01228 0.01640 �̂� 1.50905 0.00905 0.01595 
�̂� 1.50785 0.00785 0.00972 �̂� 1.50529 0.00529 0.00947 

20% 

�̂� 2.30656 0.80656 0.91384 

20% 

�̂� 2.31206 0.81206 0.91818 
�̂� 1.94187 0.44187 0.34426 �̂� 2.59418 0.59418 0.61660 
�̂� 1.89642 0.39642 0.19647 �̂� 1.89426 0.39426 0.19410 
�̂� 1.88810 0.38811 0.17335 �̂� 1.88623 0.38623 0.17148 

50% 

�̂� 5.73117 4.23117 812208. 

50% 

�̂� 9.38975 7.88975 61973.1 
�̂� 3.17665 1.67665 3.40718 �̂� 4.20188 2.20188 5.84133 
�̂� 3.07196 1.57196 2.74207 �̂� 3.07362 1.57362 2.74766 
�̂� 3.03704 1.53704 2.49827 �̂� 3.03882 1.53882 2.50424 

100 

0% 

�̂� 1.51818 0.01818 0.02955 

100 

0% 

�̂� 1.51892 0.01892 0.02999 
�̂� 1.52328 0.02328 0.03903 �̂� 2.03008 0.03008 0.06864 

�̂� 1.50482 0.00482 0.00766 �̂� 1.50432 0.00432 0.00765 

�̂� 1.50291 0.00291 0.00457 �̂� 1.50259 0.00259 0.00457 

20% 

�̂� 2.26037 0.76037 0.69579 

20% 

�̂� 2.25829 0.75830 0.69192 

�̂� 1.91292 0.41292 0.24076 �̂� 2.54684 0.54684 0.42569 

�̂� 1.88582 0.38582 0.16789 �̂� 1.88593 0.38593 0.16793 

�̂� 1.88139 0.38140 0.15661 �̂� 1.88163 0.38163 0.15677 

50% 

�̂� 11.4003 9.90029 35052.1 

50% 

�̂� 10.3484 8.84842 8712.00 

�̂� 3.08015 1.58015 2.75358 �̂� 4.10132 2.10132 4.86114 

�̂� 3.03257 1.53257 2.46513 �̂� 3.03101 1.53101 2.45707 

�̂� 3.01673 1.51673 2.36215 �̂� 3.01604 1.51604 2.35867 

300 

0% 

�̂� 1.50776 0.00776 0.00949 

300 

0% 

�̂� 1.50586 0.00586 0.00949 

�̂� 1.50910 0.00910 0.01209 �̂� 2.00992 0.00992 0.02134 

�̂� 1.50109 0.00109 0.00255 �̂� 1.50181 0.00181 0.00254 

�̂� 1.50051 0.00051 0.00153 �̂� 1.50114 0.00114 0.00153 

20% 

�̂� 2.22586 0.72586 0.56362 

20% 

�̂� 2.22774 0.72774 0.56558 

�̂� 1.88789 0.38789 0.17285 �̂� 2.51489 0.51489 0.30425 

�̂� 1.87937 0.37937 0.15014 �̂� 1.87795 0.37795 0.14893 

�̂� 1.87771 0.37771 0.14634 �̂� 1.87670 0.37670 0.14550 

50% 

�̂� 8.12542 6.62542 49.0549 

50% 

�̂� 8.12523 6.62523 48.5332 

�̂� 3.01747 1.51747 2.37920 �̂� 4.03240 2.03240 4.26856 

�̂� 3.01117 1.51117 2.32077 �̂� 3.00918 1.50918 2.31264 

�̂� 3.00620 1.50620 2.28885 �̂� 3.00462 1.50462 2.28297 

9. Applications 

In this section, a real life data set is used to illustrate the usefulness of the derived model. For this purpose, we utilize 

the data set belongs to the remission time of cancer patients. The data consist of 128 observations and earlier studied by 

Lee and Wang (2003).  

We utilize the MLE method to observe the goodness of fit for the MOPLx distribution and compare the proposed 
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distribution with Weibull-Lomax (WLx), transmuted Lomax (TLx), exponential-Lomax (ELx), beta-Lomax (BLx), 

Lomax (Lx), beta-exponential (BE), Marshall-Olkin length exponential (MOLBE) and Marshall-Olkin extended 

exponential (MOEE) distribution. The selection of model is based on AIC (Akaike information criterion), the BIC 

(Bayesian information criterion). Furthermore, we also consider Anderson and Darling (A*), Cramér-von Mises (W*) 

and Kolmogorov–Smirnov (D) statistics. In general the smaller values of these statistics indicate the better fit to the data. 

The test statistics are 

     ˆ ˆ2 2 and 2 2 logAIC L q BIC L q n      
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where L is log-likelihood function and q is the number of parameters. 

The Maximum Likelihood Estimates along with the goodness of fit measures are presented in Table (5). The numerical 

results are computed using R software.   

Table 4. Basic Descriptive measures of the data set 

Xmin Q1 Median Mean Q3 Xmax S
2
 

0.080 3.348 6.395 9.366 11.838 79.050 110.425 

The descriptive statistics are presented in Table 4 which shows that data set is positively skewed. The MLEs and 

goodness of fit for considered distributions are reported in Table 5. The MOPLx distribution provided the best fit among 

the chosen models. Figure 2 provides the estimated pdf and cdf superimposed on the histogram of dataset. This fitted 

densities support the findings presented in Table 5. Figure 3 illustrate the plots of profile-log likelihood functions of the 

fitted MOPLx distribution. 

Table 5. The MLEs of the model parameters and Goodness of fit Measures for data set 

Model MLE -logL AIC BIC A*
 W*

 

MOPLx 

�̂� = 2.16340 
�̂� = 1.05562 
�̂� = 17.9449 
�̂� = 2.41605 

409.537 827.075 832.483 0.09337 0.01517 

WLx 

�̂� = 1343.77 
�̂� = 1.51086 
�̂� = 0.01216 
�̂� = 8.66117 

409.992 827.983 839.391 0.17834 0.02643 

TLx 
�̂� = 4.02162 
�̂� = 19.0931 
�̂� = -0.8443 

410.826 830.252 838.808 0.14592 0.19505 

Lx 
�̂� = 13.9385 
�̂� = 121.023 

413.833 831.666 837.37 1.37678 0.21259 

ELx 
�̂� = 4.58570 
�̂� = 24.7414 
�̂� = 1.58619 

410.072 826.144 834.70 0.17979 0.02625 

BLx 

�̂� = 1.58582 
�̂� = 24.2398 
�̂� = 0.19390 
�̂� =20.5900 

410.081 824.163 829.867 0.18184 0.02660 

BE 
�̂� = 0.64554 
�̂� = 1.44850 
�̂� = 0.17919 

412.344 830.688 839.244 0.55805 0.09945 

MOLBE 
�̂� = 0.08458 
�̂� = 13.2996 

411.957 827.915 833.619 0.41090 0.03132 

MOEE 
�̂� = 0.10986 
�̂� = 1.30301 

414.326 832.652 838.356 1.11321 0.17009 
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Figure 2. Profile log-likelihood function of the MOPLx for data set 

  

Figure 3. Fitted PDF and CDF of the MOPLx for the data set 

10. Conclusion  

In this work, we derive and study a four parameter distribution called Marshall-Olkin Power Lomax (MOPLx) 

distribution. The proposed distribution is derived using the generator approach by Marshall and Olkin (1997). We study 

some of its statistical properties including, moments, moment generating function, incomplete moments, mean residual 

life, mean activity time, expressions of the order statistics. The estimation of parameters is computed by the method of 

maximum likelihood for complete and type II censored data. A comprehensive simulation study is used to evaluate the 

proposed estimators. A real life data set is used to illustrate the usefulness of the proposed distribution. In conclusion, 

the MOPLx distribution provides a better fit and can be consider a good model for skewed dataset.   
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