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ABSTRACT State-of-the-art techniques (SOTA) for motor imagery decoding have largely involved the
use of common spatial patterns (CSP) and power spectral density (PSD), for feature extraction. Other
frequency transforms, such as wavelets and empirical mode decomposition (EMD) have also been used but
the aforementioned two have been the most popular. For classification, linear discriminant analysis (LDA)
and support vector machines (SVM) have been mostly used. It is, however, worth investigating other
approaches, such as deep learning, which offer a potential for improvement, but are not yet mainstream. Deep
learning techniques based on neural networks (NNs) have been underexplored in motor imagery processing.
Considering their success in other fields, which speaks to their potential for obtaining improved results over
the SOTA, they should be explored for motor imagery decoding. This study takes a comparative approach
in the use of deep learning as compared with the SOTA. From our findings, we infer that neural networks
are suitable for motor imagery decoding and might be preferable over the SOTA. The use of specific feature
extraction is also not as necessary as seen with SOTA approaches, though it might offer some gains in
performance. Our results show a statistically significant improvement in decoding accuracies, up to 20%
increase, with the use of NNs as compared with the SOTA. Also, we conclude that the use of crops for
data augmentation might yield better results with shallow architectures as against deeper ones and that there

might be other factors affecting the effectiveness of crops, needing further investigation.

INDEX TERMS EEG, BCI, motor imagery, deep learning, machine learning.

I. INTRODUCTION

Motor imagery is a widely used paradigm in brain com-
puter interface (BCI) experiments for communication and
control [1]. Examples of such uses include the control of
devices — assistive and non-assistive, vehicles and games [2],
[3]. Also, very common is its use in neuro-rehabilitative
studies. The central idea of motor imagery (MI) rests on the
fact that the brain exhibits specific neuronal characteristics
during imagined movements, similar to that of actual motor
action [4]. It has been established over the years, that the
event related desynchronization (ERD) and the event related
synchronization (ERS) noticed over the sensorimotor cor-
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tex play a vital role in motor imagery decoding. The most
relevant brain frequency bands used in electroencephalo-
graphic (EEG) motor imagery decoding have been the alpha
(8-14 Hz) and beta (14-30 Hz) bands. These two have been
stated as the most significant for distinguishing imagined
actions [1], [4].

Traditional techniques used in motor imagery processing
typically involve pre-processing, feature extraction and then
classification. Pre-processing is geared towards cleaning the
data, to rid it of noise and improve the signal-to-noise ratio.
Such pre-processing procedures are usually necessary when
using EEG, as EEG signals have been known for their sus-
ceptibility to varying types of noises [5]. The pre-processing
procedures get rid of artifacts, which could be environmental,
instrumental and/or biological. Other device types, apart from
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EEG may not be as susceptible to all these artifact types.
Feature extraction is performed to extract relevant features,
which provide distinguishing characteristics between imag-
ined tasks. Typical feature extraction techniques include the
use of the CSP algorithm, well known for providing plausi-
bly distinguishing features. So, also have other time-based,
frequency-based and time-frequency transforms been applied
for feature extraction, such as wavelets, auto-regressive
modelling and empirical mode decomposition (EMD). For
classification, support vector machines (SVM) and linear
discriminant analysis (LDA) have been mostly used, as com-
pared with other algorithms [6]-[9].

A consideration of deep learning techniques and their use
in computer vision and natural language processing shows
that deep learning techniques could be utilized in many fields,
with the potential for improvements. More specifically, the
use of convolutional neural networks (CNNs) and sequence
models — recurrent neural networks (RNNs), long short-term
memory (LSTM) networks and gated recurrent unit (GRU)
networks - has shown significant improvements in these
fields [10]-[12]. Deep learning techniques have some advan-
tages over traditional approaches. These include little to no
reliance on a priori knowledge and the elimination of specific
feature engineering. Neural networks can learn features from
the data and do not require manually crafted features for
optimal decoding performances.

Considering their degree of success and use, this study
takes a comparative approach of using these techniques
against the SOTA. First, we take an exploratory approach in
the use of these networks, determining the best-performing
architectures and then finding optimal parameters for best
architectures. In addition, we compare these results with
SOTA techniques — CSP and spectrograms for feature extrac-
tion; SVM and LDA for classification - inferring based on the
results that deep learning techniques can equally be applied in
motor imagery decoding with significantly better results. One
reason for the wide use of SVM and LDA has been the small
amount of data acquired during motor imagery studies. This is
typically a few hundred samples, per session, due to the nature
of the experiments and the fatiguing effect they could have
on subjects. However, the application of data augmentation
techniques could enhance decoding when using deep learning
techniques. The remainder of this manuscript is structured as
follows: related works, methods, results and discussion and
conclusion.

Il. RELATED WORKS
Previous works exploring motor imagery for communication
and control, have mostly used CSP and frequency transforms
for feature extraction and SVM and LDA for classification.
In this section, we present some of the works using these
techniques. We also present other more recent works explor-
ing neural networks or deep learning-based techniques for
classification.

Steyrl et al. [13] made a comparative use of CSP fea-
tures with regularized LDA and random forests. They
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demonstrated the online use of a random forests classifier
with the discrete Fourier transform (DFT) of the motor
imagery signals, in an earlier work [14]. Their comparative
analyses, which was done afterwards, showed that the CSP
features contained highly discriminatory information. The
results showed good performances for both classifiers, with
peak accuracies up to 100%, though, random forest was
reported to have made better use of the CSP features. Overall,
the authors reported significantly better results with the use of
CSP, as compared with the DFT. Another work by Wu et al.
used a combination of CSP and LDA. The authors used cross
validation to determine the optimal time window and number
of CSP features for each subject and reported a maximum
classification accuracy of 80%, using only 9 channels [15].

In Jin et al’s work [16], the authors made use of
a correlation-based approach for channel selection. Their
correlation-based channel selection (CCS) method was used
to select channels that contained more relevant information.
After channel selection through the CCS method, regularized
CSP was applied for feature extraction and finally, an SVM
classifier was used for classification. The authors validated
their approach on the BCI competition datasets. On the BCI
Competition IV dataset, their method achieved up to 94.5%
accuracy on a subject and a mean accuracy of 81.6 + 11.5%
across all subjects. On the BCI Competition III dataset IVa,
up to 96.8% accuracy was reported on a subject and a mean
accuracy of 87.4 4+ 10.6% across all subjects and on the IIla
dataset, up to 98.9% single-subject accuracy was achieved
and 91.9 + 10.3% mean accuracy across all subjects [16].

Yet another work by Feng er al. [17] made use of CSP
and SVM for feature extraction and classification respec-
tively, with 10-fold cross-validation. Their approach consid-
ered time in the feature extraction, with an argument that
there exists a time latency in the performance of MI for
subjects and that this latency could affect the performance
of the BCI, if not accounted for. To that end, they proposed
a correlation-based time window selection (CTWS) method,
to determine optimal time windows for both training and
testing samples, adjusting the windows by using correla-
tion analysis. Afterwards, feature extraction and classifica-
tion were performed. They validated their approach on two
datasets — the BCI IV competition dataset I [18] and a pri-
mary data source of MI EEGs from stroke patients. They
reported having the average classification accuracy improved
by 16.72% on the dataset of healthy subjects (BCI Competi-
tion IV Dataset 1), and 5.24% on the dataset of stroke patients.
These works described, so far, made use of SOTA processing
techniques.

Some other works have explored neural networks or deep
learning techniques, in MI classification. Though, there are
some works that have used this approach, it still appears
that deep learning techniques have been underexplored in
the space. A look at such works, shows that more have
used convolutional neural networks (CNNs). Others have also
used RNNs, LSTMs and GRUs, as these sequence models
have been known to model time series relationships well.

VOLUME 10, 2022
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Sakhavi et al. [19], demonstrated the use of CNNs for MI
classification. The authors made use of a modified version of
the filter-bank CSP (FBCSP) and a CNN architecture tailored
for the extracted features. The temporal representation used
was the channel-relative instantaneous energy of the signal
envelope, extracted using the Hilbert transform. Building
upon one of their previous works [20], the authors made use
of this temporal representation, as different from their earlier
work. Their approach entailed the following:

1) First, FBCSP was performed on the signal.

2) Next, the envelope of each signal was extracted using
Hilbert transform.

3) Afterwards, three possible representations were gener-
ated — the raw or smoothed version of the EEG envelope
(R1); the power of the envelope (R2); and the ratio of
the envelope to the total energy of each of the channels
in each trial (R3).

The three generated representations (R1, R2 and R3) were
used in determining the most effective representation. In con-
structing the CNN, the authors made use of three approaches:
convolutions only across time with a common kernel shape
for all channels, convolutions only across channels; and
convolutions across both time and channels. Varying kernel
and stride sizes for the first layers were used, to determine
the optimal sizes. They excluded the use of pooling layers
and had just two convolution layers, with a fully connected
layer just before the output layer. They included batch nor-
malization and dropout layers before and after the rectified
linear unit (ReLU) activation layers respectively and used the
Adam optimizer for learning. Their results showed that the
first signal representation - R1 - was better, achieving better
results compared to others. They also compared the results of
their 2-dimensional CNN architecture, used for selecting the
best representation, with a multi-layer perceptron (MLP) and
support vector machine (SVM) and reported having better
results with the CNN. Their approach was validated on the
public BCI TV 2a competition dataset.

Other works using neural networks include the work
by Dose et al. [21], where the authors used a CNN to
classify MI signals in the Physionet movement and motor
imagery database (MMIDB) [22], [23]. Their CNN archi-
tecture was based on the shallow ConvNet proposed by
Schirrmeister et al. [24] and consisted of two convolutional
layers with 40 kernels per layer and a fully connected
layer. They utilized AveragePooling within the network,
aReLU activation and Adam optimizer for the learning. Their
results showed better performances as compared with other
works using the Physionet MMIDB. Wang et al. [25] also
made use of a Long Short-Term Memory (LSTM) network,
with an architecture inspired by classical CSP. The authors
used a one-dimensional aggregate approximation (1dAX)
for extracting a signal representation for the LSTM net-
work. They validated their results on the BCI competition IV
dataset 2a and as compared with other architectures, their
results were consistently better for all but one subject.
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Finally, Zhang et al.’s work [26] combined deep learn-
ing and data augmentation for EEG MI classification. They
decomposed the signals into intrinsic mode functions (IMF)
using EMD, combined the IMFs to create new signals and
used wavelet transforms and a CNN for feature extraction
and classification, respectively. The authors recorded 90.1%
accuracy with the augmented approach, as compared with
89.3%, achieved by the winner of the BCI competition. They
also used the pretrained ResNet-18 image classifier, but the
results worsened, which is attributable to the large depth
of the network. These show that deep learning approaches
can perform as good as SOTA techniques and even surpass
them. They should, therefore, be explored and adapted for
use in MI BClIs.

lll. METHODS
This section details our approach in our comparative study.

All techniques and methods were applied on a public dataset.
Details of the dataset and the methods are given in following
subsections.

A. DATASET

The public dataset used in this study was provided by
Kaya et al. [27]. The full dataset contains 60 hours of EEG
recordings from 13 participants, collected over 75 record-
ing sessions and yielding over 60 000 examples of motor
imageries in 4 interaction paradigms. The dataset is currently
one of the largest EEG BCI datasets made public. The data
was collected at the University of Mersin, Turkey. 13 healthy
participants (8 males and 5 females), who were students,
within the ages of 20 and 35 were recruited for the study.
Participants were labelled A-M, for anonymity. Necessary
checks were done to ensure the health status of the partici-
pants. The EEG-1200 system, a standard medical EEG station
used in many hospitals, was used for data collection. The
sampling rate of the device was 200 Hz and 19 channels
were used, being placed according to the 10-20 standard.
Participants kept their gaze at the centre of a graphical user
interface (GUI) window, containing icons representing the
imageries to be performed. The original dataset contains
2-class and 6-class motor imageries; however, for this study,
we made use of the 6-class dataset. The 6 motor imageries
were the left hand, right hand, left leg, right leg, tongue
and a passive mode. Each imagined action lasted a second.
For all subjects except one (Subject D), there were one or
more 6-class motor imagery sessions, resulting in the use of
12 subjects’ data for this study.

B. PRE-PROCESSING
First, the data were pre-processed, to remove different types
of artifacts, mostly oculographic. The data had already been
notched at 50Hz, to remove line noise, with an inbuilt filter
in the device. The following steps were taken:
1) Bandpass filtering for 1-40Hz.
2) Oculographic artifact correction, using independent
component analysis (ICA). First, a bipolar chan-
nel was created using the two available pre-frontal
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FIGURE 1. 10-20 Montage used for the study.

electrodes — Fpl and Fp2. The montage used is
depicted in Figure 1. The constructed channel was then
used as a simulated electrooculographic (EOG) chan-
nel for oculographic artifact removal, using the MNE
python package [28]. With ICA, eye artifact compo-
nents are detected using the bipolar channel and are
marked for rejection. The signal is then reconstructed
using other non-artifact components. The use of the
bipolar channel is based on the fact that the prefrontal
electrodes typically capture eye artifacts, rather than
activities related to the imagined action.

3) Re-referencing to average. The data was re-referenced
to improve the signal-to-noise ratio.

4) Baseline correction on epochs, with 200ms pre-cue
data.

5) Artifact rejection, using the auto-reject package [29].
Some subjects had more trials rejected, than others, due
to more noise being present.

Figure 2 shows the stages in the decoding processing with
the pre-processing, feature extraction and classification tech-
niques used for the SOTA and deep learning approaches.

C. STATE-OF-THE-ART FEATURE EXTRACTION

For the SOTA techniques, we chose to use CSP in the time
domain and power spectrum, computed as spectrograms,
as features for the SOTA classifiers. We also used the Welch’s
periodogram, however, this yielded results which were not
as comparable as those achieved with the spectrograms. We,
therefore, used the spectrograms as the desired frequency
representation.

In computing the features, first, optimal parameters were
chosen to get the best feature representations possible. This
involved using each option from the range of options avail-
able for each parameter to generate the CSP features, in turn.
Afterwards, the features were used in training the untuned
LDA classifier, with 10-fold cross-validation (CV). The num-
ber of components giving the highest CV score was then
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chosen as the optimal parameter. For CSP, the two most
important parameters to be optimized were the number of
CSP components and the covariance estimation technique,
which could be done with or without shrinkage. The opti-
mal number of components was found to be 19 (all), as
chosen from a range of 4 to 19. Covariance estimation options
included principal component analysis (PCA); Ledoit-Wolf
shrinkage [30]; diagonal fixed regularization, and an empir-
ical mode, using the estimated noise covariance matrix,
without shrinkage. The optimal technique was the empirical
mode.

For PSD, on the other hand, the parameters tuned were
the number of samples per segment and the amount of over-
lap between segments. The optimal number of samples per
segment from a range of values between 50 (250ms) and
200 (1000ms), was found to be 100, equivalent to 500ms
of imagery period. The optimal overlap was found to be
between 75% and 80%; however, we chose 80%, as that
generally seemed to give better results. With the optimal
parameters, CSP components and spectrograms were gener-
ated and finally fed into the SOTA classifiers.

D. STATE-OF-THE-ART CLASSIFIERS

For classification using SVM and LDA, we performed param-
eter searches for both classifiers to determine optimal param-
eters giving the best results. To this end, we ran a 10-fold
cross-validated grid search on both models, varying the key
parameters. The key parameters for SVM, were the C-value,
gamma and polynomial degree. For LDA, the key parameters
were the solver and shrinkage value. For the SVM classi-
fier, the C-value ranged between 0.1 and 100, with steps
in multiples of 10. The range of values for gamma was
from 1 to le-8, with steps in multiples of 10e-2 and a scale
value, which is the inverse of the product of the number of
features and the variance in the data. The polynomial degree
ranged from 1 to 3. The optimal C-value and polynomial
degree were set to 10 and 1, respectively, and a radial basis
function (RBF) kernel was used.The optimal gamma was set
to the scale, which is the inverse of the product of the number
of features and the variance in the data. This is represented
by the formula:

1

(N % 02) M

gamma =
where N is the number of features and o2 is the variance [31].

For LDA, the eigen solver was chosen over the single
value decomposition and least squares solvers. The shrinkage
for LDA was placed at 0.6, chosen from a range of values
between 0 and 1 with a step of 0.1. The classifiers were
trained using 10-fold cross-validation on the training set and
the best resulting classifier was used for evaluations on the
test set.

To handle potential class imbalance resulting from rejec-
tion of trials, we oversampled from any class with trials less
than the maximum number of class trials in any set. This
was done differently for the SOTA and NN, to carefully
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FEATURE EXTRACTION SOTA CLASSIFICATION

PREPROCESSING/
SIGNAL PREPARATION

FIGURE 2. Schematic depicting processing flow of data from
pre-processing to classification.

avoid data leakages. For the SOTA cross-validation, each
fold from the training set was individually oversampled and
for the NNs, each of the train, validation and test sets were
individually oversampled. All of these were done after data
split.

E. DEEP LEARNING TECHNIQUES

To compare the deep learning-based techniques, we made
use of a variety of network architectures. CNNs, RNNs,
LSTMs and GRUs were used either solely in a network or
in a hybrid fashion, such that CNNs and sequence layers
were both used within the networks. Of the various networks,
we chose the 3 best performing for comparison, with the
SOTA, namely: the bidirectional GRU (bi-GRU), the deep
net and the multibranch network. We also experimented with
pre-trained image models — Inception V3 [32] and MobileNet
V2 [33]. However, their performances were significantly
worse than other models and so, they were excluded from
further analyses.

1) NEURAL NETWORKS

a) Bidirectional GRU - A 2-layer bidirectional GRU net-
work was used to learn sequence relationships in both
the forward and backward direction. A tanh activation
was used with a dropout of 0.4, to avoid overfitting.
Sequence models are known to be good at learning time
relations in data and so, we applied the network for this
purpose.

b) Deep Net - The network was inspired by the Deep
Convnet [24]. A 5-layer modification of the original
4-layer network, introduced in Lawhern et al.’s work
[34] was used. We used AveragePooling layers rather
than MaxPooling, since the latter performed better.
The default exponential linear unit (ELU) activation
was also replaced with the scaled exponential linear
unit (SELU) activation, as that seemed to perform bet-
ter. A dropout of 0.4 was used to curb overfitting.

¢) Multibranch - The network comprises 4 branches of the
same CNN architecture - the Shallow network - intro-
duced by Schirrmeister et al. [24]. We used a multi-
branch structure since that generally performed better
than an unbranched one and made slight modifications,
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considering the data specifications. Increasing the
number of branches beyond 4, generally yielded no
gains. The output from the branches were concatenated
and fed into a convolution layer before a final fully
connected layer.

The choice of the 3 networks was for the following reasons:

a) To have a representative of sequence and convolutional
models, which have been mostly used.

b) To explore CNN branching with an intent to discover
how performance varies in a deep CNN as compared
with a multibranched shallow one. A branched archi-
tecture tended to give more stable results across runs.

Across both SOTA and NNs, an 80:20 ratio was used to

split the data into train and test sets. The training set was
further split using an 80:20 ratio for train and validation sets,
in the case of the NNs. For the networks, the optimal batch
size was found to be 32. The networks were each trained
for 50 epochs, with model checkpointing to save only the
best weights, giving the least loss. Structures of the networks
are presented in Tables B1, B2 and B3 of Appendix B. Data
from subject A was used for all optimizations — SOTA and
NN, since subject A had plausible performance and with
the expectation that average optimal values might not vary
greatly compared with subject-specific ones. Optimizations
could also be done on a per-subject and per-session basis.
However, that could get cumbersome very quickly.

2) TRAINING AND TESTING APPROACHES

a) Trial-wise (TW)approach - This approach entailed the
use of the whole 1-second trial block for training and
testing. The 200 * 19 matrix for each trial in the training
set was used for training and in the same way, test trials
were used for evaluation.

b) Cropped approach - For this approach, crops of the
I-second block of data were used for training and
testing. The main idea behind the use of crops is data
augmentation for possible improvement of model per-
formances. Crops were separately generated on train
and test sets. The steps in generating crops were as
follows:

i) The window length, wlen, was defined, ranging
from 0.1 (100ms) to 1 (1000ms). A window
length of 1000ms meant no cropping.

ii) ii. The amount of overlap was defined, n_overlap,
with values ranging from 0 to 95, meaning no
overlap to 95% overlap. In practice, any value
less than 100 could be used for the overlap, since
100% overlap would be infeasible.

iii) Next, a sliding window was applied to extract
crops of length, wlen, with the chosen overlap,
from the start to the end of the trial. The number
of crops generated is represented by the formula:

((trial_length * sampling_rate) — crop_size)
(1 — n_overlap) * crop_size
+1 2
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FIGURE 3. lllustration of the cropped approach.

where
crop_size = wlen x sampling_rate 3)

For instance, to generate crops of wlen = 0.3, with
n_overlap = 50% and the 200Hz sampling rate,
on a trial length of 1 second, the number of crops
generated is 5.

crop_size = 0.3 * 200 = 60

Number of crops = floor [((I * 200) — 60)/
((1-0.5) * 60)] + 1 = floor(4.667) + 1 = 4 +
1=5

Crops originating from the same trial were
assigned the same label.

iv) For testing, the prediction scores generated on the
crops originating from a test trial were averaged
and the trial assigned the class with the highest
mean score.

For the cropped approach, the optimal window length was
found to be between 500ms and 600ms and the optimal
overlap was 90%. We, therefore, used a window length of
600ms with 90% overlap. An illustration of the cropped
approach is seen in Figure 3.

IV. RESULTS AND DISCUSSION

Results for both SOTA and deep learning techniques are pre-
sented in following subsections A and B. Repeated measures
one-way analysis of variance (ANOVA) was performed on
model results across all SOTA and deep learning methods.
p-values for comparisons are reported in Table 1 and the
threshold, o was set to 0.05. We do not expect a strict con-
formance of the results to normality and urge the reader to be
aware of that.

A. STATE-OF-THE-ART TECHNIQUES
A summary of results for SOTA methods is seen in Table 2.
Figure 4 also shows summarized mean accuracies in descend-
ing order. Details of our results and those reported by the
dataset authors are given in appendix tables Al1-A3. The
authors reported their results for different train, validation and
test partitions. However, for comparison with theirs, we chose
the best most consistent result achieved for each subject,
irrespective of the partition ratio used.
From the results, we make the following observations and
deductions:
I) Optimal parameters were more generalizable for
CSP as compared with spectrograms
In the feature extraction parameter searches for CSP
and spectrograms, optimal parameters for CSP seemed

45610

TABLE 1. Summary of results for SOTA classifiers.

Method Grand mean =+ std. (%)
Kaya et al. 64.52 + 16.44
CSP + LDA 67.72 £ 18.41
CSP + SVM 68.60 + 15.92
FREQ.+ LDA 54.76 £ 13.95
FREQ. + SVM 53.64 £ 13.10

[l cSP+SVM [ CSP +LDA [ Kaya et al. FREQ. + LDA [ FREQ. + SVM

100

90

80
70
60

50

40

Mean accuracy (%)

30 -

20

FIGURE 4. Summary box plot of SOTA methods stated in the study. Bars
are shown in descending order of mean accuracy. Crosses depict the
mean value.

to have less variability across subjects, compared to
spectrograms. Before reaching a decision to use subject
A’s optimal values for feature extraction, across all
subjects, we performed parameter searches on differ-
ent subject’s data. In initial subject-specific parameter
searches, we noticed wider variability in optimal values
for spectrograms. For CSP, on the other hand, most
optimal values were in a smaller range, making it more
generalizable across subjects. We infer based on these
that optimal parameters and, in turn, features from CSP
were more stable and generalizable across subjects and
classifiers than spectrograms, which seemed to be more
subject-specific.

II) CSP features yield better results than spectrograms
CSP yielded better results, than spectrograms, with
p-values showing a statistically significant difference
(3.42E-07, 7.62E-08, 8.67E-09, 1.48E-09 < 5E-02).
The reduced performance of spectrograms may be
partly attributed to the relative non-generalizability
and instability of the optimal parameter values. Our
approach in the use of CSP SOTA techniques gave
slightly better results than the authors’ approach, albeit
not significantly (1.85E-01, 6.89E-02 > 5E-02), but
both the authors’ and ours compared better than with
the use of spectrograms.

B. DEEP LEARNING-BASED APPROACHES

We present the results from using 3 neural network archi-
tectures, with the data in trial-wise and cropped form. Also,
CSP features and spectrograms were used with the networks
to determine if the neural networks needed these feature
extraction techniques to give optimal performance or were
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TABLE 2. p-values for comparisons across techniques (« = 5E-02).

Kaya et|CSP +|CSP +|FREQ. +|FREQ. +|TW + Bi- | TW +|TW +|Crops +|Crops + |Crops +|CSP+Bi-|CSP +|CSP +|FREQ +|FREQ +|FREQ
al. LDA SVM LDA SVM GRU Deep Net | Multi- BiGRU Deep Net | Multi- GRU Deep Net | Multi- BiGRU Deep Net | + Multi-
branch branch branch branch

Kaya et|- 1.85E-01 | 6.89E-02 | 1.61E-04 | 2.77E-05 | 5.64E-07 | 7.10E-08 | 3.51E-06 | 4.54E-06 | 4.78E-04 | 4.02E-07 | 2.26E-08 | 3.20E-08 | 4.08E-07 | 1.39E-03 | 8.94E-02 | 1.49E-01
al.
CSP  +|- 2.63E-01 | 3.42E-07 | 7.62E-08 | 7.04E-06 | 9.04E-09 | 4.94E-04 | 1.44E-03 | 1.48E-02 | 3.52E-05 | 6.68E-08 | 3.48E-08 | 4.30E-05 | 4.41E-02 | 7.73E-01 | 8.49E-01
LDA
CSP +|- 8.67E-09 | 1.48E-09 | 1.39E-06 | 1.12E-09 | 9.83E-05 | 4.30E-04 | 1.30E-02 | 7.57E-06 | 1.82E-09 | 4.64E-10 | 9.20E-06 | 4.14E-02 | 9.10E-01 | 8.68E-01
SVM
FREQ. + |- 1.43E-01 | 1.62E-13 | 5.74E-17 | 8.49E-13 | 2.95E-11 | 2.36E-09 | 3.17E-12 | 1.75E-15 | 4.40E-17 | 1.64E-13 | 1.76E-12 | 3.25E-10 | 9.92E-10
LDA
FREQ. + |- 3.39E-15 | 3.91E-18 | 1.61E-14 | 3.85E-12 | 3.23E-10 | 2.66E-13 | 3.63E-17 |2.79E-18 | 2.08E-15 | 1.16E-14 | 6.63E-12 | 5.99E-11
SVM
TW + Bi- | - 5.05E-03 | 6.92E-01 | 9.15E-01 | 6.53E-03 | 1.64E-02 | 3.28E-03 | 3.41E-03 | 9.64E-02 | 1.24E-03 | 1.79E-06 | 8.17E-06
GRU
™ + |- 7.15E-02 | 7.15E-02 | 4.37E-05 | 8.19E-01 |9.33E-01 | 6.35E-01 |5.15E-01 | 9.06E-06 | 1.79E-11 | 1.63E-08
Deep Net
™ +|- 7.14E-01 | 7.58E-03 | 1.32E-02 | 3.45E-02 | 6.17E-02 | 2.42E-02 | 4.28E-05 | 1.91E-07 | 6.62E-09
Multi-
branch
Crops  + |- 3.06E-03 | 2.24E-04 | 5.90E-02 |5.32E-02 | 6.27E-02 | 1.32E-03 | 3.05E-05 | 1.41E-06
BiGRU
Crops  + | - 6.48E-08 | 3.84E-05 | 8.55E-06 | 9.80E-05 | 6.07E-01 | 1.20E-02 | 6.82E-03
Deep Net
Crops + |- 7.76E-01 | 5.93E-01 | 2.58E-01 |2.26E-06 | 2.27E-07 | 1.96E-08
Multi-
branch
CSP +Bi- | - 7.34E-01 | 5.30E-01 | 2.03E-06 |8.58E-11 | 4.60E-09
GRU
CSP  +|- 6.42E-01 | 5.07E-07 | 1.62E-10 | 4.67E-09
Deep Net
CSP  +|- 5.55E-07 | 3.21E-09 | 2.83E-10
Multi-
branch
FREQ + |- 7.42E-03 | 2.89E-04
BiGRU
FREQ + |- 9.14E-01
Deep Net

TABLE 3. Summary of raw data with deep learning-based classifiers.

Method Grand mean =+ std. (%)
Trial-wise + Bi-GRU 77.70 = 11.06
Trial-wise + Deep Net | 81.49 + 11.43
Trial-wise + Multibranch | 78.32 £ 7.53

Crops + Bi-GRU 77.90 £7.35

Crops + Deep Net 73.52 £ 10.55

Crops + Multibranch 81.92 + 6.48

capable of capturing relevant relationships from the raw data.
Summaries of results for deep learning methods are seen in
Tables 3 and 4. Table 3 shows results for the use of the raw
data in trial-wise and cropped forms, while Table 4 shows
the use of SOTA features with the networks. Figure 5 also
shows summarized mean accuracies of all the methods in
descending order.

The following observations and deductions were made:

I) All subjects gave plausibly discriminatory signals
While some subjects performed significantly better
than others, all subjects achieved greater than chance
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TABLE 4. Summary of SOTA feature extraction with deep learning-based

classifiers.

Method Grand mean = std. (%)
CSP + Bi-GRU 81.40 = 11.16

CSP + Deep Net 81.05 £ 10.79

CSP + Multibranch 80.42 +7.68

FREQ + Bi-GRU 72.63 £10.18

FREQ + Deep Net 68.38 +11.48

FREQ + Multibranch 68.23 £9.35

)

level performance (approximately 20%) [35]. This
shows that subjects were able to give signals discrimi-
natory enough for the decoding.

Crops yielded better performance in shallow net-
works compared with the deep net

The results from the use of crops across the neu-
ral networks yielded varying performances, which we
attribute to their respective architectures. For the multi-
branch network, results show that using crops gave
significantly better results than with the trial-wise form
(p = 1.32E-02 < 5E-02). The reverse was observed
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TABLE 5. Results of SOTA classifiers.

FIGUR!
study.
depict
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i,

Mean accuracy (%)
%
o

Subject Session Kaya et al. CSP + LDA CSP +SVM | FREQ. + LDA |FREQ. + SVM
(Date) (%) (%) (%) (%) (%)
A 160223 68 71.52 72.12 52.73 55.15
160308 69 85.26 76.84 73.68 72.63
160310 77 76.28 75.64 63.46 62.82
B 160218 66 61.17 61.70 44.15 38.30
160225 44 44.38 51.69 37.64 35.96
160229 40 73.91 73.91 47.83 46.74
C 160224 88 88.07 82.95 75 71.59
160302 77 91.98 89.3 80.75 76.47
E 160219 57 59.88 59.28 43.11 45.51
160226 61 51.33 59.33 50 52.67
160304 54 68.75 71.35 56.25 51.56
F 160202 58 67.72 66.67 65.08 62.96
160203 63 56.45 62.37 64.52 55.38
160204 78.95 60 55.79 63 77.37
G 160301 79 80.14 76.71 49.32 47.26
160322 58 66.12 71.04 38.25 38.80
160412 77 84.67 78.67 53.33 56.67
H 160720 40 26.67 32.67 31.33 30.67
160722 40 44.38 41.88 32.50 35.62
I 160609 62 46.89 51.98 45.2 42.94
160628 30 24.10 32.53 28.31 30.72
J 161121 98 96.77 95.70 77.42 67.20
K 161027 65 59.32 61.02 53.11 50.28
161108 55 65.43 64.36 60.11 61.17
L 161116 83 78.88 81.37 52.17 58.39
161205 83 89.89 92.13 69.10 75.28
M 161108 88 58.56 59.67 52.49 52.49
161117 73 90.76 89.67 73.91 73.91
161124 55 77.37 77.89 57.37 50.53
B Crops + Multibranch [ TW + Deep Net I CSP + BIGRU difference in performance using either approach (p =

CSP + Deep Net [ CSP + Multibranch [ TW + Multibranch

Il Crops + BiGRU B TW + BiGRU M Crops + Deep Net

M FREQ + BiGRU Il FREQ + Deep Net B FREQ + Multibranch

E 5. Summary box plot of deep learning methods stated in the
Bars are shown in descending order of mean accuracy. Crosses
the mean value.

in the case of the deep net, for which the trial-wise
approach gave significantly better results than the use
of crops (p = 4.37E-05 < 5E-02). Contrary to the
observed results of these two, the BIGRU showed no

9.15E-01 > 5E-02). From these, we infer based on
the network architectures that performance with crops
tends to degrade with a deep network but with shal-
low networks, performance obtained is similar to that
of the trial-wise form, as in the case of the BiGRU,
or better as with the multibranch network. We infer that
the multibranch network particularly had better perfor-
mance since the branches were shallow networks and
the branched structure provided more stability com-
pared to others with unbranched structures. Branches
may provide stability by combining knowledge learnt
across branches to form a more robust classification
decision. We, therefore, recommend the use of multi-
branch shallow networks with crops, for improved
and more stable results. This is somewhat comparable
with a related work [24], where improvements were
noticed with crops, but only in high frequencies. This
then means that crops-based improvements might be
dependent on different factors, such as the frequencies
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TABLE 6. Results of raw data with deep learning-based classifiers.

1)

Subject Session Trial-wise + | Trial-wise + | Trial-wise + | Crops + Bi- | Crops + | Crops +
Bi-GRU Deep Net Multibranch | GRU Deep Net Multibranch
(Date) (%) (%) (%) (%) (%) (%)
A 160223 86.98 84.90 78.89 72.62 72.99 79.90
160308 84.85 91.90 77.93 78.92 75.93 86.04
160310 80.21 83.87 85.35 82.83 71.11 77.08
B 160218 73.33 77.03 67.11 72.81 64.65 72.52
160225 65.15 59.09 68.57 76.77 57.84 75.98
160229 78.79 84.34 75.49 70.20 74.51 83.33
C 160224 83.85 90.32 80.21 88.43 90.20 94.44
160302 95.05 92.93 91.67 76.67 77.96 83.33
E 160219 78.65 82.81 80.30 78.57 69.19 79.03
160226 68.28 77.22 81.67 77.62 66.19 76.32
160304 72.55 79.52 77.14 79.44 77.08 79.17
F 160202 77.14 87.96 74.77 69.61 70 79.80
160203 75.98 82.88 72.86 76.39 69.05 79.29
160204 71.93 85.96 79.63 76.47 70 78.10
G 160301 90.91 86.27 76.67 77.78 83.89 88.24
160322 70.72 80.30 76.47 80.63 75.71 83.33
160412 87.37 86.87 74.29 76.04 84.34 85.14
H 160720 43.89 60.22 72.04 73.81 57.53 77.60
160722 64.44 73.66 63.24 58.59 61.90 71.26
I 160609 69.66 63.64 75.68 75.52 60.75 77.78
160628 60.95 48.92 73.12 67.71 58.59 78.65
J 161121 95.37 98.48 96.46 93.94 92.86 93.43
K 161027 73.23 82.83 71.72 76.96 62.50 81.82
161108 79.73 87.50 76.39 74.54 66.19 80.56
L 161116 88.17 83.87 86.76 83.33 84.34 93.14
161205 90.95 94.12 88.89 94.12 86.36 91.92
M 161108 74.77 70.95 76.19 79.52 78.12 77.08
161117 87.14 97.22 93.63 78.43 74.12 75.93
161124 83.33 87.62 78.28 90.74 98.10 95.45

present, length of signals or architecture of networks.
It would be worth investigating these factors in detail.
Neural networks generally perform optimally but
can be exploited to yield improved results in suitable
scenarios

Using the trial-wise approach, the Deep net outper-
formed BiGRU (p = 5.05E-03 < 5E-02) but had no
significant difference compared to the multibranch net-
work (p = 7.15E-02 > 5E-02). Using crops, on the other
hand, resulted in the multibranch network performing
significantly better than Deep net while attaining simi-
lar performance as the BiGRU. Comparisons amongst
the networks do not generally show one as better com-
pared to others, as each network performed best of all
in different scenarios, while performing optimally in
general. We, therefore, infer that all networks perform
optimally but can be more suited to specific scenarios.
For instance, it might be preferable to use multibranch

VOLUME 10, 2022

V)

shallow networks when cropping is applied and deep
networks when not applied.

The use of SOTA features with NNS could yield
improved results

The use of CSP features yielded better or similar per-
formance with most networks. With the BiGRU, for
instance, using CSP significantly outperformed TW
(p = 3.28E-03 < 5E-02) but yielded similar perfor-
mances with TW, using the deep net (p = 6.35E-01 >
5E-02) and slightly better performance with the multi-
branch network (p = 2.42E-02 < 5E-02). As noticed
in other cases, the use of spectrograms gave worse
results. This leads us to conclude, in this case, that
the use of CSP does help improve neural network
performance. However, not always by a significant
margin. The benefits of using CSP for decoding with
neural networks would have to be measured against
the corresponding computational cost associated with
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TABLE 7. Results of SOTA feature extraction with deep learning-based classifiers.

Subject Session CSP + Bi-|CSP + Deep | CSP + | FREQ. + Bi- | FREQ. + | FREQ. +
GRU Net Multibranch | GRU Deep Net Multibranch
(Date) (%) (%) (%) (%) (%) (%)
A 160223 88.54 81.67 73.66 69.89 70.83 65.2
160308 91.67 91.20 86.19 86.27 82.83 80.88
160310 85.56 84.80 85 74.44 72.92 77.59
B 160218 82.86 73.87 75.24 59.46 64.14 56.37
160225 58.82 69.27 74.32 70.27 45.10 62.25
160229 80.88 74.07 76.26 64.29 63.24 63.81
C 160224 87.88 85.71 86.27 82.83 70.10 75.98
160302 95.96 95.37 90.91 87.88 88.24 79.41
E 160219 82.78 81.25 80.73 65.59 60.75 56.77
160226 82.76 76.11 82.26 65.56 76.11 71.08
160304 85.14 84.29 73.61 77.93 66.20 72.92
F 160202 85.71 85.04 83.81 76.77 68.14 72.97
160203 72.40 83.82 75.23 69.05 73.44 70.71
160204 83.33 85.19 78.28 62.63 62.04 65.28
G 160301 87.93 90.32 78.49 68.14 72.92 60.48
160322 83.33 79.90 74.76 68.69 56.25 59.60
160412 74.29 88.17 87.14 71.72 65.69 57.84
H 160720 55 60.61 77.42 55.21 59.77 52.53
160722 65.15 60.94 72.73 59.31 60.95 63.73
I 160609 65.71 63.89 69.12 71.93 52.25 66.15
160628 61.76 57.78 72.58 59.80 42.71 52.60
J 161121 98.48 97.47 97.14 93.63 90.20 83.85
K 161027 77.6 73.53 66.67 66.67 65.66 56.86
161108 82.35 85.78 76.75 72.86 70.10 68.14
L 161116 94.44 89.35 92.19 84.31 75 73.12
161205 93.55 94.44 90.62 90.28 84.31 75
M 161108 76.67 72.40 76.67 67.14 65.74 73.23
161117 95.71 93.94 94.76 90.69 88.38 88.57
161124 84.34 90.20 83.33 73.04 69.05 75.76
TABLE 8. Structure of the Bi-GRU in sequential order.
Layer Type Units Dropout rate Activation Output
Bidirectional GRU | 64 - tanh (None, 200, 128)
Dropout - 04 - (None, 200, 128)
Bidirectional GRU | 32 - tanh (None, 200, 64)
Dropout - 04 - (None, 200, 64)
Flatten - - - (None, 12800)
Dense 6 - linear (None, 6)
Activation - - softmax (None, 6)

V)
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computing CSP features before use in the neural
networks.

Neural network approaches significantly outper-
formed authors’ approaches

For most approaches using the neural nets, results were
significantly better than the authors’ reported results.
For instance, p-value comparisons of the TW + NN
against the authors’ results, give 5.64E-07, 7.10E-08

and 3.51E-06 (all < 5E-02) for the BiGRU, Deep Net
and multibranch networks, respectively.

This can be expected given a number of factors to
consider such as pre-processing, which was not done
by the authors; optimal feature and hyperparameter
searches, use of more sophisticated neural networks
with a careful consideration of network architec-
tures for optimality. Pre-processing helped to remove
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TABLE 9. Structure of the Deep Net in sequential order.

VI)

Layer Type |Filters Kernel size | Pool size Strides Dropout rate | Output

Input - - - - - (None, 1, 19, 200)

Conv 25 (1, 6) - - - (None, 25, 19,
195)

Conv 25 (1, 6) - - - (None, 25, 1, 195)

Batch Norm | - - - - - (None, 25, 1, 195)

Activation |- - - - - (None, 25, 1, 195)

(SELU)

Average - - (1, 3) (1,2) - (None, 25, 1, 97)

pooling

Dropout - - - - 04 (None, 25, 1, 97)

Conv 50 (1, 6) - - - (None, 50, 1, 92)

Batch Norm | - - - - - (None, 50, 1, 92)

Activation |- - - - - (None, 50, 1, 92)

(SELU)

Average - - (1, 3) (1,2) - (None, 50, 1, 45)

pooling

Dropout - - - - 0.4 (None, 50, 1, 45)

Conv 100 (1, 6) - - - (None, 100, 1, 40)

Batch Norm | - - - - - (None, 100, 1, 40)

Activation |- - - - - (None, 100, 1, 40)

(SELU)

Average - - (1,3) (1,2) - (None, 100, 1, 19)

pooling

Dropout - - - - 0.4 (None, 100, 1, 19)

Conv 200 (1, 6) - - - (None, 200, 1, 14)

Batch Norm | - - - - - (None, 200, 1, 14)

Activation |- - - - - (None, 200, 1, 14)

(SELU)

Max - - (1, 3) (1,2) - (None, 200, 1, 6)

pooling

Dropout - - - - 0.4 (None, 200, 1, 6)

Flatten - - - - - (None, 1200)

Dense 6 - - - - (None, 6)

Activation |- - - - - (None, 6)

(Softmax)

different forms of artifacts in the signals, strengthen-
ing the signal quality and therefore, yielding better
results from the learning. Also, optimal feature and
hyperparameter tuning helped to get a more general
set of values yielding optimal features and learn-
ing for the networks. The architectural choices made
also contributed to this. Our choices considered the
best-performing networks with as few parameters as
possible. All these resulted in improved results over
authors’ reported results.

Neural networks significantly outperformed SOTA
For other SOTA techniques, as applied in this study,
all feature parameter tuning and data enhancement
techniques were applied. With that, the results would
reveal how well SOTA performs, as compared with
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NNs, as these enhancements were applied to both
categories. Across neural network approaches, results
show that for all except where spectrograms were used
with the networks, performances were significantly
better (p-values from 4.94E-04 - 9.04E-09; all < 5E-02)
than for all SOTA approaches. This shows that neural
networks are more sophisticated and capable of giv-
ing better results over the SOTA. They should there-
fore be explored more for motor imagery decoding,
as they tend to capture task-relevant relationships in
the data much better than the prevalent techniques.
The challenge of having small number of data points
might be surmounted by carefully choosing architec-
tures suitable for such sizes. Also, transfer learning and
data augmentation might be helpful in such situations.
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TABLE 10. Structure of the Multibranch network in sequential order.

Layer Type Filters Kernel size | Pool size  [Strides | Dropout Output Connected
rate to
Input - - - - - [(None, 1, 19, 200)] | -
Conv, 40 (1,11 - - - (None, 40, 19, 190) | Input
Convy 40 (1,11) - - - (None, 40, 19, 190) | Input
Convs 40 (1,11) - - - (None, 40, 19, 190) | Input
Convy 40 (1,11) - - - (None, 40, 19, 190) | Input
Convs 40 (1,11) - - - (None, 40, 1, 190) Convy
Convg 40 (1,11) - - - (None, 40, 1, 190) Convy
Convy; 40 (1,11) - - - (None, 40, 1, 190) Convg
Convg 40 (1,11) - - - (None, 40, 1, 190) Convy
IBatch Norm; - - - - - (None, 40, 1, 190) Convs
IBatch Norms - - - - - (None, 40, 1, 190) Convg
IBatch Norms - - - - - (None, 40, 1, 190) Convy,
IBatch Normy - - - - - (None, 40, 1, 190) Convg
/Activation; (Square) - - - - - (None, 40, 1, 190) Batch
Norm;
/Activations (Square) - - - - - (None, 40, 1, 190) Batch
Norms
/Activationg (Square) - - - - - (None, 40, 1, 190) Batch
Normg
|Activationy (Square) - - - - - (None, 40, 1, 190) Batch
Normy
|Average poolingy - - (1, 33) (1,7) - (None, 40, 1, 23) Activation;
|Average poolings - - (1, 33) (1,7) - (None, 40, 1, 23) Activationy
|Average poolings - - (1, 33) (1,7) - (None, 40, 1, 23) Activationg
Average pooling, - - (1, 33) (1,7) - (None, 40, 1, 23) Activationy
/Activations (Log) - - - - - (None, 40, 1, 23) Average
pooling
/Activationg (Log) - - - - - (None, 40, 1, 23) Average
poolings
/Activation; (Log) - - - - - (None, 40, 1, 23) Average
poolings
/Activationg (Log) - - - - - (None, 40, 1, 23) Average
poolingy
Dropout; - - - - 0.5 (None, 40, 1, 23) Activationg
IDropouts - - - - 0.5 (None, 40, 1, 23) Activationg
Dropouts - - - - 0.5 (None, 40, 1, 23) Activation;
Dropouty - - - - 0.5 (None, 40, 1, 23) Activationg
Concatenate - - - - - (None, 40, 1, 92) Dropouty,
Dropout,,
Dropouts,
Dropouty
Convg 64 (10, 1) - - - (None, 64, 1, 92) Concatenate
/Activationg (RELU) - - - - - (None, 64, 1, 92) Convg
[Flatten - - - - - (None, 5888) Activationg
Dense 6 - - - - (None, 6) Flatten
|Activationg (Softmax) | - - - - - (None, 6) Dense

Given the approach detailed here, we recommend the
use of neural networks over the SOTA.

VII) Comparisons with other works

Not many works have explored the dataset used in this
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study. Of the few works that have [36]-[38], only two
performed classifications. In Shahbakhti et al. [36],
the authors investigated the detection and elimina-
tion of eye blinks from EEG trials but performed no
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classification. Other works by Phang and Ko [37]
and Mwata-Velu et al. [38] performed classification,
though with limited number of classes. Phang and
Ko [37] focused on left- and right- foot distinction
using CSP, band power and Pearson’s correlation-
based connectivity features with traditional SOTA
algorithms - SVM, LDA and KNN. While they
reported plausible results for the best-performing
method (86.26 + 9.95%), it should be noted that their
result is based on a binary decoding task. Also, the
authors did not explore deep learning methods, as done
in this study. Mwata-Velu et al. [38], on the other
hand, explored a hybrid CNN-LSTM architecture for
the classification of signals. The accuracy of their
three-class classifier of left-, right- and no- hand imag-
ined movements was reported to be 79.2%. As com-
pared with ours, they used a smaller number of classes
and reported less performance as compared with some
of our deep learning methods. Also, they did not report
exploring multiple architectures and making compar-
isons based on those. Finally, many of these works did
not perform pre-processing in the manner reported in
this study.

V. CONCLUSION

In this comparative study, we investigated the different
approaches to motor imagery decoding. SOTA techniques,
which have mostly been the use of CSP and frequency trans-
forms with SVM and LDA classifiers, were compared with
neural networks. We have presented our results categorized
by the different approaches and provided summaries of the
results and p-values for comparisons.

From the results, we conclude that neural networks are
suitable for motor imagery decoding and offer some improve-
ment over the SOTA. They are more sophisticated and capa-
ble of modelling underlying task relevant relationships in the
data and do not need specific feature extraction to perform
well or always boost their performance. As seen from the
results, using the raw data is suitable for motor imagery
decoding and while the use of specific feature extraction
might give some gains in performance, it’s not required for
optimal performance. Also, we conclude that the use of crop-
ping for data augmentation enhances performance, depending
on a factor such as the network architecture. As seen from the
results, cropping improved results in shallow networks but
worsened performance in the deep network. This leads us to
infer that the performance of crops in neural networks might
be affected by these factors - range of frequencies present (as
seen in Schirrmeister et al’s work [24]), network architecture
and, possibly, the length of the trial. Further investigation
needs to be done on other datasets of varying lengths to also
determine how much effect the length of trials has when
applying cropping for enhancements.

Considering the performances of the CSP-based SOTA
approaches, our conclusion is that when following a SOTA
approach, CSP is preferable for feature extraction. This is
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because it significantly outperforms other SOTA approaches
and offers more in terms of stability of features and results.
While we cannot state clearly which SOTA classifier per-
formed best, the results tend to show that SVM performed
better than LDA. From the results, we conclude in this
case, that deep learning-based techniques are better than
SOTA, as they show that deep learning-based techniques
outperformed SOTA approaches. Taking it further, deep
learning-based techniques might be improved using data
augmentation and model enhancement techniques, such as
transfer learning.

A limitation of this work is that we have not provided
time comparisons for each of the different approaches.
All experiments were run on Google’s Colab GPU - Tesla
T4. We, however, could not provide direct time comparisons
since the neural networks were optimized for running on a
GPU, while the core library used for the SOTA techniques
was not.

In future, we will apply transfer learning specifically
with the neural networks. This will involve intra-subject
and inter-subject transfer learning, to provide a solution to
the non-stationarity problem in the EEG experiments. Intra-
subject transfer learning would involve making use of knowl-
edge learnt from a previous session in another session, for
the same subject. Inter-subject transfer learning, on the other
hand involves making use of knowledge learnt from other
subjects across different sessions, for a target subject. With
this, we opine that there would be improvements in per-
formance of the neural networks, since previously learnt
knowledge can be useful in future sessions. Also, with model
adaptation, improvements are anticipated since the model
is adapted periodically. There, however, is the challenge of
finding the optimal adaptation frequency, with this approach.

APPENDIX A

TABLES OF RESULTS FROM ALL APPROACHES
See Tables 5-7.

APPENDIX B
TABULAR STRUCTURE OF THE NEURAL NETWORK

MODELS
See Tables 8-10.
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