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Abstract: To determine the role of Ca2+ signaling in activation of the 

Mitogen-Activated Protein Kinase (MAPK) pathway, we subjected MC3T3-E1 

pre-osteoblastic cells to inhibitors of Ca2+ signaling during application of fluid 

shear stress (FSS). FSS only activated ERK1/2, rapidly inducing 

phosphorylation within 5 minutes of the onset of shear. Phosphorylation of 

ERK1/2 (pERK1/2) was significantly reduced when Ca2+
i was chelated with 

BAPTA or when Ca2+ was removed from the flow media. Inhibition of both the 

L-type voltage-sensitive Ca2+ channel and the mechanosensitive cation-

selective channel blocked FSS-induced pERK1/2. Inhibition of phospholipase C 

with U73122 significantly reduced pERK1/2. This inhibition did not result from 

block of intracellular Ca2+ release, but a loss of PKC activation. Recent data 

suggests a role of ATP release and purinergic receptor activation in 

mechanotransduction. Apyrase-mediated hydrolysis of extracellular ATP 

completely blocked FSS-induced phosphorylation of ERK1/2, while addition of 

exogenous ATP to static cells mimicked the effects of FSS on pERK1/2. Two 

P2 receptors, P2Y2 and P2X7, have been associated with the anabolic 
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responses of bone to mechanical loading. Using both iRNA techniques and 

primary osteoblasts isolated from P2X7 knockout mice, we found that the 

P2X7, but not the P2Y2, purinergic receptor was involved in ERK1/2 activation 

under FSS. These data suggest that FSS-induced ERK1/2 phosphorylation 

requires Ca2+-dependent ATP release, however both increased Ca2+
i and PKC 

activation are needed for complete activation. Further, this ATP-dependent 

ERK1/2 phosphorylation is mediated through P2X7, but not P2Y2, purinergic 

receptors. 

Keywords: Osteoblast, Purinergic, ATP, Calcium channel, Fluid shear stress 

Introduction 

Skeletal structure and strength is dependent on the physical 

strains placed upon bone. Removal of mechanical stimuli during 

immobilization or in microgravity results in a rapid loss of bone mass, 

whereas application of exogenous mechanical loading leads to 

increased bone formation in the modeling skeleton (for review, see 

[1]). Various means of mechanically stimulating bone cells in vitro 

have been developed to simulate forces incurred in the skeleton. While 

none of these loading models completely replicate the stresses 

endured by bone cells in vivo, application of fluid shear produces many 

of the cellular responses considered to be anabolic in osteoblasts 

including release of prostaglandins [2, 3], nitric oxide [4] and 

increased expression of cyclooxygenase-2 (COX-2) [5–7]. 

To begin to understand how osteoblasts perceive and respond to 

mechanical stimulation, a time course of cellular events must be 

considered. One of the earliest recorded responses of osteoblasts to 

either fluid shear or strain is a rapid increase in intracellular Ca2+ [8, 

9] that is dependent on both extracellular and intracellular Ca2+ pools 

[10]. While we have demonstrated that changes in gene expression in 

response to fluid shear in osteoblasts is dependent on IP3-mediated 

Ca2+ release, several studies have suggested a role of Ca2+ entry 

through ion channels. Numerous ion channels have been characterized 

in osteoblasts (for review, see [11]) and two Ca2+-conducting channels 

have been linked to mechanotransduction in bone cells: the L-type 

voltage-sensitive Ca2+ channel (L-VSCC) and the mechanosensitive 

cation-selective channel (MSCC). Inhibition of the MSCC during 

mechanical stimulation has been shown to reduce the release of PGE2 
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in osteocytes [12], TGF-β1 in osteoblastic cells [13] and NO in ex vivo 

organ cultures [14]. The L-VSCC has been shown to control 

development and growth of bone [15] and to regulate proliferation of 

osteoblasts [16]. We have also shown that inhibition of this channel 

significantly reduces mechanically-induced bone formation in rats and 

mice [17]. 

Following the increase in Ca2+
i, mechanical stimulation activates 

various cellular signaling pathways, including Mitogen-Activated 

Protein Kinase (MAPK). MAPK is a family of kinases consisting of 

Extracellular signal-Regulated Kinase (ERK), c-Jun N-terminal kinase 

(JNK) and p38 kinase. Each of these kinases is activated by dual 

phosphorylation on threonine and tyrosine residues [18]. These 

members of the MAPK family have been implicated in the regulation of 

cellular growth, differentiation and apoptosis in numerous cell types 

[19–22] including osteoblasts [23, 24]. Several studies have shown 

that ERK1/2 is activated by fluid shear in osteoblasts [7, 25, 26]. 

Studies have also shown that Ca2+
i is important to ERK1/2 activation in 

osteoblasts [24, 27], although it is unclear whether this Ca2+
i-induced 

activation results from extracellular Ca2+ entry or intracellular Ca2+ 

release. 

We have recently shown that ATP is rapidly released from 

MC3T3-E1 pre-osteoblastic cells within 1 minute of the onset of fluid 

shear [28]. This shear-induced ATP release was dependent on the Ca2+ 

entry through both L-VSCC and MSCC. Extracellular ATP binds to two 

classes of purinergic receptors: P2X receptors, which are ligand-gated 

ion channels, and P2Y receptors, which are G-protein coupled 

receptors [29]. Two isoforms of P2 receptors, P2Y2 [30] and P2X7 [31], 

have been associated with osteoblast activation and the anabolic 

response of bone to mechanical loading. However, little is known about 

how ATP release and P2 receptor activation regulates skeletal integrity 

and mechanically-induced responses in osteoblasts. 

In this study, we examined the role of Ca2+
i and ATP release on 

the activation of ERK1/2 in response to fluid shear in MC3T3-E1 pre-

osteoblastic cells. We find that extracellular Ca2+ entry through both 

the MSCC and L-VSCC, but not Ca2+
i release, was essential for the 

activation of ERK1/2. We further demonstrate that protein kinase C 

activation contributes to the Ca2+-dependent phosphorylation of 
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ERK1/2. We also show that this activation is dependent on ATP release 

and that activation of the P2X7 receptor is at least partially responsible 

for phosphorylation of ERK1/2. 

Materials and Methods 

Cell culture 

The pre-osteoblastic cell line, MC3T3-E1 (passage 10–20), were 

cultured in α-Minimal Essential Medium (α-MEM; Sigma Chemical, St. 

Louis, MO, USA) containing 10% fetal bovine serum (FBS; Atlanta 

Biologicals, Norcross, GA), 100U/ml penicillin G (Sigma) and 100μg/ml 

streptomycin (Sigma). Mother cultures were maintained in a 95% 

air/5% CO2 humidified incubator at 37°C and subcultured every 72 

hours. Primary calvarial osteoblasts from 3–5 day old neonatal WT and 

P2X7 null mice were harvested as previously described [32]. In brief, 

calvariae halves, excluding sutures, were surgically dissected and 

subjected to seven sequential 15-minute digestions with 1.5 U/ml 

collagenase P (Roche Molecular Biochemicals, Penzberg) in 0.05% 

trypsin/1 mM EDTA (Gibco) at room temperature, on a rocking 

platform. The first two digests were discarded, and the third to fifth 

digests of cells were pooled and centrifuged at 2000 rpm for 10 

minutes. The cells were re-suspended in α-MEM, passed through 40 

μm cell strainer (Falcon, Becton Dickinson, Franklin Lakes, NJ), and 

regularly cultured in α-MEM. 

Fluid shear stress (FSS) studies 

For fluid shear experiments, either MC3T3-E1 cells or primary 

osteoblasts were seeded onto type I collagen-coated (10μg/cm2, BD 

Biosciences, Bedford, MA) 75 × 38 mm2 glass slides (Fisher Scientific, 

Pittsburgh, PA) at a density of 2000 cells/cm2. When the glass slides 

reached 90% confluency (2–3 days), the cells were serum-starved for 

24 hours in 0.2% FBS supplemented α-MEM prior to flow. Fluid flow 

was applied to the cell monolayer in a parallel plate flow chamber 

using a closed flow loop, as previously described [33]. This system 

uses a constant hydrostatic pressure head to drive media through the 

flow chamber, subjecting the cell monolayer to steady laminar flow 

and producing a well-defined FSS of 12 dynes/cm2. The entire 

http://dx.doi.org/10.1016/j.bone.2007.09.058
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apparatus was maintained at 37°C and the medium was aerated with 

95% air/5% CO2 during experiment. In time-course studies, the cells 

were subjected to FSS for 0, 5, 15, 30 or 60 minutes. For the 

remaining experiments in this study, MC3T3-E1 cells were sheared for 

30 minutes only. 

Pharmacological Agents 

To determine the role of Ca2+
i or extracellular Ca2+ entry on 

pERK1/2 during shear, either 1,2-Bis(2-amino-phenoxy)ethane-

N,N,N′,N′-tetraacetic acid (BAPTA-AM; 30μM) or Ca2+-free media (JRH 

Biosciences, Lenexa, KS) with an addition of 2mM EGTA was used, 

respectively. The role of the L-VSCC or MSCC was determined by 

treating the cells 30 min prior to and during shear with two L-VSCC 

blockers—nifedipine (5μM) or verapamil (5μM)—or with the non-

specific MSCC blocker, GdCl3 (10μM). Phospholipase C (PLC) and 

intracellular Ca2+ release were inhibited with the selective PLC 

inhibitor, U73122 (10μM), or thapsigargin (1 μM), respectively. To 

inhibit protein kinase C (PKC), the PKC specific blocker, GF109203X (1 

μM, Biomol, Plymouth Meeting, PA), was used. Each of these agents 

were added to the cells 30 min prior to application of FSS and 

maintained in the flow medium for the duration of the experiment. 

Exogenous ATP (10μM) was added to static, or non-sheared, cells. 

Extracellular ATP was hydrolyzed with apyrase (5U/ml) which was 

maintained in the flow medium for the duration of the experiment. All 

reagents were purchased from Sigma Chemical (Sigma, St. Louis, MO) 

unless otherwise indicated. 

iRNA design and transfection 

MC3T3-E1 cells were transfected with P2Y2 iRNA that was 

designed using software provided by Ambion (Austin, Texas) and 

synthesized by Dharmacon (Lafayette, CO). The sequence of the sense 

and antisense dsRNA of P2Y2 was 5′-

AGATATAGAGAGCCACGACGCCTGTCTC-3′ (sense) and 5′-

AACGTCGTGGCTCTCTATATCCCTGTCTC-3′ (anti-sense) (Gene Bank 

accession no. BC006613). Scrambled iRNA was obtained from 

Dharmacon (Lafayette, CO, USA) and used as control. To maintain 

identical culture conditions as used in flow experiments, cells were 

http://dx.doi.org/10.1016/j.bone.2007.09.058
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seeded on 75 × 38 mm2 glass slides at a density of 2–5 × 104 per 

slide and cultured in α-MEM supplemented with 10% FBS without 

antibiotics. Once the slides reached a confluency of 30–35%, the cells 

were rinsed with OptiMEM once, and the cell monolayer was covered 

with 1ml freshly prepared transfection mixture containing iRNA (50nM) 

and oligofectamine (0.2%, v/v) in OptiMEM for 12 hours. Afterwards, 

12ml of fresh α-MEM medium with 10% FBS was added to cover the 

cell monolayer to rescue the cells from transfection. The cells were 

then lysed at a sequential time points (24, 48, 72, and 96 hrs) to 

determine the magnitude and duration of P2Y2 suppression. When 

used for flow experiments, the transfected cells were cultured for 24 

hours after transfection, followed by serum starving for 24 hours prior 

to subjecting the cells to FSS. For FSS experiments, transfected cells 

were divided into 4 groups; 1) iRNA + flow, 2) iRNA static control, 3) 

Scrambled iRNA + flow, and 4) Scrambled iRNA static control. 

Western blot analysis 

The cells were washed quickly with cold PBS (1X), lysed with 2X 

sample buffer on ice and immediately boiled for 5 minutes. The lysis 

buffer contained 5mM HEPES (pH 7.9), 150mM NaCl, 26% glycerol 

(v/v), 1.5mM MgCl2, 0.2mM EDTA, 0.5mM dithiothreitol and 0.5mM 

phenylmethylsulfonyl fluoride. Before separation, the protein samples 

were centrifuged at 14,000g for 10 minutes at room temperature to 

remove any cellular debris. Twenty micrograms of whole cell lysate 

and a pre-stained molecular weight marker (Bio-RAD Laboratories, 

Hercules, CA) were boiled for 5 minutes, separated by 10% SDS-

polyacrylamide gel electrophoresis and electrotransferred to a 

nitrocellulose membrane. Membranes were blocked in Tris-buffered 

saline containing 5% nonfat dry milk and 0.1% Tween-20 (TBST) and 

incubated with 1 μg/ml (1:1000) rabbit anti-ERK1/2, mouse anti-

pERK1/2, rabbit anti-pJNK, rabbit anti-pp38 (Biosource International, 

Camarillo, CA) or mouse anti-vinculin antibodies overnight at 4°C. The 

antibodies were purchased from Santa Cruz Biotechnology (Santa 

Cruz, CA) unless otherwise indicated. Following three washes in TBST, 

the membranes were incubated with goat anti-rabbit or goat anti-

mouse IgG hydroperoxidase conjugated secondary antibodies (1:5000) 

for 1 hour at room temperature. Immunodetection was determined 

using the enhanced chemiluminescence (ECL) method. Densitometry 

http://dx.doi.org/10.1016/j.bone.2007.09.058
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measurement was made by using Fuji Imaging software. For 

quantification, densitometries of pERK1/2 gel bands were normalized 

to that of total ERK1/2. 

Statistical analysis 

In this study, each single experiment was repeated for at least 3 

times on three different passages of MC3T3-E1 or three different 

primary cell isolations. Densitometries of gel bands were presented as 

mean ± SD in graphs. Differences between the means were 

statistically analyzed using two-way ANOVA, and the significance was 

considered when p values were less than 0.05. 

Results 

Fluid shear stress induces phosphorylation of ERK1/2 in 

MC3T3-E1 pre-osteoblasts 

Several studies have indicated that MAPK is activated in 

osteoblasts in response to mechanical stimulation, however which of 

the MAPK isoforms responds to loading is controversial [7, 24]. We 

examined changes in the phosphorylation of the three members of the 

MAPK family to determine which isoform is phosphorylated in MC3T3-

E1 osteoblasts in response to FSS. MC3T3-E1 cells were subjected to 

12 dynes/cm2 continuous, laminar flow for 0, 5, 15, 30, 60 minutes. Of 

the three MAPK isoforms, only ERK1/2 was significantly 

phosphorylated (pERK1/2) within 5 minutes after the onset of flow, 

and phosphorylation peaked at 30 min (Figure 1). Phosphorylation of 

p38 (pp38) was not altered by FSS and phosphorylated JNK1/2 

(pJNK1/2) was not detectable. Thus, we focused the remainder of this 

study on phosphorylation of ERK1/2. 

http://dx.doi.org/10.1016/j.bone.2007.09.058
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Figure 1 :FSS-induced phosphorylation of MAPK isoforms in MC3T3-E1 

MC3T3-E1 pre-osteoblasts were subjected to 12 dynes/cm2 FSS for 0, 5, 15, 

30 or 60 minutes. This representative western blot shows an increase in 

ERK1/2 phosphorylation within 5 min of the onset of shear, whereas JNK and 

p38 were not mechanoresponsive. 

Ca2+ entry through MSCC and L-VSCC is essential for 

the FSS-induced phosphorylation of ERK1/2 

Initial studies were performed to examine the role of Ca2+
i 

mobilization on the observed FSS-induced ERK1/2 phosphorylation. 

Chelation of Ca2+
i with BAPTA significantly attenuated the 

phosphorylation of ERK1/2 in response to shear (Figure 2A), indicating 

that alterations in Ca2+
I are required for FSS-induced ERK 

phosphorylation. Hung et al. demonstrated that extracellular Ca2+ 

entry through ion channels was essential for the shear-induced 

increase in Ca2+
i [10]. In order to determine whether Ca2+ entry was 

required for ERK1/2 phosphorylation, cells were sheared in the 

presence of Ca2+-free media supplemented with 2mM EGTA. In 

contrast to cells sheared in the presence of Ca2+-containing αMEM, the 

use of Ca2+-free media abolished FSS-induced ERK1/2 phosphorylation 

(Figure 2B). To determine which ion channel was responsible for Ca2+ 

entry, MC3T3-E1 cells were treated with different Ca2+ channel 

inhibitors for 30 min prior to, and during, application of FSS. Inhibition 

http://dx.doi.org/10.1016/j.bone.2007.09.058
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of either the MSCC with GdCl3 (10 μM) or the L-VSCC with nifedipine 

(5 μM) reduced ERK1/2 phosphorylation in response to FSS by 

approximately 75% (Figure 2B). Similar attenuation of pERK1/2 levels 

in response to FSS were observed using another L-type VSCC 

antagonist, verapamil (5 μM). The combination of gadolinium and 

nifedipine did not significantly reduce FSS-induced ERK1/2 

phosphorylation below that of each inhibitor alone (data not shown). 

These data indicate that Ca2+ entry through both the MSCC and the L-

VSCC is essential for the FSS-induced ERK1/2 phosphorylation. 

 

 
Figure 2: FSS- induced ERK1/2 phosphorylation requires increases in 

Ca2+i entry through the MSCC and L-type VSCC 

A. MC3T3-E1 osteoblasts were treated with the Ca2+i-chelating agent BAPTA 

(30μM) for 30 minutes prior to FSS. Addition of BAPTA significantly 

attenuated FSS-induced ERK1/2 phosphorylation. If Ca2+ was removed from 

the shear medium, ERK1/2 phosphorylation induced by shear was significantly 
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decreased; similar to BAPTA pretreatment. B. Pretreatment of MC3T3-E1 cells 

with either the MSCC inhibitor, gadolinium (10μM), or the L-VSCC inhibitors, 

nifedipine (5μM) for 30 min significantly inhibited ERK1/2 phosphorylation by 

50–75%. Values were expressed as mean ± S.D. (n=3). * p<0.05; 

**p<0.01) when comparing FSS groups to static controls. 

PLC/PKC signaling, but not intracellular Ca2+ release, 

contributes to the FSS-induced phosphorylation of 

ERK1/2 

The Ca2+
i response to shear is also dependent on intracellular 

Ca2+ release [10]. Since intracellular Ca2+ release is mediated by 

activation of the PLC-IP3 pathway in osteoblasts, we examined the 

effect of PLC inhibition with U73122 (10 μM) on FSS-induced pERK 

activation. U73122 significantly inhibited the FSS-induced ERK1/2 

activation by approximately 50%. (Figure 3). Because PLC activates 

both IP3-medated intracellular Ca2+ release and diacylglycerol-

dependent PKC activation, intracellular calcium stores were depleted 

with thapsigargin (1 μM), as previously used [5]. FSS-induced ERK1/2 

phosphorylation was unaffected by loss of intracellular Ca2+ release 

(Figure 3). However, pre-treatment with the general PKC inhibitor, 

GF109203X (1 μM), significantly inhibited the FSS-induced pERK1/2 by 

55%, mimicking the effect of U73122 (Figure 3). These data indicate 

that PKC activation, but not intracellular Ca2+ release, is required for 

maximal ERK1/2 phosphorylation in response to FSS. 

 
Figure 3: PLC activation of PKC, but not intracellular Ca2+ release, is 

required for maximal shear-induced ERK1/2 phosphorylation 
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MC3T3-E1 osteoblasts were treated with the PLC antagonist U73122 (10μM) 

or the general PKC antagonist GF109203X (1 μM) for 30 minutes prior to and 

during shear. To determine the role of intracellular Ca2+ release, XX μM 

thapsigargin was added 1 hour prior to shear. Inhibition of PLC with U73122 

or PKC with GF109203X significantly attenuated pERK1/2 to approximately 

50% of sheared controls, while thapsigargin had no effect on shear-induced 

ERK1/2 phosphorylation. Values were expressed as mean ± SD (n=5). * 

p<0.05; ** p<0.01 when compared to sheared controls. 

Purinergic signaling mediates the effect of FSS on 

ERK1/2 phosphorylation 

Fluid shear induces Ca2+-dependent ATP release from MC3T3-E1 

osteoblasts within 1 min of the onset of shear [28]. Since we 

demonstrated that ERK1/2 activation is Ca2+-dependent, we sought to 

define the interaction of purinergic receptor activation on ERK1/2 

phosphorylation in response to fluid shear. FSS-induced ERK1/2 

phosphorylation was significantly attenuated when extracellular ATP 

was hydrolyzed with apyrase (5 U/ml) (Figure 4A). Similar results 

were obtained for cells treated with the non-specific purinoceptor 

antagonist suramin (100μM; data not shown). The addition of 

exogenous ATP (10 μM) to static osteoblasts mimicked the effects of 

FSS, inducing ERK1/2 phosphorylation within 5 min of addition (Figure 

4B). Hydrolyzing exogenous ATP with apyrase (5U/ml) effectively 

blocked ERK1/2 phosphorylation. 
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Figure 4: Purinergic signaling mediates FSS-induced ERK1/2 

phosphorylation 

A. MC3T3-E1 cells were sheared for 30 min at 12 dynes/cm2 FSS in the 

presence of apyrase (5U/ml). Hydrolysis of extracellular ATP significantly 

inhibited the phosphorylation of ERK1/2 in response to shear. B. Static 

MC3T3-E1 cells were treated with exogenous ATP (10μM) or ATP + apyrase 

for 5 min. ATP increased phosphorylation of ERK1/2 within 5 min, but co-

addition of apyrase prevented ERK1/2 phosphorylation. 

FSS-induced ERK1/2 phosphorylation involves P2X7 

receptor activation in MC3T3-E1 osteoblasts 

Knockout of the P2X7 receptor results in a skeletal phenotype 

similar to the effects of disuse [31] and significantly reduces the 

mechanosensitivity of the skeleton [34]. Primary osteoblasts isolated 

from P2X7 knockout mice demonstrated a significant reduction in ERK 

phosphorylation in response to shear when compared to WT primary 

osteoblasts (Figure 5A). Interestingly, the addition of apyrase to P2X7 

KO osteoblasts further suppressed FSS-induced ERK1/2 

phosphorylation in P2X7
−/− osteoblasts (Figure 5A), suggesting that 

other P2 receptors may be involved in this response. 
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Figure 5: Maximal purinergic regulation of ERK1/2 phosphorylation 

requires the P2X7 receptor 

A. Primary osteoblasts, isolated from wild-type or P2X7−/− mice, were 

subjected to fluid shear and ERK1/2 phosphorylation was assessed as above. 

ERK1/2 phosphorylation was attenuated 50% in P2X7−/− osteoblasts 

compared to wild-type primary osteoblasts. Addition of apyrase (5U/ml) to 

flow media abrogated ERK1/2 phosphorylation in response to shear. B. 

MC3T3-E1 cells were transfected with P2Y2 iRNA (50nM) for 12 hours, 

followed by post-incubation for 24, 48, 72 or 96 additional hours. Western 

analysis indicates the magnitude and duration of P2Y2 receptor suppression. 

C. Fluid shear stress elicited similar increases in ERK1/2 phosphorylation in 

both scramble and P2Y2-iRNA-transfected cells in response to fluid shear. 

Values are presented as mean ± S.D. (n=3). * p<0.05, **p<0.01 compared 

to WT FSS; +p<0.05 compared to sheared P2X7−/− osteoblasts without 

apyrase. 

Previously, the P2Y2 receptor has been shown to be important in 

controlling the Ca2+
i response to oscillating FSS in MC3T3-E1 cells 

[30]. iRNA was employed to suppress P2Y2 expression in order to 

examine its role in FSS-induced ERK1/2 phosphorylation. iRNA 

exhibited 80% suppression of the receptor protein within 24 hours of 

transfection, with significant suppression lasting more than 96 hours 
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(Figure 5B). Cells were subjected to fluid shear 48 hr after 

transfection, a time at which P2Y2 expression was maximally 

suppressed. We observed no difference in shear-induced ERK1/2 

phosphorylation between cells receiving either scrambled or P2Y2 iRNA 

(Figure 5C). 

FSS-induced ERK1/2 activation is required for 

osteopontin expression 

Previous studies have determined that activation of MAPK is 

essential to expression and production of osteopontin, an extracellular 

matrix protein associated with osteogenesis (31). Application of FSS to 

MC3T3-E1 osteoblasts induces a 2-fold increase in osteopontin 

production 6 hours after the onset of shear. To confirm that 

phosphorylation of ERK1/2 is required for this increase in osteopontin, 

MC3T3-E1 cells were treated with U0126 for 1 hr prior to application of 

shear (Figure 6). Inhibition of ERK1/2 by U0126 completely blocked 

the FSS-induced increase in osteopontin. 

 
Figure 6: ERK1/2 phosphorylation is required for increased 

osteopontin (OPN) production in response to shear 

U0126 (20μM), an inhibitor of ERK, was added to MC3T3-E1 osteoblasts 1 hr 

prior to application of fluid shear. Western analysis indicates that inhibition of 

ERK phosphorylation completely abrogated the increase in OPN production in 

response to FSS. (n=3; * p<0.05). 

 

Discussion 

Although the anabolic effects of mechanical loading on bone 

have been well documented, how osteogenic cells perceive a 
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mechanical stimulus and translate it into biochemical signals still 

remains unclear. We have postulated that Ca2+ signals arising from 

mechanical activation of plasma membrane ion channels play a 

significant role in mechanotransduction. These studies indicate that 

Ca2+ entry through the MSCC and L-VSCC stimulates the 

phosphorylation of ERK1/2 through activation of purinergic receptors. 

While we have shown that knockout of the P2X7 receptor significantly 

reduces ERK1/2 phosphorylation in response to FSS, this response was 

not ablated, suggesting that other possible mechanisms or other 

purinergic receptors are involved in the activation of ERK1/2 in 

response to mechanical stimulation. 

MAPK is a family of protein kinases consisting of three isoforms: 

ERK1/2, JNK and p38 [18]. These kinases have been shown to be 

important in the proliferation, growth, differentiation in many cell 

types [19–22] including osteoblasts [23, 24]. Activation of MAPK has 

been shown to be important in shear-induced increases in OPN [35] 

and COX-2 mRNA expression [7] and cell proliferation [26]. In the 

present study, we found that only ERK1/2 was activated by fluid shear, 

becoming phosphorylated within 5 minutes of the onset of flow with 

peak activation observed after 30 minutes. This observation is 

consistent with previous studies [24, 26], however others have shown 

that additional MAPK isoforms are sensitive to mechanical stimulation. 

You et al. [35] reported that both ERK1/2 and p38 were activated in 

MC3T3-E1 cells were exposed to oscillating fluid flow. These conflicting 

observations could result from differences in experimental procedure 

(i.e., serum concentrations) or design (steady versus oscillatory fluid 

shear). Alternately, p38 and JNK have been shown to be sensitive to 

oxygen pressure [20], a factor which could influence the results from 

cells exposed to oscillatory or steady fluid shear. 

The earliest recorded response of osteoblasts to mechanical 

stimulation is a rapid increase in Ca2+
i that is dependent on both 

extracellular Ca2+ entry and Ca2+ release [10]. However this increase 

in Ca2+
i in osteoblasts in response to mechanical loading has yet to be 

assigned a detailed function. We have shown this increase is required 

for release of ATP [28] and for the translocation of NF-κB in MC3T3-E1 

cells in response to shear [36]. In this study, we found that chelation 

of Ca2+
i with BAPTA completely abolished the FSS-induced pERK1/2, 

indicating that Ca2+
i is critical for the phosphorylation of ERK1/2. 
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To clarify which Ca2+ pool is important in ERK1/2 

phosphorylation, we first removed Ca2+ from the shear medium. 

Removal of extracellular Ca2+ almost completely abrogated activation 

of pERK1/2 in response to shear (Figure 2B) indicating that Ca+ entry 

through a Ca2+-conducting channel was required for ERK1/2 

phosphorylation. We have previously characterized a 

mechanosensitive, cation-selective channel (MSCC) and an L-type 

voltage-sensitive Ca2+ channel (L-VSCC) in osteoblasts [37] that, we 

postulate, act in concert to increase Ca2+ entry in response to 

mechanical stimulation. We, and others, have shown these channels to 

be involved in increases in production and release of 

paracrine/autocrine factors [4, 12, 13, 28] and changes in gene 

expression [36, 38] in response to mechanical stimulation. We have 

recently shown that inhibition of the L-VSCC significantly attenuates 

bone formation associated with mechanical loading in rats and mice 

[17]. Our results from this study demonstrate that inhibition of both 

the MSCC and L-VSCC significantly reduces the phosphorylation of 

ERK1/2 in response to fluid shear, further supporting our hypothesis 

that activation of these channels during mechanical stimulation are 

essential to mechanotransduction in osteoblasts. 

The Ca2+
i response to shear is also dependent on the release of 

Ca2+ from intracellular stores. In osteoblasts, intracellular Ca2+ release 

is induced by activation of PLC which hydrolyzes PIP2 to generate 

diacylglycerol and IP3. IP3, in turn, binds to a ligand-gated Ca2+ 

channel located in the membrane of the endoplasmic reticulum (ER) to 

enable Ca2+ release. We have previously shown that FSS can activate 

PLC in osteoblasts to induce translocation of NF-κB [36]. In addition, 

elevation of IP3 has been linked to prostaglandin and nitric oxide 

secretion in sheared osteoblasts [39]. Release of intracellular Ca2+ 

stores in response to FSS has also been shown to be involved in 

cytoskeletal reorganization and COX-2 gene expression in MC3T3-E1 

cells [5]. In this study, inhibition of PLC with U73122 significantly 

reduced phosphorylation of ERK1/2 although depletion of Ca2+ stores 

failed to inhibit ERK1/2 activation. These data would suggest that the 

phosphorylation of ERK1/2 is dependent on the activation of PKC by 

PLC. The activation of conventional PKC isozymes, such as PKCα and 

PKCβ, requires not only diacylglycerol and phosphatidylserine, but also 

Ca2+ [40]. Activation of PKC has been shown to mediate various FSS-

induced responses including gene expression and cytoskeletal 
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organization [12, 39, 41]. Interestingly, PKC mediates increases in 

shear-induced prostaglandin E2 (PGE2) release in rat osteoblasts [39] 

but not COX-2 gene expression [7]. In this study, we found that a 

inhibition of PKC with GF109203X significantly inhibited the FSS-

induced pERK1/2, suggesting that PKC activation also contributes to 

the FSS-induced phosphorylation of ERK1/2. 

ATP, released into the extracellular milieu, induces a host of 

physiologic responses through activation of purinergic (P2) receptors. 

P2 receptors have been found in most tissues, including osteoblasts 

[42] and activation of these receptors have been shown to mediate 

intracellular Ca2+ signaling in osteoblasts [43]. We have recently 

shown that subjecting MC3T3-E1 cells to 12dynes/cm2 FSS for 15 

minutes produced an increase (>5-fold) in ATP release that was 

predominantly released within the first minute of shear. This FSS-

induced ATP release could be significantly abrogated by the L-VSCC 

inhibitor nifedipine. However, inhibition of intracellular Ca2+ release 

had no effect on ATP release [28]. Thus, a potential mechanism for the 

fluid shear-induced increase in pERK1/2 involves activation of P2 

receptors following ATP release in response to fluid shear. Here, we 

find that exogenous ATP added to static MC3T3-E1 cells rapidly 

induced phosphorylation of ERK1/2, and that hydrolyzing ATP with 

apyrase significantly attenuated shear-induced ERK1/2 activation. 

These data indicate that release of nucleotides from osteoblasts during 

shear is critical for intracellular Ca2+ mobilization that in turn activates 

ERK1/2. 

Purinergic receptors can be divided into two subgroups; 

metabotropic P2Y receptors that induce intracellular Ca2+ release 

through activation of G proteins and ionotropic P2X receptors that are 

ligand-gated channels [29]. Osteoblasts express a variety of P2Y and 

P2X receptors [42] that have been associated with increases in Ca2+
i 

[43], propagation of Ca2+
i waves [44], activation of c-fos [45] and 

increases in proliferation [46, 47]. Recently, two P2 receptors have 

been linked to mechanotransduction in bone cells. P2Y2 receptor 

activation has been shown to be involved in Ca2+
i mobilization in 

response to oscillating shear [30]. Knockout of the P2X7 receptor 

decreases mechanosensitivity in mice in vivo and significantly reduces 

PGE2 release in osteoblasts [48, 49]. Previous reports indicate that 

P2Y2 receptors do not mediate ATP-induced bone resorption [45], and 
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here we find that suppression of this receptor using iRNA techniques 

failed to reduce shear-induced ERK1/2 phosphorylation. Thus, while 

P2Y2 receptors may modulate the Ca2+
i response to mechanical 

loading, this mechanism is not the sole pathway involved in 

mechanotransduction. Although P2Y2 suppression had no effect on 

FSS-induced ERK1/2 phosphorylation, ablation of the P2X7 receptor 

significantly attenuated pERK1/2 in sheared primary osteoblasts 

isolated from P2X7 knockout mice when compared to FSS-induced 

ERK1/2 activation in wild-type osteoblasts. This observation supports 

our previous data showing that P2X7 receptor activation was essential 

for PGE2 release and COX-2 production in MC3T3-E1 cells in response 

to FSS [48, 49]. However, hydrolysis of extracellular ATP by apyrase 

further attenuated FSS-induced ERK1/2 phosphorylation in osteoblasts 

isolated from P2X7 knockout mice, suggesting the involvement of 

another P2X or P2Y receptor in this response. Preliminary data from 

our laboratory (data not shown) suggests that the P2Y6 receptor may 

additionally mediate FSS-induced ERK1/2 phosphorylation. These data 

are consistent with findings by Korcok et al., who implicated both the 

P2X7 and P2Y6 receptors in NF-κB activation in osteoclasts [50, 51]. 

Such data emphasizes the need for continued study of purinergic 

signaling during mechanotransduction in osteoblasts. 

Based on the observations outlined in this study, a putative 

working model of signaling cascades involved in the FSS-induced 

phosphorylation of ERK1/2 emerges (Figure 7). In this model, fluid 

shear initially triggers the MSCC which results in membrane 

depolarization [52]. This depolarization, in turn, activates the L-VSCC 

which increases intracellular calcium in a discrete domain beneath the 

cell membrane. This increase of intracellular Ca2+ increases membrane 

fusion of vesicles to the plasma membrane to release ATP. 

Extracellular ATP can subsequently bind to two types of purinergic 

receptors, P2X and P2Y, which can either gate additional entry of Ca2+ 

and other cations into the cell to further activate the Ca2+-dependent 

events or initiate signaling cascades through activation of G-proteins. 

We show in this study that activation of PLC and, ultimately, PKC, 

influences the phosphorylation of ERK1/2. However the P2Y2 receptor 

does not appear to be involved in this response. From our data, it is 

clear that our working model is incomplete. While ATP binding to the 

P2X7 receptor is important in shear-induced phosphorylation of 

ERK1/2, loss of the receptor in knockout animals does not completely 
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block ERK1/2 phosphorylation. Further, how this ligand-gated channel 

activates ERK1/2 remains unknown. The data presented here indicates 

a direct role of calcium entry via the MSCC and L-VSCC and the 

resultant release of ATP in the activation of ERK1/2. 

 
Figure 7: Working model of ERK1/2 activation in response to fluid shear flow 

in osteoblasts. 
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