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Abstract: We propose a new four-parameter lifetime model with flexible hazard rate called the Burr
XII Power Cauchy (BXII-PC) distribution. We derive the BXII-PC distribution via (i) the T-X family
technique and (ii) nexus between the exponential and gamma variables. The new proposed distribution
is flexible as it has famous sub-models such as Burr XII-half Cauchy, Lomax-power Cauchy, Lomax-
half Cauchy, Log-logistic-power Cauchy, log-logistic-half Cauchy. The failure rate function for the
BXII-PC distribution is flexible as it can accommodate various shapes such as the modified bathtub,
inverted bathtub, increasing, decreasing; increasing-decreasing and decreasing-increasing-decreasing.
Its density function can take shapes such as exponential, J, reverse-J, left-skewed, right-skewed
and symmetrical. To illustrate the importance of the BXII-PC distribution, we establish various
mathematical properties such as random number generator, moments, inequality measures, reliability
measures and characterization. Six estimation methods are used to estimate the unknown parameters
of the proposed distribution. We perform a simulation study on the basis of the graphical results to
demonstrate the performance of the maximum likelihood, maximum product spacings, least squares,
weighted least squares, Cramer-von Mises and Anderson-Darling estimators of the parameters of the
BXII-PC distribution. We consider an application to a real data set to prove empirically the potentiality
of the proposed model.

Keywords: moments; inequality measures; residual life functions; reliability; maximum likelihood
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1. Introduction

Data analysis is imperative in every aspect of statistical analysis. The statistical characteristics
such as skewness, kurtosis, bimodality, monotonic and non-monotonic failure rates are obtained from
datasets. The selection of a suitable model for data analysis is challenging task because it depends on
the nature of the dataset. However, if a wrong model is applied to analyze the dataset it leads to loss of
information and invalid inferences. It is necessary to search and identify the most suitable model for
the given dataset.

In the recent decade, many continuous distributions have been introduced in statistical literature.
Some of these distributions, however, are not flexible enough for data sets from survival analysis, life
testing, reliability, finance, environmental sciences, biometry, hydrology, ecology and geology.
Hence, the applications of the generalized models to these fields are clear requisite. The
generalization techniques such as either inserting one or more shape parameters or transform of the
parent distribution are useful to (i) increase the applicability of a parent distribution; (ii) explore
skewness and tail properties and (iii) improve the goodness-of-fit of the generalized distributions. The
Cauchy distribution is the ratio of two independent normal variables if the denominator variable has
mean zero. The Cauchy distribution has wide applications in stochastic modeling of decreasing
failure rate life components, clinical trials and finance risks.

During the recent years, the Cauchy distribution has been shown great interest in literature such
generalized Cauchy [1], truncated Cauchy [2–4], beta-Cauchy [5–7], Marshall-Olkin half Cauchy [8],
beta-half Cauchy [9], Kumaraswamy-half Cauchy [10], Weibull power Cauchy [11] and modified
skew-normal-Cauchy distribution [12].

The Burr-XII (BXII) distribution among Burr family [13] is widely applied to model insurance data
and failure time data. Many generalizations of the BXII distributions are available in the literature such
as Burr XII power series [14], generalized Burr XII power series [15], Burr XII system of densities [16],
Burr XII inverse Rayleigh [17] and Burr XII- moment exponential [18].

The idea is to incorporate Cauchy distribution into a larger family through an application of the Burr
XII cdf. In fact, based on the T-X transform defined by [19], we construct the BXII-PC distribution.
The new model has flexible shapes to model various lifetime data sets. The moments of the Cauchy
distribution do not exist, but the BXII-PC distribution has moments. Additionally, its special models
produce better fits than other well-known models.

This study is based on the following motivations: (i) to generate distributions with symmetrical,
left-skewed, right-skewed, J and reverse-J shaped as well as high kurtosis; (ii) to have monotone and
non-monotone failure rate function; (iii) to derive mathematical properties such as ordinary moments,
incomplete moments, inequality measures, conditional moments, reliability measures and
characterization; (iv) to estimate the precision of the maximum likelihood, maximum product
spacings, least squares,weighted least squares, Cramer-von Mises and Anderson-Darling estimators
by means of Monte Carlo simulations; (v) to reveal the potentiality of the BXII-PC model; (vi) to
deliver better fits than other models and (vii) to infer empirically.

The content of the article is structured as follows. Section 2 derives the BXII-PC model from
(i) the T-X family technique and (ii) linking the exponential and gamma variables. We study basic
structural properties, random number generator and sub-models for the BXII-PC model. Section 3
presents certain mathematical properties such as ordinary moments, incomplete moments, inequality
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measures, conditional moments, reliability measures and characterization. Section 4 is devoted to
parameter estimation methods. Section 5 presents simulation studies on the basis of graphical results
to see the performance of maximum likelihood, maximum product spacings, least squares, weighted
least squares, Cramer-von Mises and Anderson-Darling estimators of the BXII-PC distribution. In
Section 6, we consider an application to illustrate the potentiality and utility of the BXII-PC model.
We test the competency of the BXII-PC model via various model selection criteria. In Section 7, we
offer some conclusions.

2. The BXII-PC distribution

We derive the BXII-PC distribution from the T-X family technique. We also obtain this model by
linking the exponential and gamma variables. We discuss basic structural properties. We highlight the
shapes of the density and failure rate functions.

2.1. T-X family technique

The cumulative distribution function (cdf) and probability density function (pdf) of the Power-
Cauchy distribution [20] are given, respectively, by

G (x) =
2
π

tan−1
(( x
θ

)κ)
, κ, θ > 0, x ≥ 0

and

g (x) =
2
π

κ

θ

( x
θ

)κ−1
[
1 +

( x
θ

)2 κ
]−1

, x > 0.

The cumulative hazard rate function of the Power Cauchy distribution is

W [G (x)] = − log [1 −G (x)] = − log
[
1 −

2
π

tan−1
(( x
θ

)κ)]
.

The cdf of the T-X family [19] of distributions has the form

F (x) =

∫ W[G(x;ξ)]

a
r(t)dt, x ∈ R, (2.1)

where r (t) is the pdf of the random variable (rv) T , where T ∈ [a, b] for −∞ ≤ a< b < ∞ and
W

[
G (x; ξ)

]
is a function of the baseline cdf of a rv X with the vector parameter ξ, which satisfies the

conditions:

i) W
[
G (x; ξ)

]
∈ [a, b] , ii) W

[
G (x; ξ)

]
is differentiable and monotonically non-decreasing and iii)

lim
x→−∞

W
[
G (x; ξ)

]
= a and lim

x→∞
W

[
G (x; ξ)

]
= b.

The pdf of the T-X family can be expressed as

f (x) =

{
∂

∂x
W

[
G (x; ξ)

]}
r
{
W

[
G (x; ξ)

]}
, x ∈ R. (2.2)
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We derive the cdf of the BXII-PC distribution from the T-X family technique by setting

r (t) = αβtβ−1
(
1 + tβ

)−α−1
, t > 0, α > 0, β > 0

and

W [G (x)] = − log
[
1 −

2
π

tan−1
(( x
θ

)κ)]
.

The cdf of the BXII-PC distribution takes the form

F (x) = 1 −
1 +

{
− log

[
1 −

2
π

tan−1
(( x
θ

)κ)]}β−α, x > 0, (2.3)

where α , β, κ, θ > 0 are the parameters.
The BXII-PC density can be expressed as

f (x) =
2αβκ
θπ

( x
θ

)κ−1
[
1 +

( x
θ

)2κ
]−1[

1 − 2π−1tan−1
(( x
θ

)κ)]−1

×{
− log

[
1 − 2π−1tan−1

(( x
θ

)κ)]}β−1
(
1 +

{
− log

[
1 − 2π−1tan−1

(( x
θ

)κ)]}β)−α−1

, x > 0. (2.4)

Hereafter, a rv with pdf (2.4) is denoted by X ∼BXII-PC(α, β, κ, θ) . (i) For κ = 1, the BXII-PC
distribution reduces to Burr XII Half Cauchy (BXII-HC) distribution; (ii) For β = 1, the BXII-PC
distribution reduces to the Lomax Power Cauchy (Lomax-PC) distribution; (iii) For κ = β = 1, the
BXII-PC distribution reduces to the Lomax Half Cauchy (Lomax-HC) distribution; (iv) For α = 1, the
BXII-PC distribution reduces to the log-logistic Power Cauchy (Log-Log-PC) distribution and (v) For
α = κ = 1, the BXII-PC distribution reduces to the log-logistic half Cauchy (Log-Log-HC)
distribution.

2.2. Nexus between the exponential and gamma variables

We derive the BXII-PC distribution from nexus between the exponential and gamma variables.

Lemma 2.2.1. If W1 ∼ exp (1) and W2 ∼ gamma (α, 1) are independent, then for

W1 =
{
− log

[
1 − 2

π
tan−1

((
X
θ

)κ)]}β
W2, we have that X has the density (2.4).

Proof. If W1 ∼ exp (1), i.e. f (w1) = e−w1 , w1 > 0,
W2 ∼ gamma (α, 1), i.e. f (w2) = w2

α−1e−w2

Γ(α) , w2 > 0,

then, the joint distribution of the two rvs is f (w1,w2) = w2
α−1e−w2 e−w1

Γ(α) , w1 > 0, w2 > 0.

Let W1 =
{
− log

[
1 − 2

π
tan−1

(
X
θ

)κ]}β
W2, the joint density of the rvs X and W2 has the form

f (x,w2) =
w2

α−1e−w2e−
{
− log

[
1−2π−1 tan−1(( x1

θ )κ)
]}β

w2

Γ (α)
2βκ
θπ

( x
θ

)κ−1
[
1 +

( x
θ

)2κ
]−1

×[
1 − 2π−1 tan−1

(( x
θ

)κ)]−1 {
− log

[
1 − 2π−1 tan−1

(( x
θ

)κ)]}β−1

w2, x > 0, w2 > 0.
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The marginal density of X takes the form

f (x) =
2βκ
θπ

( x
θ

)κ−1
[
1 +

( x
θ

)2κ
]−1 [

1 − 2π−1 tan−1
(( x
θ

)κ)]−1

×{
− log

[
1 − 2π−1 tan−1

(( x
θ

)κ)]}β−1 1
Γ (α)

∫ ∞

0
w2

αe−
(
1+

{
− log

[
1−2π−1 tan−1(( x1

θ )κ)
]}β)

w2 dw2.

After simplification, we arrive at

f (x) =
2αβκ
θπ

( x
θ

)κ−1
[
1 +

( x1

θ

)2κ
]−1 [

1 − 2π−1 tan−1
(( x
θ

)κ)]−1

×{
− log

[
1 − 2π−1 tan−1

(( x
θ

)κ)]}β−1
(
1 +

{
− log

[
1 − 2π−1 tan−1

(( x
θ

)κ)]}β)−α−1

, x > 0,

which is the BXII-PC density. �

The survival, failure rate and cumulative failure rate functions of X are given, respectively, by (for
x>0)

S (x) =

(
1 +

{
− log

[
1 − 2π−1 tan−1

(( x
θ

)κ)]}β)−α
,

h(x) =
d
dx

[
− ln

(
1 +

{
− log

[
1 − 2π−1 tan−1

(( x
θ

)κ)]}β)−α]
,

and

λ(x) = − ln
{

1 +

[
− log

(
1 − 2π−1 tan−1

(( x
θ

)κ))]β}−α
.

The quantile function of X (for 0 < q < 1) follows from

xq = θ

{
tan

[
π

2

(
1 − exp

{
−

[
(1 − q)−

1
α − 1

] 1
β

})]} 1
κ

,

and its random number generator with Z ∼ Uniform (0,1) is the solution of the nonlinear equation

X = θ

{
tan

{
π

2

[
1 − exp

(
−

(
(1 − Z)−

1
α − 1

) 1
β

)]}} 1
κ

.

2.3. Shapes of the BXII-PC density and hazard rate functions

We plot the density and failure rate functions of the BXII-PC distribution for selected parameter
values. The BXII-PC density can display numerous shapes such as symmetrical, right-skewed, left-
skewed, J, reverse-J and exponential (as Figure 1). The failure rate function can highlight shapes
as modified bathtub, inverted bathtub, increasing, decreasing; increasing-decreasing and decreasing-
increasing-decreasing (as Figure 2). Therefore, the BXII-PC distribution is quite flexible and can be
applied to numerous data sets.
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Figure 1. Plots of the BXII-PC density.

Figure 2. Plots of the BXII-PC hazard rate.

3. Mathematical properties

Here, we present certain mathematical and statistical properties such as the ordinary moments,
incomplete moments, inequality measures, conditional moments, reliability measures and
characterization.

3.1. Moments

The moments are significant tools for statistical analysis in pragmatic sciences. The rth ordinary
moment of X, say µ′r = E (Xr), can be expressed from (2.4) as

E (Xr) =

∫ ∞

0
xrαβκ

θ
2π−1

( x
θ

)κ−1
[
1 +

( x
θ

)2κ
]−1 (

1 − 2π−1 tan−1
(( x
θ

)κ))−1

×[
− log

(
1 − 2π−1 tan−1

(( x
θ

)κ))]β−1
{

1 +

[
− log

(
1 − 2π−1 tan−1

(( x
θ

)κ))]β}−α−1

dx.

Letting w =
[
− log

(
1 − 2π−1 tan−1

((
x
θ

)κ))]
, we have

xr = θr
(
cot

{
π

2
[
1 − exp (−w)

]}) r
κ

= θr
(
cot

{
π

2
[
exp (−w)

]}) r
κ

.
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The following power series ( [21]) can be obtained from Mathematica

cot (x)s =

∞∑
i=0

ai (s) x2i−s,

where a0 (s) = 1, a1 (s) = −s/3, a2 (s) = s (5s − 7) /90, etc.

Using this expression we have

(
cot

{
π

2
[
exp (−w)

]}) r
κ

=

∞∑
i=0

ai

( r
κ

) (
π

2

)2i− r
κ

exp
[( r
κ
− 2i

)
w
]
,

where exp
[(

r
κ
− 2i

)
w
]

=
∑∞

j=0
( r
κ−2i) j

j! w j.

The rth ordinary moment of X with BXII-PC distribution is

E (Xr) = αβ

∫ ∞

0

∞∑
i=0

ai

( r
κ

) (
π

2

)2i− r
κ
∞∑
j=0

(
r
κ
− 2i

) j

j!
w j+β−1

{
1 + wβ

}−α−1
dw.

Letting wβ = y,w = y
1
β , dw = 1

β
y

1
β−1dy, we have

E (Xr) = α

∫ ∞

0

∞∑
i=0

ai

( r
κ

) (
π

2

)2i− r
κ
∞∑
j=0

(
r
κ
− 2i

) j

j!
y

j
β {1 + y}−α−1 dy,

µ′r = E (Xr) = α

∞∑
i, j=0

ai

( r
κ

) (
π

2

)2i− r
κ
( r
κ
− 2i

) j B
(

j
β

+ 1, α − j
β

)
j!

, r = 1, 2, 3, ..., (3.1)

where αβ > j and B (., .) is the beta function.

The rth central moment (µr), coefficients of skewness (γ1) and kurtosis (γ2) of X are

µr =
∑r
`=1 (−1)`

(
r
`

)
µ′` µ

′
r−` , γ1 = µ3/ 3

√
µ2 and β2 = µ4/(µ2)2.

The numerical values for the mean
(
µ′1

)
, median (µ̃), standard deviation (σ), skewness (γ1) and

kurtosis (γ2) of the BXII-PC distribution for selected values of α, β, κ, θ are listed in Table 1.
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Table 1. Quantities µ′1 , µ̃, σ, γ1 and γ2 for the BXII-PC distribution.

α, β, κ, θ µ′1 µ̃ σ γ1 γ2

3,3,3,3 2.9284 2.9115 0.4935 0.7169 16.3785
4,3,3,3 2.8058 2.8057 0.4347 0.1143 4.0651
5,3,3,3 2.7214 2.7296 0.4033 -0.0687 3.5402
6,3,3,3 2.6575 2.6707 0.3828 -0.1730 3.4238
10,3,3,3 2.4962 2.5176 0.3407 -0.3407 3.3782
3,4,3,3 3.0350 3.0319 0.3877 0.1800 4.3310
3,5,3,3 3.1055 3.1086 0.3222 0.0096 3.7844
3,6,3,3 3.1556 3.1619 0.2766 -0.0972 3.6498
3,10,3,3 3.2649 3.2743 0.1783 -0.3192 3.6605
3,3,4,3 2.9383 2.9934 0.3707 0.3424 7.2468
3,3,5,3 2.9468 2.9466 0.2976 0.1800 5.5220
3,3,6,3 2.9535 2.9554 0.2488 0.0851 4.9608
3,3,7.25,3 2.9600 2.9631 0.0062 0.2066 4.6374
3,3,10,3 2.9695 2.9732 0.1505 -0.0909 4.4444
3,3,3,5 4.8806 4.8525 0.8225 0.7479 18.3789
3.5,3.5,3.5,3 2.9350 2.9377 0.3500 0.0386 3.9623
3.5,3.7,3.5,3 2.9550 2.9589 0.3349 0.0006 3.8412
20,2.6,2,1.5 0.9376 0.9464 0.2048 -0.2035 3.0003
20,2.5,2,1.5 0.9151 0.9233 0.2071 -0.1822 2.9775
20,2.25,2,1.5 0.8536 0.8600 0.2124 -0.1189 2.9221
20,2,2,2 1.0444 1.0494 0.2893 -0.0392 2.8715
15,2,2,2 1.1224 1.1255 0.3141 0.0092 2.9339
15,2.5,2,2 1.2933 1.3029 0.2965 -0.1347 3.0037
15,2.25,2,2 1.2139 1.2209 0.3058 -0.0716 2.9588
12,2,2,2 1.1881 1.1887 0.3365 0.0640 3.0175

3.2. Conditional moments

Life expectancy, mean waiting time and inequality measures can be obtained from the incomplete
moments. The sth incomplete moment for the BXII-PC distribution is

M′
s (z) =

∫ z

0
xsαβκ

θ
2π−1

( x
θ

)κ−1
[
1 +

( x
θ

)2κ
]−1 (

1 − 2π−1 tan−1
( x
θ

)κ)−1

×[
− log

(
1 − 2π−1 tan−1

( x
θ

)κ)]β−1
{

1 +

[
− log

(
1 − 2π−1 tan−1

( x
θ

)κ)]β}−α−1

dx.

Setting wβ = y,w = y
1
β , dw = 1

β
y

1
β−1dy, we have

M′
s (z) = α

∞∑
i, j=0

ai

( s
κ

) (
π

2

)2i− s
κ

(
s
κ
− 2i

) j

j!

∫ z

0
y

j
β {1 + y}−α−1 dy,
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M′
s (z) = α

∞∑
i, j=0

ai

( s
κ

) (
π

2

)2i− s
κ
( s
κ
− 2i

) j Bz

(
j
β

+ 1, α − j
β

)
j!

, (3.2)

where Bz (., .) is incomplete beta function.
The mean deviation about the mean (δ1 = E |X − µ|) and about the median (δ2 = E |X − µ̃|) can be

written as δ1 = 2µF (µ) − 2µM′
1 (µ) and δ2 = µ − 2M′

1 (µ̃), respectively, where µ = E (X) and µ̃ = x0.5.
The quantities M′

1 (µ) and M′
1 (µ̃) can be obtained from (3.2). For specific probability p, Lorenz and

Bonferroni curves are computed as L(p) =
M′1(q)
µ′

and B(p) = L(p)| p where q = Q (p).
The rth conditional moment E (Xr| X > z) is

E (Xr| X > z) =
1

S (z)
[
µ′r − EX≤z (Xr)

]
.

E (Xr| X > z) =
1

S (z)
α

∞∑
i, j=0

ai

( r
κ

) (
π

2

)2i− r
κ

(
r
κ
− 2i

) j [
B

(
j
β

+ 1, α − j
β

)
− Bz

(
j
β

+ 1, α − j
β

)]
j!

.

The rth reversed conditional moment E (Xr| X ≤ z) is

E (Xr| X ≤ z) =
α

F (z)

∞∑
i, j=0

ai

( r
κ

) (
π

2

)2i− r
κ

(
r
κ
− 2i

) j [
Bz

(
j
β

+ 1, α − j
β

)]
j!

.

3.3. Stochastic ordering

Stochastic orders are widely used in reliability, survival analysis, economics and operations research
for judging the comparative behavior of distributions. Here, we present a result on the stochastic order
for the BXII-PC distribution with β, κ, θ as common parameters. A random variable X1 with a pfd
denoted by f1(α1, β, κ, θ) is said to be smaller than another random variable X2 with a pfd denoted by
f2(α2, β, κ, θ) in likelihood ratio order, denoted by X1 ≤lr X2, if f1(α1, β,κ,θ)

f2(α2,β,κ,θ)
≤ 0.

Proposition 3.3.1. Let X1 ∼ BXII − PC (α1, β, κ, θ) and X2 ∼ BXII − PC (α2, β, κ, θ) . If α2 ≤ α1, then
the BXII − PC distribution is ordered according to likelihood ratio ordering.

Proof. For X1 ∼ BXII − PC (α1, β, κ, θ) ,

f1(α1, β, κ, θ) =
2α1βκ

θπ

( x
θ

)κ−1
[
1 +

( x
θ

)2κ
]−1 [

1 − 2π−1 tan−1
(( x
θ

)κ)]−1

×{
− log

[
1 − 2π−1 tan−1

(( x
θ

)κ)]}β−1
(
1 +

{
− log

[
1 − 2π−1 tan−1

(( x
θ

)κ)]}β)−α1−1

, x > 0,

and for X2 ∼ BXII − PC (α2, β, κ, θ),

f2(α2, β, κ, θ) =
2α2βκ

θπ

( x
θ

)κ−1
[
1 +

( x
θ

)2κ
]−1 [

1 − 2π−1 tan−1
(( x
θ

)κ)]−1

×{
− log

[
1 − 2π−1 tan−1

(( x
θ

)κ)]}β−1
(
1 +

{
− log

[
1 − 2π−1 tan−1

(( x
θ

)κ)]}β)−α2−1

, x > 0.
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Thus

f1(α1, β, κ, θ)
f2(α2, β, κ, θ)

=

α1

(
1 +

{
− log

[
1 − 2π−1 tan−1

((
x
θ

)κ)]}β)−α1−1

α2

(
1 +

{
− log

[
1 − 2π−1 tan−1

((
x
θ

)κ)]}β)−α2−1 ,

f1(α1, β, κ, θ)
f2(α2, β, κ, θ)

=
α1

α2

(
1 +

{
− log

[
1 − 2π−1 tan−1

(( x
θ

)κ)]}β)−α1+α2

,

∂

∂x
f1(α1, β, κ, θ)
f2(α2, β, κ, θ)

= (α2 − α1)
α1

α2

2βκ
θπ

(
x
θ

)κ−1 {
− log

[
1 − 2π−1 tan−1

((
x
θ

)κ)]}β−1[
1 +

(
x
θ

)2κ
] [

1 − 2π−1 tan−1
((

x
θ

)κ)] ×

(
1 +

{
− log

[
1 − 2π−1 tan−1

(( x
θ

)κ)]}β)α2−α1−1

.

If α2 ≤ α1, we have X1 ≤lr X2, i.e., f1(α1,β,κ,θ)
f2(α2,β,κ,θ)

≤ 0 is decreasing. Therefore for the BXII-PC distribution,
random variable X1 is said to be smaller than a random variable X2 in likelihood ratio order X1 ≤lr X2,
since f1(α1,β,κ,θ)

f2(α2,β,κ,θ)
≤ 0 . �

3.4. Reliability estimation of multicomponent stress-strength model

Consider a system that has m identical components out of which s components are functioning. The
strengths of m components are Xi, i = 1, 2, ...,m with common cdf F while, the stress Y imposed on the
components has cdf G. The strengths Xi, i = 1, 2, ...,m and stress Y are i.i.d. The probability that the
system operates properly is reliability of the system i.e.

Rs,m = P[strengths (Xi, i = 1, 2, ...,m) > stress (Y)] = P[at the minimum “s” o f (Xi, i = 1, 2, ...,m) exceed Y],

Rs,m =

m∑
l=s

(m
`

) ∫ ∞

0
[1 − F(y)]l [F(y)]m−ldG(y), ( [22]) (3.3)

Let X∼BXII − PC (α1, β, κ, θ) and Y∼BXII − PC (α2, β, κ, θ) with common parameters β, κ, θ and
unknown shape parameters α1 and α2. The reliability that the system operates properly in
multicomponent stress- strength for the BXII-PC distribution is

Rs,m =

m∑
`=s

(
m
`

) ∫ 1

0
(uv)` (1 − uv)(m−`) du,

where v = α1
α2

and u =

{
1 +

[
− log

(
1 − 2π−1 tan−1

(
y
θ

)κ)]β}−α2

.
Letting uv = w , we have

Rs,m =

m∑
`=s

(
m
`

) ∫ 1

0
w` (1 − w)(m−`) 1

ν
w

1
ν−1dw,

Rs,m =
1
ν

m∑
`=s

(
m
`

)
B

(
` +

1
ν
,m − ` + 1

)
, (3.4)
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where B (., .) is the beta function. The probability in (3.4) is known as the reliability of multicomponent
stress-strength model. For s= m=1, the multicomponent stress-strength model reduces to the stress-
strength model ( [23]) as

R1,1 = Pr (Y< X) =
α2

(α1 + α2)
, where α1 + α2 > 0,

which is independent of the parameters β, κ and θ.

3.5. Characterizations based on truncated moment of a function of the random variable

In this subsection, we first present a characterization of the BXII-PC distribution in terms of a simple
relationship between truncated moment of a function of X and another function. This characterization
result employs a version of a theorem due to [24]; see Theorem 7.1 of Appendix A. Note that the result
holds also when the interval H is not closed. Moreover, as mentioned above, it could be also applied
when the cdf F does not have a closed form. As shown in [25], this characterization is stable in the
sense of weak convergence.

Proposition 3.5.1. Let X : Ω→ (0,∞) be a continuous rv and let

q (x) =

(
1 +

{
− log

[
1 − 2π−1 tan−1

(
x
θ

)κ]}β)−1
, x > 0. The rv X has pdf (2.4) if and only if the function

η defined in Theorem 7.1 has the form

η (x) =
α

α + 1

(
1 +

{
− log

[
1 − 2π−1 tan−1

( x
θ

)κ]}β)−1

, x > 0.

Proof. If X has pdf (2.4), then for (x>0),

(1 − F (x)) E (q (x)| X ≥ x) =
α

α + 1

(
1 +

{
− log

[
1 − 2π−1 tan−1

( x
θ

)κ]}β)−(α+1)

, x > 0,

or

E (q (x)| X ≥ x) =
α

α + 1

(
1 +

{
− log

[
1 − 2π−1 tan−1

( x
θ

)κ]}β)−1

, x > 0,

and

η (x) − q (x) = −
1

α + 1

(
1 +

{
− log

[
1 − 2π−1 tan−1

( x
θ

)κ]}β)−1

, x > 0.

Conversely, if η is given as above, then

s′ (x) =
η′ (x)

η (x) − q (x)

=

αβκ

θ
2π−1

(
t
θ

)κ−1
[
1 +

(
x
θ

)2κ
]−1 [

1 − 2π−1 tan−1
(

x
θ

)κ]−1 {
− log

[
1 − 2π−1 tan−1

(
x
θ

)κ]}β−1

(
1 +

{
− log

[
1 − 2π−1 tan−1

(
x
θ

)κ]}β) , x > 0,

and hence

s (x) = ln
(
1 +

{
− log

[
1 − 2π−1 tan−1

( x
θ

)κ]}β)α
, x > 0,
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and

e−s(x) =

(
1 +

{
− log

[
1 − 2π−1 tan−1

( x
θ

)κ]}β)−α
, x > 0.

In view of Theorem 7.1, X has density (2.4). �

Corollary 3.5.1. Let X : Ω → (0,∞) be a continuous rv. The pdf of X is (2.4) if and only if there exist
functions η (x) and q (x) defined in Theorem 7.1 satisfying the differential equation

η′ (x)
η (x) − q (x)

=

αβκ

θ
2π−1

(
x
θ

)κ−1
[
1 +

(
x
θ

)2κ
]−1 [

1 − 2π−1 tan−1
(

x
θ

)κ]−1 {
− log

[
1 − 2π−1 tan−1

(
x
θ

)κ]}β−1

(
1 +

{
− log

[
1 − 2π−1 tan−1

(
x
θ

)κ]}β) , x > 0.

Remark 3.5.1. The general solution of the differential equation in Corollary 3.5.1 is

η (x) =

(
1 +

{
− log

[
1 − 2π−1 tan−1

( x
θ

)κ]}β)α
×−

∫ αβκ

θ
2π−1

(
x
θ

)κ−1
[
1 +

(
x
θ

)2κ
]−1 [

1 − 2π−1 tan−1
(

x
θ

)κ]−1 {
− log

[
1 − 2π−1 tan−1

(
x
θ

)κ]}β−1

(
1 +

{
− log

[
1 − 2π−1 tan−1

(
x
θ

)κ]}β)α+1 q (x) dx + D

 ,
where D is a constant. Note that a set of functions satisfying the above differential equation is given in
Proposition 3.5.1 with D=0. However, it should also be noted that there are other pairs (η, q) satisfying
conditions of Theorem 7.1.

4. Different estimation methods

In this section, we propose various estimators for estimating the unknown parameters of the
BXII-PC distribution. We discuss maximum likelihood, maximum product spacings, least squares,
weighted least squares, Cramer-von Mises and Anderson-Darling estimation methods and compare
their performances on the basis of a simulated sample from the BXII-PC distribution. The details are
as follows.

4.1. Maximum likelihood estimation

We address parameters estimation using maximum likelihood method. The log-likelihood function
for the vector of parameters ξ = (α, β, κ, θ) of the BXII-PC distribution is

` =` (ξ) = n ln
(
2
π

)
+ n ln (α) + n ln (β) + n ln (κ) − n ln (θ) + (κ − 1)

n∑
i=1

ln
( xi

θ

)
−

n∑
i=1

ln
[
1 +

( x
θ

)2κ
]

−

n∑
i=1

ln
[
1 − 2π−1 tan−1

( x
θ

)κ]
+ (β − 1)

n∑
i=1

ln
{
− log

[
1 − 2π−1 tan−1

( x
θ

)κ]}
− (α + 1)

n∑
i=1

ln
(
1 +

{
− log

[
1 − 2π−1 tan−1

( x
θ

)κ]}β)
. (4.1)
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4.2. Maximum product spacing estimates

The maximum product spacing (MPS) method is an alternative method to MLE for parameter
estimation. This method was proposed by [26, 27] as well as independently developed by [28] as an
approximation to the Kullback-Leibler measure of information. This method is based on the idea that
differences (spacings) between the values of the cdf at consecutive data points should be identically
distributed. Let X(1), X(2), . . . , X(n) be ordered sample of size n from the BXII-PC distribution. The
geometric mean of the differences is given by

GM =
n+1

√√
n+1∏
i=1

Di,

where, the difference Di is defined as

Di =

∫ x(i)

x(i−1)

f (x) dx; i = 1, 2, . . . , n + 1. (4.2)

The maximum product spacing (MPS) estimates, say α̂MPS , β̂MPS , θ̂MPS and κ̂MPS , of α, β, θ and κ are
obtained by maximizing the geometric mean of the differences. Substituting cdf of BXII-PC
distribution in Eq (4.2) and taking logarithm of the above expression, we have

MPS (ξ) =
1

n + 1

n+1∑
i=1

log
[
F

(
x(i)

)
− F

(
x(i−1)

)]
, i = 1, 2, . . . , n + 1, (4.3)

where, F
(
x(0)

)
= 0 and F

(
x(n+1)

)
= 1. The MPSEs α̂MPS , β̂MPS , θ̂MPS and κ̂MPS are obtained by

maximizing MPS (ξ).

4.3. Least squares estimates

Let X(1), X(2), . . . , X(n) be ordered sample of size n from the BXII-PC distribution. Then, the
expectation of the empirical cumulative distribution function is defined as

E
[
F

(
x(i)

)]
=

i
n + 1

; i = 1, 2, . . . , n.

The least square estimates (LSEs) say, α̂LSE, β̂LS E, θ̂LS E and κ̂LS E, of α, β, θ and κ are obtained by
minimizing

QLS E (ξ) =

n∑
i=1

(
F

(
x(i)

)
−

i
n + 1

)2

. (4.4)

4.4. Weighted least squares estimates

Let X(1), X(2), . . . , X(n) be ordered sample of size n from the BXII-PC distribution. The variance of
the empirical cumulative distribution function is defined as

V
[
F

(
x(i)

)]
=

i(n − i + 1)
(n + 2)(n + 1)2 ; i = 1, 2, . . . , n.
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Then, the weighted least square estimates (WLSEs) say, α̂WLSE , β̂WLS E , θ̂WLS E and κ̂WLS E, of α , β , θ
and κ are obtained by minimizing

QWLS E (ξ) =

n∑
i=1

(
F

(
x(i)

)
− i

n+1

)2

V
[
F

(
x(i)

)] . (4.5)

4.5. Anderson-Darling estimation

This estimator is based on Anderson-Darling goodness-of-fits statistics which was introduced
by [29]. The Anderson-Darling (AD) minimum distance estimates, α̂AD , β̂AD , θ̂AD and κ̂AD, of α , β ,
θ and κ are obtained by minimizing

AD (ξ) = −n −
n∑

i=1

2i − 1
n

[
log F

(
x(i)

)
+ log

{
1 − F

(
x(n+1−i)

)}]
. (4.6)

4.6. The Cramer-von mises estimations

The Cramer-von Mises (CVM) minimum distance estimates, α̂CVM, β̂CVM, θ̂CVM and κ̂CVM, of α, β,
θ and κ are obtained by minimizing

CV M (ξ) =
1

12n
+

n∑
i=1

[
F

(
x(i)

)
−

2i − 1
2n

]2

. (4.7)

We refer the interested readers to [30] for AD and CVM goodness-of-fits statistics. To solve the above
equations, Eqs (4.1)–(4.6) can be optimized either directly by using the R (optim and maxLik
functions), SAS (PROC NLMIXED) and Ox package (sub-routine Max BFGS) or the non-linear
optimization methods such as the quasi-Newton procedure to numerically optimize `(ξ), MPS (ξ),
QLS E (ξ), QWLS E (ξ), AD (ξ) and CV M (ξ) functions.

5. Simulation experiments

In this Section, we perform the simulation studies by using the BXII-PC to see the performance of
the above estimators corresponding to this distribution and obtain the graphical results. We generate
N=1000 samples of size n=20, 30, . . . , 800 from the BXII-PC distribution with true parameter values
α = 15, β = 5, θ = 0.5 and κ = 2. The random numbers generation is obtained by its quantile function.
In this simulation study, we calculate the empirical mean, bias and mean square errors (MSEs) and the
mean relative estimates (MREs) of all estimators to compare in terms of their biases, MSEs and MREs
with varying sample size. The empirical bias, MSE and MRE are calculated by (for h = α, β, θ, κ)

B̂iash =
1
N

N∑
i=1

(
ĥi − h

)
,

M̂S Eh =
1
N

N∑
i=1

(
ĥi − h

)2
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and

M̂REh =
1
N

N∑
i=1

ĥi/h

respectively. We expect that the empirical means are close to true values. MREs are closer to one when
the MSEs and biases are near zero. All results related to estimations were obtained using optim-CG
routine in the R programme.

The results of this simulation study are shown in Figures 3–6. These figures show that all estimators
are to be consistent, since the MSE and biases decrease with increasing sample size and the values of
MREs tend to one as expected. It is clear that the estimates of parameters are asymptotically unbiased.
For all parameters estimations, the performances of all estimators are close except the MPS method.

Figure 3. Simulation results of α.
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Figure 4. Simulation results of β.
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Figure 5. Simulation results of θ.

AIMS Mathematics Volume 6, Issue 7, 7070–7092.



7087

Figure 6. Simulation results of κ.

6. Application of the BXII-PC distribution

We consider an application to successive failures of the air conditioning system [31] for
authentication the flexibility, utility and potentiality of the BXII-PC distribution. For this data set, we
compare the BXII-PC distribution with BXII-HC, L-PC, LL-PC, Burr III power Cauchy (BIII-PC),
Burr III half Cauchy (BIII-HC), Kumaraswamy half Cauchy (K-HC), beta half Cauchy (B-HC),
Marshal Olkin power Cauchy (M-PC), Marshal Olkin half Cauchy (M-HC), BXII, PC and HC
distributions. For selection of the optimum distribution, we compute the estimate of “likelihood ratio
statistics (−2 ˆ̀), Akaike information criterion (AIC), corrected Akaike information criterion (CAIC),
Bayesian information criterion (BIC), Hannan-Quinn information criterion (HQIC), Cramer-von
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Mises (W*), Anderson Darling (A*), and Kolmogorov-Smirnov statistic with p-values [K-S
(p-values] statistics” for all competing and sub distributions. We compute the MLEs and their
standard errors (in parentheses). Table 2 reports the MLEs, their standard errors (in parentheses) and
goodness of fit statistics such as W*, A*, KS (p-values). Table 3 displays the values of −2 ˆ̀, AIC,
CAIC, BIC and HQIC.

We infer from the Tables 2 and 3 that BXII-PC distribution is best model, with the smallest values
for all criteria of goodness of fit statistics (except BIC).

Figure 7 infers that the BXII-PC distribution is best fitted to empirical data.

Table 2. MLEs (standard errors) and W*, A*, KS (p-values) for successive failures data.

Model α β θ κ W* A* K-S
(p-value)

BXII-PC 4.3914
(3.4537)

10.4378
(12.1928)

7.8493
(33.5290)

0.1169
(0.1245)

0.0722 0.4833 0.0468
(0.8286)

BXII-HC 8.5509
(7.0532)

0.9461
(0.0784)

497.9669
(527.6631)

1 0.1371 0.8572 0.0508
(0.7457)

L-PC 8.1813
(5.9633)

1 462.3083
(425.9378)

0.9487
(0.0766)

0.1352 0.8477 0.0499
(0.7648)

LL-PC 1 28.7435
(8.2993)

0.04533
(0.08912)

0.0614
(0.0174)

0.1031 0.7285 0.0509
(0.7428)

BIII-PC 0.4988
(0.2522)

12.3673
(14.8340)

9.4187
(32.3260)

0.1859
(0.2492)

0.0956 0.6667 0.0517
(0.7257)

BIII-HC 0.3067
(0.0717)

2.7522
(0.3926)

85.1320
(15.6944)

1 0.1916 1.2809 0.0669
(0.3999)

K-HC 0.9862
(0.1415)

2.0882
(0.8367)

116.3634
(72.3209)

- 0.1252 0.8205 0.0549
(0.6529)

B-HC 2.0192
(0.7054)

1.0053
(0.1487)

109.2613
(57.3038)

- 61.9577 358.9412 0.9886
(<2.2e-16)

M-PC 0.0263
(0.0604)

- 4.2916
(6.4311)

1.3353
(0.1215)

61.3057 358.4714 0.9974
(<2.2e-16)

M-HC 3.2167
(2.6159)

- 127.3189
(86.8808)

1 61.9431 359.0706 0.9841
(<2.2e-16)

BXII 0.0337
(0.0564)

7.7318
(12.9583)

- - 0.5910 4.0335 0.3695
(<2.2e-16)

PC - - 48.8403
(4.6197)

1.16519
(0.0776)

0.1377 0.9365 0.0586
(0.5713)

HC - - - 48.6910
(5.0669)

0.1177 0.8127 0.0609
(0.521)
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Figure 7. Fitted pdf (left), cdf (center) and PP (right) plots of the BXII-PC distribution for
successive failures data.

Table 3. −2 ˆ̀, AIC, CAIC, BIC and HQIC for successive failures data.

Model −2 ˆ̀ AIC CAIC BIC HQIC
BXII-PC 1957.812 1965.812 1966.042 1978.562 1970.982
BXII-HC 1961.65 1967.65 1967.787 1977.212 1971.527
L-PC 1961.652 1967.652 1967.789 1977.214 1971.529
LL-PC 1965.289 1971.289 1971.426 1980.851 1975.167
BIII-PC 1963.536 1971.536 1971.766 1984.286 1976.706
BIII-HC 1974.491 1980.491 1980.628 1990.053 1984.368
K-HC 1963.48 1969.48 1969.617 1979.042 1973.357
B-HC 1963.488 1969.488 1969.625 1979.05 1973.365
M-PC 1965.343 1971.343 1971.48 1980.905 1975.22
M-HC 1972.826 1976.826 1976.894 1983.201 1979.411
BXII 2216.964 2220.963 2221.032 2227.338 2223.548
PC 1969.137 973.137 1973.205 1979.511 1975.722
HC 1974.15 1976.15 1976.173 1979.337 1977.443
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7. Conclusions

We propose a new probability distribution, named BXII-PC distribution, based on Cauchy and
Burr XII distribution via T-X family method. Its pdf and hrf shapes are seen as very flexible forms. To
illustrate the importance of the BXII-PC distribution, we establish various mathematical properties
such as random number generator, sub-models, moments related properties, inequality measures,
reliability measures and characterizations. We estimate the model parameters by six different
methods. We perform a simulation study on the basis of graphical results to evaluate the performance
of maximum likelihood, maximum product spacings, least squares, weighted least squares,
Cramer-von Mises and Anderson-Darling estimators of the BXII-PC distribution. We demonstrate the
potentiality and utility of the BXII-PC distribution by considering an application to successive failures
of the air conditioning system. We apply various model selection criteria and graphical tools to
examine the adequacy of the proposed distribution. We infer that the BXII-PC model is empirically
suitable for the lifetime applications (successive failures analysis). Therefore, the BXII-PC model is a
flexible, reasonable and parsimonious to other existing distributions. Hence it should be included in
the distribution theory to assist the researchers. Further, as perspective of future projects, we may
consider several intensive subjects (i) unit BXII-PC; (ii) Burr III-PC; (iii) log-Burr XII-Power Cauchy
regression; (iv) various characteristics of the bivariate and the multivariate extensions of the BXII-PC;
(v) Bayesian estimation of the BXII-PC parameters via complete and censored samples under
different loss functions and (vi) the study of the complexity of the BXII-PC via Bayesian methods.

Appendix A

Theorem 7.1. Let (Ω, F, P) be a given probability space and let H = [a1, a2] be an interval with
a1 < a2 (a1 = −∞, a2 = ∞). Let X : Ω → [a1, a2] be a continuous random variable with distribution
function F and Let g (x) be a real function defined on H = [a1, a2] such that E[g (X)| X ≥ x] = h (x) for
x ∈ H is defined with some real function h (x) should be in simple form. Assume that g (x) εC ([a1, a2]),
h (x) εC2 ([a1, a2]) and F is twofold continuously differentiable and strictly monotone function on the
set [a1, a2]. We conclude, assuming that the equation g (x) = h (x) has no real solution in the inside of
[a1, a2]. Then F is obtained from the functions g (x) and h (x) as F (x) =

∫ x

a
k
∣∣∣∣ h′(t)
h(t)−g(t)

∣∣∣∣ exp (−s (t)) dt,

where s (t) is the solution of equation s′ (t) =
h′(t)

h(t)−g(t) and k is a constant, chosen to make
∫ a2

a1
dF = 1.
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