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Abstract: 
The gigapixel resolution of a single whole slide image (WSI), and the lack of huge annotated datasets needed for 
computational pathology, makes cancer diagnosis and grading with WSIs a challenging task. Moreover, 
downsampling of WSIs might result in loss of information critical for cancer diagnosis. Motivated by the fact that 
context such as topological structures in the tumor environment may contain critical information in cancer 
grading and diagnosis, a novel two-stage learning approach is proposed. Self-supervised learning is applied to 
improve training through unlabled data and graph convolutional network (GCN) is deployed to incorporate 
context from tumor and surrounding tissues. More specifically, we represent the whole slide as a graph, where 
nodes are patches from the WSIs. The patches in the graph are represented as feature vectors obtained from 
pre-training the patches in self-supervised learning. The graph is trained using GCN which accounts for the 
context of each tissue for the cancer grading and classification. In this work, WSIs for prostrate cancer are 
validated and the model performance is evaluated based on diagnosis and grading of prostrate cancer and 
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compared with ResNet50 as a traditional convolutional neural network (CNN) and multi-instance learning (MIL) 
as a leading approach in WSI diagnosis. 

1. INTRODUCTION 
Pathologists rely on tissue slides mostly stained with hematoxylin and eosin(H&E) and other tissue stains for the 
diagnosis and prognosis of the cancer [1]. The Whole Slide Images (WSIs) are the high resolution images 
produced by digitizing the histology slides of the tissues. Obviously, a preliminary diagnosis through machine can 
help pathologists to be more efficient in diagnosis and may help to avoid some errors. Recently, the use of WSIs 
in computational pathology has significantly increased. However, large volume of data due to gigapixel 
resolution of WSIs and lack of large annotated dataset have been posed as challenges for automating 
diagnosis/prognosis of cancer using WSIs. 

There have been successful applications of deep learning in the area of medical imaging [2], [3], [4], [5]. These 
achievements mostly through supervised-learning rely on lots of annotated data. In medical domain, the 
availability of the annotated dataset is very limited. However, unsupervised-learning approaches can be 
advocated to learn the representations from the unlabeled dataset. Self-supervised learning, [6] a form of 
unsupervised learning, can be used to learn the meaningful representation from the unlabeled data and then be 
transferred to the downstream task. Despite powerful performance of CNN in image classification and advanced 
methods in processing high-resolution images, they cannot be well trained for high-resolution WSIs. This is 
mainly because single WSI contains more than billion pixels in highest resolution and reducing the resolution in 
WSIs through downsampling WSI or capturing regions of interest may lose the necessary information in the 
neighborhood containing the tumor required for the cancer diagnosis. Weakly supervised learning based on 
multi-instance leaning (MIL) or tile-based patches have been recently used to handle computational complexity 
of training by WSIs [7], [8]. However, none of these methods are able to capture all the tumor neighborhood 
information. In MIL, instead of labeling each instance they are bagged together and then given a label. When 
using MIL approaches in WSI, a WSI is divided into smaller tiles/patches and bagged together [9]. Using this 
approach, only a fixed number of patches is trained. In [10], graph-based structure of WSI is presented where 
the graph is constructed based on patch selection with only regions of interest. It has been further shown that 
graph-based methods outperform MIL approaches. 

Graph neural networks (GNN) can be used to model the tumor environment neighborhood information where 
the information of all the neighbors can be globally aggregated for cancer diagnosis. 

In a nutshell, the challenges with training the WSIs are as follows: 

• Large dimensionality of the WSIs. 
• Insufficient annotated data. 

In this paper, we overcome those challenges by proposing the GCN based self-supervised learning for WSIs. Self-
supervised learning allows learning the meaningful representation presented by the data without the need of 
data labelling or annotation. Presenting WSIs as a graph, the tumor environment and neighborhood information 
are used in training. The contribution of this work can be summarized as: 

• Introduction of context-aware self-supervised learning on patches and graph-based learning on WSIs. 
• Learning the features in patch levels and representation of any arbitrary size WSIs as a graph in full 

resolution. 



2. METHOD 
In this work, first the patches of the WSIs are pre-trained using self-supervised learning and then the whole 
graph structure is trained for cancer grade classification using GCN. In Fig. 1, the whole process of graph 
generation [11] for the WSI is presented. The patch generation, graph generation and learning from them is 
explained in the following sections. 

2.1. Patch generation 
The WSI in the datset are of multiscale resolution. The white background in WSIs is of no use in cancer diagnosis. 
First step in the patch generation is to remove the white background from WSIs. The white background can be 
removed from any resolution of the WSI. The segmentation network based on Unet [12] style encoder and 
decoder is used to separate the tissue from the background. The smallest resolution of WSI was rescaled to an 
image of size 512×512 to train the segmentation network. Given the output of the segmentation network, 
OpenCV is used to generate the contour separating tissue region from background in the WSI. Based on the 
contours the patches of size 256×256 are generated from the WSI at the highest resolution. From these patches 
the network can learn about the cancerous cells. 

2.2. Learning from patches 
2.2.1. Self-supervised learning 
Self-supervised learning is a form of unsupervised learning that is used for pre-training known as pretext task. 
Then, these pretext tasks are fine-tuned for downstream task [13], [6]. Contrastive learning [14], is one of the 
most popular variants of the self-supervised learning. In this framework, positive samples stay close together 
and negative samples remain far apart. 

We use self-supervised learning approach to learn from the patches. We apply augmentation randomly to 
patches to generate the query patch and key patch. The key and query can be seen as dictionary lookup. The 
positive pair in contrastive learning are when the query and key patches are from the same sample and different 
sample in negative pair. For training the self-supervised learning we use contrastive learning loss in the form of 
InfoNCE given by [15] : 

𝐿𝐿𝑞𝑞 = − log
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+
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+
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−
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where 𝑘𝑘+ is the positive pair for the patch 𝑞𝑞 and the 𝑘𝑘− is the negative pair for the patch 𝑞𝑞, and 𝜏𝜏 is the 
temperature hyper-parameter. 



 
Fig. 1. a) WSI b) Separating tissue from the background. c) Generation of patches. d) Graph visualised in WSI. 
 
The features extracted from these patches trained through contrastive learning are used as features of nodes in 
the GCN. This allows training the patches of WSIs for extracting useful features without the need of further 
annotation by the pathologists. Then, there is no need to find regions of interest for cancer grading or 
concatenate tile patches based on pixel intensity for feature extraction as commonly used approaches. 

2.3. Graph generation 
To train the WSIs using graph based learning, WSIs have to be first converted to graph based structure. A graph 
is a data structure represented by tuple G = (V,E) where V is the set of nodes and E is the set of edges 
representing connectivity between nodes. We discussed the construction of patch in section 2.1. Each patch in 
WSI is represented as a node in graph structure. The edges between the patches are formed using the fast 
approximate k-nearest neighbor (K-NN) [16]. 

The WSI is a multi resolution file. In this work, we have extracted the patches of size 256×256 at the highest 
available resolution. The dimension of the WSI is not the same for all the WSIs present in the dataset. Therefore, 
the number of patches extracted per WSI is different which results in different number of nodes in the graphs. 
Also, every node has a feature matrix, that is obtained by passing a patch through a pre-trained self-supervised 
model. 

When WSI is structured as a graph with each patch as a node and the adjacency matrix and feature vectors for 
each node extracted from self-supervised trained model, any WSI with an arbitrary size can be represented in 
this form. The graph can then be used in GCN to learn meaningful representation from the data where local 
patch features can then be aggregated with the neighboring patch features using the graph-based training. 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/9745891/9746004/9747899/aryal1-p5-aryal-large.gif


2.4. Learning on graphs 
2.4.1. GCN 
As discussed in previous section, the WSIs are represented as a graph. The diagnosis of cancer depends on the 
tissue and the context of the neighboring cells in the tissue. In graph neural network a node aggregates 
messages from its local neighborhood and is able to learn surrounding context. The input graph G = (V,E) with 
node features X ∈ℝd×|V|, d is the dimension of node feature vector, learns from u’s graph 
neighborhood N(u),8u ∈ V through message passing. The message passing update over kth iteration is given 
by [17] 

ℎ𝑢𝑢𝑘𝑘 = 𝜎𝜎 �𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
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where 𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
(𝑘𝑘)   and 𝑊𝑊𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛ℎ

(𝑘𝑘)  are trainable parameters, σ accounts for non-linearity and 𝑏𝑏(𝑘𝑘) is a bias term. The 

embeddings ℎ𝑢𝑢 are updated over the iterations and at 𝑘𝑘 = 0, ℎ𝑢𝑢
(0) = 𝑋𝑋𝑢𝑢,∀𝑢𝑢 ∈ 𝑉𝑉. Equation (2) represents the 

graph in node level. It can also be presented in graph level as follows: 
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where H(k) ∈ ℝ|V |×d is the matrix of node representations, A is the graph adjacency matrix. In this work, 
GCN [18] is used to learn the graph level representation from WSIs. The message passing in GCN can be 
expressed as following 

ℎ𝑢𝑢
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The GCN layer is implemented for 6 layers and from the penultimate node feature matrix H, global average 
pooling on all nodes followed by MLP head is applied. The term MLP stands for multi-layer perceptron. Cross-
entropy loss function is used to grade the cancer. 

3. IMPLEMENTATION DETAILS 
3.1. Dataset 
The dataset used in this paper has been collected from the Kaggle PANDA challenge [19]. The challenge provides 
the WSIs for grading the cancer in prostrate based on the Gleason score. The primary Gleason score ranges from 
1-5 to most cancerous tissue and pathologists also assign secondary score for other surrounding tissue. So, the 
total Gleason score ranges from 2 to 10. Table 1 shows the Gleason scores and the International Society of 
Urological Pathology (ISUP) grades. The challenge consists of grading the WSIs into 6 ISUP grades. Fig. 2 shows 
primary and secondary Gleason scores and ISUP grades in different patches in the dataset. As shown in Fig. 2, 
the primary Gleason score increases as the glandular or white holes characteristics in the tissues are lost. The 
dataset consists of around 10500 WSIs. Each WSI has resolution in the scale of 1, 4, and 16. All the experiments 
were carried out at the highest resolution. For our experiment, 9500 WSIs were included in the train set and the 
rest were included in the validation set. 

Table 1. Prostrate cancer grading 
Gleason Score ISUP Grade 



6 1 
7 (3+4) 2 
7 (4+3) 3 

8 4 
9-10 5 

 
Fig. 2. Patches from WSI showing Gleason and ISUP score for prostate cancer. 

 
 

3.2. Training the self-supervised model 
The self-supervised model was trained for 30 epochs. The learning rate was 3 × 10−3, the weight decay was 1 × 
10−6 with the Adam optimizer. The cosine scheduler was used as scheduler to adjust the learning rate. The patch 
size and the batch size were 256×256 and 256, respectively. The parameter τ was set to be 0.2. As a backbone 
ResNet50 was used for training the self-supervised network. Data augmentations applied during the training 
include random Gaussian Blur, random contrast adjustment, random horizontal and vertical flip. 

3.3. Training the graph network 
As regards the graph network, GCN was trained for 30 epochs using the Adam optimizer with the learning rate 
of 16 ×10−4 and weight decay of 10−6. The cosine scheduler was used to adjust the learning rate. The batch size 
was chosen 1. 

4. RESULTS AND DISCUSSION 
We trained our model on PANDA dataset. Each of the WSIs were to be predicted into ISUP grade of 1-5 scale if 
the slide has cancer and grade of 0 for non cancerous slide. The performance of the model was evaluated based 
on the quadratic weighted kappa score [20]. 

Before deploying the proposed approach, ResNet50 [21] as a traditional CNN was used to train the model for 
the PANDA dataset. The WSIs were trained using concatenated tile pooling. From each WSI 36 tiles are selected, 
concatenated and then trained in the ResNet50. The validation dataset obtained a kappa score of 0.764 with this 
model. We further evaluated our dataset with MIL-based approach using Efficient Net [22]. The 36 patches were 
bagged together and then trained in the Efficient net. The kappa score improved to 0.79 with this model. 

The proposed model was evaluated using 4-fold cross validation. We trained two GCN models with different 
feature sizes for nodes. The features for each node were obtained by passing the patch represented by node 
through pretrained self-supervised model. Then, there were 248 and 2048 features for nodes in the graph for 
each GCN model, respectively. The two GCN models were then ensembeled to predict the final grade of the 
cancer. Using the proposed model the kappa score of 0.899 was achieved. This is a great improvement 
compared to the simple tile-based approach. The kappa score for each model is summarized in Table 2. 



5. CONCLUSION 
In this work, we proposed a novel method for learning features from the patches in WSIs using self-supervised 
learning. The learned features for the patches from the self-supervised model were used as node features for 
the WSI graph. Then, this graph was trained using GCN to incorporate the context of each cell and its 
neighborhood for cancer diagnosis and grading. Our approach allows to learn the features from the patches 
without further annotation from the pathologists. In addition, the use of GCN enables the learning of WSIs in full 
resolution. 

Table 2. Kappa Score for different methods 
Method Kappa Score 

ResNet50 [21] 0.764 
MIL with Effecinet Net [23] 0.79 

GCN with 248 Features for each Node 0.871 
GCN with 2048 Features for each Node 0.891 

GCN with 248 + GCN with 2048 0.899 
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