
Marquette University Marquette University

e-Publications@Marquette e-Publications@Marquette

Computer Science Faculty Research and
Publications Computer Science, Department of

2022

Accelerating Spatial Autocorrelation Computation with Accelerating Spatial Autocorrelation Computation with

Parallelization, Vectorization and Memory Access Optimization Parallelization, Vectorization and Memory Access Optimization

Anmol Paudel

Satish Puri

Follow this and additional works at: https://epublications.marquette.edu/comp_fac

 Part of the Computer Sciences Commons

https://epublications.marquette.edu/
https://epublications.marquette.edu/comp_fac
https://epublications.marquette.edu/comp_fac
https://epublications.marquette.edu/comp
https://epublications.marquette.edu/comp_fac?utm_source=epublications.marquette.edu%2Fcomp_fac%2F79&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=epublications.marquette.edu%2Fcomp_fac%2F79&utm_medium=PDF&utm_campaign=PDFCoverPages

Marquette University

e-Publications@Marquette

Computer Science Faculty Research and Publications/College of Arts &
Sciences

This paper is NOT THE PUBLISHED VERSION.
Access the published version via the link in the citation below.

Proceedings of the 22nd IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing,
(2022). DOI. This article is © Institute of Electrical and Electronic Engineers (IEEE) and permission has
been granted for this version to appear in e-Publications@Marquette. Institute of Electrical and
Electronic Engineers (IEEE) does not grant permission for this article to be further copied/distributed or
hosted elsewhere without the express permission from Institute of Electrical and Electronic Engineers
(IEEE).

Accelerating Spatial Autocorrelation
Computation with Parallelization,
Vectorization and Memory Access
Optimization

Anmol Paudel
Department of Computer Science, Marquette University, Milwaukee, WI
Satish Puri
Department of Computer Science, Marquette University, Milwaukee, WI

I. Introduction
In spatial statistics and spatial data mining, there are many methods to discover and explore interesting patterns
in spatial data. Spatial autocorrelation is one such class of methods that are used in spatial data analysis. Spatial

https://doi.org/10.1109/CCGrid54584.2022.00064
http://epublications.marquette.edu/

datasets often are not independent and identically distributed (i.i.d) [22]. Spatial datasets exhibit statistically
significant clustering in attribute values under study.

Hotspots analysis is a technique in geospatial analysis used to visualize geographic data in order to show areas
where a higher density or cluster of activity occurs. For example, in a city, we can collect crime data from
different locations and with hotspot analysis we can see if there are clusters in the city with significantly
higher/lower incidence of crime than so by random chance. Two concepts - similarity of values and proximity of
locations, or lack of those, are crucial to calculating hotspots and hence requires spatial statistics. Hotspot
detection is useful in many fields like public health, crime analysis, schooling, sales, agriculture etc.

We focus on Getis-Ord (Gi *) statistic which is computed for each feature in a dataset. The resultant z-scores and
p-values show where features with either high (or low values) cluster spatially. In short, each feature is
evaluated within the context of neighboring features. To be a statistically significant hotspot, a feature will have
a high value and be surrounded by other features with high values as well.

Hotspots are sometimes confused with a similar spatial visualization technique known as heatmaps. Hotspots
differ from heatmaps where point data is analyzed in order to create an interpolated surface showing the
density of occurrence where each cell is assigned a density value and the entire layer is visualized using a
gradient.

We present performance engineering for Hotspots kernel using SIMD on CPUs and SIMT (Single Instruction
Multi-ple Thread) on GPU s for exploiting fine-grained vector/data parallelism. For relative speedup calculations,
we have used sequential implementation with spatial sorting as a baseline. For absolute speedup calculation, we
have used R-tree data structure based implementation. Based on this R-tree baseline, we have demonstrated
absolute speedup up to 16X using SIMD + multi-threading on a single compute node. For scalability, our system
leverages multiple GPUs using MPI. Our bench-marks for CPU/GPU optimizations gain up to 750X relative
speedup with a 8 GPU setup when compared to baseline sequential implementation.

Earlier methods for hotspots problem have used pointer-based tree data structures like quadtree for storing
location data and for range query. For effective SIMD /SIMT parallelization, instead of tree data structure, we
have designed a novel spatial locality-preserving 2D array-based data structure for weight matrix. On a
distributed memory environment, this weight matrix further aids in creating task interaction graph which can be
utilized to minimize communication using MPI graph topology functions.

The rest of the paper is organized as follows. Section II presents the motivation and background. Section
III presents the parallel formulation for the problem. Section IV presents the acceleration techniques on CPUs
and GPUs. Section V presents the experimental results. Finally, we conclude in Section VI.

SECTION II. Motivation and Background
Finding patterns helps us identify causes and predict future trends. For instance, finding hotspots of Covid-19
occurrences enable us to study disease spread and efficient resource al-location to combat the problem at hand.
We have identified important autocorrelation kernels in spatial domains for paral-lelization. In the existing work,
the focus has been on coarse-grained approaches with less attention to data movement aspects and
communication complexity [23].

A. Spatial Autocorrelation
The notion of spatial autocorrelation is related to first law of geography: Everything is related to everything else,
but nearby things are more related than distant things [24]. The value of attributes at a given location tend to
vary gradually over space. For instance, weather of two adjacent areas tend to be similar. In many cases, events

in a given area are influenced by the events at neighboring areas. In spatial statistics, this property is called
spatial autocorrelation [22]. A famous example of application of this concept was finding the link between
Cholera outbreak and contaminated water in London in 1855 by looking at the clustering of disease occurrences
(hotspots) around a water pump. An example of hotspots map is shown in Figure 1.

Spatial interdependence of attributes exhibited in data with respect to location and distance is captured by
statistical measures like Moran's I. There are many local and global auto-correlation kernels. We focus on a
representative and popular kernel - Hotspots. For a set of disease occurrences, finding hotspots aim at detecting
disease outbreaks well before it results in a large number of cases. Hotspots are statistically significant clusters
of observations based on similarities of values and locations. Hotspot detection is used in many fields like public
health, crime analysis, etc.

B. Common Dataset Structures
Data for geo-spatial autocorelation analysis can usually come in 3 forms:

1. Aggregated Boundary data: This is the most typical type of available dataset for which usually a
boundary is given and a value corresponding to the boundary is avail-able. The boundary can be a
known regular shape like square, rectangular, hexagonal or an irregular polygonal boundary. An
example of this would be county level covid cases data. For each county, there is a defined polygonal
boundary which is not a regular shape and for each county there would be a corresponding attribute
value like active covid cases.

2. Unit point incidence data: This is the type of data where we have geolocation instances of incidents.
Here we would have multiple points where each point corre-sponds to a single incident. Common
example of this type of dataset is the crime dataset where each point relates to a reported criminal
activity. A covid related example would be having a dataset of all the people who tested positive in a
given area. In this dataset, each person would represent an individual incident and the geolocation of
their home address would be an incident point.

3. Aggregated point incidence data: This is the type of data where we have instances from an area
aggregated at a point. In the crime dataset, the geolocation of the police station could be the incident
point and number of complaints are aggregated to get one single attribute value per incident point. A
covid related example would be having a list of rapid testing centers, where the geolocation of the
testing center is the incident point and the number of all tested positive cases are the aggregate
attribute value.

Fig. 1. Polygon boundaries with their corresponding z scores and p values [1]

Fig. 2. Point data overlaid on a grid vs polygonal boundaries [1].

In geospatial analysis, to calculate and show hotspots, boundaries are required. In the second case, the data can
be overlaid on a regular grid of squares, rectangles, or hexagonal shapes. Another approach is to overlay the
data on top of a polygonal layer, for instance, boundaries of zipcodes. All the values inside the boundary can be
aggregated and used as the corresponding attribute value for the polygonal boundary. Figure 2 shows an
example of data being overlaid on a regular grid and a polygonal map. Depending on the choice of data overlay,
the computational cost will vary.

C. Parallelization
Vector/simd Intrinsics
Vector/ SIMD extensions of Instruction Set Architecture are provided by modern CPUS for single instruction
steam, multiple data stream (SIMD) processing. For x86 CPU s, special wide registers and vector in-structions are
provided for parallel processing at the instruction set level. For instance, x86 processors provide AVX (advanced
vector extensions) instructions. ARM processors provide neon extensions. In this paper, for effective SIMD

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/9825911/9825913/9826068/9826068-fig-1-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/9825911/9825913/9826068/9826068-fig-1-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/9825911/9825913/9826068/9826068-fig-2-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/9825911/9825913/9826068/9826068-fig-2-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/9825911/9825913/9826068/9826068-fig-1-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/9825911/9825913/9826068/9826068-fig-2-source-large.gif

parallelization, we have used AVX instructions through C functions (called intrinsic functions). Intrinsics are
replaced directly to vector instructions without the overhead of function calls. In this paper, we achieved better
performance when compared to compiler generated vectorization of our computational kernels.

Mpi Graph Topology
Given a process interaction graph, MPI provides support to map the processes on a compute cluster. The
application level topology can be mapped to the the physical topology of a network using cartesian and graph
topology functions in MPI. Since a good mapping of processes to network topology reduces the data
communication volume across the network, we have used graph topology functions in our implementation.

D. Related Work
With the volume of data increasing due to its spatio-temporal nature, parallelization of existing algorithms have
been done [9], [10], [13], [19]. Existing approaches use spatial partitioning methods like quadtree for
parallelization [10].

GPU-based implementations of geospatial filter-based al-gorithms have been presented in [11], [12]. MPI-based
parallelization of geospatial polygon overlay and spatial join has been presented in [20], [21], [26].

A Matlab-based shared memory parallelization has been described in [9]. Hadoop MapReduce has been used to
parallelize Getis-Ord based Hotspots detection problem using quadtree-based decomposition of spatial
data [10]. Apache Spark framework has also been used to parallelize spatial hotspot computation [13], [19].
Spark MapReduce papers are short papers from GIS Cup competition organized with SIGSPATIAL
conference [13], [19]. Hadoop and Spark based projects make good use of thread-level and coarse-grained
parallelism but do not take full advantage of HPC resources (e.g., SIMD, GPUs) thus leaving performance on the
table [10], [13], [19]. The trade-offs of calculating weight matrix vs on the fly computation has been discussed in.

Compared to related literature, our paper further explores additional hardware and software parallelization
opportunities. GPU SIMT parallelization and CPU SIMD parallelization along with communication optimizations
are the novelties compared to related literature.

III. Parallel Formulation of Spatial Autocorrelation
We can use Getis-Ord algorithm to calculate the 𝐺𝐺𝑖𝑖∗ statistic for each feature in a dataset [16]. In geospatial
analysis, it gives a Z-score statistic 𝐺𝐺𝑖𝑖∗ where 𝑥𝑥𝑗𝑗 is the value for polygon 𝑗𝑗. 𝑤𝑤𝑖𝑖,𝑗𝑗 is a weight parameter between
polygons 𝑖𝑖 and 𝑗𝑗 which is inversely proportional to the active distance between them. 𝑁𝑁 is equal to the total
number of polygons in our dataset. Positive and negative 𝐺𝐺𝑖𝑖∗ values denote hot and cold spots respectively and
the absolute value of 𝐺𝐺𝑖𝑖∗ is proportional to the intensity of clustering for the ith polygon.

The equations to the Getis-Ord algorithm are as follows:

𝑋𝑋� =
∑ 𝑥𝑥𝑗𝑗𝑛𝑛
𝑗𝑗=1

𝑛𝑛

(1)

𝑋𝑋� =
∑ 𝑥𝑥𝑗𝑗2𝑛𝑛
𝑗𝑗=1

𝑛𝑛

(2)

𝑆𝑆𝑋𝑋 = ��𝑋𝑋2����� − (𝑋𝑋�)2

(3)

𝑊𝑊𝑋𝑋𝑖𝑖 = �𝑤𝑤𝑖𝑖,𝑗𝑗𝑥𝑥𝑗𝑗
𝑗𝑗=1

(4)

𝑊𝑊𝑖𝑖 = �𝑤𝑤𝑖𝑖,𝑗𝑗

𝑛𝑛

𝑗𝑗=1

(5)

𝑊𝑊𝑖𝑖
2 = �𝑤𝑤𝑖𝑖,𝑗𝑗2

𝑛𝑛

𝑗𝑗=1

(6)

𝑆𝑆𝑖𝑖 = �[𝑛𝑛 ∗𝑊𝑊𝑖𝑖
2 − (𝑊𝑊𝑖𝑖)2

𝑛𝑛 − 1

(7)

𝐺𝐺𝑖𝑖∗ =
𝑊𝑊𝑋𝑋𝑖𝑖 − 𝑋𝑋� ∗ 𝑊𝑊𝑖𝑖

𝑆𝑆𝑋𝑋 ∗ 𝑆𝑆𝑖𝑖

(8)

For Moran's I:

𝑊𝑊 = ��𝑤𝑤𝑖𝑖,𝑗𝑗

𝑛𝑛

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

(9)

𝐼𝐼 =
𝑛𝑛
𝑊𝑊
∑ ∑ 𝑤𝑤𝑖𝑖,𝑗𝑗(𝑥𝑥𝑖𝑖 − 𝑋𝑋�)�𝑥𝑥𝑗𝑗 − 𝑋𝑋��𝑛𝑛

𝑗𝑗=1
𝑛𝑛
𝑖𝑖=1

∑ (𝑥𝑥𝑖𝑖 − 𝑋𝑋�)2𝑛𝑛
𝑖𝑖=1

(10)

Values of I usually range from −1 to + 1. Values significantly below (1 − 𝑁𝑁)−1 indicate negative spatial
autocorrelation and values significantly above (1 − 𝑁𝑁)−1 indicate pos-itive spatial autocorrelation. For statistical
hypothesis testing, Moran's I values can be then transformed to z-scores.

Geary's C:

 𝐶𝐶 =
𝑛𝑛 − 1
2𝑊𝑊

∑ ∑ 𝑤𝑤𝑖𝑖,𝑗𝑗�𝑤𝑤𝑖𝑖 − 𝑤𝑤𝑗𝑗�𝑛𝑛
𝑗𝑗=1

𝑛𝑛
𝑖𝑖=1

∑ (𝑥𝑥𝑖𝑖 − 𝑋𝑋�)2𝑛𝑛
𝑟𝑟=1

(11)

𝑁𝑁 is the number of spatial units indexed by 𝑖𝑖 and j. 𝑥𝑥 is the variable of interest; �̅�𝑥 is the mean of x;𝑤𝑤𝑖𝑖,𝑗𝑗 is a matrix
of spatial weights with zeroes on the diagonal (i.e., 𝑤𝑤𝑖𝑖𝑖𝑖 = 0 and 𝑊𝑊 is the sum of all 𝑤𝑤𝑖𝑖,𝑗𝑗.

The value of Geary's C lies between 0 and some unspecified value greater than 1, usually lower than 2. Values
significantly lower than 1 demonstrate increasing positive spatial autocor-relation. Values significantly higher
than 1 illustrate increasing negative spatial autocorrelation. Geary's C is inversely related to Moran's I. Moran's I
is a measure of global spatial auto-correlation, while Geary's C is more sensitive to local spatial autocorrelation.

A. Algorithm
The Algorithm for Getis-Ord is as follows:

1. Load all the Points and their 𝑥𝑥 attribute values.
2. Calculate the mean of all the 𝑥𝑥 values, denoted by 𝑋𝑋�
3. Calculate the mean of all the 𝑥𝑥2 values, denoted by 𝑋𝑋2.
4. Calculate 𝑆𝑆, the standard deviation of all the 𝑥𝑥 values.
5. Calculate the values for 𝑤𝑤𝑖𝑖,𝑗𝑗, the weight metric between polygon 𝑖𝑖 and polygon 𝑗𝑗.
6. Calculate 𝑤𝑤𝑖𝑖,𝑗𝑗2 from 𝑤𝑤𝑖𝑖,𝑗𝑗 .
7. For each 𝑖𝑖, calculate 𝑊𝑊𝑖𝑖 from 𝑤𝑤𝑖𝑖,𝑗𝑗 .
8. For each 𝑖𝑖, calculate 𝑊𝑊𝑖𝑖

2 from 𝑤𝑤𝑖𝑖,𝑗𝑗2 .
9. For each 𝑖𝑖, calculate 𝑆𝑆𝑖𝑖 from 𝑊𝑊𝑖𝑖 and 𝑊𝑊𝑖𝑖

2.
10. For each 𝑖𝑖, calculate 𝑊𝑊𝑋𝑋𝑖𝑖 from 𝑤𝑤𝑖𝑖,𝑗𝑗 and 𝑥𝑥 values.
11. For each 𝑖𝑖, calculate 𝐺𝐺𝑖𝑖∗.

B. Complexity
The time complexity of this algorithm is 𝑂𝑂(𝑁𝑁2) and the space complexity of this algorithm is 𝑂𝑂(𝑁𝑁). This analysis
of time complexity is contingent on the assumption that inverse distance squared (impedance) is used
for 𝑤𝑤𝑖𝑖,𝑗𝑗 and any similar 𝑂𝑂(𝑐𝑐) method of calculating 𝑤𝑤𝑖𝑖,𝑗𝑗 would keep the analysis the same. Similarly, for the
space complexity no pre-calculations of 𝑤𝑤𝑖𝑖,𝑗𝑗 are assumed. Pre-calculations of 𝑤𝑤𝑖𝑖,𝑗𝑗s would make the space
complexity to become 𝑂𝑂(𝑁𝑁2) too.

C. Weight Matrix
The most common technique of calculating 𝑤𝑤𝑖𝑖,𝑗𝑗 is the metric called the inverse distance. Distance could be
different types but most typically the euclidean distance. Inverse distance is a metric would be a high value for
things that are closer and low value for things that are spatially further apart. It should be noted that 𝑤𝑤𝑖𝑖,𝑗𝑗 =
𝑘𝑘∀(𝑖𝑖 = 𝑗𝑗), where 𝑘𝑘 is a value of no consequence and is just used as a placeholder because in this case
both 𝑖𝑖, 𝑗𝑗 would be the same point so no distance and undefined inverse distance. On, the other end, objects
further than a certain threshold can be deemed to have a inverse distance value of zero i.e. 𝑤𝑤𝑖𝑖,𝑗𝑗 =

0 if invDist (𝑖𝑖, 𝑗𝑗) < 𝜖𝜖. Also, 𝑤𝑤𝑖𝑖,𝑗𝑗 = 𝑤𝑤𝑗𝑗,𝑖𝑖 because both are distance-based quantities which does not vary on
direction. Hence, if w was to be modeled as a matrix, it would be a 𝑛𝑛 × 𝑛𝑛 symmetric matrix with diagonals all 𝑘𝑘.
Basically, it is an adjacency matrix where 𝑤𝑤𝑖𝑖,𝑗𝑗 corresponds to the weight, as it relates to the spatial relation
between two areas 𝑖𝑖 and 𝑗𝑗.

D. Spatial Sorting
Spatial sorting is used to arrange 2-dimensional points in 1-dimensional order based on spatial proximity
(locality). Space filling curves are used for spatial sorting, such as Z-order [15] and H-order (also known as Hilbert
curve). For illustration, let us assume that we have a list of tuples, where the first entry is the 𝑥𝑥 -coordinate and
the second entry is the y -coordinate of a point. After sorting the list spatially, points that are closer to each
other in the xy plane would appear closer in the list. Proximity of the points - difference in their index values in
the sorted list would be an indication of proximity of the points in euclidean space and vice versa.

Fig. 3. Slice of the weight matrix. Each row and column index corresponds to a polygon id. For any two
polygons 𝑖𝑖 and 𝑗𝑗, element at index (𝑖𝑖, 𝑗𝑗) is the inverse of the euclidean distance between centroids of 𝑖𝑖 and 𝑗𝑗.

Having the polygons from our data sorted has special implications for our application and acceleration
objectives, especially the affect it has on the weight matrix. Looking at Figure 3, we can observe that if the
polygons are spatially sorted, then in each row 𝑖𝑖, the columns that have non-zero entries are only the columns
numbered close to the value of 𝑖𝑖. This is because, as polygons get further apart, their inverse distance decreases
and beyond a threshold, they simply become zero. So, for each row 𝑖𝑖, the columns 𝑗𝑗 for whose values are further
apart, their values are simply zero because it represents the underlying property that polygon 𝑖𝑖 and 𝑗𝑗 are just
spatially further away from each other.

Expanding upon this property, we will find that for each row 𝑖𝑖 there are only columns in the range (𝑖𝑖 − 𝑙𝑙𝑖𝑖 , 𝑖𝑖 +
𝑟𝑟𝑖𝑖) for which the weight values are non-zero. Let 𝑙𝑙𝑖𝑖 be the number of entries to the left of 𝑖𝑖 that are non-zero
and 𝑟𝑟𝑖𝑖 be the number of entries to the right of 𝑖𝑖 that are non-zero. Given a large map with lots of polygons, the
range (𝑙𝑙𝑖𝑖 + 𝑟𝑟𝑖𝑖) can become significantly small, making our matrix a sparse matrix with only elements around the
main diagonal being non-zero and elements further away from the diagonal being mostly zeros. For example,
with 100k polygons the max range (𝑙𝑙𝑖𝑖 + 𝑟𝑟𝑖𝑖) was less than 200.

Furthermore, for the rapid recalculation part, in events where we only have new data for a few polygons and we
want to update the scores, the only polygons that require recalculation would be the polygons which have new
data and the polygons with which it has a non-zero weight relationship.

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/9825911/9825913/9826068/9826068-fig-3-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/9825911/9825913/9826068/9826068-fig-3-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/9825911/9825913/9826068/9826068-fig-3-source-large.gif

Comparison with r-Tree
An alternative to using the weight matrix would be the use of 𝑎𝑎 R-tree like approach. Here, our cutoff
threshold 𝜖𝜖 from the weight matrix would translate to a certain distance and we would then query the tree to
get all polygons within that distance range from the query polygon. We could then calculate weights 𝑤𝑤𝑖𝑖,𝑗𝑗 for
each query polygon 𝑖𝑖 and queried polygons denoted by 𝑗𝑗. If we use this approach, rather than the sorting and
pre-calculating weights, then it would add overheads needed to build a tree.

This is in contrast to the tradeoff of sorting all the polygons. Since the locations of the polygons are static, the
tree would only be needed to be built once just like the sorting. The advantage of using weight matrix is that the
weights will be available in memory easily accessible for SIMD operations. Also, in the cases of the square tiles,
sorting is extremely efficient and building a tree would just be an overhead. In an R-tree approach, each polygon
will be able to query its list of neighbours and then calculate the corresponding weights with each neighbour.
Since the polygons will be unsorted, each weight calculation will access arbitrary areas of the memory and no
cache-based gain will be achieved. Also, using a vectorized approach will not be possible without further sorting
and ordering because the results of the query may not be in a contiguous memory. The distinct advantage of
using R-trees can be that their build cost is not high, their query can be easily parallelizable and storing the
weight matrix might not be necessary.

IV. Acceleration Techniques
A. Cache Access Optimization
We have three arrays of size 𝑁𝑁 - two are arrays that have the x-location and y-location for each point, and
another is an array of attribute values of each point. Let's denote the first two arrays by p and the next array by
x. We need to fill a 2D array of size 𝑛𝑛 × 𝑛𝑛 with 𝑤𝑤𝑖𝑖,𝑗𝑗s. Let's call this array 𝑤𝑤. Assuming there is a cache block size
of B, whenever calculating any 𝑤𝑤𝑖𝑖,𝑗𝑗, we get two B blocks of p and one B block of w loaded into the cache, so in
this case, instead of linearly calculating the values of w, we calculate all the combination of 𝑤𝑤𝑖𝑖,𝑗𝑗 that we can
from these two blocks of 𝑝𝑝 in an order where we can write into the loaded 𝐵𝐵 block of 𝑤𝑤. Once we have a
filled 𝑤𝑤𝑖𝑖,𝑗𝑗 matrix array, whenever looping through it, we need to make sure that we access it in the proper order.

Looping through � 𝑤𝑤𝑖𝑖,𝑗𝑗
𝑛𝑛

𝑗𝑗=1
 for a fixed 𝑖𝑖 might be expensive in column-major architectures than looping

through � 𝑤𝑤𝑗𝑗,𝑖𝑖

𝑛𝑛

𝑗𝑗=1
 but since 𝑤𝑤𝑖𝑖,𝑗𝑗 = 𝑤𝑤𝑗𝑗,𝑖𝑖 doing both will give the same result.

B. Weight Matrix Storage Optimization
Since the weight matrix is symmetric, we can store only the upper triangular matrix. Furthermore, since the non-
zero values are only near the diagonal we would only need to store at most 𝑚𝑚𝑎𝑎𝑥𝑥𝑟𝑟 = ∀𝑖𝑖𝑚𝑚𝑎𝑎𝑥𝑥𝑟𝑟𝑖𝑖 values for each
polygon. So, in the worst case, the weight matrix would need 𝑛𝑛 ∗ 𝑚𝑚𝑎𝑎𝑥𝑥𝑟𝑟 space compared to its 𝑛𝑛2 size. But this
approach makes SIMD operations inefficient because we would need to index up or down to find the neighbours
to the left of polygon 𝑖𝑖. Due to symmetry, 𝑛𝑛2 and 𝑚𝑚𝑎𝑎𝑥𝑥𝑙𝑙 = ∀𝑖𝑖𝑚𝑚𝑎𝑎𝑥𝑥𝑙𝑙𝑖𝑖 would be equal. So, we could store a a𝑛𝑛 ∗
(2 ∗ 𝑚𝑚𝑎𝑎𝑥𝑥𝑟𝑟) array, which is still better than the 𝑛𝑛2 array. Here the 𝑁𝑁 rows will be the polygons
and (2 ∗ 𝑚𝑚𝑎𝑎𝑥𝑥𝑟𝑟) columns would be weight with the non-zero neighbours. This way, although the storage is
doubled from the most compressed form, being able to access a contiguous memory of weights will significantly
improve the cache access and make SIMD operations easily accessible. Furthermore, if the weight matrix is now
stored in a file, then, that too can be easily read with contiguous memory access and the amount needed to be
read by each process decreases significantly, almost by a factor of 𝑛𝑛

𝑚𝑚𝑚𝑚𝑚𝑚𝑟𝑟
.

C. Openmp Parallelization
OpenMP parallelization is based on the equations of the Getis-Ord algorithm as shown earlier. The steps from
Getis-Ord algorithm III - A, Step 2, 3 and 5 were parallelized using parallel loops with reduction. All the steps,
including calculating each of the 𝐺𝐺𝑖𝑖∗, are parallelized. If recalculation of results is not required, then steps 5
through 10 can be parallelized to run by each thread for each polygon 𝑖𝑖 along with a second level of parallelism
inside the loop for calculating all the sums and 𝐺𝐺𝑖𝑖∗ values.

D. Openacc Parallelization
OpenACC compiler pragmas support both CPU and GPU parallelization. We have used OpenACC for GPU
parallelization. Compared to OpenMP, additional steps include data copy to GPU (in and out). We have used
reduction pragma in OpenACC for additions. For example, in Algorithm III-A, Step 1, once the 𝑥𝑥 values are copied
to the GPU, for Steps 2 and 3, we can do reductions to get the summation results. Only the output 𝐺𝐺𝑖𝑖∗ values are
copied back to the host CPU. Our OpenACC implementation leverages our existing C/C++ code.

E. Cuda Parallelization
We have also used CUDA for GPU parallelization of our kernels. Compared to OpenACC, CUDA gives more
control in using the GPU. For algorithm III-A, we added CUDA kernels for each steps. For large datasets that do
not fit in the GPU memory, especially the weight matrix whose size grows quadratically in the number of inputs,
we do calculations in batches by moving data in and out of the GPU. Data movement between GPU and Host can
be an expensive step compared to computation especially when done multiple times.

F. MPI Graph Topology (distributed memory)
Using MPI, process ids are used to split the data among multiple compute nodes for a distributed memory
parallelization. We use allreduce collective function to merge the partial results from Steps 2 and 3 of algorithm
III-A. We need to broadcast the reduced values to all the ranks as well. Also, for Step 5, each polygon needs to
calculate the 𝑤𝑤𝑖𝑖,𝑗𝑗 values and the MPI ranks need communication to share the location information. We assign a
MPI rank to each polygon. This process mapping scheme helps in creating better MPI process topology, which
we discuss next.

Given the nature of weights which decays with increasing distance, polygons that are further from each other
have a weight of zero. This means that only polygons that are close to each other need to communicate with
each other. The Weight matrix can then be utilized to create an adjacency matrix (for graph) where entries in
this new matrix are 1, if the weights are greater than zero, and zero otherwise. We translate this polygon
adjacency matrix to MPI processes adjacency matrix for each process as required by Graph Topology function in
MPI. MPI has methods that can take this adjacency matrix and arrange processes in such a way that minimizes
the amount of communication among processes. We have used the following function for graph topology in
MPI.

Listing 1. Adjacent distributed graph creation

Since the weight matrix is symmetric, the indegrees are equal to the outdegrees and the sources are same as the
destinations. We have used MPI_UNWEIGHTED because the volume of communication is the same when

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/9825911/9825913/9826068/9826068-graphic-1-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/9825911/9825913/9826068/9826068-graphic-1-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/9825911/9825913/9826068/9826068-graphic-1-source-large.gif

communication takes place. It is important to set reorder equal to 1, if we want MPI to figure out the best
configuration to reduce the amount of cross-node communication. Setting reorder to be true, means that in the
new MPI_Comm, the ranks of MPI processes will be different from the global ranks in MPI_COMM_ WORLD.
Hence, to avoid double loading of the input data (before and after process reordering), we divide the overall
data loadin into two stages. In the first stage we load partial data that is necessary and then load all the other
remaining data only after this reorder has taken place. This is efficient and it also ensures that MPI processes will
not have data corresponding to their old ranks.

G. Communication Efficiency on Distributed Memory
If we have 𝑃𝑃 processes, each process will have 𝑁𝑁

𝑃𝑃
 polygons and each of them will have to calculate 𝑁𝑁

𝑃𝑃
 𝐺𝐺𝑖𝑖∗ values.

However, 𝑋𝑋� and 𝑆𝑆 are the same for 𝑁𝑁 polygons. So, each 𝑁𝑁
𝑃𝑃

 process have to calculate those values only
once. 𝑋𝑋� and 𝑆𝑆 are simply mean and standard deviation, and we can use any of the existing communication
efficient algorithms to calculate those. The main communication bottleneck here is that for each polygon 𝑖𝑖 to
calculate 𝐺𝐺𝑖𝑖∗, it needs 𝑤𝑤𝑖𝑖,𝑗𝑗 and 𝑥𝑥𝑗𝑗 for all 𝑁𝑁 𝑗𝑗𝑗𝑗 which means 𝑃𝑃 all-to-all communication steps which
is 𝑂𝑂(𝑃𝑃2) communications. Each broadcast would have to send the appropriate 𝑥𝑥𝑗𝑗 values along with parameters
to calculate 𝑤𝑤𝑖𝑖,𝑗𝑗 values. Using graph topology built on top of a weight matrix that preserves neighborhood
information for each MPI process, the communication can be potentially optimized to 𝑂𝑂(𝑃𝑃) communication
steps.

H. Vectorization with Compiler Intrinsics
For single precision floating point data type (32 bits), 8-way parallelism can be potentially exploited by using 256
bit vector register supported by Advanced Vector Extensions (AVX) [8]. AVX-512 intrinsics can support 16-way
parallelism because of wider SIMD registers. Intrinsic functions work like inline functions. There is no overhead
of function calls because compilers replace these functions with corresponding vector assembly instructions.
Our implementation of equations 8, 1 and 3 is geared towards exploiting vectorization via intrinsics.

Arithmetic (summations, multiplications, etc), data movement (load/store), and comparison operations are fully
vectorized. The denominator and numerator terms for equation 8 are also vectorized efficiently.

In Algorithm 1, we show an example of using advanced vector intrinsics to calculate the weight matrix using the
inverse euclidean distance and setting all weight values below threshold epsilon (epi) to be zero. Broadcast
function is used to set all the elements of a SIMD register with the same value that was passed to it as an
argument. Please refer to [8] for details on the functions used here.

It can be seen that the code is optimized enough to start vector operations always at aligned memory for
each 𝑖𝑖 loop using the second 𝑗𝑗 loop and control variable 𝑘𝑘. Also, the code only does one calculation
for 𝑤𝑤𝑖𝑖,𝑗𝑗 and 𝑤𝑤𝑗𝑗,𝑖𝑖 values because they are the same due to symmetry. There is a post-processing step done after
this to fill the 𝑤𝑤𝑗𝑗,𝑖𝑖 values. This will ensure that whenever we need 𝑤𝑤[𝑖𝑖] for any polygon 𝑖𝑖, we will have the full
contiguous memory of size 𝑁𝑁 with values for all 𝑤𝑤𝑖𝑖,𝑗𝑗.

Algorithm 1: Intrinsics based algorithm for calculating weights
Input: N, cutoff value 𝑒𝑒𝑝𝑝𝑖𝑖

Output: populated weights 𝑤𝑤

1. declare _m256 epis, x1, x2, xx, y1, y2, yy, z
2. declare int 𝑖𝑖, 𝑗𝑗, 𝑘𝑘 and assign 𝑘𝑘 ← 8
3. epis ← mm256_broadcast_ss(epi)

https://ieeexplore.ieee.org/document/#deqn1-deqn8
https://ieeexplore.ieee.org/document/#deqn1-deqn8

4. for (𝑖𝑖 = 0; 𝑖𝑖 < 𝑁𝑁; 𝑖𝑖 + +) do
5. for (𝑗𝑗 = 𝑖𝑖 + 1; 𝑗𝑗 < 𝑘𝑘, 𝑗𝑗 + +) do
6. w[i*N + j] ← invEucDist(x, y, i, j, epi)
7. end for
8. for (𝑗𝑗 = 𝑘𝑘; 𝑗𝑗 < 𝑁𝑁; 𝑗𝑗 = 𝑗𝑗 + 8) do
9. x1 ← mm256_broadcast_ss(x + i)
10. x2 ← mm256_load_ps(x + j)
11. xx ← mm256_sub_ps(x2, xl)
12. xx ← mm256_mul_ps(xx, xx)
13. yl ← mm256_broadcast_ss(y + i)
14. y2 ← mm256_load_ps(y + j)
15. yy ← mm256_sub_ps(y2, yl)
16. yy ← mm256_mul_ps(yy, yy)
17. z ← mm256_add_ps(xx, yy)
18. z ← mm256_rsqrt_ps(z)
19. // SIMD compare if z > epis
20. bmask ← mm256_cmp_ps(z, epis, CMP _GT_OQ)
21. z ← mm256_and_ps(z, bmask) // (z & bmask)
22. mm256_store_ps(w + i*N + j, z)
23. end for
24. k←(((i+1)/8)+1)∗8
25. end for

I. Openmp & Vectorization
On top of our vectorized code, we added thread-level data parallelism using OpenMP to leverage multiple
vector units available on modern multi-core CPUs. For this combined parallelization, cache and register memory
availability with multiple parallel threads are the main issues. With reference to code, algorithm 1, the approach
that gave us the most benefit was to run the 𝑖𝑖 loop in OpenMP parallel regions while maintaining contiguous
data access for each thread. If 𝑡𝑡 is the number of OpenMP parallel threads, this can be achieved with using a

guided OpenMP schedule with chunk size 𝑐𝑐𝑘𝑘 such that 1 < 𝑐𝑐𝑘𝑘 < �𝑁𝑁
𝑡𝑡
�. Having a lower value of 𝑐𝑐𝑘𝑘 will split the

iterations into threads in such a way that the first among the earlier threads will have the largest chunk size and
less memory access overhead, but later threads will have smaller chunks size and higher cache overhead. Also,
with multi-threading, it is necessary to keep in mind that depending on the processor, each core will have
only a limited number of SIMD registers (usually 32) and limited L1 cache size, so choosing a thread count 𝑡𝑡 that
does not overwork each core is necessary to see any benefits from the combined acceleration approach.

J. MPI & Multiple GPU (Cuda)
If multiple nodes with GPU are available, then MPI can be used to offload much of the processing to the GPU s
by combining the MPI and CUDA codes. Once each MPI process has the data it is going to be processing, it can
easily copy it to GPU device and get results. This will work even if there are multiple MPI processes running in
the node. Even if each node has multiple GPU s, MPI processes can use their rank to select one of the available
GPU s and offload their computation. This has been shown in Figure 4. If there are multiple nodes each with
multiple GPU s, this same approach will work with the combined MPI. The best way to use MPI with CUDA is to
have a separate cuda file with extern C functions that are capable of executing the cuda kernels. This has been
demonstrated in Figure 5. Pointer to the data structures from the host's main memory can be passed into this

function with useful information like the rank of the MPI process that's calling it. Using cudaGetDeviceCount,
cudaSetDevice and the MPI rank, the function can call the kernel and copy back the memory after computation
to host using the host pointers. Figures 4 and 5 are only for demonstration purpose and show a case where a
node has multiple GPU s and number of MPI processes are equal to the number of GPU s per node.

If multiple GPU s are going to be used in a node, it is also a good idea to minimize all cudaMemcpyHostToDevice
and cudaMemcpy DeviceToHost to because that is the step that consumes the most time. So, a preprocessing
step to allocate memory on the GPUs and passing back the device pointers to host to use in further calculations
is recommended.

K. Rapid Recalculation
Even in scenarios where the data emerges or changes at certain time intervals, the location based data and
spatial relationships remains constant. For example, in the COVID data cases, the number of daily cases would
be different but the distance between two counties would remain the same. So, whenever we would need to re-
calculate the results, we would need to only recalculate some of the equation, i.e. the equations that are
dependent on 𝑥𝑥. The equations independent of 𝑥𝑥 could be pre-calculated and stored for easy access and
retrieval. The equations independent of 𝑥𝑥 in equation 8 for 𝐺𝐺𝑖𝑖∗ are equation 5 for 𝑊𝑊𝑖𝑖 and equation 7 for 𝑆𝑆𝑖𝑖 and
their dependent equations. Hence, for each polygon, 𝑊𝑊𝑖𝑖 and 𝑆𝑆𝑖𝑖 remain unchanged for newer values of 𝑥𝑥 and do
not need to be recalculated from the beginning.

Fig. 4. Mpi part of multi-gpu

https://ieeexplore.ieee.org/document/#deqn1-deqn8
https://ieeexplore.ieee.org/document/#deqn1-deqn8
https://ieeexplore.ieee.org/document/#deqn1-deqn8
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/9825911/9825913/9826068/9826068-fig-4-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/9825911/9825913/9826068/9826068-fig-4-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/9825911/9825913/9826068/9826068-fig-4-source-large.gif

Fig. 5. Cuda part of multi-gpu

Next, lets consider a boundary case where we have a new value for only one polygon and there is change in only
one value of 𝑥𝑥 In such a case, the global values of 𝑋𝑋� and 𝑆𝑆𝑚𝑚 would change and would need to be updated across
all polygons. However, we would only need to recalculate 𝑊𝑊𝑋𝑋𝑖𝑖 for cases 𝑤𝑤𝑖𝑖,𝑗𝑗 ≠ 0, 𝑗𝑗 = 𝑘𝑘: where 𝑥𝑥𝑘𝑘 is the existing
polygon value and Δ𝑥𝑥𝑘𝑘 is the change in value for 𝑥𝑥𝑘𝑘.

So the equations become

𝑋𝑋�𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑋𝑋� +
∆𝑥𝑥𝑘𝑘
𝑛𝑛

(12)

𝑋𝑋�𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑋𝑋2���� +
2 ∗ 𝑥𝑥𝑘𝑘 ∗ ∆𝑥𝑥𝑘𝑘 + ∆𝑥𝑥𝑘𝑘2

𝑛𝑛

(13)

𝑆𝑆𝑚𝑚𝑛𝑛𝑛𝑛𝑛𝑛2
2 = 𝑋𝑋�𝑛𝑛𝑛𝑛𝑛𝑛2 − (𝑋𝑋�𝑛𝑛𝑛𝑛𝑛𝑛)2

= 𝑋𝑋�2 +
2 ∗ 𝑥𝑥𝑘𝑘 ∗ ∆𝑥𝑥𝑘𝑘 + ∆𝑥𝑥𝑘𝑘2

𝑛𝑛
− �𝑋𝑋� +

∆𝑥𝑥𝑘𝑘
𝑛𝑛
�
2

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/9825911/9825913/9826068/9826068-fig-5-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/9825911/9825913/9826068/9826068-fig-5-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/9825911/9825913/9826068/9826068-fig-5-source-large.gif

= 𝑋𝑋�2 +
2 ∗ 𝑥𝑥𝑘𝑘 ∗ ∆𝑥𝑥𝑘𝑘 + ∆𝑥𝑥𝑘𝑘2

𝑛𝑛
− (𝑋𝑋�)2 − �

2 ∗ 𝑋𝑋� ∗ ∆𝑥𝑥𝑘𝑘
𝑛𝑛

� − �
∆𝑥𝑥𝑘𝑘
𝑛𝑛
�
2

= 𝑆𝑆𝑋𝑋2 +
2 ∗ 𝑥𝑥𝑘𝑘 ∗ ∆𝑥𝑥𝑘𝑘 − 2 ∗ 𝑋𝑋� ∗ ∆𝑥𝑥𝑘𝑘

𝑛𝑛

𝑆𝑆𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛2
2 = 𝑆𝑆𝑋𝑋2 +

(2 ∗ ∆𝑥𝑥𝑘𝑘) ∗ (𝑥𝑥𝑘𝑘 − 𝑋𝑋�)
𝑛𝑛

(14)

𝑊𝑊𝑚𝑚𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑊𝑊𝑋𝑋𝑖𝑖 + 𝑤𝑤𝑖𝑖,𝑘𝑘∆𝑥𝑥𝑘𝑘

(15)

Next, lets consider the general case where there are multiple new 𝑥𝑥 values for multiple polygons. In this case.
we would only need to recalculate 𝑊𝑊𝑋𝑋𝑖𝑖 for cases 𝑤𝑤𝑖𝑖,𝑗𝑗 ≠ 0∀𝑗𝑗 = 𝑘𝑘 where 𝑥𝑥𝑘𝑘s are the updated polygon values. In
this case, the equations become:

𝑋𝑋�𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑋𝑋� +
1
𝑛𝑛
�∆𝑥𝑥𝑘𝑘
𝑘𝑘

(16)

𝑋𝑋�𝑛𝑛𝑛𝑛𝑛𝑛2 = 𝑋𝑋2���� +
1
𝑛𝑛
�(2 ∗ 𝑥𝑥𝑘𝑘 ∗ ∆𝑥𝑥𝑘𝑘 + ∆𝑥𝑥𝑘𝑘2)
𝑘𝑘

(17)

𝑆𝑆𝑋𝑋 𝑛𝑛𝑛𝑛𝑛𝑛
2 = 𝑆𝑆𝑋𝑋2 +

2
𝑛𝑛
∗��∆𝑥𝑥𝑘𝑘 ∗ (𝑥𝑥𝑘𝑘 − 𝑋𝑋�)�

𝑘𝑘

(18)

𝑊𝑊𝑋𝑋𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑊𝑊𝑋𝑋𝑖𝑖 + �𝑤𝑤𝑖𝑖,𝑘𝑘∆𝑥𝑥𝑘𝑘
𝑘𝑘

(19)

Hence, if there are only few polygons with updated values, and if we have pre-calculated values from previous
iterations, then we can calculate the difference and use the difference to reduce a lot of recalculations. For
example, if there were only 100s of counties that had updated data from the previous day, then we could rerun
calculations for just those 100 and update the 𝐺𝐺𝑖𝑖∗ values. Also, note that Δ𝑥𝑥𝑘𝑘 values can be negative too, in case
of decrease in 𝑥𝑥 values.

V. Experimental Results
For the experiments, both real world data and simulated/-generated data were used to test the
implementations.

A. Real World Covid Data
One of the primary motivation for this work was to track COVID hotspots, especially as they were emerging and
altering. One of the main sources of COVID related data was the United States Center for Disease Control.
Different geographic level (like cities, districts, county, states) based data on daily reported values are available.
This data had necessary COVID related statistics like active cases, new cases, closed cases, deaths, recovered etc.
However, for geospatial analysis, we require geographic data too. For the experimental timing results provided
in this paper, we focused on the county level analysis. Geographic data required are county locations and
boundaries. This information was available from the Cen-sus Bureau's MAF/TIGER geographic database U.S.
County Boundaries TIGER dataset [5]. For autocorrelation calculations, we require only certain properties from
the geographic data. For each county, we required its boundary information to calculate its centroid. This
centroid information was further used to calculate the inverse distance for the weight values among county
polygons. Next, we needed to match the county polygons with its corresponding COVID data. Counties have
unique identifiers called GEOID, so each of these county polygons had a unique five digit identifier known as the
FIPS code. Also, the county level COVID data along with each county information had a corresponding FIPS code.
This common unique id made it easier to join the COVID data with the geographic data. The counties geographic
data had 3,233 polygons along with other data entities of which the extra unnecessary information were
discarded and this was processed to get a dataset with the following entities: County, State, FIPS, and Centroid.
Then for each date, the entities for the available COVID data were: Date, County, State, FIPS, new cases, active
cases, recovered cases, total cases, new deaths, and total deaths.

B. Simulated/generated Datasets
Simulated data were generated mostly for the unit point incidence data and the aggregated point incidence
data. The data was generated randomly. For the unit point incidence data, the sample space was divided into a
uniform square grid, and each square cell was considered as the polygon for that region. Next, the centroid for
each of the square tile was calculated. Then, using different random distributions, x-values (attributes) were
assigned to each square tile. The x-values were used to simulate the count of events inside the square tile.
Finally the data entities for each square tile were: id, centroid, x1, x2, x3, …, xn. Using the centroid values to
calculate the inverse distances among the square tiles, the weight matrix was populated.

For the aggregated point incidence data, first location for the aggregation points were generated from a uniform
random distribution across the sample space. Then a fast Voronoi boundary calculation [18] was used to
generate the boundaries for each unit point. These boundaries represented the polygon for that region and the
aggregation points were used as centroids for that region. Next, similar to data generation with the square grids,
different random distributions were used to simulate x-values which were assigned to each polygon. Finally the
data entities for each aggregation points polygon was: id, centroid, x1, x2, x3, …, xn. Using the centroid values to
calculate the inverse distances among the polygon boundaries, the weight matrix was populated.

C. Hardware Description
Experiments were performed on two machines with the following hardware configurations. Machine 1 (M1) has
two Intel Xeon E5 v4 CPUs (2.10 GHz), where each CPU has 18 cores (36 thread). M1 has 500 GBs of RAM. M1
also has an Nvidia TITAN V GPU with 5120 CUDA cores. On the Intel Xeon E5, there is L1 cache of 32KB per core.
L2 and L3 cache sizes are 256 KB and 2.5 MB. L2 cache is per core. L3 cache is per NUMA node. The gcc verision
is 4.8.5, nvcc is V11.2.67 and pgcc is 21.2.0.

Machine 2 (M2) is a medium sized compute cluster with multiple nodes used for running experiments with a
scheduler. Compute nodes in M2 contains AMD Rome which is a 64 core (128 thread) CPU with a base
frequency of 2 GHz, NVIDIA Tesla V100 GPUs which has 5120 CUDA cores at base frequency of 1.20 GHz and 512
GBs RAM. Compute nodes and storage are connected via a 100 GB/s Infiniband network. On the AMD Rome,
there is L1 instruction cache of 32KB per core and similarly L1 data cache of 32KB per core. There is mid-level
cache (MLC) or L2 of 512 KB per core. AMD Rome has 16 × 16 MB L3 cache which is the last level cache and is a
shared cache of 16 MB per 4 core. The gcc version is 9.2.0, mpi is mvapich2, nvcc is V11.2.152 and pgcc is
21.11.0.

D. Performance Engineering Results
Table I show the aggregation of speedup gained from different methods from multiple experiments at different
data sizes. Every acceleration method improves the computation speedup and combining different approaches
has even greater yield. For OpenMP and MPI, the shown speedup holds as long as the threadCount or
numProcess is less than the number of cores.

The AVX2 codes were implemented in both Intel and AMD CPU s and the gain in performance was similar across
both. Because 8 single precision floating point variables can be loaded in 256 bits of a SIMD register, there is
potentially 8-way SIMD parallelism that can be exploited when compared to scalar code. We observe upto 6x
speedup using SIMD -optimized code. We used linux perf tool to measure the impact of improved vectorization
through intrinsic functions on x86 processors. An analysis through the perf tool showed that with intrinsics the
number of CPU cycles were reduced by 𝑎𝑎 factor of almost 40x while the instructions per cycle (IPC) doubled.
Higher IPC value represents better CPU utilization.

Table I Parallelization method and corresponding best speedup (25k dataset)
Parallelization Speedup
GPU CUDA (single node) 100x
GPU OpenACC (single node) 100x
OpenMP (16 thread) 15.4x
AVX2 intrinsics 6x
AVX2 + OpenMP 90x
MPI (16p) 15x
MPI (16p) + AVX2 90x
MPI (8 gpu nodes) + CUDA 750x
MPI (4 gpu nodes) + CUDA 380x

Also, the number of branches decreased by almost 50x while branch misses reduced by 1.5x. This is attributed to
the advantages of loop unrolling on line number 8 of Algorithm 1 (loop variable 𝑗𝑗 is incremented by 8).
Reduction in branch misses leads to higher instruction level parallelism through instruction pipelining because of
reduction in control hazards. Furthermore, cache loads decreased by 16x and cache misses decreased by more
than 2x.

From a vectorization perspective, the difference in performance is attributed to the choice of SIMD registers and
vector instructions selected by the compiler with/without intrinsics. We used GCC compiler with -O3 flag to
enable compiler auto- vectorization. In compiler generated code, XMM registers with 128 bits width were used
for critical parts of the kernel. In the version with intrinsics, compiler generated code had YMM registers with
256 bits width. Wider registers have the benefit of packing more data elements in a single register. We looked at
the assembly code generated with/without intrinsics using double precision floating point data. For data
movement, vmovsd was generated in the sub-optimal code instead of vmovapd. 𝑗𝑗 stands for scalar in

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/9825911/9825913/9826068/9826068-table-1-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/9825911/9825913/9826068/9826068-table-1-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/9825911/9825913/9826068/9826068-table-1-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/9825911/9825913/9826068/9826068-table-1-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/9825911/9825913/9826068/9826068-table-1-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/9825911/9825913/9826068/9826068-table-1-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/9825911/9825913/9826068/9826068-table-1-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/9825911/9825913/9826068/9826068-table-1-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/9825911/9825913/9826068/9826068-table-1-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/9825911/9825913/9826068/9826068-table-1-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/9825911/9825913/9826068/9826068-table-1-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/9825911/9825913/9826068/9826068-table-1-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/9825911/9825913/9826068/9826068-table-1-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/9825911/9825913/9826068/9826068-table-1-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/9825911/9825913/9826068/9826068-table-1-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/9825911/9825913/9826068/9826068-table-1-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/9825911/9825913/9826068/9826068-table-1-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/9825911/9825913/9826068/9826068-table-1-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/9825911/9825913/9826068/9826068-table-1-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/9825911/9825913/9826068/9826068-table-1-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/9825911/9825913/9826068/9826068-table-1-source-large.gif

vmovsd. 𝑝𝑝 stands for packed in vmovapd. Similarly, vmulsd was generated by compiler in the suboptimal code
instead of vmulpd.

Figure 6 shows the time (in log2 scale) for different sizes of data. Average from multiple runs of the experiments
are shown. The best implementation remains the MPI+CUDA approach.

Execution times from an experiment with 300,000 polygons are shown in Table III. Using a non-optimized
sequential C code, it takes about 36 minutes to run from start to finish. The computationally intensive parts can
be divided into three parts. First part is the spatial sorting. Second part is calculating and populating the weight
matrix. Final part is calculating all 𝐺𝐺𝑖𝑖∗ values. The above mentioned speedups in Table I are mostly gained in the
second and third parts. OpenACC and CUDA brings down 780 seconds to calculate the weight matrix down to
about 9 seconds. AVX2 intrinsics brings it down to almost 110 seconds. Adding OpenMP parallelization to AVX2,
with a thread count of 16 threads brings the time down to almost 7 seconds and its performance is very similar
to that of MPI. The MPI+CUDA results is using 4 GPUs concurrently which is the fastest. MPI +CUDA took 2
seconds. Table II shows the average speedup and efficiency of using multiple OpenMP threads.

Fig. 6. Comparison at different data sizes. Openmp version is running on 16 threads.

Table II Openmp speedup and efficiency
Threads Avg Speedup Speedup/thread
2 1.9 0.950
4 3.7 0.925
8 7.7 0.963
6 15.4 0.963
32 30.1 0.941

Table III Average execution times for 300k polygons
Method Sorting Wmatrix 𝑮𝑮𝒊𝒊∗ Total (minutes)

Sequential 900s 780s 480s 36
CUDA 10s 9s 6s 0.42
AVX2 500s 110s 69s 11.4
OpenMP (16t) 150s 51s 30s 4
MPI+CUDA 10s 2s 2s 0.24
OpenMP+AVX2 150s 7s 5s 2.7

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/9825911/9825913/9826068/9826068-fig-6-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/9825911/9825913/9826068/9826068-fig-6-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/9825911/9825913/9826068/9826068-fig-6-source-large.gif

Table IV Rtree based times for 300k polygons
 Building Querying 𝑮𝑮𝒊𝒊∗ Total (minutes)
Sequential (No Sort) 20s 60s 520s 10
OpenMP (16t) 20s 4s 37s 1
OpenMP+AVX2 20s 4s 10s 0.6

Table IV shows R-tree based execution time for 300K polygons. This sequential version performs better than the
version with spatial sorting because of R-tree data structure. This version does not use spatial sorting, as shown
in Table IV. OpenMP parallelization speeds up query operations and calcu-lation of 𝐺𝐺𝑖𝑖∗ values compared to the
sequential baseline. SIMD parallelization using AVX2 is applied to 𝐺𝐺𝑖𝑖∗ calculations only.

The best performance on a single compute node is by using 16 threads accelerated by AVX2 SIMD extensions.

Table V shows the use of acceleration and rapid recalcu-1ation techniques applied to calculate daily C; values for
the US Counties using real world COVID data for 500 days to see the evolution of the spread of infection over
the time period.

Table V 500 days time series g i* calculation for real us counties daily covid data [5] [4]
Method Time (minutes)

Sequential 33
CUDA 0.5
AVX2 6
OpenMP (16t) 3
MPI+CUDA 0.3
OpenMP+AVX2 1

VI. Conclusion and Future Direction
We have demonstrated successful acceleration of spatial autocorrelation kernel. This acceleration can be used
for indus-trial and scientific application requiring faster solutions and the techniques mentioned in the paper can
be transferred to apply to wide variety of similar statistical kernels. Future directions of this work can be
extending the rapid recalculation work for streaming and online real-time solutions and expanding the scope of
the work for cloud infrastructures where different acceleration techniques are combined to automatically
achieve the best acceleration depending on hardware configuration and availability.

ACKNOWLEDGMENT
This research used the Raj high-performance computing facility funded by the National Science foundation
award CNS-1828649 and Marquette University.

References
1. [online] Available: https://pro.arcgis.com/en/pro-app/latestltool-reference/spatial-statistics/h-how-hot-spot-

analysis-getis-ord-gi-spatial-stati.htm.
2. Marc P Armstrong and Richard Marciano, "Massively parallel processing of spatial statistics", International

Journal of Geographical Information Systems, vol. 9, no. 2, pp. 169-189, 1995.
3. Marc P Armstrong, Claire E Pavlik and Richard Marciano, "Parallel processing of spatial statistics", Computers

& Geosciences, vol. 20, no. 2, pp. 91-104, 1994.
4. [online] Available: https://covid.cdc.gov/covid-data-tracker/index.html.

5. [online] Available: https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.html.
6. [online] Available:

http://resources.esri.com!help/9.3/ArcGISEngine/java/Gp_ToolRef/Spatial_Statistics_tools/how_hot_sp
ot_analysis_colon_getis_ord_gi_star_spatial_statistics_works.htm.

7. William Gropp, Torsten Hoefler, Rajeev Thakur and Ewing Lusk, Using advanced MPI: Modern features of the
message-passing interface, MIT Press, 2014.

8. [online] Available: https://www.intel.com/content/www/us/enldocs/intrinsics-guide/index.html.
9. Mingjun Li, MS Thesis: A Parallel Algorithm and Implementation to Compute Spatial Autocorrelation (Hotspot)

Using MATLAB, 2020.
10. Yan Liu, Kaichao Wu, Shaowen Wang, Yanli Zhao and Qian Huang, "A mapreduce approach to gi(d) spatial

statistic", Proceedings of the ACM SIGSPATIAL International Workshop on High Performance and
Distributed Geographic Information Systems, pp. 11-18, 2010.

11. Yiming Liu and Satish Puri, "Efficient filters for geometric intersection computations using gpu", Proceedings
of the 28th International Conference on Advances in Geographic Information Systems, pp. 487-496,
2020.

12. Yiming Liu, Jie Yang and Satish Puri, "Hierarchical filter and refinement system over large polygonal datasets
on cpu-gpu", 2019 IEEE 26th International Conference on High Performance Computing Data and
Analytics (HiPC), pp. 141-151, 2019.

13. Paras Mehta, Christian Windolf and Agnes Voisard, "Spatio-temporal hotspot computation on apache spark
(gis cup)", 24th ACM SIGSPA-TIAL International Conference on Advances in Geographic Information
Systems, 2016.

14. Pradeep Mohan, Ronald E Wilson, Shashi Shekhar, Betsy George, Ned Levine and Mete Celik, "Should sdbms
support a join index? a case study from crimestat", Proceedings of the 16th ACM SIGSPATIAL in-
ternational conference on Advances in geographic information systems, pp. 1-10, 2008.

15. [online] Available: https://developer.nvidia.com/blog/thinking-parallel-part-iii-tree-construction-gpu.
16. J Keith Ord and Arthur Getis, "Local spatial autocorrelation statistics: distributional issues and an

application", Geographical analysis, vol. 27, no. 4, pp. 286-306, 1995.
17. Anmol Paudel and Satish Puri, "Openacc based gpu parallelization of plane sweep algorithm for geometric

intersection", International Workshop on Accelerator Programming Using Directives, pp. 114-135, 2018.
18. Anmol Paudel, Jie Yang and Satish Puri, "Parallelization of plane sweep based voronoi construction with

compiler directives", 2019 IEEE 43rd Annual Computer Software and Applications Conference
(COMPSAC), vol. 1, pp. 908-911, 2019.

19. Shangfu Peng, Hong Wei, Hao Li and Hanan Samet, "Simplification and refinement for speedy spatio-
temporal hot spot detection using spark (gis cup)", 24th ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems, 2016.

20. Satish Puri, Anmol Paudel and Sushil K Prasad, "MPI-Vector-IO: Parallel I/O and partitioning for geospatial
vector data", Proceedings of the 47th International Conference on Parallel Processing, pp. 1-11, 2018.

21. Satish Puri and Sushil K Prasad, "A parallel algorithm for clipping polygons with improved bounds and a
distributed overlay processing system using mpi", 2015 15th IEEE/ACM International Symposium on
Cluster Cloud and Grid Computing, pp. 576-585, 2015.

22. Shashi Shekhar, Pusheng Zhang and Yan Huang, "Spatial data mining" in Data mining and knowledge
discovery handbook, Springer, pp. 837-854, 2009.

23. Scott D. Stoller, Michael Carbin, Sarita Adve, Kunal Agrawal, Guy Blelloch, Dan Stanzione, et al., "Future
directions for parallel and distributed computing: Spx 2019 workshop report", NSF Workshop Reports,
Oct 2019.

24. Waldo R Tobler, "A computer movie simulating urban growth in the detroit region", Economic geography,
vol. 46, no. sup1, pp. 234-240, 1970.

25. Jie Yang, Anmol Paudel and Satish Puri, "Spatial data decomposition and load balancing on hpc
platforms", PEARC ‘19, pp. 1-4, Jul 28, 2019.

26. Jie Yang and Satish Puri, "Efficient parallel and adaptive partitioning for load-balancing in spatial join", 2020
IEEE International Parallel and Distributed Processing Symposium (IPDPS), pp. 810-820, 2020.

27. Song-lin Zhang and Kun Zhang, "Comparison between general moran's index and getis-ord general g of
spatial autocorrelation", Acta Scientiarum Naturalium Universitatis Sunyatseni, vol. 4, pp. 022, 2007.

	Accelerating Spatial Autocorrelation Computation with Parallelization, Vectorization and Memory Access Optimization
	I. Introduction
	SECTION II. Motivation and Background
	A. Spatial Autocorrelation
	B. Common Dataset Structures
	C. Parallelization
	Vector/simd Intrinsics
	Mpi Graph Topology

	D. Related Work

	III. Parallel Formulation of Spatial Autocorrelation
	A. Algorithm
	B. Complexity
	C. Weight Matrix
	D. Spatial Sorting
	Comparison with r-Tree

	IV. Acceleration Techniques
	A. Cache Access Optimization
	B. Weight Matrix Storage Optimization
	C. Openmp Parallelization
	D. Openacc Parallelization
	E. Cuda Parallelization
	F. MPI Graph Topology (distributed memory)
	G. Communication Efficiency on Distributed Memory
	H. Vectorization with Compiler Intrinsics

	Algorithm 1: Intrinsics based algorithm for calculating weights
	I. Openmp & Vectorization
	J. MPI & Multiple GPU (Cuda)
	K. Rapid Recalculation

	V. Experimental Results
	A. Real World Covid Data
	B. Simulated/generated Datasets
	C. Hardware Description
	D. Performance Engineering Results

	VI. Conclusion and Future Direction
	ACKNOWLEDGMENT

