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ABSTRACT

In this paper, we present a generalized log Burr 11 (GLBIII) distribution developed
on the basis of a generalized log Pearson differential equation (GLPE). The density
function of the GLBIII is exponential, arc, J, reverse-J, bimodal, left-skewed, right-
skewed and symmetrical shaped. The hazard rate function of GLBIII distribution has
various shapes such as constant, increasing, decreasing, increasing-decreasing, upside-
down bathtub and modified bathtub. Descriptive measures such as quantile function, sub-
models, ordinary moments, moments of order statistics, incomplete moments, reliability
and uncertainty measures are theoretically established. The GLBIII distribution is
characterized via different techniques. Parameters of the GLBIII distribution are
estimated using maximum likelihood method. A simulation study is performed to
illustrate the performance of the maximum likelihood estimates (MLES). Goodness of fit
of this distribution through different methods is studied. The potentiality and usefulness
of the GLBIII distribution is demonstrated via its applications to two real data sets.

KEY WORDS
Moments; Uncertainty; Reliability; Characterizations and Maximum Likelihood.

1. INTRODUCTION

In recent decades, various continuous univariate distributions have been established
but many data sets from reliability, insurance, finance, hydrology, climatology,
biomedical sciences and other areas do not follow these distributions. Therefore,
modified, extended and generalized distributions and their applications to problems in
these areas is a clear necessity of day.

The modified, extended and generalized distributions are attained by the introduction
of some transformation or addition of one or more parameters to the baseline distribution.
These new developed distributions provide better fit to data than the sub and competing
models.

Burr (1942) proposed 12 distributions as Burr family to fit cumulative frequency
functions on frequency data. Burr distributions XII, 111 and X are frequently used. Burr-

© 2019 Pakistan Journal of Statistics 25
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I11 (BII) distribution has wide applications in modeling insurance data in finance and
business and failure time data in reliability, survival and acceptance sampling plans.

Many modified, extended and generalized forms of BIII distribution are presented in
literature such as two parameter family of distributions (Mielke; 1973), inverse Burr
(Kleiber and Kotz; 2003), BIll (Gove et al.; 2008), three-parameter Burr 111 (Shao et al.;
2008), Dagum (Benjamin et al.; 2013) Modified BIII (Ali et al.; 2015), McDonald BIlI
(Gomes et al.; 2015), family of size (Sinner et al.; 2016), mixture of two BlIl (Moisheer;
2016), gamma Burr 111 (Kehinde et al.; 2017), gamma BIll (Cordeiro et al.; 2017),
Odd-Burr generalized family of distributions (Alizadeh et al.; 2017) odd Burr-111 family
(Jamil et al.; 2017), Kumaraswamy odd Burr G family (Nasir et al.; 2018) and
generalized BIII (Kehinde et al.; 2018).

The main purpose of this article is to develop a more flexible model of BlIl type
called the GLBIII distribution. The GLBIII density is exponential, arc, J, reverse-J,
bimodal, left-skewed, right-skewed and symmetrical shaped. The GLBIII distribution has
constant, increasing, decreasing, increasing-decreasing, upside-down bathtub and
modified bathtub hazard rate function. The flexible nature of the GLBIII distribution
helps to serve as the best alternative model to other current models to model real data in
reliability, life testing, survival analysis and other related areas of research. The GLBIII
distribution offers better fits than sub and competing models.

The article is composed of the following sections. In section 2, the GLBIII
distribution is developed on the basis of the generalized log Pearson differential equation.
Some basic structural properties, some plots and sub-models are also studied. In
section 3, moments, incomplete moments and some other properties are derived.
In section 4, reliability and uncertainty measures are derived. In section 5,
characterizations of GLBIII distribution is studied based on (i) conditional expectation;
(ii) ratio of truncated moments; (iii) reverse hazard function and (iv) elasticity function.
In Section 6, the parameters of the GLBIII are estimated using maximum likelihood
method. In Section 7, a simulation study is performed to illustrate the performance of the
maximum likelihood estimates (MLEs) of the GLBIII distribution. In Section 8, the
potentiality and usefulness of the GLBIII distribution is demonstrated via its applications
to the real data sets. Goodness of fit of the GLBIII distribution through different methods
is studied. The ultimate comments are given in Section 9.

2. DEVELOPMENT OF THE GLBIII DISTRIBUTION

The generalized log Pearson differential equation (Bhatti et al. 2018a & Bhatti et al.
2018b) is

Lﬂ_Eao+al(lnx)+a2(lnx)2+...+am(lnx)m
f(x)dx x by +b; (Inx) +b, (INx)* +...+b, (Inx)" ,

X>1, Q)

taking a, =a5 =....8,_, =0,by, =0,b, =b; =..b, ;, =0, m=n=-2a+1, we have

1| @ +a (Inx)+ay4(In) > +a, (In)>**
X by (Inx)+by (In)*** '

%[In f(x)]= )
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For a, =-b,, & =-b;, and integrating both sides of (2) we obtain

I 2 (aofam_lblj
nx _ 2a8gb,
f(x)sz(Hb_”(lnx) Zaj s, (3)
X by
2a . .
where k= is the normalizing
_ag+h

E (Za)blB a0'+'b.L a0_am—lbl_a()bn_blbn
2 (2a)" (-2a)bi,

constant and B(.,.) is the beta function.

n

Again taking 8, =—(2a+1)b™*,a, =-b"* &, , =(2ap-1),a, =-Lb =b?* , b, =1
in (3), so the pdf of the GLBIII distribution is

2ap (Inx (-2a-1) Inx\ > Py
f(X):K(Tj 1"!‘(7] ,X>l,a>0,b>0,p>0. (4)

The cdf of the GLBIII distribution with parameters a,b and p is

Inx

2a 7P
F(x):{lJr[Tj } ,X>1a>0,b>0,p>0. (5)

2.1 Transformations and Compounding

The GLBIII distribution is derived through (i) ratio of exponential and gamma
random variables and (ii) compounding generalized inverse log Weibull (GILW) and
gamma distributions.

2.1 Lemma (i)
If the random variable Z; follows exponential distribution with parameter value 1

and the random variable Z, follows gamma ie., Z,~gamma(6;p), then for

1
—2a on
2
le(ln_xj Z,, we have X =exp b[%} " |-oLBim (a,b, p).

b 1
Lemma (ii): )
Let w(x;a,b,0)= %[MTXJZM efe(lnTXj ,X>1, be pdf of GILW distribution and
let ® have gamma distribution with pdf g (6, p) = ﬁeplee, 0 >0, then integrating

the effect of 6 with the help of
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f(xa,b, p):T> GILW (x;a,b,0)g (6, p)d6, we have X ~GLBIlI (a,b, p).
0
Proof for Lemma (ii) is given in Appendix A.

2.2 Basic Structural Properties
The survival function, hazard function, cumulative hazard function, reverse hazard
function, the Mills ratio and elasticity of a random variable X with the GLBIII

distribution with parameters a,b and p are given, respectively, by

nxy2|"
S(x)=1- 1+(T) , (6)
Zap(lnszal{br(lnsza](p”)
bx \ b b
h(x) = , %

[ (mxfar
1-|1+| —
b
Inx )2 -
H(x)=-In|1- 1{7} , )]

2ap(Inx " x|

T3\ ) M) | ©

2a+1 _2a(P+Y) pa P

)= S0 - B (103) [1+(m_xj } 1_[1+[m_xj ] )

f(x) 2apl b b b
and
—2a-1 2a Tt

=368zt (i) »

dlInx b b b

The mode of the GLBIII distribution is obtained by solving di(ln(f (x))) =0, ie,
X

_b(me){l{me)1_(%“){“@%)“}%(pﬂ)ﬁmﬂ‘2“) ()0
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Let InTX =Y, we have bY ?**! —(2ap-1)Y ** +bY +(2a+1)=0.

For a=1/2, we obtain X = exp(—(bZ‘1 +1)+ 271b? +4+4bp ) .

1
1 Yo
The quantile function of the GLBIII distribution is x, =exp|b| q P-1 and its

1
1 il

1 " 2a
random number generator is X =exp b{z p —1] where the random variable Z has

the uniform distribution on (0,1).

2.3 Sub Models of the GLBIII Distribution
The GLBIII distribution has the following sub models.

S.No. X 2a b p Model
1 X 2a b 1 new double log-logistic distribution
2 X p b p new log Para-log-logistic distribution
3 X 1 b p new extended generalized inverse log

Weibull distribution
new extended generalized inverse log

4 X 1 b 1 exponential distribution
5 X 1 b 5 new extended generalized inverse log
Rayleigh distribution
I P -
_t _s o | generalized inverse log Weibull
6 X 22 | gpaa | P distribution
I — -
_t _s o | generalized inverse log exponential
! X 1ippz|P distribution
8 InX =Y | 2a 1 p generalized BIII distribution
9 InX =Y | 2a b p Bl distribution

10 InX=Y | 1 b p Lomax distribution




JNoAMs X sepio e prezey (1) x qe a0y (x)*4z(x)’4 B AFS X sepio
211seY201s (1) 8yl Ul A 3]gelieA WOpUeRI B UeY] Ja3|jews ag 0] pIes SI ajgelien Wopuel
:T°G'Z uouyeQ

"S3|qeLIeA WOpURS JO apniubew
pue UoIeI0| ApniS 01 pasn OS[e ale SIapio INSeyd0lS (S66T e 19 paxeys) S|opow
awin ay1| ul ooy Buiisplao ayr Aejdsip 01 pasn uayo Si Buliaplo 211seyd0ls JO Bapl ayL

BulispaO 211seY201S G2

uonnqLIsIA 1119719 8Y1 Jo 1y Jo s10d g B4

8l 9l vl [

¥'e [

e D T
p llllllllllll 4 I
-~y ']

0£'0=0'G8'0=0'GE'T=. ====== K TN
0v°0=d‘00'T=0'50°€=e ‘ .
§1°0=d'0T'T=g'0Z’€=®

G6'T=0'05°0=0'92°0=8 ======
0z'0=d'0r'T=0'09°¢=®
§6'T=d'06°0=0'00'5=e
0€'€=d'05°0=0'08'T=R ======
68'0=d'05°0=Q'GT'T=R ====== o

uonngusIa g9

uonnqIsia 1119719 a1 Jo Jpd Jo sioid :T “Bi4

$'Z

...nlunnlninm....v“r-um..”honon..
P “~ ALY

90'7=0'08'0=0'y' 0= ====a= + "

05'2=d'0T°0=0'GE"0=® K4 .

90'0=0'G.'0=0'0'0T=8 ====aa ,* v

00'6=d'0§'0=0'0T' 0= —

00'6=0'06'0=0'00'G=® ======

06'0=d'0%'0=0'05 ' T=®

0€0=d'5.°0=0'00"8=e

67'0=d'G9'0=0'00'G=® ==-=-=--= *0'z

02'0=d'05°0=0'05'Z=8 ====== 104

uonngusia nigio

Sl

C---

"(z 81nB14) uonouny ayes prezey gnyreq paiipow
pue gniyleq umop-apisdn ‘Buiseasosp-buiseasour ‘Buisessdsp ‘Buiseasoul  ‘queISUOD
sey uonnguisip 11919 8yl ‘[edlswwAs pue pamaxs-1ybll ‘pameys-ya| ‘[epowliq
‘r-aslanal ‘T ‘ole ‘fenuauodxa ale Ajsusp [119719 8yl Jo sadeys eyl smoys T ainbi4

suoouNS ayey pJaezeH pue Alsuaq 111919 8yl Jo sadeys v’z

“**saluadold “uswdojans@ uonngrusia (11 ¥¥Ng 6o pazijelsuss uQ 0s



Fiaz Ahmad Bhatti et al. 31

he (x) > h, (x) for all , (iii) mean residual life order X <, Y if m,(x)>m, (x) for all

f (%)
fy (x)

X, and (iv) likelihood ratio order X <, Y, if decreases in X.

Theorem 2.5.1:
Let the random variables X and Y have the GLBIII distributions. Then, X is said

to be smaller than Y in likelihood ratio order X <, Y, for (i) by=b,,p=p,.& >a,

) ) ~ o d fX(X)
and (i) & =ay,by =y, py < p,, if &{InW}O'

Proof:
For X ~GLBIIl (a,,by, p;) and Y ~ GLBIII (ay,b,, p, ), we have

509 _ (- ay)in(in X)”“(MJ

fy () 8, Pob, ™
~(p+1)In [1{'%)2%}( P, +1)In [1{'2_2"}2% }
_ 2a, (Inx) " 2, (10T |
S R T M

f
Case (i) b, =b,, p, = p,,& >a,, we have 4 X(X)}O.

Case (ii) & =ay,by =b,, p < p,,

2al[|nxj 2a -1
we have i{In fX(X)}=[p1— pz]u that is %{In :X(X):|<O.

ax| "t (x) {H ( ,mz]

3. MOMENTS

Some descriptive measures for the GLBIII distribution such as ordinary and
incomplete moments and other related properties are derived in this section.
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3.1 Moments about Origin
The rth moment about origin of X with the GLBIII distribution is

W= E(XT) = X" f (x)dx,
1

T r 2ap(|n Xj( 2a-1) 1+(|I’]_ija ~(p+1) N
1 bx U b b ’

Inx ) —2a(Inx %Y L o 28
Let =w, —(—j =dw, Inx=bw 22, x=e™",
b bx \ b

We arrive at

s> () gy K pr ] r=123 (12)
Hr = k=0 k! 2a’ 2a) TV
Mean and variance of the GLBIII distribution are
k
(b ) k k
E(X)= ——, 13
(X)= pkgo aC P+— (13)

M8

Var(X)=

2
() (| k ()k (_k K
PE ( E"sz D z'“z) - 49

The factorial moments for the GLBIII distribution are given by

o . © (rb)k k k
E[X] = rZ:lotrHr = pE{GrEOTB(l—zi p+£j : (15)

where [X] =X (X +1)(X+2)...(X +i-1) and a, is Stirling number of the first
kind.

The Mellin transform is used to obtain moments of a probability distribution. By
definition, the Mellin transform is

M{f(x);s}: f*(s):o(jjf(x) xS dx. (16)

The Mellin transform with the GLBIII distribution is written as
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k
o S—l)b) k K
M =E| X5 |= ((—B 1-— ., p+—|.
«(5)=E[x*] PE T 2" 2 (1)
The rth moment about origin of In(X) with the GLBIII distribution is
° 2ap(Inx )" Inx) > s
r r
E((In(x)) ):{(In X) W(T) [“(TJ ] dx,
E((In(X '): bB[1-, ij ~1,23,..
((n( ) |=p [ o Poa )T (18)

Negative moments help in harmonic mean and many other measures. The r" negative
moment about origin of X with the GLBIII distribution is

= _c2ap(Inx Y (Inx) e
r -r\ _ -reYvy 0
ufr_E(X )_{x bx[ b j {1+( b J J dx,

Let

Inx )2 —2a(Inx @Y L 2
=2 =w, 2522 —dw, Inx=bw 2a, x=¢™™*
b bx \ b

1

w, = pofe’rbwz [1+ W]_( P2) dw
0

W, =E(x")=p3 <‘Tb>i B[l—l, p+Lj.

19
i-o ! 2a 2a (19)
The gth moment about mean, Pearson’s measure for skewness, kurtosis, moment

generating function and cumulants of X with the GLBIII distribution are obtained from
the relations

Hq = 2(3)(_1)V My bygqr 11 H33 By =—

() ()

and

r-1
’ -1 ’
kr =Hr - Zl< g—l)kc M-
c=

Table 2 displays the numerical measures of the median, mean, standard deviation,

skewness and kurtosis of the GLBIII distribution for selected parameter values to
describe their effect on these measures.
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Table 2
Median, Mean, Standard Deviation, Skewness and Kurtosis
of the GLBIII Distribution

Parameters Standard

a,b, p Median Mean Deviation Skewness Kurtosis

50515 1.69412 | 1.72092 0.169446 4.96677 305.388
503,15 1.37204 | 1.38354 | 0.0784278 2.22326 39.2645
50.1,15 111119 | 1.11391 | 0.0204519 1.49773 12.332
50.1,5 1.12859 | 1.13259 | 0.0211289 2.04685 17.5119
5,0.05,1.25 1.05285 | 1.05396 1.25735 1.25735 9.65814
5,0.05,0.2 1.03607 | 1.03551 | 0.0144314 0.122825 3.34257
5,0.05,0.1 1.02527 | 1.02622 0.016278 0.37709 2.069378
5,0.05,0.05 1.01254 | 1.01732 | 0.0162025 0.899206 3.14658
10,0.1,0.1 1.07321 | 1.07005 | 0.0262677 -0.342413 241511
10,0.5,0.3 1.56462 | 1.55504 0.112433 -0.266478 3.73011
10,0.5,0.1 1.42371 | 1.41125 0.170044 -0.149073 2.36218
10,0.5,0.05 1.28349 1.3004 0.193087 0.29747 2.10463
10,0.1,0.05 1.05118 | 1.05209 | 0.0311248 0.126999 1.95597
10,0.5,0.5 1.60507 | 1.60289 | 0.0921806 0.070709 4.54126
10,0.3,0.5 1.3283 1.32668 | 0.0458387 | -0.0463268 | 4.32342
10,3,0.5 17.0989 | 17.8197 6.66389 11.3433 1479.27

6,3,1.5 22.9938 | 26.7182 2550.81 -440.561 586931
10,2,5 9.02216 | 9.37429 1.70529 5.97514 372.343
5,055 1.83093 | 1.87046 0.193718 10.1907 1124.27
535 37.6723 53.551 3308.388 -212.388 230.315

3.2 Moments of Order Statistics
Moments of order statistics are used to predict failure of future items based on the
times of a few early failures. The pdf of mth order statistic X, is given by

[FOT [-F(x)] " (%),

The pdf of mth order statistic X, for the GLBIII distribution is

1
f(xm:n):m
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nim(—l)j(?_m) oa1 _oa\~(Pm+pj+1)
_i=o "' ’2apflnx Inx
f (tmn) = B(m,n-m+1) bx( b j [1+( b j } : (20)

Moments about origin of mth order statistic X., for the GLBIII distribution are
given by

© ) )Za Inx )" Inx ) oo
L —— —p(—J 1+[—) dx,
1 B(mn-m+1) bx \ b b

Inx\™>* —2a(Inx %Y — =
Taking (Tj =W, —(—j =dw, Inx=bw 22, x=e"" we have

>

E(er:“): B(mn-m+1)% il

2a

ngm(—l)j (?m) (rb) (

1—L,pm+ pj+Lj. (21)
2a

Mean of mth order statistic X,,,, for the GLBIII distribution is

:o( )( ) w (b)i

i Cod
E( X Bl1-— — |
( m.n) (mn m+1)20 il ( 2avpm+pj+2aj

4. RELIABILITY AND UNCERTAINTY MEASURES
Different reliability and uncertainty measures are studied.

4.1 Stress-strength Reliability for The GLBIII Distribution
If X, ~GLBlI(a,b, p;), X, ~GLBIII (a,b, p,) such that X, represents “strength”

and X, represents “stress” and X;,X, follow a joint pdf f(x,x,), therefore

LML

R =Pr(X; < X;)=[ f, (x)F, (x)dx is reliability parameter R. Then reliability of the
1

component is

. 2a-1 _2a \(Pr+P2tl)
1 bx UDb b (pL+py)

Therefore, R is independent of a and b.
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4.2 Estimation of Multicomponent Stress-Strength System Reliability

for the GLBIII Distribution

Suppose a machine has at least “s” components working out of “k”” components. The
strengths of all components of system are X;, X,,....X, and stress Y is applied on the
system. Both strengths X, X,,....X, and stress Y are i.i.d. and independent. G is cdf of Y

and F is cdf of X. The reliability of a machine is the probability that the machine
functions properly.

If X ~GLBIlI(a,b, p;), and Y ~GLBIII (a,b, p,) with unknown shape parameters

p,, P, and common scale parameter b, where X andY and are independently

distributed. The reliability in multicomponent stress- strength for GLBIII distribution
using:

Rsx = P(strengths > stress) = P[at least"s"of (X;,X,,.... X, )exceed Y],  (23)

Rox = s [ jj [1-GI'G(YI " dF(y), (24)

I=s

(Bhattacharyya and Johnson; 1974)
(k1)

81 1{1+("%f]'” ' [1+('%JT” {1{%21-%

1 1 14
Let z=t" ,t=zv dt=-2zv dz,
A%
k(KR k)1 o1
R =20 o2 e
(=s 0 v
k (k
Rskziz( JB(€+£,k—(+lj,where v:&.
Ty ! v )
Finally we obtain as
( -1
= K+v-— 25
vCZs(k c)(H( )j @)

The probability in (25) is called reliability in a multicomponent stress-strength model.
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4.3 Shannon Entropy

Claude Shannon (1948) introduced “Shannon entropy” to measure expected
information in a message. Shannon entropy for random variable X having pdf (4) is
given by

h(X):E(—Inf(X)):—TInf(x)f(x)dx (26)

r Inx 2 nx )22 ~(p+1)
h(x) = -fin{ 22 1] [1(_] }
M ox Lo b
2a-1 2a77(P*D)
Zap i) {1{'&) ] "
bx \ b b

h(X)= pbB(l—Z—la, p+2ia]+(22—;1)(w(1)—w(P))+@"”[%} (@)

where (x) is digamma function, \y(p)zj—p[lnl“(p)}.

Awad  (1987) provided the extension of Shannon entropy as
®© f(x
A(X)=-[f (x)lnﬂdx.
1 )
If random variable X has the GLBIII distribution, then Awad entropy is given by

A(X)=In8+ pbBEl—Z—la, p+2—1aj+%(w(l)—w(P))+(p—;1)—ln(%j.

(28)

4.4 Renyi Entropy, Q-Entropy, Havrda and Chavrat Entropy and Tsallis-Entropy
Renyi entropy (1970) is an extension of Shannon entropy. Renyi entropy for the
GLBIII distribution is given as

(V) :ﬁlog(ojo ((X)"dx) v=Lv>0,

\%

o] 25 (5] o
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T[f(X)]de—i( i) T(v(p+1)+k) 2va'p’ 1 I'(L-2ak+2av+v)
1 = ( p+1) p2v-2ak+2av ku (1-v )1 2ak+2avv

Z (_1)kr("(p+1)+k) 2'a'p’ 1 I'(1-2ak+2av+v)
e = 1-v ‘og kgo F(v( 2v—-2ak+2av m 1-2ak+2av+v (29)
= p +1)) b ! (1_\,)

The Q-entropy for the GLBIII distribution is

1 -3 (—1)kF(q(p+1)+k) 29a%pd iF(l—Zak+2aq+q)
k=0 F(q(p+1)) p2a-2ak+2aq || (1_q)1—2ak+2aq+q
(30)

The Havrda and Chavrat entropy (1967) for the GLBIII distribution is

ng{i (—1)kF(v(p+1)+k) 2'a’p’ 1 I'(1-2ak+2av+v) @)
k=0 F(v(p+1)) p2v-2ak+2av k) (1_\,)1*23“23\”\/

I, =
R7va1

The Tsallis-entropy (1988) for the GLBIII distribution is
5,(1())=— 115 (-1 T(a(p+1)+k) 29%p" 1 I(L-2ak+2aq+q)
q q _1 o F(q( P +1)) p2a-2ak+2aq || (1_q)1—2ak+2aq+q
(32)

Shannon entropy, collision entropy, Hartley entropy and Min entropy can be obtained
from Renyi entropy. Renyi entropy tends to Shannon entropy as v —1. Renyi entropy

tends to quadratic entropy asv —2.

Entropies are applied to study heart beat intervals (cardiac autonomic neuropathy
(CAN), DNA sequences, anomalous diffusion, daily temperature fluctuations (climatic),
and information content signals.

5. CHARACTERIZATIONS

In this section, we present characterizations of the GLBIII distribution based on;
(i) conditional expectation; (ii) ratio of truncated moments; (iii) reverse hazard function
and (iv) elasticity function.

5.1 Characterization based on Conditional Expectation
The conditional expectation is employed to characterize the GLBIII distribution.

Proposition 5.1.1
Let X :Q— (1,0) be a continuous random variable with cdf F(0 < F(x)<1 with

x>1). Then for p>1, X has cdf (5) if and only if
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_2a 1+ p(lntj_za
el(5) " o @

(p-1)

Proof:
For random variable X with pdf (4), it is easy to show that

—2a
Inx) > L+ p(lnbt]
E{(T) <t]:— for p>1.

(p-1)

Conversely if (33) holds, then

ﬂ —2a
S

Differentiating both sides of (34) with respect to t, we obtain

(p—l)(l%tj_za F(t)=f (t)+ p[l%tj_za f (t)—%[l%tj_za_l F(1).

After simplification and integration from 1 to o, we obtain

F (1) :[1+['%‘j2a]p

is the cdf of the GLBIII distribution.

5.2 Characterization Based on the Ratio of Two Truncated Moments

The GLBIII distribution is characterized using Theorem 1 (Glanzel; 1990) on the
basis of a simple relationship between two truncated moments of X. Theorem 1 is given
in Appendix B.

Proposition 5.2.1:
Let X:Q—>(Loo) be a continuous random variable and let

I —2a p+l I —2a | —2a (p+l)
gl(x)=p‘{1+(%j ] and gz(x)=2p‘l(%j {1+(%j } x>1.

The random variable X has pdf (4) if and only if the function q(x) defined in Theorem 1,

2a
has the form q(x) = [Inij , X>1.
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Proof:
If X has pdf (4), then

(1-F(x))E(91(x)/X = x) :("‘ijza X>1,

and

The differential equation s'(x)=

s(x) = In(mTXJAa.

Therefore in the light of Theorem 5.2.1, X has pdf (4).

q(x)g(x) 4a(|n_x

-1
=— has solution
q(x)gz(x)—0.(x)  bx bj

Corollary 5.2.1:
Let X :Q— (1,0) be a continuous random variable and let

I —2a I —2a (p+l)
gz(x)=2p‘1(%j [1+(%) } , x> 1.

The pdf of X is (4) if and only if there exist functions q andg; (defined in
Theorem 1), satisfying the differential equation

0'(x)9 (x) 4_('_)

q(x) g2 (X)—91(x) “px( b

Remark 6.1.1:
The general solution of above the differential equation is

Q(X):(InTXTa | —%(Inij_za_l {1+(MTXJZT_(M) 0 (x)dx+D |,

where D is a constant.
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5.3 Characterization Based on Reverse Hazard Function

Definition 5.3.1:
Let X:Q — (1) be a continuous random variable having absolutely continuous cdf

F(x) and pdf f(x) provided the reverse hazard function rq is twice differentiable
function satisfying differential equation

2 It ()]~

r'é (X)+r X
g0 @)

Proposition 5.3.1
Let X: QQ —>(1,oo) be continuous random variable .The pdf of X is (4) if and only if

its reverse hazard function, r. satisfies the first order differential equation

2ap (Inbszaz {—(Za +1)- (lnbeZa }
bzx{h (Inbxj_za ]2 |
Proof:

If X has pdf (4), then (36) holds. Now if (36) holds, then

—2a-1
Inx
w | (o)

XrE (X) + g (X) = (36)

%{Xﬁ: ()} =

or

e (X) =

is reverse hazard function of the GLBIII distribution.

5.4 Characterization Based On Elasticity Function

Definition 5.4.1:
Let X:Q—>(1,oo) be a continuous random variable having absolutely continuous

F(x) and pdf f(x) provided the elasticity functioneg (x)is twice differentiable
function satisfying differential equation
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d e e(x) 1
- Inf(x)]—erT - @37)

Proposition 5.4.1:
Let XZQ—)(l,oo) be continuous random variable .The pdf of X is (4) provided that

its elasticity function, eg (x) satisfies the first order differential equation

2ap [Inbszaz {—(Za +1)- (Inbsza }
bzx{l—{lnbxj—za}z .
Proof:

If X has pdf (4), then (38) holds. Now if (38) holds, then

er(X) = (38)

Inx )2
e (o280 (bJ
{F( )} b dx [1+£mt))(j_2a] :
2ap[mbxj_za_l

(57

is the elasticity function of the GLBIII distribution.

or

er(X) =

6. MAXIMUM LIKELIHOOD ESTIMATION

In this section, parameters estimates are derived using maximum likelihood method.
The log likelihood function for the GLBIII distribution with the vector of parameters

®=(a,b, p) is

In L(xi,(D) =nIn2+nlna+ninp—2nalnb

(39)

i=1 i=1

—iln X; —(2a+1)éln(ln X )—( p+l)iln{1+(lnTxiJza}.

In order to compute the estimates of the parameters of the GLBIII distribution, the
following nonlinear equations must be solved simultaneously:
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-2a
LU R TP P L T Y (40)
o p ia b
-1
2 1 : —2a . —2a

oL _| 2na_2a(p+1)a(Inx )™, (Inx o 41)
b b b Sl b b

ﬂ—2n|nb—2§jIn(lnxi)+2(p+1)
oL | @ =1
—= 0. (42)
oa n(Inx Inx;

2

i=1

b b

3]

The above equations 40-41 can be solved either directly or using the R (optim and

maxLik functions), SAS (PROC NLMIXED) and Ox program (sub-routine Max BFGS)
or employing non-linear optimization approaches such as the quasi-Newton algorithm.

7. SIMULATION STUDY
In this section, a simulation study to assess the performance of the MLEs of the

GLBIII parameters with respect to sample size n is carried out. This performance is done
based on the following simulation study:

Step 1: Generate 10000 samples of size n from the GLBIII distribution based on the
inverse cdf method.

Step 2: Compute the MLEs for 10000 samples, say (é,B, p) for i =1, 2,..., 10000

based on non-linear optimization algorithm with constraint matching to range of
parameters. (1.5, 0.75, 0.5), (2, 1, 1) and (2.5, 2, 1.5) are taken as the true parameter

values (a,b, p) .

Step 3: Compute the means, biases and mean squared errors of MLEs.

For this purpose, we have selected different

arbitrarily parameters and

n = 50, 100, 200, 300, 500 sample sizes. All codes are written in R and the results are

summarized in Table 3. The results clearly show that whe

n the sample size increases, the

MSE of estimated parameters decrease and biases drop to zero. As shape parameter
increases, MSE of estimated parameters increases. This shows the consistency of MLE

estimators.
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Table 3
Means, Bias and MSEs of the GLBIII distribution (1.25, 0.9, 0.5),
(1.75,1.25,0.75) and (2,1.5,1)

Sample | Statistics| a=1.25 | h=0.9 | p=0.5 |a=1.75|b=1.25| p=0.75|a=2.0 | h=15 | p=1.0

Means | 1.5325 | 0.8991 | 0.6659 | 1.9566 | 1.2161 | 1.5758 | 2.1376 | 1.4294 | 3.4596

n=50 | Bias | 0.2825 | -9e-04 | 0.1659 | 0.2066 |-0.0339| 0.8258 | 0.1376 |-0.0706| 2.4596

MSE | 9.6972 | 0.0826 | 4.2327 | 6.7392 | 0.1035 |45.8896| 0.9189 | 0.1547 {190.6051

Means | 1.3083 | 0.8981 | 0.5354 | 1.8088 | 1.2364 | 0.8603 | 2.0545 | 1.4727 | 1.2989

n=100| Bias | 0.0583 [-0.0019| 0.0354 | 0.0588 |-0.0136 | 0.1103 | 0.0545 |-0.0273| 0.2989

MSE | 0.0753 | 0.0364 | 0.0668 | 0.1084 | 0.0426 | 1.2666 | 0.1273 | 0.0606 | 7.0456

Means | 1.2774 | 0.8979 | 0.5146 | 1.7748 | 1.2427 | 0.7869 | 2.0273 | 1.4865 | 1.0762

n=200| Bias | 0.0274 |-0.0021| 0.0146 | 0.0248 |-0.0073 | 0.0369 | 0.0273 |-0.0135| 0.0762

MSE | 0.0304 | 0.017 | 0.0145 | 0.0454 | 0.0192 | 0.044 | 0.0559 | 0.0267 | 0.1473

Means | 1.2679 | 0.8987 | 0.5092 | 1.7686 | 1.2451 | 0.7723 | 2.017 | 1.4908 | 1.045

n=300| Bias | 0.0179 |-0.0013| 0.0092 | 0.0186 |-0.0049 | 0.0223 | 0.017 |-0.0092| 0.045

MSE | 0.0191 | 0.0111 | 0.0088 | 0.0288 | 0.0122 | 0.0252 | 0.0349 | 0.0167 | 0.0664

Means | 1.2598 | 0.899 | 0.5054 | 1.759 | 1.2471 | 0.7636 | 2.0118 | 1.4962 | 1.0225

n=500| Bias | 0.0098 | -0.001 | 0.0054 | 0.009 |-0.0029| 0.0136 | 0.0118 [-0.0038| 0.0225

MSE | 0.0108 | 0.0068 | 0.0052 | 0.0169 | 0.0074 | 0.0139 | 0.0198 | 0.0096 | 0.0322

8. APPLICATIONS

The GLBIII distribution is compared with LBIII, GBIIl, BIll and Log-log
distributions. Different goodness fit measures like Cramer-von Mises (W), Anderson
Darling (A), Kolmogorov-Smirnov statistics with p-values, Akaike information criterion
(AIC), consistent Akaike information criterion (CAIC), Bayesian information criterion
(BIC), Hannan-Quinn information criterion (HQIC) and likelihood ratio statistics are
computed for are computed for river peak flows series and annual maximum precipitation
records using R-Package.

The better fit corresponds to smaller W, A, K-S, AIC, CAIC, BIC, HQIC and —¢
value. The maximum likelihood estimates (MLESs) of unknown parameters and values of
goodness of fit measures are computed for the GLBIII distribution and its sub-models.
The MLEs, their standard errors (in parentheses) and goodness-of-fit statistics like W, A,
K-S (p-value) are given in table 4 and 6. Table 5 and 7 displays goodness-of-fit values.

8.1 River Peak Flows Series:

The data for 47 years of Styx River (Jeogla) about annual maximum flood peaks
series are analyzed (Kuczera and Frank; 2015). The values of data are: 878, 541, 521,
513, 436, 411, 405, 315, 309, 300, 294, 258, 255, 235, 221, 220, 206, 196, 194, 190, 186,
177, 164, 126, 117, 111, 108, 105, 92.2, 88.6, 79.9, 74, 71.9, 62.6, 61.2, 60.3, 58, 53.5,
39.1,26.7, 26.1, 23.8, 22.4, 22.1, 18.6, 13, 8.18.




Fiaz Ahmad Bhatti et al. 45
Table 4
MLEs and their Standard Errors (in parentheses) for Data Set |
Model a b p W A K-S
(p-value)
11.4601050 | 6.0126550 | 0.1592211 0.0627
GLBINT 4 80067147) |(0.23905762) | (0.08340439) |0-0286957410.1995404) ) g7
1.658518 101.995263 0.1827
LBI 1 0.1604954) . (42.5143551) | 04409367 | 2511915 1 1761
2781859 | 287.895085 | 0.338965 0.0728
GBI | 1 0735058) | (100.38211) | (0.1979333) |0-04942164|0.3241298| (5 9499
435108866 0.8943899 0.1255
BII 1 15 35191549) 1 (0.09025759) | 02313807 1 1397193 |~ 4157
Log- | 0.3203919 0.6759
log | (0.03630092) 1 ! 0.09965742] 062833 | 5 5510 1)
Table 5
Goodness-of-Fit Statistics for Data Set |
Model | AIC CAIC BIC HQIC 0
GLBIIl | 501.0896 | 501.6477 | 596.64 | 593.1782 | 2925448
LBIII | 619.6599 | 619.9326 | 623.3602 | 621.0523 | 307.8299
GBIl | 504.0128 | 5045709 | 599.5632 | 596.1015 | 294.0064
BIIl | 6034944 | 603.7672 | 607.1947 | 604.8869 | 299.7472
Log-log | 738459 | 738.5481 | 740.3093 | 739.1554 | 368.2296

The GLBIII distribution is best fitted than LBIII, GBIII, BIlIl and Log-log
distributions because the values of all criteria of goodness of fit are significantly smaller
for the GLBIII.
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Estimated cdf of GLBIIl distribution for River Peak Flows Series Data
Estimated pdf of GLBIII distribution for River Peak Flows Series Data
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Fig. 3: Fitted pdf, cdf, Survival and PP Plots of the GLBIII Distribution
for River Peak Flows Series

We can also observe that the GLBIII distribution is best fitted to empirical data
(Figure 3).

8.2 Annual Maximum Precipitation Data:

The dataset comprise on 59 annual maximum precipitation data of the Karachi city,
Pakistan for the years 1950-2009(1987 is missing). The precipitation records are
necessary for water management studies and flood defense systems. The precipitation
data are used to predict the flood and drought. The precipitation data also help to
minimize the risk of large hydraulic structures. The values of data are: 117.6, 157.7,
148.6, 11.4, 5.6, 63.6, 62.4, 11.8, 6.5, 54.9,39.9, 16.8, 30.2, 38.4, 76.9, 73.4, 85, 256.3,
24.9, 148.6, 160.5, 131.3, 77, 155.2, 217.2, 105.5, 166.8, 157.9, 73.6, 291.4, 210.3, 315.7,
107.7, 33.3, 302.6, 159.1, 78.7, 33.2, 52.2, 92.7,150.4, 43.7, 68.3, 20.8, 179.4, 245.7,
19.5, 30, 270.4, 160, 96.3, 185.7, 429.3, 184.9, 262.5, 80.6, 138.2, 28, 39.3.
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Table 6
MLEs and their Standard Errors (in parentheses) for Data Set |1
K-S
Model a b p W A (p-value)
161115744 | 55874251 | 0.1112545 0.0599
GLBIN 7 14847882) |(0.16009004) |(0.05820963) |-03142441 01881365 ) g5y
1488039 | 48.805267 0.2168
LBI 1 0.1218150) |(14.4169169) 0.672348 13.974308 | ; n97787)
42809076 |216.3395534 | 02198697 0.081
GBI | (1 5556558) |(41.4512185)| (0.1067724) | 0.0603646 |°039023| (g 8335)
36.2259705 0.9234018 0.146
Bl |10.45670408)| 1 |(0.08016585)| 0-34%271 | 2113796 | 1616)
0.3475763 0.6658
Logrlog | st 2562) 1 1 01660651 | 1018286 | 51
Table 7
Goodness-of-Fit Statistics for Data Set |1
Model | AIC CAIC BIC HQIC 0
GLBIIl | 680.9666 | 6814029 | 687.1992 | 683.3995 | 337.4833
LBIIl | 733.1876 | 733.4010 | 737.3427 | 734.8096 | 364.5938
GBIIl | 6844543 | 684.8907 | 690.6869 | 686.8873 | 339.2272
BIl | 706.385 | 7065992 | 71054 | 708.00693 | 351.1925
Log-log | 872.7224 | 872.7926 | 8748 | 8735334 | 4353612

The GLBIII distribution is best fitted than LBIII, GBIII, BIlIl and Log-log
distributions because the values of all criteria of goodness of fit are significantly smaller
for GLBIII.
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Estimated pdf of GLBIIl distribution for Annual Maximum Precipitation Data Estimated cdf of GLBIIl distribution for Annual Maximum Precipitation Data

I

]
=

0.8

A

1)
0000 0001 0002 0003 0004 0005 0.006 0007
F()
0.4

02

f

]
=

08
I

Expected Probabilites
0.6
L

04

0.0
I

T T T T T T T T T T
0 100 200 300 400 0.0 0.2 04 06 0.8 10

Observed Probabilites

Fig. 4: Fitted pdf, cdf, Survival and PP Plots of the GLBIII Distribution
for River Peak Flows Series

We can also perceive that the GLBIII distribution is best fitted to empirical data
(Figure 4).

9. CONCLUDING REMARKS

We have proposed the GLBIII distribution, developed on the basis of the generalized
log Pearson differential equation. The GLBIII distribution is also derived from
transformation and compounding mixture of distributions. The GLBIII distribution is
very flexible due to its density and hazard rate function accommodating various shapes.
We have studied certain properties including descriptive measures, sub-models, ordinary
moments, factorial moments and moments of order statistics, incomplete moments
reliability and uncertainty measures. Two important characterizations of the GLBIII
distribution are studied. Maximum likelihood estimates of the parameters for the GLBIII
distribution are computed. The simulation study has performed for the GLBIII
distribution to assess and illustrate the performance of the MLEs. Goodness of fit has
shown that the GLBIII distribution is better fit. Applications of the GLBIII model to river
peak flows series and annual maximum precipitation data are illustrated to show the
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significance and flexibility of the GLBIII distribution. We have shown that the GLBIII
distribution is empirically better for hydrological and climatic applications.
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APPENDIX A
Lemma(ii):
2a0(Inx) > *e{mfa
Let w(x;a,b,0)= . (Tj e ‘®/ x>1 be pdf of generalized inverse log-
X

Weibull  distribution and let © have gamma distribution with pdf

9(6,p)= _L 0p%e® 50 . Then X has GLBIII distribution.

r(p)

Proof:

For compounding f (x,a,b, p)zofw(x a,b,0)g(6; p)d6
0

® —2a-1 _of Inx e
f(xa,b,p)= @[In_x} e [b j 1 0100,

o bx U b r'(p)
2ap (Inx 2t Inx ) P
f(xab,p)= <ap 1+ — , X>1.
bx b b
APPENDIX B
Theorem 1:

Let (Q,F, P) be a given probability space and let [a;,a,] be an interval with a, <a,
(8 =—o0,8, =), Let X:QQ—[a,a,] be a continuous random variable with the
distribution function F and let g; and g, be two real functions deed on [&;,a,] such that

Efg, (X)|X 2 x]
Efg, (X)|X>x]

01, 96C([ay,a,]), 2eC*([a,a,]) and F is twice continuously differentiable and
strictly monotone function on the set [a,a,]: Finally, assume that the equation
9,0(x)=g, has no real solution in the interior of[a;,a,].Then F is obtained from

=q(x) is defined with some real function q(x). Assume that

the functions g;, g, andq(x) as F(x):fk a() |exp(—s(t))dt, where
a

s(t) is the solution of equation s'(t) =

3
make [dF =1.

&
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