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Abstract 
Many recent advances in sequential assimilation of data into nonlinear high-dimensional models are 
modifications to particle filters which employ efficient searches of a high-dimensional state space. In 
this work, we present a complementary strategy that combines statistical emulators and particle 
filters. The emulators are used to learn and offer a computationally cheap approximation to the 
forward dynamic mapping. This emulator-particle filter (Emu-PF) approach requires a modest number 
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of forward-model runs, but yields well-resolved posterior distributions even in non-Gaussian cases. We 
explore several modifications to the Emu-PF that utilize mechanisms for dimension reduction to 
efficiently fit the statistical emulator, and present a series of simulation experiments on an atypical 
Lorenz-96 system to demonstrate their performance. We conclude with a discussion on how the Emu-
PF can be paired with modern particle filtering algorithms. 

Keywords 
Data assimilation, uncertainty quantification, data science, statistical surrogates, parameter 
estimation. 

1. Introduction/motivation 
Data assimilation (DA) – the process of updating models with data to give state estimates and forecasts 
complete with attendant uncertainties – has progressed tremendously over the last three decades 
[9,15,27,5]. Sequential data assimilation techniques, those that update current state estimates and 
forecasts on the fly as data becomes available, fall into two general categories: Kalman-type filters (KF) 
and particle-type filters (PF). There are two dominant challenges in sequential DA, namely systems 
with high-dimensional state spaces and strong non linearity/non Gaussianity. Typically ensemble-based 
KF techniques, that use relatively few model runs, can address the former while particle-based 
techniques that require many model runs can address the latter. 

Over roughly the same time frame, the field of statistical surrogates of complex computer models 
emerged [28,35]. Statistical surrogates provide computationally efficient approximations to nonlinear 
input/output mappings of a computer model; these statistical surrogates are typically based on a 
modest number of training runs. Further, statistical surrogates offer built-in uncertainty estimates for 
utilizing the approximation. In this work we develop particle filters that employ statistical surrogates to 
approximate mappings of system dynamics. 

Often dynamic model forecasts are the computational bottleneck in sequential data assimilation. Our 
approach employs Gaussian process emulators (GPs) to learn the mapping from state and/or 
parameter values at one observation instance to the next. This mapping provides an effective 
interpolation between model forecasts and makes available slews of additional approximate model 
forecasts with negligible additional computational burden. Thus GP emulators are natural to pair with 
"sample hungry" DA techniques like particle filters. As such, we can produce finely-sampled non-
Gaussian posterior estimates with a modest number of model runs typical of ensemble KF techniques. 
GP enhanced PFs are not an alternative to the assortment of recent innovative PF methodologies, 
rather this "GP emulator + PF strategy" can naturally be adapted to work with and bolster leading-edge 
PF algorithms. We demonstrate such a case by combining the 'Optimal Proposal' PF [8] with the GP 
emulator in section 4.6. 

Several papers amount to a recent flurry of activity combining modeling learning and data assimilation, 
each approach with advantages and drawbacks. [6] combines statistical emulation and data 
assimilation to aid in model calibration, effectively a smoothing problem. This approach is quite similar 
to [1], but cleverly utilizes an ensemble Kalman filter (EnKF) sequentially between observations to 
choose a good design (e.g. a well-chosen set of training runs) to fit the statistical emulator. That 



emulator then replaces forward model evaluations in MCMC evaluations in the calibration problem. [3] 
sets up methodology for combining Neural networks (NN) to learn an approximation to the dynamic 
forward model from noisy observations in a data assimilation framework. Effectively they construct a 
posterior distribution as one would in a sequential DA problem and use expectation maximization 
algorithm (EM) to compute mode posterior estimates of the NN parameters. This approach is quite 
appealing as it does not rely on physics-based model for forward propagation, yet simulation 
experiments in [4] indicate the need for a significant amount of data to train the NNs sufficiently. [11] 
is similar in spirit, but uses a random feature map instead of NNs and they combine their "physics-
agnostic" forward model with an EnKF. Like [3,4], this methodology requires a significant amount of 
training data. 

The core idea of this paper is that interpolation between model forecasts, thought of as functions of 
the parameter and/or previous state values at a fixed time, may be used to produce additional 
forecasts, and thus provide a cheap means to improve PF performance. If the state is interpreted as a 
function of the parameter estimates, then the interpolation exploits smoothness of the state with 
respect to parameter values, that is not used (nor required) in the usual formulations of the PF. 
Consider the following pedagogical example in terms of parameter dependence (dependence on 
previous state values or both is similar in spirit.) Suppose we have some computational model that 
provides forecasts of a single state variable, and which depends on a single parameter. Notionally this 
model is expensive to run, and we sample the model forecast at eight parameter values, as in Figure 
1a. Provided the sampling is space filling in parameter space, one might be able to predict the state 
values at other choices of the parameters, as in Figure 1b. Maintaining a space-filling design – that is, 
not just relying on training points for the emulator near the bulk of the mass of the distribution – is 
key. Note that low probability samples are not used directly in the PF, but are used instead to construct 
a fast approximation to the mapping. Using a statistical surrogate instead of a deterministic 
interpolant, we can further capture the uncertainty in the state-parameter dependence at parameter 
values that have not been sampled, as in Figure 1c. These interpolating schemes allow for the output 
of the computational model to be estimated at many more potential sampling points than the initial 
eight. It is worth noting that access to more samples through the surrogate does not imply anything 
about the weight or likelihood of those samples. If these fine samples are used as "model forecasts" in 
a PF, then the effect is to obtain a dense estimate of the posterior using relatively few model forecasts. 
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Figure  1.  Schematic for state dependence on parameters: we plot the state at eight different samples (1a), then 
apply a variety of interpolating schemes (1b) and lastly a statistical surrogate (1c). The shaded region in the 
rightmost plot shows one standard deviation in uncertainty. The second and third plot allow for the state to be 
estimated at a variety of parameter values 
 

The performance of this method relies on an efficient implementation of the simple interpolate-and-
sample concept above. In particular the parameter values at which the model is evaluated should not 
all be fixed, but updated at each observation time, and the interpolating method should be a statistical 
surrogate that captures uncertainty. These foundational concepts from Data Assimilation and 
Uncertainty Quantification are introduced in Section 2. Our novel surrogate DA scheme is described in 
Section 3, and numerous visualisations of the internal mechanisms and error statistics of the new 
scheme are contained in Section 4. 

2.   Background 
2.1.   Sequential data assimilation 
Let us begin by reviewing the setup for sequential data assimilation and two "standard" techniques: 
particle filters (PF) and ensemble Kalman filters (EnKF). In these approaches data or observations of a 
system are assimilated into a model describing the dynamics of the underlying system to offer an 
estimate of the state, and of parameters of interest along with attendant uncertainties. This is often 

achieved by employing Bayes theorem, 𝑝𝑝( 𝐱𝐱,𝜃𝜃 ∣∣ 𝐲𝐲 ) = 𝑝𝑝�𝐲𝐲∣∣𝐱𝐱,𝜃𝜃 �𝑝𝑝(𝐱𝐱,𝜃𝜃)
𝑝𝑝(𝐲𝐲) where 𝐱𝐱 ∈ ℝ𝑛𝑛 is the state 

variable, 𝐲𝐲 ∈ ℝ𝑚𝑚 is the data, and 𝜃𝜃 ∈ ℝ𝑝𝑝 are parameters. 

In the sequential case where data are available as a time series, we will follow the notation of 
Doucet et. al. [8]. For observations available at times 𝐭𝐭 = �𝑡𝑡𝑗𝑗 , 𝑡𝑡𝑗𝑗+1, … , 𝑡𝑡𝑘𝑘� we use the shorthand 𝐲𝐲𝑗𝑗:𝑘𝑘 =
�𝐲𝐲𝑗𝑗, … , 𝐲𝐲𝑘𝑘� and likewise for state variables and parameters at times 𝐭𝐭, 𝐱𝐱𝑗𝑗:𝑘𝑘 = �𝐱𝐱𝑗𝑗 , … , 𝐱𝐱𝑘𝑘�, 𝜃𝜃𝑗𝑗:𝑘𝑘 =
�𝜃𝜃𝑗𝑗 , … ,𝜃𝜃𝑘𝑘�. Ultimately for sequential state-parameter data assimilation, we are interested in describing 
the posterior distribution 

𝑝𝑝( 𝐱𝐱0:𝑘𝑘,𝜃𝜃0:𝑘𝑘 ∣∣ 𝐲𝐲1:𝑘𝑘 ) =
𝑝𝑝( 𝐲𝐲1:𝑘𝑘 ∣∣ 𝐱𝐱0:𝑘𝑘,𝜃𝜃0:𝑘𝑘 )𝑝𝑝(𝐱𝐱0:𝑘𝑘,𝜃𝜃0:𝑘𝑘)

𝑝𝑝(𝐲𝐲1:𝑘𝑘) , 

 

where the marginal distribution in the denominator is given by 𝑝𝑝(𝐲𝐲1:𝑘𝑘) =
𝖤𝖤𝑝𝑝(𝐱𝐱0:𝑘𝑘,𝜃𝜃) [𝑝𝑝( 𝐲𝐲1:𝑘𝑘 ∣∣ 𝐱𝐱0:𝑘𝑘,𝜃𝜃0:𝑘𝑘 )]. All of these distributions are updated sequentially as data become 
available. For both PFs and EnKFs, we can think of the representation of the prior and posterior 
probability density functions (pdfs) as a collection of 𝑁𝑁 "particles", e.g. state variable and parameter 
estimates with weights, {𝐱𝐱𝑗𝑗𝑖𝑖,𝜃𝜃𝑗𝑗𝑖𝑖,𝑤𝑤𝑗𝑗𝑖𝑖}𝑖𝑖=1𝑁𝑁 . In both cases, the particle states are advanced via system 

dynamics, e.g. 𝐱𝐱
˙

= ℳ(𝐱𝐱,𝜃𝜃), from time 𝑡𝑡𝑗𝑗 to time 𝑡𝑡𝑗𝑗+1, according to some map. For deterministic 
simulations we write 

𝐱𝐱𝑗𝑗𝑖𝑖 = 𝜑𝜑�𝐱𝐱𝑗𝑗−1𝑖𝑖 ,𝜃𝜃𝑗𝑗−1𝑖𝑖 � = 𝐱𝐱𝑗𝑗−1𝑖𝑖 + � ℳ
𝑡𝑡𝑗𝑗

𝑡𝑡𝑗𝑗−1
�𝐱𝐱𝑖𝑖,𝜃𝜃𝑖𝑖�𝑑𝑑𝑡𝑡. 

(1) 

 



For a stochatic simulation we use the same notation, 𝐱𝐱𝑗𝑗𝑖𝑖 = 𝜑𝜑�𝐱𝐱𝑗𝑗−1𝑖𝑖 ,𝜃𝜃𝑗𝑗−1𝑖𝑖 �, but 𝜑𝜑 now refers to 
a realization of the stochastic dynamics. }Obtaining state estimates is typically the most 
computationally intensive part of the particle filter, particularly in the diverse applications in which the 
dynamical system ℳ is high-dimensional. 

Particle filters.  
For generic particle filters, the particle representations of probability density functions (pdfs) are 
updated by adjusting the weights via the likelihood as current data are incorporated while state values 
remain unchanged. Often sequential importance resampling (SIR) [17] is employed to overcome 
inherent filter degeneracy. The idea behind SIR particle filters is to use the posterior distribution from 
one time step as the prior distribution for the next (along with the state updated by the forward 
dynamics in eq. (1)) as 

𝑝𝑝� 𝐱𝐱𝑗𝑗, 𝜃𝜃𝑗𝑗 ∣∣ 𝐱𝐱𝑗𝑗−1,𝜃𝜃𝑗𝑗−1,𝐲𝐲1:𝑗𝑗 � =
𝑝𝑝� 𝐲𝐲𝑗𝑗 ∣∣ 𝐱𝐱𝑗𝑗 �𝑝𝑝� 𝐱𝐱𝑗𝑗 ,𝜃𝜃𝑗𝑗 ∣∣ 𝐱𝐱𝑗𝑗−1,𝜃𝜃𝑗𝑗−1, 𝐲𝐲1:𝑗𝑗−1 �

𝑝𝑝�𝐲𝐲𝑗𝑗�
. 

(2) 

 

Each particle is a notionally independent guess �𝐱𝐱𝑗𝑗𝑖𝑖,𝜃𝜃𝑗𝑗𝑖𝑖� for the states and parameters, where 𝑖𝑖 runs 
from 1 to the number of particles 𝑁𝑁𝑒𝑒. A simple implementation of this approach involves updating both 
particles and weights sequentially in time. 

The state component of the particles is updated from time 𝑗𝑗 − 1 to time 𝑗𝑗 by running the model eq. (1). 
The parameter component of each particle may formally be assigned the model 

𝜃𝜃𝑗𝑗𝑖𝑖 = 𝜃𝜃𝑗𝑗−1𝑖𝑖  

associated with the trivial dynamics 𝜃𝜃
˙

= 0; however, to allow parameter estimates to vary over time, 
in practice one would employ a non-trivial parameter model. We employ the parameter model from 
[16,e.g.]: at each observation time, parameter estimates are shrunk slightly towards their mean and 
then some noise is added. Shrinking the parameter estimates mitigates over-dispersion from the 
repeated application of noise. The parameter model is 

𝜃𝜃𝑗𝑗𝑖𝑖 = 𝛼𝛼𝜃𝜃𝑗𝑗−1𝑖𝑖 +
1 − 𝛼𝛼
𝑁𝑁𝑒𝑒

�𝜃𝜃𝑗𝑗−1𝑖𝑖 + 𝛽𝛽𝜉𝜉𝑗𝑗𝑖𝑖
𝑁𝑁𝑒𝑒

𝑖𝑖=1

, 
(3) 

 

where 𝜉𝜉𝑗𝑗𝑖𝑖 ∼ 𝒩𝒩(𝟎𝟎, 𝐈𝐈) are iid. The parameters 𝛼𝛼 and 𝛽𝛽 determine the strength of the shrinking and noise 
effects, respectively. Following advice in [16] we generally employ 𝛼𝛼 = 0.99, and choose small 𝛽𝛽 =
0.01. 

Once the particles are updated to time 𝑗𝑗, the weights are updated by computing the 
likelihood 𝑝𝑝(𝑦𝑦|𝑥𝑥) and normalising, with the 𝑗𝑗𝑡𝑡ℎ observation yielding 

𝑤𝑤𝑗𝑗𝑖𝑖 =
𝑝𝑝� 𝐲𝐲𝑗𝑗 ∣∣ 𝐱𝐱𝑗𝑗𝑖𝑖 �

� 𝑝𝑝� 𝐲𝐲𝑗𝑗 ∣∣ 𝐱𝐱𝑗𝑗𝑖𝑖 �
𝑁𝑁

𝑖𝑖=1

𝑤𝑤𝑗𝑗−1𝑖𝑖
 

(4) 



 

and the posterior approximation 

𝑝𝑝� 𝐱𝐱𝑗𝑗 ,𝜃𝜃𝑗𝑗 ∣∣ 𝐲𝐲1:𝑗𝑗 � ≈�𝑤𝑤𝑗𝑗𝑖𝑖𝛿𝛿�𝐱𝐱 − 𝐱𝐱𝑗𝑗𝑖𝑖�𝛿𝛿�𝜃𝜃 − 𝜃𝜃𝑗𝑗𝑖𝑖�
𝑁𝑁

𝑖𝑖=1

. 

 

Generally for particle filters, resampling will need to be employed when the effective number of 

particles, 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒 ≈� 1/(𝑤𝑤𝑗𝑗𝑖𝑖)2
𝑁𝑁

𝑖𝑖=1
, falls beneath some user defined threshold—typically 5 −

10% of 𝑁𝑁 [8]. Note, unless 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒 is large, this resulting discrete representation of the posterior is 
inherently coarse. 

Perturbed-obs EnKF.  
The ensemble Kalman filter with perturbed observations (summarized here following the work by 
Evensen [10]) is a sequential data assimilation technique that evolves an ensemble of model states 
through time and performs Kalman filter style updates as new observations are incorporated. 

Given an ensemble of 𝑁𝑁𝑒𝑒 model states at time 𝑡𝑡𝑗𝑗−1, each ensemble member is evolved according to eq. 
(1). This forecast ensemble is used to generate a Gaussian estimate of the prior distribution at time 𝑡𝑡𝑗𝑗. 
We denote the forecast ensemble as {𝐱𝐱𝑗𝑗,𝑒𝑒

𝑖𝑖 |𝑖𝑖 = 1, … ,𝑁𝑁𝑒𝑒}. The forecast ensemble sample mean 𝐱𝐱𝑗𝑗,𝑒𝑒 and 
sample covariance 𝐏𝐏𝑗𝑗,𝑒𝑒 can be estimated as follows: 

𝐱𝐱𝑗𝑗,𝑒𝑒 =
1
𝑁𝑁𝑒𝑒

�𝐱𝐱𝑗𝑗,𝑒𝑒
𝑖𝑖

𝑁𝑁𝑒𝑒

𝑖𝑖=1

 
(5) 

𝐏𝐏𝑗𝑗,𝑒𝑒 =
1

𝑁𝑁𝑒𝑒 − 1
�(𝐱𝐱𝑗𝑗,𝑒𝑒

𝑖𝑖 − 𝐱𝐱𝑗𝑗,𝑒𝑒)(𝐱𝐱𝑗𝑗,𝑒𝑒
𝑖𝑖 − 𝐱𝐱𝑗𝑗,𝑒𝑒)𝑇𝑇

𝑁𝑁𝑒𝑒

𝑖𝑖=1

. 
(6) 

 

Observations are assumed to have the form 𝐘𝐘𝑗𝑗 = 𝐇𝐇𝐱𝐱𝑗𝑗 + 𝜂𝜂𝑗𝑗, where HH is an observation matrix 
(typically a linearized observation operator) and observation errors 𝜂𝜂𝑗𝑗 are taken to be iid Gaussian 
random variables with mean 0 and known covariance 𝐑𝐑, i.e. 𝜂𝜂𝑗𝑗 ∼ 𝒩𝒩(𝟎𝟎,𝐑𝐑). We create an ensemble 
of 𝑁𝑁𝑒𝑒 perturbed observations with mean equal to 𝐘𝐘𝑗𝑗 and covariance 𝐑𝐑 according to 𝐘𝐘𝑗𝑗𝑖𝑖 = 𝐘𝐘𝑗𝑗 +
𝜖𝜖𝑗𝑗𝑖𝑖 where 𝜖𝜖𝑗𝑗𝑖𝑖 ∼ 𝒩𝒩(0,𝐑𝐑). The covariance of the ensemble of perturbed observations is given by 

𝐑𝐑𝑗𝑗𝑒𝑒 =
1

𝑁𝑁𝑒𝑒 − 1
�𝜖𝜖𝑗𝑗𝑖𝑖𝜖𝜖𝑗𝑗𝑖𝑖

𝑇𝑇
𝑁𝑁𝑒𝑒

𝑖𝑖=1

. 
(7) 

 

The ensemble members are then updated according to 

𝐱𝐱𝑗𝑗,𝑎𝑎
𝑖𝑖 = 𝐱𝐱𝑗𝑗,𝑒𝑒

𝑖𝑖 + 𝐏𝐏𝑗𝑗,𝑒𝑒𝐇𝐇𝑇𝑇(𝐇𝐇𝐏𝐏𝑗𝑗,𝑒𝑒𝐇𝐇𝑇𝑇 + 𝐑𝐑𝑗𝑗𝑒𝑒)−1(𝐘𝐘𝑗𝑗𝑖𝑖 − 𝐇𝐇𝐱𝐱𝑗𝑗,𝑒𝑒
𝑖𝑖 ) (8) 

 



and the sample analysis mean and analysis covariance can be calculated as above yielding 

𝐱𝐱𝑗𝑗,𝑎𝑎 =
1
𝑁𝑁𝑒𝑒

�𝐱𝐱𝑗𝑗,𝑎𝑎
𝑖𝑖 , and𝐏𝐏j,a

𝑁𝑁𝑒𝑒

𝑖𝑖=1

=
1

Ne − 1
�(𝐱𝐱j,ai − 𝐱𝐱j,a)(𝐱𝐱j,ai − 𝐱𝐱j,a)T
Ne

i=1

. 
(9) 

 

The analysis ensemble is used to generate a Gaussian approximation of the posterior distribution at 
time 𝑡𝑡𝑗𝑗. The analysis ensemble {𝐱𝐱𝑗𝑗,𝑎𝑎

𝑖𝑖 } is then evolved to the next observation time by eq. (1) and used 
as the forecast ensemble for the next assimilation step. 

2.2.   Gaussian process emulators 
The key approach in this work is, at time 𝑡𝑡𝑗𝑗, to learn about the mapping from an "input space" 
(parameter space and/or state space at time 𝑡𝑡𝑗𝑗−1) to an "output space" (state space) through a limited 
number of particle/ensemble samples. (Note, the weights of the particles do not inform us about this 
mapping directly.) To this end, we will employ a weakly stationary Gaussian process (GP) to model such 

an unknown relationship, 𝐱𝐱𝑗𝑗 ≈ 𝑓𝑓
^
𝑗𝑗(𝐱𝐱𝑗𝑗−1,𝜃𝜃) or 𝐱𝐱𝑗𝑗 ≈ 𝑓𝑓

^
𝑗𝑗(𝜃𝜃). In the statistical computer models 

community, such modeling is typically referred to as statistical surrogates or GP emulators – effectively 
statistical models of physical models. [30,26,35] provide excellent and broad overviews of this 
approach, but for the unfamiliar reader, we summarize the salient points here. It is worth emphasizing 
that "Gaussian" in GP emulators refers to the class of non-parametric random functions used for 
interpolation, and does not impose Normal approximations on either the input or output random 
variables. To frame it another way, the values the particles take on at times 𝑡𝑡𝑗𝑗−1 and 𝑡𝑡𝑗𝑗 inform the 
mapping to be learned in equation 1, but the weights of the particles do not inform this mapping. 

Consider 𝑛𝑛𝐷𝐷 training or design input values, 𝐪𝐪𝐷𝐷 = {𝐪𝐪1, … ,𝐪𝐪𝑛𝑛𝐷𝐷}, with each 𝐪𝐪𝑘𝑘 ∈ ℝ𝑟𝑟, and a scalar 
output 𝑦𝑦𝑘𝑘 (e.g. "output" may be one of the state variable values at time 𝑡𝑡𝑗𝑗, 𝑦𝑦𝑘𝑘 = 𝑥𝑥𝑗𝑗𝑘𝑘) at each of 

these 𝑛𝑛𝐷𝐷 inputs, 𝐲𝐲𝐷𝐷 = (𝑦𝑦1, … ,𝑦𝑦𝑛𝑛𝐷𝐷)𝑇𝑇. We can model 𝑦𝑦
^
∼ 𝖬𝖬𝖬𝖬𝖬𝖬(𝑚𝑚(𝐪𝐪𝐷𝐷),Σ), a multivariate normal 

with 𝑚𝑚(⋅) a known mean trend and Σ = 𝜎𝜎2𝐑𝐑
^

, with variance 𝜎𝜎2. Here the correlation matrix 𝐑𝐑
^

 is 

computed by evaluating a chosen correlation function 𝑐𝑐(⋅,⋅), e.g. each element is given by (𝐑𝐑
^

)𝑖𝑖𝑗𝑗 =

𝑐𝑐(𝐪𝐪𝑖𝑖,𝐪𝐪𝑗𝑗). A Gaussian process emulator provides a prediction 𝑦𝑦
^

(𝐪𝐪∗) at an untried value of the input 
space 𝐪𝐪∗ as 

𝑦𝑦
^

(𝐪𝐪∗) = ℎ(𝐪𝐪∗)𝛽𝛽 + 𝐫𝐫𝑇𝑇(𝐪𝐪∗)𝐑𝐑
^
−1(𝐲𝐲𝐷𝐷 − ℎ(𝐪𝐪𝐷𝐷)𝛽𝛽) + 𝛿𝛿

= 𝑓𝑓
^

(𝐪𝐪∗).
 

(10) 

 

where 𝐫𝐫(𝐪𝐪∗) = (𝑐𝑐(𝐪𝐪∗,𝐪𝐪1), … , 𝑐𝑐(𝐪𝐪∗,𝐪𝐪𝑛𝑛𝐷𝐷))𝑇𝑇. In other words, this gives the mean value of a Gaussian 
process at input 𝐪𝐪∗, where the process is conditioned to take on values of 𝐪𝐪𝐷𝐷 at inputs 𝐪𝐪𝐷𝐷 if the 
uncorrelated noise term, 𝛿𝛿, is zero. Here ℎ is a set of basis functions (typically taken to be constant or 
linear), so 𝑚𝑚(𝐪𝐪) = ℎ(𝐪𝐪)𝛽𝛽 gives the overall trend based on the data, and the coefficient(s) are given by 



𝛽𝛽 = (ℎ𝑇𝑇(𝐪𝐪𝐷𝐷)𝐑𝐑
^
−1ℎ(𝐪𝐪𝐷𝐷))−1ℎ𝑇𝑇(𝐪𝐪𝐷𝐷)𝐑𝐑

^
−1𝐲𝐲𝐷𝐷. 

 

In these formulae, 𝐑𝐑
^

 is the 𝑛𝑛𝐷𝐷 × 𝑛𝑛𝐷𝐷 correlation matrix of the input design; often a power exponential 
or Matérn correlation kernel is assumed and "fitting" an emulator amounts to finding the trend 
coefficients and correlation length scales that best represent the design pairs {𝐪𝐪𝐷𝐷 ,𝐲𝐲𝐷𝐷}. We can also 
gain a sense of uncertainty induced by using the GP instead of the computer model simulation directly 
at 𝐪𝐪∗ by considering the standard prediction error 

𝑠𝑠2(𝐪𝐪∗) = 𝜎𝜎2(1 − 𝐫𝐫𝑇𝑇𝐑𝐑
^
−1𝐫𝐫 +

(1 − 𝟏𝟏𝑇𝑇𝐑𝐑
^
−1𝐫𝐫)2

𝟏𝟏𝑇𝑇𝐑𝐑
^
−1𝟏𝟏

), 
(11) 

 

where 1 is an 𝑛𝑛-vector of ones and 𝜎𝜎2 is the variance scaling of the process and found during the 
"fitting" of the GP. Implementations of GP emulators are available: in Matlab one can use the function 
fitrgp()1 or the Robustgasp() package [13] (also available in R). 

1Introduced in version R2015b, see https://mathworks.com/help/stats/fitrgp.html 

In the computer model community, space filling designs—typically Latin Hypercubes (LHC)—are the 
standard approach for training emulators [30]. LHC designs spread out samples and ensure that the 
maximum distance between each neighboring pair of design points is (approximately) minimized [14]. 
In using emulators in conjunction with DA methods, it is important to keep in mind that we 
are not assigning any probability to events in the design used for the construction of emulators. That 
said, we are interested in the GP being a "good" mapping, e.g. the GP having small sample variance in 
regions of design space where the prior distribution has significant mass. To this end for constructing 
emulators, we chose some design points to be space filling and some to target the mass of the prior. 
We describe details of the our proposed emulator design for the Emu-PF in section 4.1. 

The Parallel Partial Emulator (PPE) generalizes the standard emulator construction presented in eq. 
(10) for scalar outputs, to an emulator for vector-valued outputs [12]. Consider then a set of 𝑛𝑛𝐷𝐷 model 
design inputs and 𝑛𝑛-dimensional responses {𝐪𝐪𝐷𝐷 ,𝒀𝒀𝐷𝐷}. 𝒀𝒀𝐷𝐷 is now an 𝑛𝑛𝐷𝐷 × 𝑛𝑛 matrix. PPE allows each 
output component to have a unique mean 𝑚𝑚𝑗𝑗(𝐪𝐪) = ℎ(𝐪𝐪)𝜓𝜓𝑗𝑗 and variance 𝑗𝑗 = 1, … ,𝑛𝑛, but assumes a 
shared correlation structure and correlation parameters among all locations. Equations for predictive 
mean and standard error are nearly identical to eq. (10), but are 𝑛𝑛 −dimensional. We mention that the 
means and variances of the individual Gaussian processes inherit some measure of (spatial) correlation 
that is present in the physical system, even though no explicit assumption is made about spatial 
relationships. 

2.3.   A pedagogical example 
Before diving into details of the algorithm and application, we will again focus on the simple 
pedagogical example of the mapping from parameter space to state space illustrated in Figure 1. Now 
let us consider a bi-modal prior pdf on the parameter and walk through one PF update step given an 
observation in state space. We visualize this setup in the left panel of Figure 2. Although we only have 
eight points to learn it, the GP allows us to sample the prior as much as we like and push those samples 



through the emulator-based mapping in order to compare them to the observation. For 
demonstration, we consider three cases in this update step: a large sample (103) using the emulator 
mapping (EmuPF), the same large sample using the true mapping (for comparison), and a case with 
eight samples from the prior that is analogous to a standard sample-limited PF implementation. The 
resulting posterior histograms are displayed in the right panel of Figure 2. (Note the large sample cases 
are normalized and the small sample posterior is visualized as a stem plot with the height of the stems 
reflecting relative weights.) From this figure we can see that error introduced by using the emulator-
based mapping instead of the true mapping is small – the histograms are nearly identical – and does 
not impose Gaussianity on the posterior pdf. 

 
Figure  2.  Here we demonstrate how the GP example mapping from parameter space to state space (as 
in Figure 1) can be used in a particle filter update step. (A) The same GP mapping from parameter to state space 
is plotted (black line) along with the design points (blue dots along black line) used to fit that mapping and an 
observation (red dot and line) in state space along the left axis. A bi-modal prior distribution is plotted (light 
blue) along with samples from that distribution (103 in light blue and 8 in black) along the horizontal axis. (B) 
Stem plots of the eight-sample PF posterior along with 103-sample normalized posterior histogram of 
parameters taking into account the likelihood of GP mapped prior samples given the observation in (A). Plotted 
behind the emuPF histogram is the equivalent (and nearly identical) histogram using the true mapping instead of 
the GP mapping for each of the 103 samples. 
 

The error introduced by utilizing emulator mapping in the Particle Filter shows up in the posterior 
sample weights: consider assimilating an observation of a single variable. Define the emulator mapping 

error as 𝑒𝑒 = ℎ − ℎ
~

 where ℎ is the true mapping and ℎ
~

 is the emulator-based mapping. Assuming an 

https://www.aimsciences.org/fileAIMS/journal/article/fods/2021/3/PIC/2639-8001_2021_3_589-2.jpg


observation, 𝑦𝑦, is normally distributed with mean ℎ and variance 𝜎𝜎2, then we can relate the weight 
calculation of the particle filter 𝑤𝑤𝑃𝑃𝑃𝑃 to the weight of the EmuPF, 𝑤𝑤𝐸𝐸𝑚𝑚𝐸𝐸𝑃𝑃𝑃𝑃, by 

−log (𝑤𝑤𝑃𝑃𝑃𝑃)1/2 =
𝑦𝑦 − ℎ
√2𝜎𝜎

=
𝑦𝑦 − ℎ

~
− 𝑒𝑒

√2𝜎𝜎
=
𝑦𝑦 − ℎ

~

√2𝜎𝜎
−

𝑒𝑒
√2𝜎𝜎

 
(12) 

−log (𝑤𝑤𝑃𝑃𝑃𝑃) = (
𝑦𝑦 − ℎ

~

√2𝜎𝜎
)2 −

2𝑒𝑒(𝑦𝑦 − ℎ
~

)
2𝜎𝜎2

+ (
𝑒𝑒

√2𝜎𝜎
)2 

(13) 

= (
𝑦𝑦 − ℎ

~

√2𝜎𝜎
)2 −

2𝑒𝑒(𝑦𝑦 − ℎ + 𝑒𝑒)
2𝜎𝜎2

+ (
𝑒𝑒

√2𝜎𝜎
)2

= (
𝑦𝑦 − ℎ

~

√2𝜎𝜎
)2

⏟
−log (𝑤𝑤𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸)

− (
𝑒𝑒(𝑦𝑦 − ℎ)

𝜎𝜎2
+

𝑒𝑒2

2𝜎𝜎2
)

⏟
log (𝑤𝑤𝐸𝐸𝐸𝐸𝐸𝐸)

 

(14) 

 

The error in the weighting, 𝑤𝑤𝐸𝐸𝐸𝐸𝐸𝐸 depends both on the mapping error, 𝑒𝑒, and on the difference 
between observation and mapped prior sample. Note that 𝑒𝑒 is not constant, but its magnitude is 
estimated by the predictive standard deviation of the GP, 𝑠𝑠(⋅) from Equation 11, for any input sample. 
As long as 𝑒𝑒 is small relative to 𝜎𝜎, the weighting error introduced by utilizing emulators – which is 
controllable by adding targeted training/design points in regions of input space with large predictive 
variance – will be close to one as will the ratio 𝑤𝑤𝑃𝑃𝑃𝑃/𝑤𝑤𝐸𝐸𝑚𝑚𝐸𝐸𝑃𝑃𝑃𝑃 . 

3.   Methodology 
This section constructs approximations of the Particle Filter that employ only a relatively small number 
of model runs. The model runs are used as design-response pairs in a Gaussian Process emulator; a 
large number of samples from the GP emulator are then treated as particles in a PF. Several algorithms 
are presented here, as the practical options for emulator design and response variables depend on the 
parameter and state dimension. 

The following section 3.1 introduces a naive but straightforward blending of the GP emulator 
and PF, which is then employed as a springboard to introduce multiple refinements. 

We employ subscripts for time indices and superscripts for particle indices, and employ bold 
font for vectors. 

3.1.   The Emulator Particle Filter: Emu-PF 
We construct an emulator for the map eq. (1) from time 𝑡𝑡𝑗𝑗−1 → 𝑡𝑡𝑗𝑗. Then, we use the emulator output 
in a PF as if it were samples from the prior distribution in eq. (2). 

At time 𝑡𝑡𝑗𝑗−1 suppose we have evenly weighted parameter estimates and state estimates 𝜃𝜃𝑗𝑗−1𝑖𝑖 ∈
ℝ𝑝𝑝 and 𝐱𝐱𝑗𝑗−1𝑖𝑖 ∈ ℝ𝑛𝑛, 𝑖𝑖 from 1 to 𝑛𝑛𝐷𝐷. Suppose also we have a large ensemble of parameter 
estimates Θ𝑗𝑗−1𝑖𝑖  and corresponding state estimates 𝐗𝐗𝑗𝑗−1𝑖𝑖  with weights 𝑤𝑤𝑗𝑗−1𝑖𝑖 , 𝑖𝑖 from 1 to 𝑁𝑁𝑃𝑃. Then follow 
the following sequence: 

Forecast: Employ the numerical model eq. (1), 



𝐱𝐱𝑗𝑗𝑖𝑖 = 𝜑𝜑(𝐱𝐱𝑗𝑗−1𝑖𝑖 ,𝜃𝜃𝑗𝑗−1𝑖𝑖 ), 
 

Label the 𝑙𝑙th component of 𝐱𝐱𝑗𝑗𝑖𝑖 by 𝐱𝐱𝑗𝑗
𝑖𝑖,𝑙𝑙.,l. Set 𝜃𝜃𝑗𝑗𝑖𝑖 = 𝜃𝜃𝑗𝑗−1𝑖𝑖  and Θ𝑗𝑗𝑖𝑖 = Θ𝑗𝑗−1𝑖𝑖 . 

Emulate: For each 𝑙𝑙 from 1 to the state dimension 𝑛𝑛, 

E1. Set the emulator design variables (inputs) to be the state and parameter estimates at which we 
employed the model, 

𝐪𝐪𝐷𝐷 = {𝐱𝐱𝑗𝑗−1𝑖𝑖 ,𝜃𝜃𝑗𝑗−1𝑖𝑖 }𝑖𝑖=1
𝑛𝑛𝐷𝐷 . 

 

E2. Set the response variables (outputs) to be the llth component of the state variable from the model 
output, 

𝐲𝐲𝐷𝐷 = {𝑥𝑥𝑗𝑗
𝑖𝑖,𝑙𝑙}𝑖𝑖=1

𝑛𝑛𝐷𝐷 , 
 

and fit the emulator with the design-response pairs. 

E3. Evaluate the emulator at each of the fine state and parameter values: set 

𝐪𝐪∗ = {𝐗𝐗𝑗𝑗−1𝑖𝑖 ,Θ𝑗𝑗−1𝑖𝑖 }𝑖𝑖=1
𝑛𝑛𝐷𝐷 , 

 

obtain 𝑦𝑦
^

(𝐪𝐪∗) = 𝑓𝑓
^

(𝐪𝐪∗) from eq. (10), and save each scalar emulator output as the 𝑙𝑙th component 

of 𝐗𝐗𝑗𝑗𝑖𝑖, 𝑋𝑋𝑗𝑗
𝑖𝑖,𝑙𝑙 = {𝑦𝑦

^
(𝐪𝐪∗)}𝑖𝑖, for each 𝑖𝑖 from 1 to 𝑁𝑁𝑃𝑃. 

Assimilate: Treat {Θ𝑗𝑗𝑖𝑖 ,𝐗𝐗𝑗𝑗𝑖𝑖} as samples from the prior and perform a Data Assimilation scheme in the 
high-dimensional 𝑁𝑁𝑃𝑃 space. For example, in a Particle Filter, employ eq. (4) to judge the emulator 
outputs, 

𝑤𝑤𝑗𝑗𝑖𝑖 =
exp (−1

2 (𝐲𝐲𝑗𝑗 − ℎ(𝐗𝐗𝑗𝑗𝑖𝑖))𝑇𝑇𝐑𝐑−1(𝐲𝐲𝑗𝑗 − ℎ(𝐗𝐗𝑗𝑗𝑖𝑖))

� exp (−1
2 (𝐲𝐲𝑗𝑗 − ℎ(𝐗𝐗𝑗𝑗𝑘𝑘))𝑇𝑇𝐑𝐑−1(𝐲𝐲𝑗𝑗 − ℎ(𝐗𝐗𝑗𝑗𝑘𝑘))

𝑁𝑁

𝑘𝑘=1

, 

 

assuming the observation errors are Gaussian with covariance 𝐑𝐑, and the observation operator is ℎ(). 
Calculate the effective sample size 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒, defined below eq. (4), and resample {Θ𝑗𝑗𝑖𝑖,𝐗𝐗𝑗𝑗𝑖𝑖} if needed. 

Subsample: Use a resampling algorithm to sample 𝑛𝑛𝐷𝐷 times from the weighted pairs ��Θ𝑗𝑗𝑖𝑖 ,𝐗𝐗𝑗𝑗𝑖𝑖�,𝑤𝑤𝑗𝑗𝑖𝑖�. 

In the above we use {. }𝑖𝑖=1𝑁𝑁  to indicate when an operation can be vectorized by concatenating together 
ensemble members as columns in a matrix. 

Figure 3 shows a schematic for this class of surrogate DA methods. The key steps in this schematic are 
displayed for an Emu-PF (with implementation details delayed until section 4) in fig. 4. The long-time 



error statistics for this Emu-PF are compared to Particle Filters employing 𝑛𝑛𝐷𝐷 particles and 𝑁𝑁𝑃𝑃 particles 
in fig. 5. 

 
Figure  3.  Overview of the novel synthesis of Gaussian process emulators with Data Assimilation methods 
 

 
Figure  4.  Visualisation of the internal Emu-PF mechanisms over one assimilation step. Left column shows 
components of dimension 𝑛𝑛𝐷𝐷 = 100. Right column shows components of dimension 𝑁𝑁𝑃𝑃 = 10,000. (a): 
parameter ensembles at time 𝑡𝑡𝑗𝑗. (b): distribution of one state variable as a function of parameters. (c): 
parameter ensembles at time 𝑡𝑡𝑗𝑗+1. Full details for this 8 state, 2 parameter experiment are given in section 4 
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Figure  5.  Long term error statistics for the implementation of Emu-PF from fig. 4, compared to: a "coarse" PF 
that employs 𝑛𝑛𝐷𝐷 = 100 model runs (as in the Emu-PF), and a "fine" PF that employs 𝑁𝑁𝑃𝑃 = 10,000 model runs, 
equal to the number of samples in the Emu-PF emulator. 𝑛𝑛𝐷𝐷 = 100 of Emu-PF is markedly better than the 
coarse PF 
 

Two shortcomings of GP emulators motivate improvements in the above algorithm. First, it is 
notoriously challenging to fit emulators with a high-dimensional input space. Yet the surrogate DA 
method employs high-dimensional inputs to the emulator, as the parameter and state vectors are 
combined and used as design variables. Some recent works [2,18] offer approaches for dimension 
reduction for statistical emulators that require either significant prior knowledge of the variability of 
the input space or a significant amount of data to characterize that variability well. For sequential DA, 
as a matter of course we have this prior knowledge available, but the flavor of appropriate dimension 
reduction will be problem specific. In particular, DA schemes that employ localization may favor a 
dimension reduction approach that is local as opposed to a global dimension reduction. We will 
explore variations of each. Secondly high-dimensional response variables are avoided by looping 
through the entire state vector, one dimension at a time; but this is a potentially slow and expensive 
procedure. There are multiple recent approaches to emulating high-dimensional output and we will 
explore a variation of our algorithm that utilizes one of those approaches, namely partial parallel 
emulation [12]. 

We now introduce practical variations of the Emu-PF. Each either reduces the dimension of the design 
variables or improves the efficiency of sampling from the emulator. 

3.2.   Variant: Include only some state values in the emulator input 
This modification implements a straightforward localization for the emulator inputs. Modify the 
emulation step to include only state values near the response variable. For each 𝑙𝑙 from 1 to the state 
dimension 𝑛𝑛, 

Es1. Choose some integer Γ. Set the emulator design inputs to be the parameter estimates at which we 
employed the model, and a slice of the state inputs, 

𝐪𝐪𝐷𝐷 = {(𝜃𝜃𝑗𝑗−1𝑖𝑖 , 𝐱𝐱𝑗𝑗−1
𝑖𝑖,(𝑙𝑙−Γ:𝑙𝑙+Γ))}𝑖𝑖=1

𝑛𝑛𝐷𝐷 . 
 

Es2. As item E2. 

Es3. Evaluate the emulator at each of the fine parameter values and corresponding state estimates: set 

𝐪𝐪∗ = {(Θ𝑗𝑗−1𝑖𝑖 ,𝐗𝐗𝑖𝑖,(𝑙𝑙−Γ:𝑙𝑙+Γ))}𝑖𝑖=1
𝑛𝑛𝐷𝐷 , 

 

otherwise as item E3. 

In 2-d or 3-d space, instead choose a localization distance parameter Γ ≥ 0 and include every grid 
point within radius Γ of 𝐱𝐱𝑗𝑗

.,(𝑙𝑙) in the design input step item Es1. 



One extremely simple implementation of this variation on the Emu-PF is to set Γ = −1; that is, to 
include no state variables at all in the emulation. This implementation is justified if the 
distribution 𝐱𝐱|𝜃𝜃 ≈ 𝑔𝑔(𝜃𝜃) + noise, for a smooth function 𝑔𝑔. Equivalently, the distribution 𝐱𝐱|𝜃𝜃 should be 
roughly unimodal. This condition is frequently satisfied in practice [21], and the resulting algorithm is 
fast but still readily capable of filtering nonGaussian marginal distributions for 𝜃𝜃. 

If this variant of the Emu-PF is employed, we refer to it by the value of Γ chosen; DA methods are 
benchmarked against the Emu-PF with Γ = −1 in figs. 6 to 8. 

 
Figure  6.  Error statistics for Experiment One, 𝑚𝑚 = 8 observations at each observation time, of accuracy 𝜎𝜎0 = 1. 
In this (and every) plot, only every 20th data point is shown. For this mildly difficult filtering problem, we 
observe that the Γ = −1 implementation of section 3.2, that uses no state variables at all as emulator inputs, is 
stable and reasonably accurate 

 
Figure  7.  Error statistics for Experiment Two, 𝑚𝑚 = 2 observations at each observation time, of accuracy 𝜎𝜎0 = 1. 
The Γ = −1 Emu-PF and fine PF both under-perform compared to their mean behaviour; the Emu-PF employing 
PCA is stable and accurate 
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Figure  8.  Error statistics for Experiment Three, 𝑚𝑚 = 4 observations at each observation time, of accuracy 𝜎𝜎0 =
0.5. In this case the Γ = 1 Emu-PF performs only as well as the coarse PF. However the Emu-PF employing PCA is 
still competitive with the, much more expensive, fine PF 
 

3.3.   Variant: Compute emulator outputs in parallel with ppgasp 
Use Partial Parallel Estimation (described in section 2.2) to compute all states at once. 

Ep1.Set the emulator design inputs to be the parameter estimates at which we employed the model, 

𝐪𝐪𝐷𝐷 = {𝜃𝜃𝑗𝑗−1𝑖𝑖 }𝑖𝑖=1
𝑛𝑛𝐷𝐷 . 

 

Ep2. Set the response variables to be the model output, 

𝐲𝐲𝐷𝐷 = {𝐱𝐱𝑗𝑗𝑖𝑖}𝑖𝑖=1
𝑛𝑛𝐷𝐷 . 

 

Ep3. Evaluate the emulator at each of the fine parameter values: set 

𝐪𝐪∗ = {Θ𝑗𝑗−1𝑖𝑖 }𝑖𝑖=1
𝑛𝑛𝐷𝐷 , 

 

obtain 𝑦𝑦
^

(𝐪𝐪∗) = 𝑓𝑓
^

(𝐪𝐪∗) from eq. (10), and save each column of emulator output as 𝐗𝐗𝑗𝑗𝑖𝑖 = {𝑦𝑦
^

(𝐪𝐪∗)}𝑖𝑖 for 
each ii from 1 to 𝑁𝑁𝑃𝑃. 

The above implementation avoids the for-loop present in sections 3.1 and 3.2, but as written 
requires Γ = −1 (no state variables as design inputs) discussed in section 3.2. We discuss simultaneous 
parallelization and localization in section 5. A more radically localized Emu-PF for state estimation is 
discussed in section 3.5. 

3.4.   Variant: Perform a global dimension reduction before using emulator inputs 
Employ a data-based dimension reduction algorithm (e.g. PCA, DMD, diffusion maps, UMAP, ...) on the 
state variables going into the emulation mapping of 𝐱𝐱𝑗𝑗+1 = 𝜑𝜑(𝐱𝐱𝑗𝑗;𝜃𝜃𝑗𝑗). This approach is not generically 
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used to emulate high dimensional parameter inputs because it's often unclear how to represent the 
variability of parameters, but in the sequential DA case there is an obvious candidate—the vector of 
state variables. 

As a clear example, in the remainder of the section and in numerical examples we employ PCA. That is, 
we have an approximation from the fine sampled posterior at the 𝑗𝑗 th time step, ({Θ𝑗𝑗𝑖𝑖,𝐗𝐗𝑗𝑗𝑖𝑖},𝑤𝑤𝑗𝑗𝑖𝑖)𝑖𝑖=1

𝑁𝑁𝐸𝐸 . 

Let 𝑋𝑋 = 𝑋𝑋𝑑𝑑𝑎𝑎𝑡𝑡𝑎𝑎 − 𝑋𝑋𝑑𝑑𝑎𝑎𝑡𝑡𝑎𝑎𝟏𝟏𝑁𝑁𝐸𝐸 be the 𝑛𝑛 × 𝑁𝑁𝑃𝑃 matrix where the 𝑖𝑖th column of 𝑋𝑋𝑑𝑑𝑎𝑎𝑡𝑡𝑎𝑎 is 𝐗𝐗𝑗𝑗𝑖𝑖, 𝑋𝑋𝑑𝑑𝑎𝑎𝑡𝑡𝑎𝑎 =
1
𝑁𝑁𝐸𝐸
� 𝐗𝐗𝑗𝑗𝑖𝑖

𝑁𝑁𝐸𝐸

𝑖𝑖=1
, and 𝟏𝟏𝑁𝑁𝐸𝐸  is a row vector consisting of 𝑁𝑁𝑃𝑃 ones. Then 𝐴𝐴 = 𝑋𝑋𝑋𝑋𝑇𝑇  is a covariance matrix 

representative of the variance in 𝑋𝑋. A singular value decomposition of 𝐴𝐴 produces 𝐴𝐴 =
𝑉𝑉Λ𝑉𝑉𝑇𝑇 where Λ is a unitary matrix containing ordered singular values, the columns of 𝑉𝑉 contain the 
corresponding singular vectors, and 𝑉𝑉𝑇𝑇 = 𝑉𝑉−1 as 𝐴𝐴 is symmetric. Truncate Λ and 𝑉𝑉 to keep only the 

largest 𝑟𝑟 < 𝑛𝑛 singular values; label the truncated matrices Λ
~

, now 𝑟𝑟 × 𝑟𝑟, and 𝑉𝑉
~

 now 𝐽𝐽 × 𝑟𝑟. Note 𝐴𝐴 ≈

𝑉𝑉
~
Λ
~
𝑉𝑉
~
𝑇𝑇. Now let 𝑌𝑌 = 𝑉𝑉

~
𝑇𝑇𝑋𝑋. Effectively 𝑌𝑌 is a matrix of weights to multiply the principal components 

vectors (columns of 𝑉𝑉
~

) to recover the original data 𝑋𝑋. 

In Emu-PF schemes employing PCA, we use the weights 𝑌𝑌 as input variables for emulation in item E1. 
The response variables are unchanged in item E2, but when evaluating the emulator at fine samples in 

item E3 we replace 𝐗𝐗𝑗𝑗−1𝑖𝑖  with 𝑉𝑉
~
𝑇𝑇𝐗𝐗𝑗𝑗−1𝑖𝑖 . 

We discover a fast, flexible and powerful Emu-PF algorithm by combining global dimension reduction 
of inputs (by PCA in our experiments) and fast emulator outputs (with PPE, described in section 3.3); 
this algorithm is employed in Experiments Two and Four of section 4. 

3.5.   Variation: Localize the emulator by "slicing and stacking" the emulator inputs 
This variation on the Emu-PF involves a radical rethinking of the emulator state inputs; for that reason 
we suppress parameter dependence and consider state estimation only. Assume that the physical law 
governing state evolution is the same for each component of the state vector; then a single model run, 
initialized at 𝐱𝐱𝑗𝑗−1𝑖𝑖  and producing 𝐱𝐱𝑗𝑗𝑖𝑖 ∈ ℝ𝑛𝑛, provides nn samples of that physical law. The following 
algorithm exploits this rich data by configuring the emulator design inputs as 𝑛𝑛 × 𝑛𝑛𝐷𝐷 samples, rather 
than 𝑛𝑛𝐷𝐷 samples. 

We suppose that some localized slice of state variables at time 𝑗𝑗 − 1, within distance Γ of state 
variable 𝑙𝑙, is sufficient to predict the 𝑙𝑙th state variable at time 𝑗𝑗. The following procedure learns 
a ℝ2Γ+1 → ℝ map for the state update. 

Er1. Choose some integer Γ ≥ 0. The design inputs 𝐪𝐪𝐷𝐷 are to be a (2Γ + 1) × (𝑛𝑛 × 𝑛𝑛𝐷𝐷) array, with 
the 𝑞𝑞-th row of that array given by 

{𝐱𝐱𝑗𝑗−1
𝑖𝑖,𝑙𝑙−Γ:𝑙𝑙+Γ}𝑖𝑖=1

𝑛𝑛𝐷𝐷 , 
 

where 𝑖𝑖 = ceil(𝑞𝑞/𝑛𝑛) and 𝑙𝑙 = mod(𝑞𝑞,𝑛𝑛).. 



Er2. Set the response variables 𝒀𝒀𝐷𝐷 to be the corresponding 𝑛𝑛 × 𝑛𝑛𝐷𝐷-vector of state variables, with 
the qqth entry 

{𝐱𝐱𝑗𝑗
𝑖𝑖,𝑙𝑙}𝑖𝑖=1

𝑛𝑛𝐷𝐷 , 
 

Er3. Evaluate the emulator at each of the state estimates: set 

𝐪𝐪∗ = {𝐗𝐗𝑖𝑖,𝑙𝑙−Γ:𝑙𝑙+Γ}𝑖𝑖=1
𝑛𝑛𝐷𝐷 , 

 

otherwise as item E3. 

This approach entails a radical reduction in the dimension of emulator inputs and outputs. Due to the 
unusual "slicing" of the emulator input to obtain rich training data, we refer to it as the "sliced Emu-
PF." We test it on a state estimation problem in fig. 9. 

 
Figure  9.  Summary statistics for Experiment Four, long-time state estimation with 𝑚𝑚 = 4 observations of 
accuracy 𝜎𝜎𝑜𝑜 = 1. The median RMSE for EnKF and fine PF are similar; however the EnKF error occasionally spikes. 
The sliced Emu-PF of section 3.2 is stable, with no large error spikes, and performs close to the fine PF in 
accuracy 

4.   Numerical experiments and results 
We consider a joint state-parameter estimation problem from [29]. The state 𝐱𝐱𝑗𝑗 is generated by 
integrating from time 𝑡𝑡𝑗𝑗−1 to 𝑡𝑡𝑗𝑗 the system of ordinary differential equations introduced in [19], 

𝑥𝑥
˙ (𝑙𝑙) = (𝑥𝑥(𝑙𝑙+1) − 𝑥𝑥(𝑙𝑙−2))𝑥𝑥(𝑙𝑙−1) − 𝑥𝑥(𝑙𝑙) + 𝐹𝐹(𝑙𝑙), (15) 

 

commonly called the Lorenz-96 system. Superscripts in parentheses denote components of a 
vector, 𝑙𝑙 ranges from 1 to 𝑛𝑛, and (as introduced in [29]) the forcing depends on two parameters 

𝐹𝐹(𝑙𝑙) = 8 + 𝜃𝜃(1) sin �
2𝜋𝜋𝑙𝑙
𝑛𝑛𝜃𝜃(2)� . (16) 

 

We will compare the surrogate DA algorithms to Particle and Ensemble Kalman Filters. Our goal is to 
obtain performance similar to that of a Particle Filter that employs a large number of particles, 𝑁𝑁𝑃𝑃, but 
only allowing 𝑛𝑛𝐷𝐷 ≪ 𝑁𝑁𝑃𝑃 model runs in our scheme. In order to quantify the benefits, and drawbacks, of 
our approach, we will include the following algorithms for comparison: 

• A "fine PF" employing 𝑁𝑁𝑃𝑃 = 10,000 particles, 
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• A "coarse PF" employing 𝑛𝑛𝐷𝐷 = 100 particles, 
• An EnKF employing 𝑛𝑛𝐷𝐷 = 100 particles. 

While several of our results feature implementations of the Emu-PF that compete with, or exceed the 
performance of, the fine PF, it is important to remember that our original goal was to attain 
performance somewhere between the coarse and fine PF. Exact implementation details for all DA 
methods are given in section 4.1. We will also briefly discuss better implementations of the Particle 
Filter. 

It is standard in the atmospheric forecasting community to eq. (14) with dimension 𝑛𝑛 = 40, and to 
compute and subsequently discard a "burn-in" period of at least a thousand assimilation steps. Our 
benchmark fine PF is incapable of resolving the 𝑛𝑛 = 40 case without extensive modifications that, if 
also implemented in an Emu-PF, can make it difficult to be sure what the contributions of the emulator 
are. Additionally, good filter performance during the first twenty assimilation steps are crucial for 
parameter estimation (assuming an initially uninformative prior on the parameters). For these reasons 
we choose model dimension 𝑛𝑛 = 8 (analysed in [23]) for the initial experiments, and include the filter 
performance over the initial assimilation steps. The numerics section concludes by studying Emu-PF 
performance applied to joint state-parameter estimation in the full 40-dimensional state case. 

Over all experiments, a vast quantity of information is computed. We will summarize this information 
with the Root Mean-Squared-Error (RMSE) and the sample variance. For parameter estimates the 
posterior distribution is multimodal (see section 4.2); when calculating RMSE or variances of parameter 
estimates, we first apply absolute values to reduce the number of modes. 

4.1.   Implementation details 
Particle Filters all employ the merging particle filter of [22]. This filter {constructs new particles from 
weighted averages of extant samples when resampling; we employ the recommended weights 𝑎𝑎1 =
3/4; 𝑎𝑎2 = (√13 + 1)/8; 𝑎𝑎3 = −(√13 − 1)/8. Additionally PFs employ the parameter model from [16] 
which, at each observation time, draws all particles slightly towards the particle mean, preserving 𝛼𝛼 =
0.99 of the variation among particles, then jitters all particles randomly by adding noise generated with 
standard deviation 𝛽𝛽 = 0.01. 

The EnKF employs multiplicative covariance inflation of 1.02. That is, when the sample forecast 
covariance is calculated in eq. (6), it is multiplied by 1.02 before it is used in eq. (8). Covariance 
inflation is a common remedy to the problem of a slightly under-dispersive ensemble in the EnKF. 

The Emu-PF algorithms divide the 𝑛𝑛𝐷𝐷 particles that are used in model runs into two groups. The first 
group is sampled from the fine posterior after every assimilation step, as described earlier in the paper 
(fig. 3, for example). The second group is not sampled from the posterior, and remains fixed over the 
assimilation steps. We fix this second group, comprising 20 of the 100 design variables, so that the 
emulator can evaluate inputs at a wide range of 𝜃𝜃 even if the subsampled group has narrow 
support. Figure 4c (left) shows the first group (80 bright dots) and second group (20 dark dots). The GP 
emulators packages fitrgp() and ppgasp() estimate correlation parameters of a GP. In this work, we 
choose the correlation function, 𝑐𝑐(⋅,⋅), to be a Matérn kernel with smoothness parameter 5/2. 



A modern implementation of the particle filter to a high-dimensional filtering problem should involve 
intensive modifications to mitigate the curse of dimensionality. Successful innovations include proposal 
densities [34], mixtures [7], and dimension reduction strategies including the classic Rao-Blackwellized 
PF or recent localized PFs [24,25]. We conclude the numerics section by displaying the compatibility of 
Emu-PFs with a proposal density based PF, the Optimal Proposal PF, in section 4.7. In that section we 
show that the Emu-PF can in fact improve on the Optimal Proposal PF in high-dimensional filtering 
problems. Further modifications along these lines are discussed in section 5. 

4.2.   Experiment details 
Unless specified otherwise, we assimilate data at 1000 observation times with time step 
of 0.05 between them. Model and truth are integrated between these observation times with five 
steps of a fourth order Runge-Kutta scheme. At each of these integration steps the true value 
of 𝜃𝜃(1),𝜃𝜃(2) is drawn from a Gaussian with mean (2,1)𝑇𝑇 and variance 0.01𝐈𝐈2. All DA schemes use fixed 
parameter estimates between assimilation steps. The discrepancy between fixed parameters in model 
updates for DA schemes, and varying parameters by drawing them from a distribution for the true 
dynamics, introduces a simple form of model error. We initialize state ensembles at 𝑡𝑡 = 0 with a tight 
spread of variance 0.01𝐈𝐈8 around the true initial condition, which is generated randomly. By contrast 
the parameter ensembles are initially uninformative, being drawn from a uniform distribution on the 
square (−5,5) × (−5,5). The symmetry of eq. (15) ensures that the posterior distribution in the 
parameters is always at least bimodal, as the forcing 𝐹𝐹(𝑙𝑙) is identical at +𝜃𝜃,−𝜃𝜃; but, also by symmetry, 
we can calculate reasonable RMSE and variance statistics for parameters by taking the absolute value 
of parameter estimates. All schemes employ 𝑛𝑛𝐷𝐷 = 100 and 𝑁𝑁𝑃𝑃 = 10,000. 

Interpret plots of the DA schemes with the following: if two different initial conditions for eqs. (14) and 
(15) are integrated for a long time, the mean distance between the two trajectories will be around 5. 
Any DA method attaining a state RMSE value near 5 is no different to employing no assimilation. 
However smaller RMSE is not necessarily optimal; each DA scheme is trying to estimate the posterior, 
which is unknown. Generally we will compare methods to results from the fine PF. 

We also present tables with summary statistics for each experiment. These tables present the mean 
RMSE and the median sample variance over the final 50% of assimilation steps, recorded separately 
for parameters and for states. We compute median variance as the mean variance is dominated by 
large variance terms in a few of the state variables. Generally the sample variances will appear to 
suggest methods are under-dispersive; but the EnKF performs better estimating the bimodal 
parameter distribution if it is under-dispersive than otherwise (explained further in the discussion of 
Experiment One). 

We vary two quantities between experiments; the dimension mm of the observations, and the 
accuracy of the observations. We will consider 𝑚𝑚 = 2,4,8 evenly spaced observations. The observation 
accuracy is measured by the scalar 𝜎𝜎𝑜𝑜, which controls the observation error covariance matrix 𝐑𝐑 from 
section 2.1 according to 𝐑𝐑 = 𝜎𝜎𝑜𝑜2𝐈𝐈𝑚𝑚. More difficult experiments are obtained by 
reducing mm and/or 𝜎𝜎𝑜𝑜. Fewer observations at each observation time lead to a more uncertain 
posterior, which is difficult for the Emu-PF algorithms to represent with the low number of design 
variables 𝑛𝑛𝐷𝐷. Accurate observations, that is smaller values of 𝜎𝜎𝑜𝑜, are difficult for Particle Filters in 
general. 



4.3.   Experiment 1 
We begin by presenting statistics for a fully observed (𝑚𝑚 = 8) system with observation accuracy 𝜎𝜎𝑜𝑜 =
1.. in fig. 6 and table 1. The Emu-PF with Γ = −1 outperforms the, equivalent in number of model runs, 
coarse PF. The fine PF does not appear to estimate the state variables well in fig. 6; fig. 5 is another run 
with the same setup in which the fine PF is clearly distinct from the coarse. Table 1 shows that the 
Emu-PF with Γ = −1 reliably estimates parameters about as well as the fine PF (albeit with even 
smaller variance) and estimates states about as well as the coarse PF (albeit with large variance). 

Table 1.  Summary statistics for twenty repetitions of experiment One. The 'Resampling' column counts 
how many resampling steps, out of a thousand, were performed by each algorithm.  

RMSE (𝜃𝜃) Var (𝜃𝜃) RMSE (𝐱𝐱) Var (𝐱𝐱) Resampling 
Fine PF 0.066 0.0035 0.34 0.15 226 
Coarse PF 0.79 0.0015 2.1 0.16 663 
EnKF 0.048 0.0018 0.32 0.12 - 
Emu-PF (Γ = −1) 0.13 0.00026 2.4 5.1 483 

 

The EnKF performs poorly in fig. 6, with large errors compared to other schemes in both the 
parameters and state variables, but the median performance in table 1 is excellent; we now discuss 
why. Poor performance is expected, as the distribution of the parameters is bimodal and the EnKF 
relies on unimodal approximations. In practice we do observe that the EnKF RMSE reliably remains 
high for the first thirty to fifty assimilation steps of this experiment, long after the PFs have converged; 
however the EnKF parameter ensemble also tends to shrink over those assimilation steps. Once the 
parameter ensemble has shrunk sufficiently, the peaks of the posterior—visible in fig. 4c, right—are no 
longer both contained in the span of the ensemble, and the ensemble will move close to one or 
another peak in subsequent assimilation steps. That is, the EnKF is successfully locating one of the two 
peaks of the bimodal posterior; since the RMSE only records distance from either peak, the EnKF 
performance appears good in the tables. 

4.4.   Experiment 2: Sparse observations 
Consider the more challenging setup of 𝑚𝑚 = 2 evenly spaced observations with the same 
accuracy 𝜎𝜎𝑜𝑜 = 1.. from the previous experiment. An implementation of the Emu-PF employing both, 
the PCA dimension reduction from section 3.4 (to four variables), and PPE from section 3.3 to compute 
all emulator outputs simultaneously, is tested in fig. 7. The Emu-PF implementation with PCA not only 
stably estimates states and parameters under a difficult filtering problem, but out-competes both the 
EnKF and the fine PF (which employs 100 × as many model runs). This good performance from the 
Emu-PF with PCA far outstrips our original goal, that was just to replicate the performance of the fine 
PF. However, on repeating this experiment, we discovered that the Emu-PF employing PCA suffers 
issues with instability: the support of the design inputs may shrink, and then the emulator can output 
NaNs. To address this issue, we stabilised the design variables by adding noise with variance 0.01 to 
the parameters when they are subsampled (see section 3.1). This design is stable, but less technically 
impressive; statistics from 20 runs, showing significant improvement on the Coarse PF, are recorded 
in table 2. Future work will focus on less intrusive alterations to the Emu-PF design. 

Table 2.  Summary statistics for twenty repetitions of experiment Two. 



 
RMSE (𝜃𝜃) Var (𝜃𝜃) RMSE (𝐱𝐱) Var (𝐱𝐱) Resampling 

Fine PF 0.074 0.0043 0.7 0.61 173 
Coarse PF 0.49 0.0016 4.9 0.13 312 
EnKF 0.065 0.0027 0.78 0.66 - 
Emu-PF (Γ = −1) 0.38 0.00085 3.8 6.1 526 
Emu-PF (PCA) 0.27 0.00051 3.1 0.58 339 

 

Table 3.  Summary statistics for twenty repetitions of experiment Three.  
RMSE (𝜃𝜃) Var (𝜃𝜃) RMSE (𝐱𝐱) Var (𝐱𝐱) Resampling 

Fine PF 0.062 0.0032 0.28 0.13 243 
Coarse PF 1 0.0012 3.4 0.11 739 
EnKF 0.045 0.0017 0.25 0.1 - 
Emu-PF (Γ = −1) 0.15 0.00034 2.4 5.1 590 
Emu-PF (PCA) 0.084 0.00075 1.5 0.085 334 

 

4.5.   Experiment 3: Accurate, sparse observations 
We preserve 𝜎𝜎𝑜𝑜 = 0.5 but reduce to 𝑚𝑚 = 4 observations. One drawback to the Γ>0Γ>0 Emu-PF that we 
have observed is that it can be unstable if the filtering problem is slightly too hard; we infer that the 
emulator is given insufficient training data for the strongly localized input variables. Figure 8 shows 
the Γ = 1 Emu-PF performs significantly worse than the, technically inferior, Emu-PF with Γ = −1. In 
this case again the Emu-PF employing both PCA and PPE significantly improves on the Coarse PF 
performance. Localising strategies like the Γ = 1 approach are critical in many modern DA applications. 
The results of Experiment Four demonstrate that the localization strategy we have adopted is 
insufficient for more difficult filtering problems. We plan for future work to combine such localization 
strategies with the dimension reduction strategy of section 3.4. 

4.6.   Experiment 4: State estimation 
Supposing the model parameters are known and fixed, we now showcase the localization strategy of 
section 3.2, the sliced Emu-PF with Γ = 1. We fix 𝜃𝜃 = (0,1)𝑇𝑇 in all methods, so that the filtering 
problem is the standard Lorenz-96 model with 𝐹𝐹 = 8, and test DA schemes that estimate the state 
variables. In this state estimation experiment we assimilate every second variable with 𝑚𝑚 = 4 and 
standard accuracy 𝜎𝜎0 = 1, at each of 10,000 observation times. Implementation for two algorithms 
differs in this experiment: the EnKF employs multiplicative inflation of 1.1 (tuned to minimize RMSE) 
and the PF algorithms jitter particles with white noise of variance 0.01 after each resampling step2. The 
Emu-PF with Γ = 1 and the Emu-PF employing PCA (not plotted) both attained similar error values to 
the coarse PF3. Results in fig. 9 and table 4 show the sliced Emu-PF outperform the EnKF and attain 
performance almost on par with the fine PF. 

Table 4.  Summary statistics for Experiment Four  
RMSE (𝐱𝐱) Var (𝐱𝐱) Resampling 

Fine PF 0.47 0.15 1706 
Coarse PF 5.1 0.16 9917 
EnKF 1 0.096 - 



Emu-PF (Localized) 0.83 0.31 3566 
2this step is necessary here because the model is deterministic; if not jittered, the PF ensemble will collapse and 
all particles will be identical. Jittering is not strictly necessary for the PF in previous experiments because the 
parameter model is stochastic, and is not needed for the Emu-PF anywhere because the emulator already 
translates model uncertainty into noise. 
3additionally, the Emu-PF with PCA halted due to an error with the PPE code. 
 

4.7.   Experiment 5: High dimensional, non-Gaussian joint state-para-meter estimation 
We test the emulator-PFs in the 40-dimensional Lorenz-96 system with forcing given by eq. (15). We 
employ the Optimal Proposal PF (OP-PF) in all Particle Filters: a variation on the Particle Filter in which 
the particles are nudged in the direction of observations. The OP-PF is well described in [8,32,31] and 
employed in a similar context for state estimation in [20]. 

In addition to employing the OP-PF for all PF algorithms, we modify the Emu-PF as well. All Emu-PF 
variants train the emulator on the proposal of the OP-PF, and employ the weight update appropriate 
for OP-PF. If the emulator samples converge to the prior distribution as the amount of training data 
increases, then the Emu-PF will converge to an OP-PF. 

We choose challenging experimental parameters: observations of every second variable, 𝑚𝑚 = 20, 
corrupted with measurement errors 𝜎𝜎𝑜𝑜 = 0.5. We introduce a model error/noise term: at each 
observation time the truth, and model forecasts, are altered by additive Gaussian noise with standard 
deviation 1 in each component. 

For this difficult filtering problem, the Fine and Coarse OP-PFs do not produce significantly different 
error statistics (see table 5). However the Emu-PF is promising: the 'standard' variant with Γ =
−1 estimates model parameters more than twice as well as any standard method, and the localised 
variant with Γ = 2 also estimates parameters well while estimating the state about as well as the 
Particle Filters. 

Table 5.  Summary statistics for twenty repetitions of experiment Five.  
RMSE (𝜃𝜃) Var (𝜃𝜃) RMSE (𝐱𝐱) Var (𝐱𝐱) Resampling 

Fine OP-PF 1.2 0.0075 1.9 3.3 226 
Coarse OP-PF 1.2 0.004 2.0 2.8 205 
EnKF 1.1 0.00042 1.5 1.8 - 
Emu-PF (Γ = −1) 0.5 0.0017 2.6 3.5 243 
Emu-PF (Γ = +2) 0.75 0.0035 2.0 3.7 232 
Emu-PF (PCA) 1.1 0.061 2.0 2.8 238 

 

Let us focus on the performance of two filters: the Fine OP-PF and the best-performing filter, the Emu-
PF with Γ = 2. The evolution over time of the RMSE in parameters and states for each of 
the 20 applications of these filters is shown in fig. 10. The localised Emu-PF clearly improves over the 
Fine PF—despite the Emu-PF only aiming to mimic the Fine PF at lower computational cost! 



 
Figure  10.  RMSE against time for Experiment Five: dashed red lines plot the Fine PF (formulated under the 
Optimal Proposal), and solid blue lines plot the best-performing Emu-PF according to table 5. There is a clear 
improvement in skill in parameter estimation. State estimates are similar in skill (and, importantly, do possess 
some skill: the state RMSE is well below 5, the approximate long-term or climatic mean RMSE of forecasting 
with no DA) 

5.   Discussion and future directions 
In this work, we present a straight-for-ward utilization of statistical emulators within sequential data 
assimilation. We use random function models, specifically Gaussian process emulators (GPs), to learn 
the mapping from state and/or parameter values at one observation instance to the next. This model-
learning technique pairs well with particle filters that typically require 103 − 105 forward model runs 
to assimilate each observation in time. The gist of our methodology is that a GP provides interpolation 
between model forecasts – thought of as functions of the parameter and/or previous state values at a 
fixed time – and may be used to produce additional forecasts, and thus provide a cheap means to 
improve PF performance. Further, statistical emulators provide a built-in estimate of model 
performance in terms of the predictive variance of the Gaussian process. In our suite of simulation 
studies, we find that GP emulator-based particle filters with 100 model runs outperform particle filters 
with the same modest run budget and in some experiments nearly meet the performance levels of 
perform on par or better when compared to a 104 particle "gold-standard" particle filter. 

We explore several variations of the basic emu-PF algorithm, both to improve performance and to test 
various approaches to dimension reduction within the emulator. We introduce these various adaptions 
to mimic two salient flavors of dimension reduction on inputs to the dynamic forward mapping—
namely two forms of localized dimension reduction, and a strategy for global dimension reduction. 
Localization is a widely-used and effective tool in DA to eliminate the impacts of long-range 
correlations on estimations and forecasts. The two approaches may be combined in future 
implementations of Emu-PF: one can imagine utilizing "global" dimension reduction tools within the 
localization domain of a gridded model. We further utilize the parallel partial emulator in a variation of 
the Emu-PF appropriate for functional or vector-valued model output. These variations on the Emu-PF, 
while promising, are not agnostic to the choice of model or observing system. For example, dimension 

https://www.aimsciences.org/fileAIMS/journal/article/fods/2021/3/PIC/2639-8001_2021_3_589-10.jpg


reduction through PCA is inappropriate in turbulent systems, in which there is no clear scale separation 
to exploit. The choice of dimension reduction should be informed by the dynamical properties of the 
forward mapping. 

Simulation experiments were performed on an 8-member and a 40-member Lorenz-96 system. We 
begin by considering a parameterized forcing that induces a bi-modal posterior distribution in 
parameter space. The emu-PF is able to obtain well-resolved bi-modal posteriors in parameter space 
with only 100 forward-model runs. We then consider a series of assimilation experiments that present 
an increased challenge as we lower the dimension of the observational space. We conclude that the 
success of the computationally cheap emu-PF with various forms of localization bodes well for this tool 
to be explored more widely. 

A very strong asset of this methodology is that it can readily be combined with other modern advances 
in sequential data assimilation. For example, we combined the Optimal Proposal PF [31] in conjunction 
with emulators to improve on the existing performance of Particle Filters on the 40-dimensional 
Lorenz-96 model. Further, the approach could be combined with a Localized PF [24]. In this case, we 
envision a dimension reduction for the emulator based on the support of the localization(s) utilized 
within the Localized PF. The emulator-based particle filter also has the potential to work nicely with the 
Equal Weight PF [33]. One can re-express the equivalent weights problem readily on the probability 
density functions obtained with emulators. Then one could sample from the resulting distribution. 
These advanced PF techniques devise approaches to overcome the challenge of searching large sample 
spaces; our contribution is effectively to accelerate the sampling procedure, so that more samples can 
be taken. 

A challenging future research direction is to include multi-scale modes in the posterior, particularly in 
combination with high dimensional systems. 
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