Measuring the effect of airway pressure on pulmonary arterial diameter in the intact rat lung

Robert C. Molthen
Marquette University, robert.molthen@marquette.edu

Steven Thomas Haworth
Medical College of Wisconsin

Amy Heinrich
Medical College of Wisconsin

Christopher A. Dawson
Medical College of Wisconsin

Follow this and additional works at: https://epublications.marquette.edu/bioengin_fac

Part of the Biomedical Engineering and Bioengineering Commons

Recommended Citation

Molthen, Robert C.; Haworth, Steven Thomas; Heinrich, Amy; and Dawson, Christopher A., "Measuring the effect of airway pressure on pulmonary arterial diameter in the intact rat lung" (2003). *Biomedical Engineering Faculty Research and Publications*. 134.
https://epublications.marquette.edu/bioengin_fac/134
Measuring the Effect of Airway Pressure on Pulmonary Arterial Diameter in the Intact Rat Lung

Robert C. Molthen a,b,c, Steve T. Haworth b, Amy E. Heinrich b, and Christopher A. Dawson a,b,c

aDepartment of Biomedical Engineering, Marquette University, Milwaukee, WI 53203
bDepartment of Physiology, Medical College of Wisconsin, Milwaukee, WI, 53226
Zablocki VA Medical Center, Milwaukee, WI, 53295

ABSTRACT

To study the relationship between transpulmonary pressure (Ptp), intravascular pressure (Pv), and the pulmonary arterial tree structure, morphometric measurements of pulmonary arterial trees were made in intact lungs from Sprague-Dawley rats. Using cone beam micro-CT and techniques we developed for imaging small animal lungs, volumetric CT data were acquired for Ptp from 0 - 12 mmHg and Pv from 5 - 30 mmHg. The diameter, D (measured range approximately 0.08-2.0 mm), vs. pressure, P, relation can be described by D(P) = D(0)(1+ α P), where α is a distensibility coefficient. Unlike studies performed in larger animals, where changes in either Ptp or Pv had nearly identical effect on vessel distensibility, we found that there is only a small dependence of arterial diameter on Ptp in the rat. For example, using the above relation where P=Ptp and Pv is held constant at 12mmHg, α = 0.55±0.42(SE) %/mmHg, compared with when P=Pv and Ptp is held at 12mmHg, α = 2.59±0.17(SE) %/mmHg.

Keywords: micro-CT, pulmonary arterial morphology, transpulmonary pressure

1. INTRODUCTION

The mechanical behavior of both intrapulmonary vessels is affected by the manner in which the vessels are embedded in the lung. This has been referred to as vascular interdependence. This interdependence has been difficult to measure, especially for small vessels. Thus, the available information is on the larger intrapulmonary arteries or relatively large laboratory species, such as the dog and pig. Also, most of the observations made using planar angiography are of vessel diameters but not lengths. Lumenal eccentricity can also confound measurements from planar roentgenograms. Therefore, we approached the problem of pulmonary arterial-parenchymal interdependence using volumetric CT in the rat lung.

2. METHODOLOGY

2.1 Rat Preparations

Sprague-Dawley rats approximately 65 days of age, ranging in weight from 250-325 gm were used for the study. Each rat was anesthetized with sodium pentobarbital (50 mg/kg ip) and a midline sternotomy performed. The rat was heparinized (200 IU/kg) by right ventricular injection. The trachea and pulmonary artery were cannulated (PE240 tubing) and the heart dissected away to allow free drainage out the severed pulmonary vein. The lungs were removed, supported by the two cannulae and the vasculature flushed with about 35 ml of a physiological salt solution (pss) containing 6 mg of papaverine hydrochloride at a flow rate of 10 ml/min, increased to 40 ml/min momentarily to clear blood. The lungs were ventilated with a 15% O₂, 6% CO₂ in N₂ gas mixture, 3 mmHg end expiratory pressure and 8 mmHg end inspiratory pressure and intermittent sighs with peak inspiratory pressures of 15-20 mmHg to eliminate any atelectasis that might have occurred during the excision and help clear blood from the vessels. Once the effluent was clear, the cannulae were clamped at end inspiration.

2.2 Imaging Methods

The lungs were placed in the imaging chamber and the vascular and tracheal cannulae attached to an adjustable pressure source. The tracheal pressure was initially set to 12 mmHg. The pleural pressure was atmospheric throughout the studies. Using a height adjustable reservoir, the pss in the arteries was replaced by perfluoroctyl bromide (Perfluorbron) to obtain high intravascular x-ray absorbance. It is important to note that the surface tension at the H₂O-Perfluorbron
interface prevents the perflubron from passing through the capillaries at pressures used in these studies. Therefore, only
the arteries were filled with this contrast medium. The arteries were "conditioned" by varying the intravascular
pressure between 5 and 30 mmHg several times ending at 30 mmHg. The lungs were then rotated in the x-ray beam at
1° increments to obtain 360 planar images. To maintain the integrity of the lungs, a typical experiment would entail
holding Pv constant and varying Ptp or holding Ptp constant and varying Pv. For a given lung one of these protocols
would be followed while performing CT scans at several incremental pressure values, after allowing time for the lungs
to reach a steady state. Table 1 describes the various protocols used in this study. Whether Ptp or Pv was varied
pressures were set to their highest value originally and a deflation was performed to obtain the image data set at each
pressure.

<table>
<thead>
<tr>
<th>No. lungs</th>
<th>Ptp</th>
<th>Pv</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>6</td>
<td>5, 12, 21, 30</td>
</tr>
<tr>
<td>2</td>
<td>2, 12</td>
<td>5, 30</td>
</tr>
<tr>
<td>1</td>
<td>2, 4, 8, 12</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>0, 2, 4, 8, 12</td>
<td>12</td>
</tr>
<tr>
<td>1</td>
<td>2, 4, 8, 12</td>
<td>21</td>
</tr>
</tbody>
</table>

Table 1. Experimental conditions.

2.3 Imaging System and Reconstruction
The micro-focal x-ray CT system is composed of a FeinFocus FXE/FXT 100.20 microfocal x-ray source (3um effective
focal spot), a Thomson TH9438 HX H661 VR24 image intensifier optically coupled to a Silicon Mountain Design
(SMD1M-15) CCD, and a New England Affiliated Technologies (NEAT) specimen micromanipulator stage, ali
mounted on a precision rail with positional information provided by Mitutoyo linear encoders accurate to 10µm. The
geometry of the imaging system allows magnification of the specimen to be increased by decreasing the specimen’s
proximity to the x-ray source. Each planar projection image was a result of averaging 7 frames to minimize noise. The
image data (512x512 pixels) was sent from the camera, via RS-422, to a frame grabber board mounted in a Dell 610
workstation running WindowsNT. Image acquisition and positional control were all performed by window-based
software, written in-house, running on the 610 workstation. The projection data was transferred via network to a Dell
340 workstation running Linux Red Hat 7.3 and after proper preprocessing, to compensate for field distortions and
nonuniformities introduced by the imaging chain, isotropic reconstructions were obtained through an implementation of
the Feldkamp cone-beam algorithm. The typical reconstructed volume was 497³ pixels with a typical pixel size of
70µm.

2.4 Measuring Arterial Lengths and Diameters
One measurement parameter available through CT imaging of contrast filled vessels is the luminal diameter of the
artery. Therefore, morphometric measurements were made, along the main pulmonary arterial trunk, on the isotropic
reconstructed data sets using methods introduced in earlier work. Diameter measurements were made between
successive bifurcations along the main trunk, while data on main trunk vessel length was obtained from bifurcation-to-
bifurcation positional information. Luminal measurements were made in arteries ranging in size from approximately 80
– 2000 µm. To measure mechanical properties of the vessel wall, measurements of the each lung at several different
intravascular or transpulmonary pressures were made at identical locations on the main trunk.

3. RESULTS

3.1 Constant Vascular Pressure
Under conditions when the intravascular pressure was maintained constant and the transpulmonary pressure was varied
from 0 – 12 mmHg, vessel lengthening was seen as the most significant effect. Figure 1 shows differences in an isolated
lung between Ptp = 0, 2 and 12 mmHg at a constant Pv of 12 mmHg. As Ptp is increased, there are large changes in
longitudinal expansion of the arteries. There are very slight changes in the arterial diameters. Some impingement on
the right lobar artery caused by expansion of the main bronchus is seen at Ptp = 12 mmHg. Figure 2 shows diameter vs.
distance of subsequent bifurcations along the main trunk at Ptp = 0, 2, 4, 8, and 12 mmHg for the lung in figure 1. To
quantify the change diameter as a function of Ptp we introduce a distensibility coefficient α, where the vessel diameter is
describable by equation 1, in which diameter is assumed to change linearly with Ptp. Plots of vessel diameter as a function of Ptp for several vessel segments in a similar experiment are presented in Figure 1. (Top row) Planar arteriograms of a rat lung with intravascular pressure (Pv) 12 mmHg and transpulmonary pressures (Ptp) of 0, 2, and 12 mmHg from left to right. (Bottom row) Surface shaded renderings made from 3-D micro-CT reconstructions of the same lung under the same conditions.

\[D(P_{tp}) = D_0 (1 + \alpha P_{tp}) \]

Figure 3, which shows for the Ptp range used in this study, equation 1 appears to be an acceptable model for these data. Although vessel diameters tend to increase with increasing Ptp, the increase is much less than seen in studies where intravascular pressure was varied as shown by Karau et al. and data presented below in this paper. Using data from two lungs (66 vessels segments) in which Pv = 12 mmHg and Ptp = 0 – 12 mmHg \(\alpha \) was estimated at 0.55±0.42(SE) %/mmHg.

3.2 Constant Transpulmonary Pressure
Under conditions when the transpulmonary pressure was held constant and the intravascular pressure was varied from 5 – 30 mmHg, there was very little vessel lengthening. Figure 4 shows changes in an isolated lung between Ppv = 5, 12 and 30 mmHg at a constant airway pressure of 6 mmHg. As Ppv is increased, there are large increases in vessel diameter. The changes in the arterial lengths, under these conditions, are minimal. Pulmonary arterial diameter is largely dependent on Ppv as seen in figure 5. Calculating \(\alpha \) from two lungs (70 vessel segments) where Ptp = 6 mmHg and Ppv
Figure 2. Vessel diameter vs. main pulmonary trunk length (cumulative distance along the main trunk to subsequent bifurcation sites) measured from CT data for intrapulmonary pressures (Ptp) equal to 0, 2, 4, 8, and 12 mmHg.

Figure 3. Transpulmonary pressure (Ptp) vs. vessel segment diameter measured in several vessels along the main arterial
Figure 4. (Top row) Planar arteriograms of a rat lung with transpulmonary pressure (Ptp) 6 mmHg and intravascular pressures (Pv) of 5, 12, and 30 mmHg from left to right. (Bottom row) Surface shaded renderings made from 3-D micro-CT reconstructions of the same lung under the same conditions.

varied from 0 - 30 mmHg resulted in $\alpha = 2.59 \pm 0.17 (SE) \% / \text{mmHg}$. To investigate if there was a size dependent effect on α, vessel segments were separated according to the value of D(0). Figure 6 is a plot of the average \pm S.E. pressure-diameter relationship for 3 groups of vessel segments, large (D(0) > 1.4 mm), medium (1.4 > D(0) > 0.5 mm), and small (D(0) < 0.5 mm) for an experiment in which Pv was varied and one where Ptp was varied.

4. DISCUSSION

4.1 Comparison to Previous Findings
A fairly large body of work has investigated bronchial diameter and length with lung inflation$^{8-9, 14-15}$ fewer references exist on vascular morphology and its interdependence on lung inflation (lung volume). Some of the early work in this area was accomplished by Howell's group$^{7, 16}$ in which excised dog lungs were studied to determine the effect of lung inflation on the pulmonary vasculature. In Howell's studies, experiments were designed so that there would be no difference in the results whether positive or negative inflation was used. The resting state of the vasculature was set such that the height of dextran in connected burettes was equal to the height of the top of the lung. A completely opposite response in Pv was seen if an additional 11 ml of dextran was added to the vascular system. Changes in vascular volume were also a function of biases in Pv from the resting state. This led to an experimentally supported conclusion that the vascular space was, in essence, behaving like two separate compartments. The large vessels (the expanded portion) that displayed volume expansion with increased lung inflation and the small perialveolar vessels (the compressed portion) that lost volume as lung volume was increased. It was also impossible in their studies to determine the diameter-length characteristics.
In studies that investigated lung volume affect on vessel diameter, different groups found that, in the intact lung, vessel diameter became larger at higher transpulmonary pressures \(^5, 12, 13, 20\), although these studies examined relatively large (2.0 mm and larger) vessels, Albert et. al. (Albert) found a similar relationship in vessels of even smaller dimension (0.2 - 1.3 mm). Typical studies of this type found only slight differences between the behavior of vein and arteries \(^5, 12, 20\). It is generally held that during lung inflation, as the lung expands, the parenchyma exerts radial traction on the intraparenchymal vessels walls, lowering the perivascular pressure and in turn causing an increase in vascular diameter. Conclusive evidence of what is occurring at the site of periairolar vessels is still elusive. According to the data in figure 6, small vessels down to the range of 0.08 mm do not show a loss in diameter with increases in Ptp. With the resolution currently provided by the micro-CT data, diameter measurement ranges still do not approach that of the pericapillary and capillary vessels and therefore it is still unsure if the compression region of vessels does in fact exist. In the present study we utilize microfocal angiography / computed tomography to investigate the morphometric (diameter-length) behavior of the pulmonary arterial tree as a function of lung inflation, in intact, excised rat lungs. Accordingly, the present study was carried out to extend knowledge of these relationships to smaller animals, which enabled investigation of smaller vessels (down to the 0.08 mm range), closer to the perialveolar level, and do it in such a way as to obtain novel three-dimensional data on the intact lung structure. To aid in resolving various issues raised in this paper, our group is also refining the experimental techniques to obtain direct measurements of total pulmonary arterial volume and changes in arterial volume with either changes in Ppv or Ptp.

4.2 Vessel Eccentricity
Caro\(^4\) had shown at low Ppv values the vessels may become eccentric. A mesh plot of an artery approximately 1.2 mm in diameter from a CT reconstruction in an experiment where Ptp = 12 mmHg and Ppv = 5 mmHg is shown in figure 7. Even at relatively low Ppv values the vessel cross section is only slightly eccentric, therefore it is a reasonable to use the assumption that the vessel cross-section is circular. This assumption is used in the model for estimating vessel diameter in this study.
Figure 6. Average±S.E. pressure-diameter relationship for 3 groups of vessel segments, A. large (D(0) > 1.4) mm, B. Medium (1.4 > D(0) > 0.5 mm), and C. small (D(0) < 0.5 mm) for an experiment in which (P_v) was varied and one where (P_{tp}) was varied.
4.3 Development Related Changes in Vessel Mechanics
Although previous studies have shown a significant change in the mechanical properties of the rat lung during postnatal development, under 40 day of age, all rats used in this study were beyond their 60th day of age before experimentation and should not be affected by this.

ACKNOWLEDGEMENTS
This work supported by HL 19298, NSF BES 9818197, the W.M. Keck Foundation and the Department of Veterans Affairs.

REFERENCES

*rmolthen@mcw.edu; phone (414) 384 - 2000 x41440; fax (414) 384 - 0115; web: www.eng.mu.edu/molthen