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Abstract 
The Reactive Strength Index (RSI) is often used to quantify drop-jump (DJ) performance; however, not much is known about 
its biomechanical determinants. The purpose of this study was to investigate the correlations between the RSI and several 
biomechanical variables calculated from DJ performed with different initial drop heights. Twelve male NCAA Division I 
basketball players performed DJs from drop heights of 30, 45, and 60 cm. Force plates were used to calculate DJ 
performance parameters (ie, DJ height, contact time, and RSI) and DJ biomechanical variables (ie, vertical stiffness and 
eccentric/concentric energetics). Regression analyses were used to assess the correlations between variables at each drop 
height, and ANOVAs were used to assess the differences of all variables across drop heights. Follow-up analyses used 2 
neural networks to determine if DJ performance and biomechanical data could accurately classify DJ trials by drop-height 
condition. Vertical-stiffness values were significantly correlated with RSI at each height but did not change across drop 
heights. Surprisingly, the RSI and other DJ parameters also did not vary across drop height, which resulted in the inability of 
these variables to accurately classify DJ trials. Given that vertical stiffness did not change across drop height and was highly 
correlated with RSI at each height, the RSI appears to reflect biomechanical behavior related to vertical stiffness during DJ. 
However, the inability of the RSI to accurately classify drop-height condition questions the use of RSI profiles established 
from DJs from different heights. 
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The Reactive Strength Index (RSI) is a measure often used to quantify dynamic lower-extremity performance during a drop 
jump (DJ).[ 1] [ 2] –[ 3] The RSI represents a highly reliable (ie, intraclass correlation coefficient >.90) and simple index of 
performance that is also easy to measure and interpret.[ 4] [ 5] –[ 6] The RSI is calculated as the quotient of DJ jump height 
and ground-contact time and reflects the ratio of how high an athlete jumps to how much time he or she spends on the 
ground.[ 1] It is common for DJ testing and RSI calculation to include conditions where the height of the drop is 
manipulated in order to establish an RSI profile, which can purportedly be used to investigate the effects of training and 
differences in skill or strength levels.[ 1] ,[ 3] Based on its inherent reliability, simplicity, and utility it has been suggested 
that the RSI is ideal for assessing cross-sectional differences and monitoring longitudinal changes in maximal dynamic 
lower-extremity performance. 
 
Although the RSI provides simple insight into dynamic lower-extremity performance during a DJ, not much is known about 
its biomechanical determinants. Beyond the variables of jump height and ground-contact time, both of which are used to 
calculate RSI, no studies have investigated other biomechanical variables associated with the RSI. This lack of knowledge, 
however, presents a gap that may inhibit the optimal use of the RSI as a monitoring tool in the applied strength and 
conditioning setting, because practitioners cannot be confident of the characteristics that RSI actually measures. In this 
light, the benefit of being easily calculated from simple jump systems also represents a trade-off because such systems do 
not provide the in-depth information of force-plate analyses. It would therefore be of significant practical interest to 
determine the correlations between RSI- and force-plate-derived data to provide practitioners with better information 
about the biomechanical determinants of the RSI. 
 
The instructions that are provided to athletes during DJs and RSI testing are typically to "jump as high and as fast as you 
can."[ 1] These instructions are provided to encourage athletes to maximize jump height and minimize ground-contact 
time, which in combination optimize RSI. Given that such instructions likely lead to large ground-reaction forces over small 
periods of time, it could be hypothesized that the RSI is associated with vertical stiffness.[ 7] ,[ 8] In addition, given that 
maximal DJ performance depends on optimal stretch-shortening-cycle function, it could also be hypothesized that the RSI is 
associated with the center-of-mass (COM) energetics.[ 9] Furthermore, since drop height is often manipulated during RSI 
testing and represents different stretch- and impact-load conditions during the DJ, one could further hypothesize that 
athletes adjust stiffness and energetic behavior to scale with such changes in height.[ 1] ,[ 3] In light of these hypotheses, 
the purpose of this study was to investigate correlations between RSI and biomechanical variables during a series of DJs 
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performed from different heights, with the rationale that the knowledge of these correlations would provide useful 
information about the biomechanical determinants of the RSI. In particular, our analysis of variables focused on athletes' 
vertical stiffness and COM energetics during the eccentric and concentric phases of the DJ. A secondary purpose, which 
manifested as a follow-up analysis, was to determine if DJ performance parameters (ie, DJ height, contact time, and RSI) 
and DJ biomechanical data (ie, vertical stiffness and eccentric/concentric and work) could accurately classify DJ trials by 
drop height. 

Methods 
Participants 
Twelve male NCAA Division I basketball players were recruited for this study (mean ± SD age 21.6 ± 1.8 y, height 1.93 ± 0.10 
m, body mass 80.5 ± 10.5 kg). Before testing, all players were briefed on the scope of the study and read and signed an 
informed-consent document that was approved by the local university's institutional review board for human subjects 
testing. 

Testing Protocol 
All athletes were tested in the mornings before any skill or conditioning work. All were asked not to participate in heavy 
resistance training or intense conditioning sessions for 48 hours prior to testing. Before testing, each athlete performed a 
brief dynamic warm-up that included body-weight exercises (eg, squats, lunges) and a variety of submaximal- and maximal-
effort countermovement jumps and squat jumps. Each participant then performed several submaximal-effort DJs, after 
which he performed 3 maximal-effort DJs from box heights of 30.5, 45.7, and 61 cm. To simplify, these heights are referred 
to as 30, 45, and 60 cm from here on. The explicit instructions were to "jump as high and as fast as you can." Approximately 
30 seconds of rest were allowed between maximal-effort DJs. All athletes were familiar with the DJ through their regular 
strength and conditioning practices and were therefore provided with only minimal familiarization, which was primarily 
allocated so that each participant could get used to the layout of the force plates that were positioned approximately 15 cm 
in front of the box. DJ trials were excluded if the athlete either stepped down onto the force plate or jumped off of the box. 
All DJ trials were supervised by a certified strength and conditioning specialist. 

Data Collection and Processing 
For all DJs athletes landed on 2 AMTI force plates (Model OR6-6, Advanced Mechanical Technologies Inc, Watertown, MA, 
USA) that were mounted flush with the floor. Participants were positioned such that each foot landed fully on 1 of the 2 
force plates. All processing occurred with custom-written MATLAB (The Mathworks Inc, Natick, MA, USA) programs. Kinetic 
data from the force plates were recorded at 1000 Hz and filtered with a fourth-order low-pass Butterworth filter and a 
cutoff frequency of 15 Hz, which was determined after an analysis of the residuals from several cutoff frequencies. The 
filtered vertical-ground-reaction-force (VGRF) data from both force plates were then summed into a single VGRF vector. 
The peak VGRF (Fmax; N) and ground-contact time (tc; s) were extracted for analysis (Figure 1[A]). The vertical-ground-
reaction force−time curves were used to calculate the acceleration of the COM. The velocity of the COM during the contact 
phase of the DJ was calculated through numerical integration of the net vertical-acceleration data. The initial velocity of the 
COM was calculated from the flight times associated with the different drop heights.[ 10] The same procedure was 
repeated to calculate the COM position. The COM velocity was multiplied with the VGRF data to produce COM power, 
which in turn was used to identify eccentric (negative power) and concentric (positive power) movement phases (Figure 
1[B]). Motion of the COM was also use to calculate the maximum vertical displacement (Δy; m) during the DJ. The 
power−time curves were numerically integrated to estimate eccentric (JEcc; N · m−1 · kg−1) and concentric (JConc; N · m−1 · kg−1) 
work. Vertical stiffness (kvert; kN/m) was defined as the ratio of Fmax to Δy.[ 11] 

Classification of Neural Networks 
Two separate feedforward neural networks were used to determine if DJ performance parameters (ie, DJ height, contact 
time, and RSI) and DJ biomechanical data (ie, vertical stiffness and eccentric/concentric work) could accurately classify DJ 
trials by drop height. Input data for both networks were randomly divided into training (70%), validation (15%), and testing 
samples (15%). The architecture of both networks consisted of 3 input layers, 10 hidden layers, and 1 output layer. In each 
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case, the output layer reflected the drop height. The networks were trained with scaled conjugate gradient back-
propagation, and network performance was assessed from the mean square error. Confusion matrices were then 
generated to assess the percentage of correctly and incorrectly classified DJ trials. 

Statistical Analysis 
Descriptive data are reported as mean ± SD. Preliminary analyses were performed for all data to ensure that requirements 
for parametric testing were met. Simple linear-regression analyses were used to test for correlations between RSI and 
biomechanical variables. Separate general linear analysis-of-variance (ANOVA) models were used to test for differences in 
dependent variables. Each ANOVA model consisted of a 3-way analysis to test for within-subject differences across the 
independent variable (ie, drop height). Within-subject differences were treated as repeated measures. Assumptions of the 
test statistic were verified with the Mauchly test of sphericity. Greenhouse-Geisser corrections were made when 
assumptions of sphericity were violated. Partial eta-squared (η2) values were used to help interpret the magnitude of main 
effects. The criterion for statistical significance was set at an alpha level of.05. The reliability of all dependent variables for 
each drop height was assessed with intraclass correlation coefficients (Table [ 1] ). All statistical analyses were performed in 
SPSS 24.0 (IBM Corp, Armonk, NY, USA). 
 
Table 1 Intraclass Correlation Coefficients for All Dependent Variables at Each Drop Height  

30 cm 45 cm 60 cm 
Height .971 .853 .853 
Ground-contact time .940 .969 .978 
Reactive Strength Index .957 .986 .967 
Peak vertical ground-reaction force .975 .971 .974 
Vertical displacement .916 .872 .936 
Eccentric work .930 .958 .984 
Concentric work .945 .928 .956 
Vertical stiffness .985 .974 .987 

Results 
Main effects for drop height were observed for peak force, maximum vertical displacement, eccentric work, and concentric 
work (Table [ 2] ). Post hoc testing indicated that peak force during the 60-cm DJ was greater than during the 30-cm DJ (P 
=.024) and that COM displacement during the 60-cm DJ was greater than during the 30-cm DJ (P =.002). Post hoc testing 
further indicated that eccentric work during the 60-cm DJ was greater than during the 45-cm DJ (P =.001) and 30-cm DJ (P 
=.001). In addition, eccentric work was greater during the 45-cm DJ than during the 30-cm DJ (P =.001). Conversely, post 
hoc testing indicated that concentric work during the 30-cm DJ was great than during the 45-cm DJ (P =.003) and the 60-cm 
DJ (P =.013). 
 
Table 2 Performance Parameters and Biomechanical Variables During Drop Jumps Performed From 30-, 45-, and 60-cm 
Heights, Mean ± SD  

30 cm 45 cm 60 cm P η2 
Height (m) 0.489 ± 0.086 0.486 ± 0.073 0.495 ± 0.064 .499 .083 
tc (s) 0.330 ± 0.079 0.315 ± 0.083 0.322 ± 0.095 .339 .127 
RSI (m/s) 1.57 ± 0.43 1.63 ± 0.43 1.64 ± 0.42 .367 .118 
Fmax (N) 3318 ± 678 3602 ± 821 3650 ± 842 .008 .455 
Δy (m) −0.233 ± 0.073 −0.260 ± 0.070 −0.303 ± 0.082 .001 .713 
JEcc (N · m−1 · kg−1) −5.27 ± 0.74 −7.02 ± 0.70 −8.93 ± 0.83 .001 .986 
JConc (N · m−1 · kg−1) 7.14 ± 1.09 6.51 ± 1.32 6.05 ± 1.50 .003* .643 
kvert (kN/m) 21.2 ± 12.3 19.9 ± 8.9 17.4 ± 7.2 .200 .195 

Note: P values for significant main effects are presented in bold. *Greenhouse-Geiser correction. 
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Several of the correlations between RSI and biomechanical variables were significant (Table [ 3] ). The RSI was correlated 
with vertical stiffness during the eccentric and concentric phases at all drop heights. The RSI was also significantly 
correlated with the amount of negative mechanical work during the DJ from all 3 drop heights. Positive mechanical work, 
however, was correlated with the RSI only at the 60-cm drop height. 
 
Table 3 Correlation Coefficients Between RSI and Biomechanical Variables During Drop Jumps Performed From 30-, 45-, and 
60-cm Heights  

30 cm 45 cm 60 cm 
JEcc .514** .756*** .821*** 
JConc −.037 −.070 −.389* 
kvert .537** .676*** .754*** 

*P <.05; **P <.01; ***P <.001. 
 
The neural network with DJ performance parameters as input classified only 33.3% of all DJ trials correctly (Figure 2A). The 
respective percentage errors for training, validation, and testing were 63%, 75%, and 87%, respectively. In contrast, the 
neural network with DJ biomechanical data as input classified 96.3% of all DJ trials correctly (Figure 2B), and the respective 
errors for training, validation, and testing were 0%, 0%, and 25%, respectively. 

Discussion 
The primary purpose of this study was to investigate correlations between the RSI and other biomechanical variables during 
DJ from different drop heights. The major finding of this study was that values for vertical stiffness during DJ were 
consistently correlated with RSI across all drop heights. Furthermore, values of vertical stiffness did not change across drop 
heights. In combination, these results suggest that the RSI reflects biomechanical behavior associated with the vertical 
stiffness of the body's musculoskeletal system during DJ. The reason that vertical stiffness remained constant was likely that 
both peak ground-reaction forces and COM displacements increased concomitantly with drop height. An unexpected 
finding was that RSI did not change across drop height, which may be partially explained by the decrease in concentric work 
at greater drop heights. In contrast, greater drop heights were associated with more eccentric work, which likely reflect the 
differences in initial conditions. Finally, follow-up data analyses indicated that DJ biomechanical variables classified drop 
height more accurately than DJ performance parameters, which may question the practical utility of drop-height-based RSI 
profiles. 
 
Vertical stiffness during DJ was significantly correlated to RSI at each of the 3 drop heights. The direction of all correlations 
was positive, which indicated that greater RSI values were associated with greater stiffness regardless of DJ phase. The 
strength of the correlation between RSI and vertical stiffness was greater at 45- and 60-cm heights than at the 30-cm 
height. That said, the actual values of vertical stiffness during the DJ did not differ across drop heights. Given that the peak 
ground-reaction forces and COM displacements during the DJ both increased concomitantly with drop height, this finding 
may not be too surprising since vertical stiffness is calculated from both variables. Similarly, Ferris et al reported that people 
run and hop with the same overall vertical stiffness, even across surfaces with different compliance levels.[ 12] ,[ 13] They 
suggested that, regardless of environmental condition, people maintain the same vertical stiffness in order to keep 
movement mechanics (eg, hopping frequency) constant. The similarity in stiffness values observed across drop heights may 
thus point to an attempt by the athletes to control and maintain constant jump mechanics in the face of greater impact 
forces, because DJ contact time and height also did not differ. Since the RSI was highly correlated with vertical stiffness at 
each drop height and did not change across heights, it appears to be closely linked to the vertical stiffness of the body's 
musculoskeletal system during DJ. 
 
In regard to COM energetics, the results indicated that only the amount of mechanical work that was performed during the 
eccentric phase correlated with the RSI. The direction of all correlations between RSI and eccentric work was positive, and 
the magnitude of the associated correlation coefficients increased progressively from the 30-cm to the 60-cm drop height. 
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Given that eccentric work values are negative, the positive correlations thus indicate that greater RSI values are associated 
with smaller magnitudes of mechanical work performed during the eccentric phase of the DJ. To what extent the RSI 
reflects eccentric-phase energetics during the DJ is, however, less clear because the results also showed that an increase in 
drop height led to an increase in eccentric-phase work, which is likely due to the greater peak ground-reaction forces and 
COM displacements that were observed during the impact phase of DJ from greater drop heights. Furthermore, the results 
showed that an increase in drop height was associated with a decrease in concentric-phase work. Other authors have 
suggested that the ratio between concentric and eccentric work provides insight into the function and efficiency of the 
stretch-shortening cycle during jumping exercises.[ 14] The observed changes in COM energetics during the DJ in the 
current study may therefore indicate a decrease in muscle-tendon-unit efficiency and suggest that DJ performance and RSI 
are limited by stretch-shortening-cycle function. 
 
The results showed that parameters of DJ performance (ie, RSI, DJ height, and contact time) did not change across drop 
heights. The lack of change in DJ performance parameters agrees with findings from other studies, which indicate that DJ 
starting height does not correlate well to DJ performance.[ 15] ,[ 16] More specifically, Walsh et al suggested that contact 
time has a greater effect on DJ performance parameters than drop height.[ 16] This implication may be especially important 
if technical instructions are not controlled and athletes perform DJ under inconsistent conditions.[ 17] Given that 
participants in the current study were provided with consistent instructions (ie, "Jump as high and as fast as you can") it 
may thus not be a surprise that contact time did not change. 
 
In the absence of drop-height-dependent changes in DJ performance parameters it became of interest to pursue a follow-
up analysis to determine how accurately the DJ performance parameters and DJ biomechanical data could classify 
individual DJ trials by initial conditions. To this end, 2 neural networks were trained to determine how accurately DJ trials 
could be classified by drop heights with either DJ performance parameters or DJ biomechanical data as inputs. The results 
of the classification analysis indicated that with DJ height, contact time, and RSI as inputs, the neural network classified the 
drop height of only approximately 33% of all DJ trials correctly. Given that DJ performance parameters did not change 
across drop height, the poor performance of this classification network was not too surprising. In contrast, the neural 
network with the DJ biomechanical data classified approximately 96% of all DJ trials correctly. The reason that this 
discrepancy should be of interest to coaches and sport scientists is that DJ testing across a spectrum of drop heights is used 
to identify a DJ profile with an ostensible optimal drop height based on either DJ height, contact time, or RSI. However, the 
collective results from the current study suggest that the 3 DJ performance parameters neither vary across nor accurately 
classify DJ trials by drop heights. While general plyometric training can increase the RSI,[ 18] no longitudinal studies have 
examined the effectiveness of targeted and RSI-specific training programs on DJ performance. In the absence of such 
training studies, the current results thus question the utility of RSI-based DJ profiles to guide the program-design process in 
the strength and conditioning setting. On the other hand, the current results suggest that the use of a single drop height 
could be sufficient to calculate the RSI profile, which would simplify DJ testing for practitioners. 
 
The results from this study should be interpreted in light of a few limitations. First, the sample of athletes in this study 
consisted entirely of male NCAA Division I basketball players, which may limit the generalizability of the results to that 
population and sport. Another limitation is that we did not test squat-jump performance and did not calculate the 
difference in net concentric work between the squat jump and the DJ. The ratio of net concentric work to eccentric work is 
often used to provide insight into stretch-shortening-cycle function and muscle-tendon-unit efficiency.[ 9] ,[ 14] However, 
given the within-subject statistical design of the current study, the lack of squat-jump data should not influence the 
inferences related to the decreases in concentric work during the DJ that were observed from the greater drop heights or 
any proposed changes in stretch-shortening-cycle function. Finally, the contact times for all DJ in the current study (∼330 
ms) were slightly longer than the typical 250-millisecond value typically associated with fast stretch-shortening-cycle and 
high-load plyometric exercises.[ 3] It is likely that the reason for this discrepancy was that athletes in the current study were 
allowed to use their arms during the execution of the DJ technique. While the execution of the DJ with arm swing likely 
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lengthened the contact time compared to the hands-akimbo technique, the former technique was chosen to allow for a 
more natural and familiar motion for basketball players. 

Practical Applications 
There are 2 primary and immediate practical applications of the results from the current study. First, the results suggest 
that the RSI correlates well with vertical stiffness during a DJ, regardless of drop height. Given that practitioners often use 
DJ to assess and monitor lower-body performance, it would be beneficial for them to know that the RSI provides 
information about the stiffness of the lower extremities. The RSI could then be easily used as a surrogate of musculoskeletal 
stiffness in order to track performance characteristics and/or injury potential. Second, the results suggest that DJ 
performance parameters (ie, RSI, jump height, contact time) do not accurately differentiate individual DJ by drop height. 
This limitation brings into question whether it is necessary for practitioners to test DJ from multiple drop heights in order to 
establish an RSI profile. Collectively, these 2 results suggest that practitioners could use the RSI from only 1 drop height to 
gain insight into the stiffness behavior of the musculoskeletal system during DJ. 

Conclusions 
The RSI is highly correlated with vertical stiffness across a range of drop heights. Furthermore, vertical stiffness did not 
differ across drop height. The RSI therefore appears to reflect lower-extremity stiffness during DJ. However, the inability of 
RSI, DJ height, and contact time to accurately classify DJ trials by initial condition brings into question the utility of these 
parameters to establish drop-height-based RSI profiles. 
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Graph: Figure 1 —Three-trial ensemble average of biomechanical data during the stance phase of drop jumps from 30-cm 
(light gray line), 45-cm (dark gray line), and 60-cm (black line) drop heights for 1 representative athlete. (A) Vertical ground 
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reaction forces (GRF) versus time. (B) Center-of-mass system power versus time. (C) Vertical GRF) versus center-of-mass 
system position. 
 

 
Graph: Figure 2 —Confusion matrices for neural networks with A) DJ performance parameters (ie, DJ height, contact time, 
and RSI) and B) DJ biomechanical data (ie, eccentric/concentric stiffness and work) as input. Class 1, 2, and 3 refer to drop 
heights 30 cm, 45 cm, and 60 cm, respectively. NOTE: Target and output refer to input and predicted (ie, classified) data, 
respectively. 
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