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Abstract 
Multicomponent fuel droplet vaporization models for use in combustion CFD codes often prioritize 
computational efficiency over model complexity. This leads to oversimplifying assumptions such as 
single component droplets or infinite liquid diffusivity. The previously developed Direct Quadrature 
Method of Moments (DQMoM) with delumping model demonstrated a computationally efficient and 
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accurate approach to solve for every discrete species in a well-mixed vaporizing multicomponent 
droplet. To expand the method to less restrictive cases, a new solution technique is presented called 
the Coupled Algebraic-Direct Quadrature Method of Moments (CA-DQMoM). In contrast to previous 
moment methods for droplet vaporization, CA-DQMoM solves for the evolution of two liquid 
distributions by coupling a monovariate, homogeneous DQMoM approach with additional algebraic 
moment equations, allowing for a more complex droplet vaporization model with finite rates of liquid 
diffusion to be solved with computational efficiency. To further decrease computational expense, an 
approximation that employs the same nodes for both distributions can be used in certain cases. Finally, 
a delumping technique is adapted to the finite diffusivity model to reconstruct discrete species 
information at minimal computational cost. The model is proven to be accurate relative to a full 
discrete component model for both a kerosene droplet comprised of 36 species and a multicomponent 
droplet of 200 species while maintaining the computational efficiency of continuous thermodynamics 
models. The combined accuracy and computational efficiency demonstrated by the CA-DQMoM with 
delumping model for a multicomponent fuel droplet with finite liquid diffusivity makes it ideal for 
incorporation into CFD models for complex combustion process. 

Keywords 
Multicomponent droplet vaporization, Continuous thermodynamics, Coupled Algebraic-Direct 
Quadrature Method of Moments, Delumping, Liquid diffusion, Parabolic 

 

Nomenclature 
𝐴𝐴 group of variables 
𝐵𝐵𝑀𝑀 Spalding mass transfer number 
𝐵𝐵𝑇𝑇 Spalding heat transfer number 
𝐶𝐶 molar concentration, group of variables 
𝑐𝑐𝑝𝑝 specific heat capacity 
𝐷𝐷 diffusion coefficient 
𝐸𝐸 group of variables 
𝑓𝑓 function 
𝐺𝐺 group of variables 
𝐼𝐼 distribution variable 
𝑘𝑘 thermal conductivity 
𝑙𝑙𝑣𝑣 latent heat of vaporization 
𝑚𝑚 moment 
𝑁𝑁 number of CA-DQMoM nodes 
𝑁𝑁𝑁𝑁 Nusselt number 
𝑛𝑛 number of discrete species 

𝑛𝑛
̇
 molar flow rate 
𝑃𝑃 pressure 
𝑟𝑟 radial coordinate 
𝑅𝑅 radius of droplet 
𝑅𝑅𝑓𝑓 radius of gas film 
𝑆𝑆 source term in CTM species equation 
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𝑆𝑆
¯
 source term in moment transformed species equation 
𝑆𝑆ℎ Sherwood number 
𝑇𝑇 temperature 

𝑇𝑇
¯
 volume averaged temperature 
𝑡𝑡 time coordinate 
𝑁𝑁 integrating factor 
𝑤𝑤 CA-DQMoM weight 
𝑥𝑥 mole fraction 

𝑥𝑥
¯
 volume averaged mole fraction 
𝛿𝛿 delta function 

Superscripts 
∗ modified (Sherwood number, Nusselt number) 
𝑖𝑖 discrete species index 
𝑗𝑗 CA-DQMoM node index 
𝑘𝑘 moment order index 
𝑡𝑡𝑡𝑡𝑡𝑡 total (for all species) 

Subscripts 
𝑐𝑐 evaluated at the droplet center 
𝑔𝑔 gas 
𝑖𝑖 discrete species index 
𝑗𝑗 CA-DQMoM node index 
𝑘𝑘 moment order index 
𝑙𝑙 liquid 
𝑛𝑛𝑛𝑛 normal boiling 
𝑠𝑠 evaluated at droplet surface 
𝑠𝑠𝑠𝑠𝑡𝑡 saturation 
𝑣𝑣 vapor 
∞ at far-field boundary 

1. Introduction 
Accurate knowledge of the vapor molar flow rates of discrete species during the vaporization of 
multicomponent liquid fuel droplets is important when modeling combustion processes using 
computational fluid dynamics (CFD). Computational efficiency is an important factor when developing 
these models, leading to the need for a balance between computational expense and model accuracy. 
Solution methods previously developed for multicomponent droplet vaporization include discrete 
component models (DCM),1,2,3 quasi-discrete models,4,5 and continuous thermodynamic models 
(CTM).6,7,8,9,10,11,12,13,14 DCM approaches solve equations for each discrete species comprising a 
multicomponent droplet and are therefore accurate but computationally expensive. Alternatively, CTM 
approaches characterize the multicomponent mixture composition as a continuous function of a 
distribution variable, typically normal boiling temperature or molecular weight. While CTM approaches 
improve computational efficiency, they cannot provide information on the vaporization or 
condensation rates of discrete droplet species. 
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DCMs for multicomponent droplet vaporization previously developed include the partial differential 
equation (PDE) model by Torres et al.,1 the infinite diffusivity model developed by Ra and Reitz,2 and 
the combined transient to quasi-steady parabolic model presented by Brereton.3 Although the models 
of2 and3 improve upon the computational efficiency of1 by making simplifying assumptions, these 
DCMs still become computationally impractical for droplets with a large number of components. 

CTM approaches have therefore been developed to increase computational efficiency. Well-mixed, 
multi-component droplet vaporization was modeled by Tamim and Hallet6 and Hallet7 by assuming the 
probability density function used to represent the droplet composition was a gamma function. Wang 
and Lee8 also utilized a gamma function in their model which accounted for finite rates of liquid 
diffusion. To increase flexibility in the gamma function model, Harstad et al. developed a double 
gamma function PDF approach to more accurately account for condensation on the droplet.9,10 Laurent 
et al. demonstrated that there are limitations to assuming the shape of the PDF is a gamma function11 
and developed a new approach for modeling multicomponent droplet vaporization by applying Lage’s 
version of the Quadrature Method of Moments (QMoM)15 to a well-mixed droplet.11,12 Noting the 
numerical complications which can arise utilizing QMoM, Bruyat et al. used the Direct Quadrature 
Method of Moments (DQMoM) as an alternative method for modeling well-mixed droplet 
vaporization.13 For simplicity, CTM approaches most often utilize molar conservation equations,16 as 
opposed to the classically defined mass based equations, which leads to different, but equally 
acceptable, assumptions for the constant gas phase properties.17 

DQMoM was originally developed for various monovariate and multivariate population balance 
equations (PBE) for both spatially homogeneous and inhomogeneous conditions.18 By assuming infinite 
liquid diffusivity, the well-mixed droplet model13 eliminates spatial dependence and is therefore solved 
using a monovariate, spatially homogeneous DQMoM approach which solves a set of ODEs for the 
DQMoM weights and nodes.18 Spatially inhomogeneous DQMoM approaches are more complicated, as 
they require discretization of spatial derivatives.18 

The solution techniques of QMoM and DQMoM are only able to solve for the evolution of the mixture 
as a whole and information on discrete species, such as species vapor molar flow rates and liquid mole 
fractions, are not calculated by such models.11,12,13 In order to reconstruct information on the discrete 
species, a delumping method was developed to capitalize on the fact that the previously non-linear 
governing ODEs for the vaporizing droplet are linearized once the mixture properties are known from 
the DQMoM calculation.14 DQMoM with delumping has been shown to be a computationally efficient 
and accurate method for obtaining information on all discrete species for a multicomponent droplet 
model with infinite liquid diffusivity.14 

Thus far, a major limitation of QMoM and DQMoM approaches has been their exclusive application to 
well-mixed droplets and it has been questioned19,20,21,22 whether these methods can be extended to 
model droplets with finite liquid diffusivity. This limitation has been presented as a significant flaw in 
the method20 since the importance of species gradients within the liquid droplet has been discussed 
extensively.4,20,21 Therefore, the model developed in this paper addresses the need for computationally 
efficient moment methods to be expanded to models with finite liquid diffusivity by using a new 
modeling strategy for droplet vaporization which augments a monovariate homogeneous DQMoM 
approach by coupling the DQMoM ODEs to additional algebraic moment equations to solve for the 
evolution of two related distributions. 
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The computational approach developed in this paper is applied to the quasi-steady portion of the finite 
diffusivity DCM developed in3 which solves ODEs and algebraic equations for the evolution of the 
average and surface liquid mole fractions within the droplet. To complement the models for quasi-
steady behavior, transient models utilizing shape factors and higher order polynomials have been 
presented.3,23 While the CTM approach developed here could also be extended to these transient 
portions of the models, there are limitations to delumping these solutions. Therefore, the 
computational method presented below is applied to the quasi-steady multicomponent droplet 
vaporization model. 

The principle novelty of the method presented here is in the development of a Coupled Algebraic-
Direct Quadrature Method of Moments (CA-DQMoM) approach for a vaporizing multicomponent 
droplet with finite liquid diffusivity. The method solves for two liquid mole fraction distributions, one 
governed by ODEs and the other by algebraic equations. The method improves accuracy by taking into 
account finite rates of liquid diffusion within the droplet without requiring the complex discretization 
of a spatially inhomogeneous DQMoM application. In Section 2, the CA-DQMoM method will be 
derived. An approximate version which employs the same nodes for both distributions will also be 
presented which increases computational efficiency but is restricted to certain far-field boundary 
conditions. A second novelty of the paper is the adaptation of the delumping method14 to a finite 
diffusivity model in order to reconstruct all discrete species information for all times. The accuracy and 
computational efficiency of the CA-DQMoM with delumping approach will be evaluated in Section 3, 
with conclusions discussed in Section 4. 

2. Model development 

2.1. Discrete component model (DCM) 
Previous DCMs have employed parabolic profiles for temperature24 and species mass fraction3 within a 
multicomponent liquid droplet for Modeling vaporization under quasi-steady behavior. This paper 
follows a similar approach to derive a DCM on a molar basis for the quasi-steady case. Since the 
physical aspects of the model presented here are based on the developments of others and the 
novelty of this paper is in the derivation of the CA-DQMoM with delumping solution method discussed 
in subsequent sections, only a brief summary of the governing equations is provided below. This DCM 
will serve as the “exact” model by which to evaluate the accuracy of the delumped CA-DQMoM 
developed later. 

2.1.1. Gas phase equations 
Similar to previous works in continuous thermodynamics and droplet vaporization theory,7,11,12,13,25 the 
equations for the gas phase are simplified by assuming spherical symmetry, quasi-steady transport for 
the gas phase, and spatially constant gas phase properties in the boundary layer evaluated using the 
1/3 rule.26 The gas phase transport equation, originally defined on a mass basis,25 is the classical 
droplet equation which has been used in molar form in previous moment methods:11,12,13 

(1)  

𝑛𝑛
̇ 𝑡𝑡𝑡𝑡𝑡𝑡 = 2𝜋𝜋𝑅𝑅𝐶𝐶𝑔𝑔𝐷𝐷𝑔𝑔𝑆𝑆ℎ𝑔𝑔∗ 𝑙𝑙𝑛𝑛(1 + 𝐵𝐵𝑀𝑀) 

where 𝑛𝑛
̇ 𝑡𝑡𝑡𝑡𝑡𝑡 is the total vapor molar flow rate. The Spalding transfer number on a molar basis and the 

modified Sherwood number25 are defined as 
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(2)  

𝐵𝐵𝑀𝑀 =
𝑥𝑥𝑔𝑔,𝑠𝑠
𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑥𝑥𝑔𝑔,∞

𝑡𝑡𝑡𝑡𝑡𝑡

1 − 𝑥𝑥𝑔𝑔,𝑠𝑠
𝑡𝑡𝑡𝑡𝑡𝑡  

(3)  

𝑆𝑆ℎ𝑔𝑔∗ =
2𝑅𝑅𝑓𝑓

𝑅𝑅𝑓𝑓 − 𝑅𝑅
 

where 𝑅𝑅𝑓𝑓 is the limit of the boundary layer. The classical Sherwood number is defined as 

(4)  

𝑆𝑆ℎ𝑔𝑔𝑖𝑖 =
2𝑅𝑅

𝑥𝑥𝑔𝑔,∞
𝑖𝑖 − 𝑥𝑥𝑔𝑔,𝑠𝑠

𝑖𝑖 �
𝜕𝜕𝑥𝑥𝑔𝑔𝑖𝑖

𝜕𝜕𝑟𝑟
�
𝑠𝑠
 

It is assumed that the diffusion coefficients and Sherwood numbers for each species can be 
approximated by single averaged values.11 Thus, the modified Sherwood number can be related to the 
Sherwood number25 by the expression 

(5)  

𝑆𝑆ℎ𝑔𝑔∗ =
𝐵𝐵𝑀𝑀

𝑙𝑙𝑛𝑛(1 + 𝐵𝐵𝑀𝑀) 𝑆𝑆ℎ𝑔𝑔 

2.1.2. Liquid phase equations 
For the liquid phase analysis, the quasi-steady parabolic approach3 is modified for a molar, rather than 
mass, basis. It is assumed that the droplet is spherically symmetric, liquid molar concentration changes 
slowly with time, liquid molar concentration and diffusivity are uniform within the droplet and there is 
no convection within the droplet. Thus, the species conservation equation can be simplified as 

(6)  
𝜕𝜕𝑥𝑥𝑙𝑙𝑖𝑖

𝜕𝜕𝑡𝑡
=
𝐷𝐷𝑙𝑙
𝑟𝑟2

𝜕𝜕
𝜕𝜕𝑟𝑟
�𝑟𝑟2

𝜕𝜕𝑥𝑥𝑙𝑙𝑖𝑖

𝜕𝜕𝑟𝑟
� 

With the approximation that 𝜕𝜕𝑥𝑥𝑙𝑙
𝑖𝑖

𝜕𝜕𝑡𝑡
 is only a function of time,3 Eq. (6) can be integrated twice to obtain 

the parabolic profile of the species liquid mole fractions within the droplet: 

(7)  

𝑥𝑥𝑙𝑙𝑖𝑖(𝑟𝑟,𝑡𝑡) = 𝑥𝑥𝑙𝑙,𝑐𝑐𝑖𝑖 + �𝑥𝑥𝑙𝑙,𝑠𝑠𝑖𝑖 − 𝑥𝑥𝑙𝑙,𝑐𝑐𝑖𝑖 � �
𝑟𝑟
𝑅𝑅
�
2
 

where r is the radial coordinate, R is the radius of the droplet and the subscripts c and s represent the 
center and surface of the droplet, respectively. A volume average is performed on Eq. (7) to obtain an 
expression relating the average, surface, and center liquid mole fractions for each species: 

(8)  

𝑥𝑥
¯
𝑙𝑙
𝑖𝑖 =

3
5
𝑥𝑥𝑙𝑙,𝑠𝑠𝑖𝑖 +

2
5
𝑥𝑥𝑙𝑙,𝑐𝑐𝑖𝑖  

Evaluating the derivative of Eq. (7) at the surface and combining with Eq. (8) results in the expression 
for the liquid mole fraction gradient for each species at the surface: 
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(9)  
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¯
𝑙𝑙
𝑖𝑖� 

2.1.3. Governing equations 
Similar to the mass based approach,1,3 species conservation is applied on a molar basis to the interface 
at the droplet surface: 

(10)  

−𝐶𝐶𝑙𝑙
𝑑𝑑𝑅𝑅
𝑑𝑑𝑡𝑡

�𝑥𝑥𝑔𝑔,𝑠𝑠
𝑖𝑖 − 𝑥𝑥𝑙𝑙,𝑠𝑠𝑖𝑖 � + 𝐶𝐶𝑙𝑙𝐷𝐷𝑙𝑙 �

𝜕𝜕𝑥𝑥𝑙𝑙𝑖𝑖

𝜕𝜕𝑟𝑟
�
𝑠𝑠
− 𝐶𝐶𝑔𝑔𝐷𝐷𝑔𝑔 �

𝜕𝜕𝑥𝑥𝑔𝑔𝑖𝑖

𝜕𝜕𝑟𝑟
�
𝑠𝑠

= 0 

where the assumptions previously discussed for the liquid and gas phases are applied. Combining Eqs. 
(4), (5), (9), (10) results in the conservation equation at the interface: 

(11)  

−𝐶𝐶𝑙𝑙
𝑑𝑑𝑅𝑅
𝑑𝑑𝑡𝑡

�𝑥𝑥𝑔𝑔,𝑠𝑠
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𝑙𝑙
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𝐶𝐶𝑔𝑔𝐷𝐷𝑔𝑔𝑆𝑆ℎ𝑔𝑔∗ 𝑙𝑙𝑛𝑛(1 + 𝐵𝐵𝑀𝑀)
2𝑅𝑅𝐵𝐵𝑀𝑀

�𝑥𝑥𝑔𝑔,∞
𝑖𝑖 − 𝑥𝑥𝑔𝑔,𝑠𝑠

𝑖𝑖 � = 0 

Eq. (11) is summed for all discrete species and rearranged to obtain the equation for the rate of surface 
regression: 

(12)  
𝑑𝑑𝑅𝑅
𝑑𝑑𝑡𝑡

= −
𝐶𝐶𝑔𝑔𝐷𝐷𝑔𝑔𝑆𝑆ℎ𝑔𝑔∗ 𝑙𝑙𝑛𝑛(1 + 𝐵𝐵𝑀𝑀)

2𝐶𝐶𝑙𝑙𝑅𝑅
 

Species molar conservation is applied to a control volume enclosing the liquid droplet: 

(13)  
𝑑𝑑
𝑑𝑑𝑡𝑡
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𝑥𝑥𝑙𝑙,𝑠𝑠𝑖𝑖 � 

Eq. (13) is combined with Eq. (9) and simplified to obtain the ODE for the evolution of the average 
liquid mole fraction for each species: 

(14)  

𝑑𝑑𝑥𝑥
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+
3
𝑅𝑅
𝑑𝑑𝑅𝑅
𝑑𝑑𝑡𝑡
� �𝑥𝑥𝑙𝑙𝑠𝑠𝑖𝑖 − 𝑥𝑥

¯
𝑙𝑙
𝑖𝑖� 

As is common in droplet vaporization models,6,7,11,12,13,16 it is assumed that the mixtures are ideal and 
therefore, vapor-liquid equilibrium at the droplet surface is established by Raoult’s Law: 

(15)  

𝑥𝑥𝑔𝑔,𝑠𝑠
𝑖𝑖 = 𝑥𝑥𝑙𝑙,𝑠𝑠𝑖𝑖

𝑃𝑃𝑠𝑠𝑠𝑠𝑡𝑡𝑖𝑖 (𝑇𝑇𝑙𝑙,𝑠𝑠)
𝑃𝑃∞

 

Rearranging Eq. (11) and combining with Eq. (15) results in the algebraic expression for the surface 
liquid mole fraction of each species: 

(16)  
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𝑥𝑥𝑙𝑙,𝑠𝑠𝑖𝑖 =
5𝐶𝐶𝑙𝑙𝐷𝐷𝑙𝑙𝑥𝑥
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Eqs. (14), (16) comprise the system of differential algebraic equations (DAEs) which define the 
evolution of the droplet composition and are similar to the equations for mass fraction developed in,3 
with the exception that the model presented in this paper accounts for the presence of gaseous fuel at 
the far-field boundary and assumes constant molar properties as opposed to mass properties. 

Although the parabolic model defined in this section is an improvement on the well-mixed model since 
it takes into account finite liquid diffusion within the droplet, it is not without limitations. As discussed 
by Sazhin, the accuracy of the parabolic model during initial transience is questionable since it assumes 
that the parabolic profiles are immediately established.19,20 It should be noted that the CA-DQMoM 
approach developed in subsequent sections is not limited to quasi-steady models and could be applied 
to the transient shape factor DCM.3 However, it would not be possible to use delumping on the CA-
DQMoM solution due to the dependence of the shape factor on the surface liquid mole fraction. 
Therefore, the derivation of the computational method will focus on the quasi-steady case only. 

Similar to the original well-mixed DQMoM with delumping model,14 the model developed in this paper 
can be solved with a variety of temperature profile assumptions including uniform, quasi-steady, or 
effective conductivity models. For the results presented in this paper, the liquid temperature within 
the droplet was modeled using a parabolic temperature profile24 with the following equations obtained 
from Laurent:16 

(17)  

𝑑𝑑𝑇𝑇
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𝑙𝑙

𝑑𝑑𝑡𝑡
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(18)  

𝑇𝑇𝑙𝑙,𝑠𝑠 = 𝑇𝑇
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𝑙𝑙 +
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15𝑘𝑘𝑙𝑙
𝑑𝑑𝑇𝑇

¯
𝑙𝑙

𝑑𝑑𝑡𝑡
 

2.2. Coupled Algebraic-Direct Quadrature Method of Moments (CA-DQMoM) 
As previously discussed, QMoM and DQMoM approaches have, thus far, only been applied to well-
mixed droplet models and it has been questioned whether they can be applied to less restrictive 
cases.19,20,21,22 The model derived here expands the applicability of moment methods to finite 
diffusivity models by coupling a DQMoM approach with algebraic moment equations. First, the quasi-
steady DCM of the previous section is converted to a CTM. The average liquid mole fraction is taken to 
be a monovariate continuous function of a distribution variable, I,18 thus giving the continuous form of 
Eq. (14): 

(19)  
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where the source term for the finite diffusivity model is given by 
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¯
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For the purposes of this paper, the distribution variable, I, is the normal boiling temperature, 𝑇𝑇𝑛𝑛𝑛𝑛. In 
contrast to the well-mixed model, the quasi-steady finite diffusivity DCM contains an additional 
algebraic relationship for the surface liquid mole fraction, 𝑥𝑥𝑙𝑙,𝑠𝑠. This algebraic expression, given in Eq. 
(16), is similarly converted to continuous form: 
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The original well-mixed DQMoM model with a single liquid mole fraction distribution13 was developed 
by applying a monovariate, spatially homogenous DQMoM approach.18 In contrast, the finite diffusivity 

model requires the solution of two separate liquid mole fraction distributions, one for the average (𝑥𝑥
¯
𝑙𝑙) 

and one for the surface (𝑥𝑥𝑙𝑙,𝑠𝑠), which are related by the algebraic relationship of Eq. (21). Therefore, the 
finite liquid diffusivity model requires two sets of N weights and two sets of N nodes to be defined. The 

average weights, 𝑤𝑤
¯
𝑗𝑗, and average nodes, 𝐼𝐼

¯
𝑗𝑗, characterize the composition of the droplet with respect to 

the average liquid mole fraction. The surface weights, 𝑤𝑤𝑠𝑠,𝑗𝑗, and surface nodes, 𝐼𝐼𝑠𝑠,𝑗𝑗, similarly correspond 
to the liquid composition at the droplet surface. The subscript j represents the node index, with j = 1:N, 

resulting in 4 N unknowns for 𝑤𝑤
¯
𝑗𝑗, 𝐼𝐼

¯
𝑗𝑗, 𝑤𝑤𝑠𝑠,𝑗𝑗, 𝐼𝐼𝑠𝑠,𝑗𝑗. DQMoM, as developed in,18 is applied to the average 

liquid mole fraction distribution since 𝑥𝑥
¯
𝑙𝑙 is the differential variable. A moment transform is applied to 

Eq. (19) to obtain 2N ODEs for the evolution of the moments of the average liquid mole fraction 
distribution: 
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∞

0
 

where k is the index for the moments and is evaluated for 𝑘𝑘 = 0: 2𝑁𝑁 − 1.  

In the original well-mixed DQMoM model,13 the single mole fraction distribution was extracted from 
the integral in Eq. (22), with the remaining terms being nearly polynomial, in order to apply the 
Gaussian quadrature approximation.27 However, for the finite diffusion model, the integral in Eq. (22) 
must be separated into two integrals so that the average and surface mole fraction distributions can be 
extracted: 

(23)  
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where the term 𝑓𝑓(𝐼𝐼) represents the terms left over and is given by 
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(24)  

𝑓𝑓(𝐼𝐼) = �
15𝐷𝐷𝑙𝑙
𝑅𝑅2

+
3
𝑅𝑅
𝑑𝑑𝑅𝑅
𝑑𝑑𝑡𝑡
� 𝐼𝐼𝑘𝑘  

A Gaussian quadrature approximation is needed for both the average and surface liquid mole fraction 
distributions. As discussed, each distribution has its own set of weights and nodes: 

(25)  

� 𝑥𝑥
¯
𝑙𝑙(𝐼𝐼)𝑓𝑓(𝐼𝐼)𝑑𝑑𝐼𝐼

∞

0
≈�𝑤𝑤

¯
𝑗𝑗𝑓𝑓 �𝐼𝐼

¯
𝑗𝑗�

𝑁𝑁

𝑗𝑗=1

 

(26)  

� 𝑥𝑥𝑙𝑙,𝑠𝑠(𝐼𝐼)𝑓𝑓(𝐼𝐼)𝑑𝑑𝐼𝐼
∞

0
≈�𝑤𝑤𝑠𝑠,𝑗𝑗𝑓𝑓�𝐼𝐼𝑠𝑠,𝑗𝑗�

𝑁𝑁

𝑗𝑗=1

 

DQMoM solves for the evolution of the weights and nodes of the Gaussian quadrature directly instead 
of solving for the evolution of the moments, as is done in QMoM.18,27 Additionally, DQMoM does not 
require the closure algorithm that QMoM does18 and has been proven to be more stable for Modeling 
droplet vaporization.13 In DQMoM, the distribution function for the differential variable is 
approximated as the sum of N delta functions, evaluated at the nodes of the distribution variable, 

multiplied by the weights.18 Thus, the continuous average liquid mole fraction distribution, 𝑥𝑥𝑙𝑙
¯

(𝐼𝐼), is set 

equal to a sum of delta functions evaluated at the average liquid nodes, 𝐼𝐼
¯
𝑗𝑗, and multiplied by the 

average liquid weights, 𝑤𝑤
¯
𝑗𝑗: 

(27)  

𝑥𝑥
¯
𝑙𝑙(𝐼𝐼) = �𝑤𝑤

¯
𝑗𝑗𝛿𝛿 �𝐼𝐼 − 𝐼𝐼

¯
𝑗𝑗�

𝑁𝑁

𝑗𝑗=1

 

Taking the derivative and combining with Eq. (19) yields 

(28)  

𝑑𝑑𝑥𝑥
¯
𝑙𝑙(𝐼𝐼)
𝑑𝑑𝑡𝑡

= �
𝜕𝜕
𝜕𝜕𝑡𝑡
�𝑤𝑤

¯
𝑗𝑗𝛿𝛿(𝐼𝐼 − 𝐼𝐼

¯
𝑗𝑗)�

𝑁𝑁

𝑗𝑗=1

= 𝑆𝑆(𝐼𝐼,𝑡𝑡) 

To develop the DQMoM matrix, the product rule, chain rule, and a moment transform are applied to 
Eq. (28). Details of the full derivation of the left hand side of the DQMoM matrix can be found in.13,18 
The resulting DQMoM system of equations is given by: 

(29)  

(1 − 𝑘𝑘)�𝐼𝐼
¯
𝑗𝑗
𝑘𝑘 𝑑𝑑𝑤𝑤

¯
𝑗𝑗

𝑑𝑑𝑡𝑡

𝑁𝑁

𝑗𝑗=1

+ 𝑘𝑘�𝐼𝐼
¯
𝑗𝑗
𝑘𝑘−1 𝑑𝑑(𝑤𝑤

¯
𝑗𝑗𝐼𝐼

¯
𝑗𝑗)

𝑑𝑑𝑡𝑡

𝑁𝑁

𝑗𝑗=1

= � 𝑆𝑆(𝐼𝐼)𝐼𝐼𝑘𝑘𝑑𝑑𝐼𝐼 = 𝑆𝑆
¯
𝑘𝑘

∞

0
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where the moments are evaluated for 𝑘𝑘 = 0: 2𝑁𝑁 − 1. 

In matrix form, Eq. (29) is given by 

⎣
⎢
⎢
⎢
⎢
⎡

1 ⋯ 1 0 ⋯ 0
0 ⋯ 0 1 ⋯ 1

−𝐼𝐼
¯
1
2 ⋯ −𝐼𝐼

¯
𝑁𝑁
2 2𝐼𝐼

¯
1 ⋯ 2𝐼𝐼

¯
𝑁𝑁

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

2(1 − 𝑁𝑁)𝐼𝐼
¯
1
2𝑁𝑁−1 ⋯ 2(1 − 𝑁𝑁)𝐼𝐼

¯
𝑁𝑁
2𝑁𝑁−1 (2𝑁𝑁 − 1)𝐼𝐼

¯
1
2𝑁𝑁−2 ⋯ (2𝑁𝑁 − 1)𝐼𝐼

¯
𝑁𝑁
2𝑁𝑁−2⎦

⎥
⎥
⎥
⎥
⎤

×

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 𝑑𝑑𝑤𝑤

¯
1/𝑑𝑑𝑡𝑡
⋮

𝑑𝑑𝑤𝑤
¯
𝑁𝑁/𝑑𝑑𝑡𝑡

𝑑𝑑(𝑤𝑤
¯
1𝐼𝐼

¯
1)/𝑑𝑑𝑡𝑡
⋮

𝑑𝑑(𝑤𝑤
¯
𝑁𝑁𝐼𝐼

¯
𝑁𝑁)/𝑑𝑑𝑡𝑡⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎡ 𝑆𝑆

¯
0
⋮
⋮
⋮
⋮

𝑆𝑆
¯
2𝑁𝑁−1⎦

⎥
⎥
⎥
⎥
⎥
⎤

  

Although the basic DQMoM approach for the left hand side is the same for both the well-mixed13 and 
finite diffusivity models, the right hand side source terms are quite different. To obtain the source 

terms, 𝑆𝑆
¯
𝑘𝑘, the Gaussian quadrature approximations of Eqs. (25), (26) are applied to Eq. (23): 

(31)  

𝑆𝑆
¯
𝑘𝑘 = �

15𝐷𝐷𝑙𝑙
𝑅𝑅2

+
3
𝑅𝑅
𝑑𝑑𝑅𝑅
𝑑𝑑𝑡𝑡
� ��𝑤𝑤𝑠𝑠,𝑗𝑗𝐼𝐼𝑠𝑠,𝑗𝑗

𝑘𝑘
𝑁𝑁

𝑗𝑗=1

−�𝑤𝑤
¯
𝑗𝑗𝐼𝐼

¯
𝑗𝑗
𝑘𝑘

𝑁𝑁

𝑗𝑗=1

� 

The ODEs of Eq. (30) combined with the source terms of Eq. (31) provide 2N equations. For a typical 
homogeneous DQMoM 𝐼𝐼𝑠𝑠,𝑗𝑗 approach like that of the original well-mixed DQMoM model,13 the 2N 
ODEs would be sufficient to solve for the evolution of the N weights and N nodes of the single 

distribution. However, for the present model with two distributions and 4N unknowns �𝑤𝑤
¯
𝑗𝑗,𝐼𝐼

¯
𝑗𝑗 ,𝑤𝑤𝑠𝑠,𝑗𝑗,𝐼𝐼𝑠𝑠,𝑗𝑗�, 

an additional 2N equations are required to solve for the evolution of the droplet. This is where the 
coupled algebraic portion of the CA-DQMoM method is needed: an additional 2N algebraic equations 
are required to simultaneously solve for the algebraic variables 𝑤𝑤𝑠𝑠,𝑗𝑗 and. These 2N equations are 
obtained by applying a moment transform and quadrature approximations to the algebraic expression 
for the continuous surface liquid mole fraction distribution. Applying a moment transform to Eq. (21) 
and factoring out the original mole fraction distributions results in the following equation: 

(32)  

� 𝑥𝑥𝑙𝑙,𝑠𝑠(𝐼𝐼)𝑓𝑓1(𝐼𝐼)𝑑𝑑𝐼𝐼
∞

0
= � 𝑥𝑥

¯
𝑙𝑙(𝐼𝐼)𝑓𝑓2(𝐼𝐼)𝑑𝑑𝐼𝐼

∞

0
+ � 𝑥𝑥𝑔𝑔,∞(𝐼𝐼)𝑓𝑓3(𝐼𝐼)𝑑𝑑𝐼𝐼

∞

0
 

where after some rearrangement, the functions of the terms left over can be written as 
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(33)  

𝑓𝑓1(𝐼𝐼) = �5𝐶𝐶𝑙𝑙𝐷𝐷𝑙𝑙 + 𝐶𝐶𝑙𝑙𝑅𝑅
𝑑𝑑𝑅𝑅
𝑑𝑑𝑡𝑡

�1 −
𝑃𝑃𝑠𝑠𝑠𝑠𝑡𝑡(𝐼𝐼,𝑇𝑇𝑙𝑙,𝑠𝑠)

𝑃𝑃∞
� +

𝐶𝐶𝑔𝑔𝐷𝐷𝑔𝑔𝑆𝑆ℎ𝑔𝑔∗ ln(1 + 𝐵𝐵𝑀𝑀)
2𝐵𝐵𝑀𝑀

𝑃𝑃𝑠𝑠𝑠𝑠𝑡𝑡(𝐼𝐼,𝑇𝑇𝑙𝑙,𝑠𝑠)
𝑃𝑃∞

� 𝐼𝐼𝑘𝑘 

(34)  
𝑓𝑓2(𝐼𝐼) = 5𝐶𝐶𝑙𝑙𝐷𝐷𝑙𝑙𝐼𝐼𝑘𝑘  

(35)  

𝑓𝑓3(𝐼𝐼) =
𝐶𝐶𝑔𝑔𝐷𝐷𝑔𝑔𝑆𝑆ℎ𝑔𝑔∗ ln(1 + 𝐵𝐵𝑀𝑀)

2𝐵𝐵𝑀𝑀
𝐼𝐼𝑘𝑘 

An additional quadrature approximation is defined for the far-field gas phase mole fractions 

(36)  

� 𝑥𝑥𝑔𝑔,∞(𝐼𝐼)𝑓𝑓(𝐼𝐼)𝑑𝑑𝐼𝐼
∞

0
≈�𝑥𝑥𝑔𝑔,∞

𝑖𝑖 𝑓𝑓(𝑇𝑇𝑛𝑛𝑛𝑛𝑖𝑖 )
𝑛𝑛

𝑖𝑖=1

 

where the summation is evaluated for the n discrete species since the far-field gas composition is 
assumed to be constant and known. Thus, applying the quadrature approximations of Eqs. (25), (26), 
(36) to Eq. (32) results in the 2N coupled algebraic expressions given by 

(37)  

��5𝐶𝐶𝑙𝑙𝐷𝐷𝑙𝑙 + 𝐶𝐶𝑙𝑙𝑅𝑅
𝑑𝑑𝑅𝑅
𝑑𝑑𝑡𝑡

�1 −
𝑃𝑃𝑠𝑠𝑠𝑠𝑡𝑡(𝐼𝐼𝑠𝑠,𝑗𝑗,𝑇𝑇𝑙𝑙,𝑠𝑠)

𝑃𝑃∞
� +

𝐶𝐶𝑔𝑔𝐷𝐷𝑔𝑔𝑆𝑆ℎ𝑔𝑔∗ ln(1 + 𝐵𝐵𝑀𝑀)
2𝐵𝐵𝑀𝑀

𝑃𝑃𝑠𝑠𝑠𝑠𝑡𝑡(𝐼𝐼𝑠𝑠,𝑗𝑗,𝑇𝑇𝑙𝑙,𝑠𝑠)
𝑃𝑃∞

�

𝑁𝑁

𝑗𝑗=1

𝑤𝑤𝑠𝑠,𝑗𝑗𝐼𝐼𝑠𝑠,𝑗𝑗
𝑘𝑘

= � 5𝐶𝐶𝑙𝑙𝐷𝐷𝑙𝑙𝑤𝑤
¯
𝑗𝑗𝐼𝐼

¯
𝑗𝑗
𝑘𝑘

𝑁𝑁

𝑗𝑗=1

+ �
𝐶𝐶𝑔𝑔𝐷𝐷𝑔𝑔𝑆𝑆ℎ𝑔𝑔∗ ln(1 + 𝐵𝐵𝑀𝑀)

2𝐵𝐵𝑀𝑀
𝑥𝑥𝑔𝑔,∞
𝑖𝑖 𝑇𝑇𝑛𝑛𝑛𝑛,𝑖𝑖

𝑘𝑘

𝑛𝑛

𝑖𝑖=1

 

where the moments are evaluated for 𝑘𝑘 = 0: 2𝑁𝑁 − 1. Thus, the final CA-DQMoM model consists of the 

2 N DQMoM ODEs in Eq. (30) coupled with the 2 N algebraic expressions in Eq. (37) to solve for 𝑤𝑤
¯
𝑗𝑗, 𝐼𝐼

¯
𝑗𝑗, 

𝑤𝑤𝑠𝑠,𝑗𝑗, and 𝐼𝐼𝑠𝑠,𝑗𝑗. 

The initial conditions for the differential variables, 𝑤𝑤
¯
𝑗𝑗 and 𝐼𝐼

¯
𝑗𝑗, are calculated using QMoM and Wheeler’s 

algorithm,28 utilizing the same method as the well-mixed model.14 Since the surface weights and nodes 
are algebraically calculated variables, the DAE solver computes consistent initial conditions for 𝑤𝑤𝑠𝑠,𝑗𝑗, 
and 𝐼𝐼𝑠𝑠,𝑗𝑗. 

2.3. Delumping 
Delumping enables the reconstruction of discrete species information following a computationally 
efficient CTM solution. A delumping method was previously used for algebraic equations to calculate 
species information from CTMs for flash tank calculations.29,30 Delumping of a DQMoM solution to the 
nonlinear differential equations governing droplet vaporization was demonstrated by Singer.14 At the 
completion of the CA-DQMoM solution, all of the total mixture properties are known at every time 
step which linearizes the original non-linear discrete ODE. The now linear first order ODE can then be 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/gas-composition
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easily solved using an integrating factor.14,31 Because delumping only involves numerical integration, it 
is very computationally efficient.14 

The differential equation for the average liquid mole fraction in Eq. (14) cannot be delumped as written 

since it is dependent on both 𝑥𝑥
¯
𝑙𝑙
𝑖𝑖  and 𝑥𝑥𝑙𝑙,𝑠𝑠𝑖𝑖 . Therefore, for delumping to be applicable, Eq. (14) must be 

combined with Eqs. (12), (16) and rearranged to obtain an ODE in terms of 𝑥𝑥
¯
𝑙𝑙
𝑖𝑖, the constant boundary 

conditions, and the total mixture properties: 

(38)  

𝑑𝑑𝑥𝑥
¯
𝑙𝑙
𝑖𝑖

𝑑𝑑𝑡𝑡
−

(𝐴𝐴 − 𝐶𝐶)(𝐶𝐶𝐺𝐺𝑖𝑖)
(𝐴𝐴 − 𝐶𝐶𝐺𝐺𝑖𝑖)

𝑥𝑥
¯
𝑙𝑙
𝑖𝑖 =

(𝐴𝐴 − 𝐶𝐶)(𝐶𝐶𝐸𝐸𝑖𝑖)
(𝐴𝐴 − 𝐶𝐶𝐺𝐺𝑖𝑖)

 

where the time dependent terms 𝐴𝐴, 𝐶𝐶, 𝐸𝐸𝑖𝑖, and 𝐺𝐺𝑖𝑖 are defined as 

(39)  

𝐴𝐴 =
15𝐷𝐷𝑙𝑙
𝑅𝑅2

 

(40)  

𝐶𝐶 =
3𝐶𝐶𝑔𝑔𝐷𝐷𝑔𝑔𝑆𝑆ℎ𝑔𝑔∗ ln(1 + 𝐵𝐵𝑀𝑀)

2𝐶𝐶𝑙𝑙𝑅𝑅2
 

(41)  

𝐸𝐸𝑖𝑖 =
𝑥𝑥𝑔𝑔,∞
𝑖𝑖

𝐵𝐵𝑀𝑀
 

(42)  

𝐺𝐺𝑖𝑖 = 1 −
𝑃𝑃𝑠𝑠𝑠𝑠𝑡𝑡𝑖𝑖 (𝑇𝑇𝑙𝑙,𝑠𝑠)

𝑃𝑃∞
−
𝑃𝑃𝑠𝑠𝑠𝑠𝑡𝑡𝑖𝑖 (𝑇𝑇𝑙𝑙,𝑠𝑠)
𝑃𝑃∞𝐵𝐵𝑀𝑀

 

In each of these terms, the mixture properties are calculated from the results of CA-DQMoM, the 
values of the far-field gas phase mole fractions, 𝑥𝑥𝑔𝑔,∞

𝑖𝑖 , are known constants, and the saturation 
pressure, 𝑃𝑃𝑠𝑠𝑠𝑠𝑡𝑡𝑖𝑖 , is only a function of normal boiling temperature, 𝑇𝑇𝑛𝑛𝑛𝑛𝑖𝑖 , and the liquid surface 

temperature of the droplet, 𝑇𝑇𝑙𝑙,𝑠𝑠. Thus, the terms 𝐴𝐴, 𝐶𝐶, 𝐸𝐸𝑖𝑖, and 𝐺𝐺𝑖𝑖 are independent of 𝑥𝑥
¯
𝑙𝑙
𝑖𝑖  and 𝑥𝑥𝑙𝑙,𝑠𝑠𝑖𝑖  and 

the ODE is now a linear, first order differential equation. The integrating factor method31 is used to 
solve the ODE, with the following integrating factor 

(43)  

𝑁𝑁𝑖𝑖(𝑡𝑡) = exp �� −
(𝐴𝐴 − 𝐶𝐶)(𝐶𝐶𝐺𝐺𝑖𝑖)

(𝐴𝐴 − 𝐶𝐶𝐺𝐺𝑖𝑖)
𝑑𝑑𝑡𝑡

𝑡𝑡

0
� 

Thus, the solution for the average liquid mole fraction for each discrete species at every time is given 
by 

(44)  

𝑥𝑥
¯
𝑙𝑙
𝑖𝑖(𝑡𝑡) =

∫𝑡𝑡0 𝑁𝑁𝑖𝑖(𝑡𝑡)
(𝐴𝐴 − 𝐶𝐶)(𝐶𝐶𝐸𝐸𝑖𝑖)

(𝐴𝐴 − 𝐶𝐶𝐺𝐺𝑖𝑖)
𝑑𝑑𝑡𝑡 + 𝑥𝑥

¯
𝑙𝑙
𝑖𝑖(0)

𝑁𝑁𝑖𝑖(𝑡𝑡)
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The surface liquid mole fractions can then be calculated explicitly using the algebraic relationship in Eq. 
(16). Using the same time dependent terms 𝐴𝐴, 𝐶𝐶, 𝐸𝐸𝑖𝑖, and 𝐺𝐺𝑖𝑖, the equation for the surface liquid mole 
fraction of each discrete species is given by 

(45)  

𝑥𝑥𝑙𝑙,𝑠𝑠𝑖𝑖 (𝑡𝑡) =
𝐴𝐴𝑥𝑥

¯
𝑙𝑙
𝑖𝑖(𝑡𝑡) + 𝐶𝐶𝐸𝐸𝑖𝑖
𝐴𝐴 − 𝐶𝐶𝐺𝐺𝑖𝑖

 

Because delumping a CA-DQMoM solution only involves numerically integrating a linear, first order 
ODE followed by an explicit algebraic equation, it adds great benefit at very little computational 
expense. 

2.4. Other submodels 
The property correlations and mixing rules utilized in this paper for kerosene are obtained from,12,16,32 
and are the same as those previously used in DQMoM with delumping for the well-mixed droplet 
summarized in the Appendix of.14 The liquid properties for the droplet are calculated using the average 

nodes, 𝐼𝐼
¯
𝑗𝑗, and the average liquid temperature, 𝑇𝑇

¯
𝑙𝑙 while the properties of the gas are calculated using 

the surface nodes, 𝐼𝐼𝑠𝑠,𝑗𝑗, and constant far-field boundary conditions following the 1/3 rule. 

2.5. CA-DQMoM with node approximation 
The system of DAEs developed using the CA-DQMoM approach defined in Section 2.2 is based on two 
sets of weights and nodes: one set to characterize the average liquid mole fraction distribution and one 
set to characterize the surface liquid mole fraction distribution. A simplification can be made to this 

system of equations if it is assumed that a single set of nodes can be used for both distributions, or 𝐼𝐼
¯
𝑗𝑗 ≈

𝐼𝐼𝑠𝑠,𝑗𝑗. This approximation is only valid when there is either no condensation on the droplet surface or if 
the condensate has a similar composition to that of the average liquid droplet composition. In other 
words, this approximation can be used if the constant far-field gas phase composition (𝑥𝑥𝑔𝑔,∞

𝑖𝑖 ) is either 
pure air or a percentage of stoichiometric gaseous fuel. Applying the CA-DQMoM with node 

approximation approach results in a system of only 3 N unknowns �𝐼𝐼𝑗𝑗,𝑤𝑤
¯
𝑗𝑗,𝑤𝑤𝑠𝑠,𝑗𝑗� and therefore, Eq. (37) 

only needs to be solved for 𝑘𝑘 = 0:𝑁𝑁 − 1. Thus, the CA-DQMoM system of DAEs is reduced by N 
algebraic equations, leading to more computational savings. 

The reason that CA-DQMoM with node approximation is only valid for certain boundary conditions is 
similar to the limitations of CTMs which assume the distribution shape is represented by a gamma 
function.11 Constraining the surface distribution to be defined by the average nodes is similar, but not 
as restrictive, to assigning a fixed shape to the surface distribution. In test cases where the shape of the 

surface distribution mimics that of the average distribution, the approximation of 𝐼𝐼
¯
𝑗𝑗 ≈ 𝐼𝐼𝑠𝑠,𝑗𝑗 is valid. 

However, for atypical condensate compositions, such as a single component of the fuel present at the 
far-field boundary, the surface distribution will have a shape that is distinct from the average 

distribution and a full CA-DQMoM solution with 𝐼𝐼
¯
𝑗𝑗 ≠ 𝐼𝐼𝑠𝑠,𝑗𝑗 must be utilized. The applicability of CA-

DQMoM with node approximation and the associated computational savings are demonstrated in 
Section 3. 
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2.6. Numerical approach 
Similar to the well-mixed model,14 both the CA-DQMoM model and the finite diffusivity DCM used for 
comparison were solved in MATLAB utilizing the IDA solver developed by the Lawrence Livermore 
National Laboratory.33 Both the CA-DQMoM and the DCM models contain one ODE for temperature, 
one algebraic temperature equation, and one ODE for droplet radius. While the DCM model for a 
droplet with n components also solves n species ODEs and n algebraic species equations, the CA-
DQMoM model utilizing N nodes solves 2N species ODEs and 2N algebraic species equations. 
Therefore, the DCM solves 2n + 3 equations while the CA-DQMoM model solves 4N + 3 equations, 
typically with N ≪ n. The delumping step, which involves integrals with respect to time, was computed 
using the trapezoid rule following the CA-DQMoM solution for the time interval.14 To utilize CA-
DQMoM with delumping in a CFD simulation, the delumping step would need to be performed 
following every time step. A technique requiring only the current and previous time step for the 
integration as described in14 would also apply to the finite diffusivity model. 

3. Results and discussion 
The CA-DQMoM with delumping model for a multi-component droplet with finite liquid diffusivity was 
validated by comparing the results to those calculated using a DCM, which is considered to be an exact 
solution with respect to the model derived above. In order to demonstrate the accuracy and 
computational savings achieved using CA-DQMoM with delumping, test cases were performed for 
droplets ranging from 36 to 200 components. 

3.1. Droplet with 36 species (kerosene) 
Test conditions were specified for a 50 μm droplet of kerosene initially at 300 K exposed to gas at 500 K 
and 5 bar.12 The far-field conditions are specified as 𝑥𝑥𝑔𝑔,∞

𝑠𝑠𝑖𝑖𝑎𝑎 = 0.7 and 𝑥𝑥𝑔𝑔,∞
𝑖𝑖=1 = 0.3 where the first 

component i = 1 corresponds to isohexane, the most volatile component.12 As discussed in,12 these 
boundary conditions result in a computationally difficult test case for CTM, with condensation initially 
occurring. Similar to the well-mixed models,12,13 it is assumed that the boundary conditions are 
constant. The normal boiling points and initial liquid composition for the 36 species of kerosene are 
taken from16 and are used as the initial conditions for the average liquid mole fractions. 

CA-DQMoM was applied to the kerosene droplet using N = 2, 3, and 4 nodes. Fig. 1, Fig. 2, Fig. 3 show 
the evolution of the average and surface weights and nodes for the three cases. Similar to the results 
of the well-mixed droplet,13 the CA-DQMoM weights and nodes are smooth and stable. 

Fig. 1. Evolution of CA-DQMoM weights and nodes �𝐼𝐼
¯
𝑗𝑗,𝑤𝑤

¯
𝑗𝑗,𝐼𝐼𝑠𝑠,𝑗𝑗 ,𝑤𝑤𝑠𝑠,𝑗𝑗� for N = 2 for the kerosene test case. 
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Fig. 2. Evolution of CA-DQMoM weights and nodes �𝐼𝐼
¯
𝑗𝑗,𝑤𝑤

¯
𝑗𝑗,𝐼𝐼𝑠𝑠,𝑗𝑗 ,𝑤𝑤𝑠𝑠,𝑗𝑗� for N = 3 for the kerosene test case. 

 

Fig. 3. Evolution of CA-DQMoM weights and nodes �𝐼𝐼
¯
𝑗𝑗,𝑤𝑤

¯
𝑗𝑗,𝐼𝐼𝑠𝑠,𝑗𝑗 ,𝑤𝑤𝑠𝑠,𝑗𝑗� for N = 4 for the kerosene test case. 

Fig. 4. Evolution of total vapor molar flow rate with time for CA-DQMoM (N = 2, 3, and 4) compared to the DCM for the 
kerosene test case. 

 
The accuracy of the CA-DQMoM model was first evaluated by comparing the results for the total 
mixture to those calculated using the DCM. Fig. 4 shows the total vapor molar flow rate calculated with 
N = 2, 3, and 4 compared to the DCM. CA-DQMoM with N = 3 and 4 produces extremely accurate 
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results for the evolution of the total mixture, including during initial condensation where the total 
molar flow rate is negative. There is slight error observed for the total molar flow rate calculated with 
N = 2. 
 
The delumping portion of the model builds on the CA-DQMoM results and provides information on 
each real discrete species. The accuracy of CA-DQMoM with delumping (N = 3) is demonstrated in 
Fig. 5a and b for the average liquid mole fractions and the surface liquid mole fractions, respectively, 
for each of the 36 components of kerosene at various times. Fig. 6 shows that the vapor molar flow 
rates for each discrete species, which serve as source terms for the gas-phase solver in CFD codes, are 
also in good agreement with the values from DCM, including at an early time. The excellent agreement 
between CA-DQMoM with delumping and DCM affirmatively answers the question20 of whether 
moment methods can be successfully extended to droplets with finite liquid diffusivity. 

 

Fig. 5. Comparison of the (a) average and (b) surface liquid mole fraction distributions �𝑥𝑥
¯
𝑙𝑙
𝑖𝑖and𝑥𝑥𝑙𝑙,𝑠𝑠𝑖𝑖 � calculated using CA-

DQMoM with delumping (N = 3) and the DCM, at three times for the kerosene test case. 

Fig. 6. Comparison of discrete species vapor molar flow rates calculated using CA-DQMoM with delumping (N = 3) and the 
DCM, at four times for the kerosene test case. 
 

To evaluate the accuracy of CA-DQMoM with delumping as compared to the finite diffusivity DCM, the 
two-norm relative error was calculated according to the following equation: 
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The relative error in species vapor molar flow rates for CA-DQMoM with delumping for N = 2, 3, and 4 
compared to the DCM are plotted in Fig. 7 for all times. The relative error decreases significantly from 
N = 2 to N = 3 with only a slight additional drop in error by increasing the number of CA-DQMoM nodes 
to N = 4. For N = 3 and N = 4, the relative error is below 1.5% for the majority of the simulation with a 
brief spike in error during the transition from condensation to evaporation. Based on computation 
time and accuracy, CA-DQMoM with three nodes would be the best option for implementation into 
CFD simulations. 

Fig. 7. Two-norm relative error in discrete species vapor molar flow rates calculated using CA-DQMoM with delumping for 
the kerosene test case. 

3.2. Droplet with 200 species 
The CA-DQMoM with delumping model was also applied to a droplet composed of 200 hypothetical 
species. Similar to the first test case, a 50 μm diameter droplet initially at 300 K exposed to gas at 500 K 
and 5 bar is employed. The initial conditions for the liquid include 200 discrete species with normal 
boiling points between 331 K and 560 K. The initial average liquid mole fractions are random and are 
shown in Fig. 8a. The constant far-field gas phase mole fractions, shown in Fig. 8b, are also randomized 
with a total gaseous fuel composition of 5% and the remaining 95% being air. 
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Fig. 8. (a) Initial conditions for the average liquid mole fraction distribution for a droplet with 200 hypothetical species and 
(b) constant far-field gas mole fraction distribution. 
 

The CA-DQMoM results for droplet radius calculated using N = 2, 3, and 4 are shown in Fig. 9. Similar to 
the kerosene test case, the total mixture results are extremely accurate for CA-DQMoM with three and 
four nodes, with a slight error observed for N = 2. 

Fig. 9. Evolution of droplet radius with time for CA-DQMoM (N = 2, 3, and 4) compared to the DCM for the 200 species test 
case. 
 

Delumping was performed following the CA-DQMoM solution and the discrete species results for the 
200 hypothetical droplet components were compared to the full DCM. The agreement between the 
two models is excellent, as shown by the results for species vapor molar flow rates in Fig. 10. The two-
norm relative error, defined in Eq. (46), was calculated for the 200 species vapor molar flow rates and 
is graphed in Fig. 11. 
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Fig. 10. Comparison of discrete species vapor molar flow rates calculated using CA-DQMoM with delumping (N = 3) and the 
DCM, at four times for the 200 species test case. 

Fig. 11. Two-norm relative error in discrete species vapor molar flow rates calculated using CA-DQMoM with delumping for 
the 200 species test case. 
 

The advantage of CA-DQMoM with delumping is the reduced computational time compared to a full 
DCM, without the loss of information on any discrete species. Fig. 12 shows the computational time for 
various models and numbers of species. For the test case in Section 3.1 with 36 components, CA-
DQMoM (N = 3) with delumping is 35% more efficient than the DCM for the finite diffusivity model. As 
the number of species increases, the computational savings increases greatly, with savings of 62%, 
80%, and 92% for 50, 100, and 200 species, respectively, using N = 3. The additional computational 
time required to perform delumping after a CTM solution is negligible, making it a very attractive 
method to solve for information on the discrete species. 
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Fig. 12. Comparison of computation times for CA-DQMoM with delumping and DCM for various number of species. 

3.3. CA-DQMoM with node approximation 
CA-DQMoM with node approximation, as described in Section 2.5, decreases the DAE system by N 
algebraic equations but is only valid when the boundary conditions are either pure air or a percentage 
of stoichiometric gaseous fuel. Fig. 13 graphs the total vapor molar flow rates calculated by CA-
DQMoM with node approximation, CA-DQMoM, and the DCM for three different boundary conditions 
for a vaporizing kerosene droplet. The first and second graphs of Fig. 13 show the accuracy of the node 
approximation model when the boundary conditions are pure air or 30% stoichiometric kerosene gas. 
The third graph of Fig. 13 shows that for the unique boundary condition of 30% isohexane, which is the 

most volatile component of the droplet, the approximation of 𝐼𝐼
¯
𝑗𝑗 ≈ 𝐼𝐼𝑠𝑠,𝑗𝑗 is not valid and a full DQMoM 

model with 4N species equations must be used. 
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Fig. 13. Evolution of total vapor molar flow rate with time for CA-DQMoM with node approximation (N = 4), CA-DQMoM 
(N = 4), and DCM for various boundary conditions. 
 

The same delumping procedure can be applied to the node approximation model. The species vapor 
molar flow rates for the test case of kerosene with pure air at the far-field boundary calculated by 
node approximation with delumping is compared to the results of the DCM in Fig. 14. Like the CA-
DQMoM model, the delumped solution of the CA-DQMoM with node approximation shows excellent 
agreement with the DCM. 

Fig. 14. Comparison of discrete species vapor molar flow rates calculated using CA-DQMoM with node approximation and 
delumping (N = 3) and the DCM, at four times. 
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The computational savings achieved by making the node approximation is shown in Fig. 15 for the 36 
species kerosene model with a far-field gas composition of pure air. The node approximation 
eliminates N algebraic equations which results in a computational savings of about 30% for N = 3 and 
32% for N = 4. 

 
Fig. 15. Comparison of computation times for CA-DQMoM with delumping vs CA-DQMoM with node approximation and 
delumping for a kerosene droplet vaporizing in pure air. 
 

4. Conclusions 
A Coupled Algebraic-Direct Quadrature Method of Moments (CA-DQMoM) with delumping approach 
has been developed and applied to a vaporizing multicomponent droplet with finite liquid diffusivity. 
The model differs from previous QMoM and DQMoM approaches11,12,13,14 by employing two liquid 
distribution functions in order to account for liquid diffusion within the droplet represented by 
parabolic liquid mole fraction profiles. The CA-DQMoM model generates a system of DAEs comprised 
of 2N ODEs and 2N algebraic equations to solve for two sets of CA-DQMoM weights and nodes. After 
the CA-DQMoM solution, an inexpensive delumping technique14 was adapted for the finite diffusivity 
model in order to reconstruct the discrete species information. A supplemental node approximation 
model was also presented which simplified the CA-DQMoM model for increased computational 
efficiency and was shown to be appropriate for far-field boundary conditions of pure air or a 
percentage of stoichiometric gaseous fuel. 

The CA-DQMoM model was validated by comparing the delumped results with those of a finite 
diffusivity DCM. The accuracy of the method was shown to be excellent utilizing N = 3 nodes for any 
number of discrete species between 36 and 200, with increased accuracy using N = 4 nodes. The 
computationally difficult case studied by Laurent et al. for a kerosene droplet vaporizing in 30% 
isohexane gas12 was solved using CA-DQMoM with delumping, showing the robustness of the solution 
technique. The most important feature of the model was the minimal computation time required to 
obtain accurate information on all discrete species. The computational savings for droplets between 36 
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and 200 species was significant using CA-DQMoM (N = 3) with delumping compared to traditional 
DCM, with a computational savings of 92% for 200 species. 

The CA-DQMoM with delumping approach developed in this paper successfully extends continuous 
thermodynamics theory to droplets with finite liquid diffusion. The accuracy and computational 
efficiency achieved by this model, despite the added complexity of finite liquid diffusion, makes it well 
suited for implementation in combustion CFD simulations. 
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	Abstract
	Multicomponent fuel droplet vaporization models for use in combustion CFD codes often prioritize computational efficiency over model complexity. This leads to oversimplifying assumptions such as single component droplets or infinite liquid diffusivity. The previously developed Direct Quadrature Method of Moments (DQMoM) with delumping model demonstrated a computationally efficient and accurate approach to solve for every discrete species in a well-mixed vaporizing multicomponent droplet. To expand the method to less restrictive cases, a new solution technique is presented called the Coupled Algebraic-Direct Quadrature Method of Moments (CA-DQMoM). In contrast to previous moment methods for droplet vaporization, CA-DQMoM solves for the evolution of two liquid distributions by coupling a monovariate, homogeneous DQMoM approach with additional algebraic moment equations, allowing for a more complex droplet vaporization model with finite rates of liquid diffusion to be solved with computational efficiency. To further decrease computational expense, an approximation that employs the same nodes for both distributions can be used in certain cases. Finally, a delumping technique is adapted to the finite diffusivity model to reconstruct discrete species information at minimal computational cost. The model is proven to be accurate relative to a full discrete component model for both a kerosene droplet comprised of 36 species and a multicomponent droplet of 200 species while maintaining the computational efficiency of continuous thermodynamics models. The combined accuracy and computational efficiency demonstrated by the CA-DQMoM with delumping model for a multicomponent fuel droplet with finite liquid diffusivity makes it ideal for incorporation into CFD models for complex combustion process.
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	1. Introduction
	Accurate knowledge of the vapor molar flow rates of discrete species during the vaporization of multicomponent liquid fuel droplets is important when modeling combustion processes using computational fluid dynamics (CFD). Computational efficiency is an important factor when developing these models, leading to the need for a balance between computational expense and model accuracy. Solution methods previously developed for multicomponent droplet vaporization include discrete component models (DCM),1,2,3 quasi-discrete models,4,5 and continuous thermodynamic models (CTM).6,7,8,9,10,11,12,13,14 DCM approaches solve equations for each discrete species comprising a multicomponent droplet and are therefore accurate but computationally expensive. Alternatively, CTM approaches characterize the multicomponent mixture composition as a continuous function of a distribution variable, typically normal boiling temperature or molecular weight. While CTM approaches improve computational efficiency, they cannot provide information on the vaporization or condensation rates of discrete droplet species.
	DCMs for multicomponent droplet vaporization previously developed include the partial differential equation (PDE) model by Torres et al.,1 the infinite diffusivity model developed by Ra and Reitz,2 and the combined transient to quasi-steady parabolic model presented by Brereton.3 Although the models of2 and3 improve upon the computational efficiency of1 by making simplifying assumptions, these DCMs still become computationally impractical for droplets with a large number of components.
	CTM approaches have therefore been developed to increase computational efficiency. Well-mixed, multi-component droplet vaporization was modeled by Tamim and Hallet6 and Hallet7 by assuming the probability density function used to represent the droplet composition was a gamma function. Wang and Lee8 also utilized a gamma function in their model which accounted for finite rates of liquid diffusion. To increase flexibility in the gamma function model, Harstad et al. developed a double gamma function PDF approach to more accurately account for condensation on the droplet.9,10 Laurent et al. demonstrated that there are limitations to assuming the shape of the PDF is a gamma function11 and developed a new approach for modeling multicomponent droplet vaporization by applying Lage’s version of the Quadrature Method of Moments (QMoM)15 to a well-mixed droplet.11,12 Noting the numerical complications which can arise utilizing QMoM, Bruyat et al. used the Direct Quadrature Method of Moments (DQMoM) as an alternative method for modeling well-mixed droplet vaporization.13 For simplicity, CTM approaches most often utilize molar conservation equations,16 as opposed to the classically defined mass based equations, which leads to different, but equally acceptable, assumptions for the constant gas phase properties.17
	DQMoM was originally developed for various monovariate and multivariate population balance equations (PBE) for both spatially homogeneous and inhomogeneous conditions.18 By assuming infinite liquid diffusivity, the well-mixed droplet model13 eliminates spatial dependence and is therefore solved using a monovariate, spatially homogeneous DQMoM approach which solves a set of ODEs for the DQMoM weights and nodes.18 Spatially inhomogeneous DQMoM approaches are more complicated, as they require discretization of spatial derivatives.18
	The solution techniques of QMoM and DQMoM are only able to solve for the evolution of the mixture as a whole and information on discrete species, such as species vapor molar flow rates and liquid mole fractions, are not calculated by such models.11,12,13 In order to reconstruct information on the discrete species, a delumping method was developed to capitalize on the fact that the previously non-linear governing ODEs for the vaporizing droplet are linearized once the mixture properties are known from the DQMoM calculation.14 DQMoM with delumping has been shown to be a computationally efficient and accurate method for obtaining information on all discrete species for a multicomponent droplet model with infinite liquid diffusivity.14
	Thus far, a major limitation of QMoM and DQMoM approaches has been their exclusive application to well-mixed droplets and it has been questioned19,20,21,22 whether these methods can be extended to model droplets with finite liquid diffusivity. This limitation has been presented as a significant flaw in the method20 since the importance of species gradients within the liquid droplet has been discussed extensively.4,20,21 Therefore, the model developed in this paper addresses the need for computationally efficient moment methods to be expanded to models with finite liquid diffusivity by using a new modeling strategy for droplet vaporization which augments a monovariate homogeneous DQMoM approach by coupling the DQMoM ODEs to additional algebraic moment equations to solve for the evolution of two related distributions.
	The computational approach developed in this paper is applied to the quasi-steady portion of the finite diffusivity DCM developed in3 which solves ODEs and algebraic equations for the evolution of the average and surface liquid mole fractions within the droplet. To complement the models for quasi-steady behavior, transient models utilizing shape factors and higher order polynomials have been presented.3,23 While the CTM approach developed here could also be extended to these transient portions of the models, there are limitations to delumping these solutions. Therefore, the computational method presented below is applied to the quasi-steady multicomponent droplet vaporization model.
	The principle novelty of the method presented here is in the development of a Coupled Algebraic-Direct Quadrature Method of Moments (CA-DQMoM) approach for a vaporizing multicomponent droplet with finite liquid diffusivity. The method solves for two liquid mole fraction distributions, one governed by ODEs and the other by algebraic equations. The method improves accuracy by taking into account finite rates of liquid diffusion within the droplet without requiring the complex discretization of a spatially inhomogeneous DQMoM application. In Section 2, the CA-DQMoM method will be derived. An approximate version which employs the same nodes for both distributions will also be presented which increases computational efficiency but is restricted to certain far-field boundary conditions. A second novelty of the paper is the adaptation of the delumping method14 to a finite diffusivity model in order to reconstruct all discrete species information for all times. The accuracy and computational efficiency of the CA-DQMoM with delumping approach will be evaluated in Section 3, with conclusions discussed in Section 4.
	2. Model development
	2.1. Discrete component model (DCM)
	Previous DCMs have employed parabolic profiles for temperature24 and species mass fraction3 within a multicomponent liquid droplet for Modeling vaporization under quasi-steady behavior. This paper follows a similar approach to derive a DCM on a molar basis for the quasi-steady case. Since the physical aspects of the model presented here are based on the developments of others and the novelty of this paper is in the derivation of the CA-DQMoM with delumping solution method discussed in subsequent sections, only a brief summary of the governing equations is provided below. This DCM will serve as the “exact” model by which to evaluate the accuracy of the delumped CA-DQMoM developed later.
	2.1.1. Gas phase equations
	Similar to previous works in continuous thermodynamics and droplet vaporization theory,7,11,12,13,25 the equations for the gas phase are simplified by assuming spherical symmetry, quasi-steady transport for the gas phase, and spatially constant gas phase properties in the boundary layer evaluated using the 1/3 rule.26 The gas phase transport equation, originally defined on a mass basis,25 is the classical droplet equation which has been used in molar form in previous moment methods:11,12,13
	(1) 𝑛̇𝑡𝑜𝑡=2𝜋𝑅𝐶𝑔𝐷𝑔𝑆ℎ𝑔∗𝑙𝑛(1+𝐵𝑀)
	where 𝑛̇𝑡𝑜𝑡 is the total vapor molar flow rate. The Spalding transfer number on a molar basis and the modified Sherwood number25 are defined as
	(2) 𝐵𝑀=𝑥𝑔,𝑠𝑡𝑜𝑡−𝑥𝑔,∞𝑡𝑜𝑡1−𝑥𝑔,𝑠𝑡𝑜𝑡
	(3) 𝑆ℎ𝑔∗=2𝑅𝑓𝑅𝑓−𝑅
	where 𝑅𝑓 is the limit of the boundary layer. The classical Sherwood number is defined as
	(4) 𝑆ℎ𝑔𝑖=2𝑅𝑥𝑔,∞𝑖−𝑥𝑔,𝑠𝑖𝜕𝑥𝑔𝑖𝜕𝑟𝑠
	It is assumed that the diffusion coefficients and Sherwood numbers for each species can be approximated by single averaged values.11 Thus, the modified Sherwood number can be related to the Sherwood number25 by the expression
	(5) 𝑆ℎ𝑔∗=𝐵𝑀𝑙𝑛1+𝐵𝑀𝑆ℎ𝑔
	2.1.2. Liquid phase equations
	For the liquid phase analysis, the quasi-steady parabolic approach3 is modified for a molar, rather than mass, basis. It is assumed that the droplet is spherically symmetric, liquid molar concentration changes slowly with time, liquid molar concentration and diffusivity are uniform within the droplet and there is no convection within the droplet. Thus, the species conservation equation can be simplified as
	(6) 𝜕𝑥𝑙𝑖𝜕𝑡=𝐷𝑙𝑟2𝜕𝜕𝑟𝑟2𝜕𝑥𝑙𝑖𝜕𝑟
	With the approximation that 𝜕𝑥𝑙𝑖𝜕𝑡 is only a function of time,3 Eq. (6) can be integrated twice to obtain the parabolic profile of the species liquid mole fractions within the droplet:
	(7) 𝑥𝑙𝑖(𝑟,𝑡)=𝑥𝑙,𝑐𝑖+𝑥𝑙,𝑠𝑖−𝑥𝑙,𝑐𝑖𝑟𝑅2
	where r is the radial coordinate, R is the radius of the droplet and the subscripts c and s represent the center and surface of the droplet, respectively. A volume average is performed on Eq. (7) to obtain an expression relating the average, surface, and center liquid mole fractions for each species:
	(8) 𝑥¯𝑙𝑖=35𝑥𝑙,𝑠𝑖+25𝑥𝑙,𝑐𝑖
	Evaluating the derivative of Eq. (7) at the surface and combining with Eq. (8) results in the expression for the liquid mole fraction gradient for each species at the surface:
	(9) 𝜕𝑥𝑙𝑖𝜕𝑟𝑠=5𝑅𝑥𝑙𝑠𝑖−𝑥¯𝑙𝑖
	2.1.3. Governing equations
	Similar to the mass based approach,1,3 species conservation is applied on a molar basis to the interface at the droplet surface:
	(10) −𝐶𝑙𝑑𝑅𝑑𝑡𝑥𝑔,𝑠𝑖−𝑥𝑙,𝑠𝑖+𝐶𝑙𝐷𝑙𝜕𝑥𝑙𝑖𝜕𝑟𝑠−𝐶𝑔𝐷𝑔𝜕𝑥𝑔𝑖𝜕𝑟𝑠=0
	where the assumptions previously discussed for the liquid and gas phases are applied. Combining Eqs. (4), (5), (9), (10) results in the conservation equation at the interface:
	(11) −𝐶𝑙𝑑𝑅𝑑𝑡𝑥𝑔,𝑠𝑖−𝑥𝑙,𝑠𝑖+5𝐶𝑙𝐷𝑙𝑅𝑥𝑙𝑠𝑖−𝑥¯𝑙𝑖−𝐶𝑔𝐷𝑔𝑆ℎ𝑔∗𝑙𝑛1+𝐵𝑀2𝑅𝐵𝑀𝑥𝑔,∞𝑖−𝑥𝑔,𝑠𝑖=0
	Eq. (11) is summed for all discrete species and rearranged to obtain the equation for the rate of surface regression:
	(12) 𝑑𝑅𝑑𝑡=−𝐶𝑔𝐷𝑔𝑆ℎ𝑔∗𝑙𝑛(1+𝐵𝑀)2𝐶𝑙𝑅
	Species molar conservation is applied to a control volume enclosing the liquid droplet:
	(13) 𝑑𝑑𝑡𝐶𝑙𝑉𝑥¯𝑙𝑖=4𝜋𝑅2𝐶𝑙𝐷𝑙𝜕𝑥𝑙𝑖𝜕𝑟𝑠+𝐶𝑙𝑑𝑅𝑑𝑡𝑥𝑙,𝑠𝑖
	Eq. (13) is combined with Eq. (9) and simplified to obtain the ODE for the evolution of the average liquid mole fraction for each species:
	(14) 𝑑𝑥¯𝑙𝑖𝑑𝑡=15𝐷𝑙𝑅2+3𝑅𝑑𝑅𝑑𝑡𝑥𝑙𝑠𝑖−𝑥¯𝑙𝑖
	As is common in droplet vaporization models,6,7,11,12,13,16 it is assumed that the mixtures are ideal and therefore, vapor-liquid equilibrium at the droplet surface is established by Raoult’s Law:
	(15) 𝑥𝑔,𝑠𝑖=𝑥𝑙,𝑠𝑖𝑃𝑠𝑎𝑡𝑖(𝑇𝑙,𝑠)𝑃∞
	Rearranging Eq. (11) and combining with Eq. (15) results in the algebraic expression for the surface liquid mole fraction of each species:
	(16) 𝑥𝑙,𝑠𝑖=5𝐶𝑙𝐷𝑙𝑥¯𝑙𝑖+𝐶𝑔𝐷𝑔𝑆ℎ𝑔∗ln1+𝐵𝑀2𝐵𝑀𝑥𝑔,∞𝑖5𝐶𝑙𝐷𝑙+𝐶𝑙𝑅𝑑𝑅𝑑𝑡1−𝑃𝑠𝑎𝑡𝑖(𝑇𝑙,𝑠)𝑃∞+𝐶𝑔𝐷𝑔𝑆ℎ𝑔∗ln1+𝐵𝑀2𝐵𝑀𝑃𝑠𝑎𝑡𝑖(𝑇𝑙,𝑠)𝑃∞
	Eqs. (14), (16) comprise the system of differential algebraic equations (DAEs) which define the evolution of the droplet composition and are similar to the equations for mass fraction developed in,3 with the exception that the model presented in this paper accounts for the presence of gaseous fuel at the far-field boundary and assumes constant molar properties as opposed to mass properties.
	Although the parabolic model defined in this section is an improvement on the well-mixed model since it takes into account finite liquid diffusion within the droplet, it is not without limitations. As discussed by Sazhin, the accuracy of the parabolic model during initial transience is questionable since it assumes that the parabolic profiles are immediately established.19,20 It should be noted that the CA-DQMoM approach developed in subsequent sections is not limited to quasi-steady models and could be applied to the transient shape factor DCM.3 However, it would not be possible to use delumping on the CA-DQMoM solution due to the dependence of the shape factor on the surface liquid mole fraction. Therefore, the derivation of the computational method will focus on the quasi-steady case only.
	Similar to the original well-mixed DQMoM with delumping model,14 the model developed in this paper can be solved with a variety of temperature profile assumptions including uniform, quasi-steady, or effective conductivity models. For the results presented in this paper, the liquid temperature within the droplet was modeled using a parabolic temperature profile24 with the following equations obtained from Laurent:16
	(17) 𝑑𝑇¯𝑙𝑑𝑡=32𝑘𝑔𝑁𝑢𝑔∗ln1+𝐵𝑇𝐶𝑙𝑐𝑝,𝑙𝑅2𝐵𝑇1+110𝑘𝑔𝑁𝑢𝑔∗𝑙𝑛(1+𝐵𝑇)𝑘𝑙𝐵𝑇𝑇∞−𝐵𝑇𝑙𝑣𝑐𝑝,𝑣−𝑇¯𝑙
	(18) 𝑇𝑙,𝑠=𝑇¯𝑙+𝑅2𝐶𝑙𝑐𝑝,𝑙15𝑘𝑙𝑑𝑇¯𝑙𝑑𝑡
	2.2. Coupled Algebraic-Direct Quadrature Method of Moments (CA-DQMoM)
	As previously discussed, QMoM and DQMoM approaches have, thus far, only been applied to well-mixed droplet models and it has been questioned whether they can be applied to less restrictive cases.19,20,21,22 The model derived here expands the applicability of moment methods to finite diffusivity models by coupling a DQMoM approach with algebraic moment equations. First, the quasi-steady DCM of the previous section is converted to a CTM. The average liquid mole fraction is taken to be a monovariate continuous function of a distribution variable, I,18 thus giving the continuous form of Eq. (14):
	(19) 𝑑𝑥¯𝑙(𝐼)𝑑𝑡=𝑆(𝐼,𝑡)
	where the source term for the finite diffusivity model is given by
	(20) 𝑆(𝐼,𝑡)=15𝐷𝑙𝑅2+3𝑅𝑑𝑅𝑑𝑡𝑥𝑙,𝑠(𝐼)−𝑥¯𝑙(𝐼)
	For the purposes of this paper, the distribution variable, I, is the normal boiling temperature, 𝑇𝑛𝑏. In contrast to the well-mixed model, the quasi-steady finite diffusivity DCM contains an additional algebraic relationship for the surface liquid mole fraction, 𝑥𝑙,𝑠. This algebraic expression, given in Eq. (16), is similarly converted to continuous form:
	(21) 𝑥𝑙,𝑠(𝐼)=5𝐶𝑙𝐷𝑙𝑥¯𝑙(𝐼)+𝐶𝑔𝐷𝑔𝑆ℎ𝑔∗ln(1+𝐵𝑀)2𝐵𝑀𝑥𝑔,∞(𝐼)5𝐶𝑙𝐷𝑙+𝐶𝑙𝑅𝑑𝑅𝑑𝑡1−𝑃𝑠𝑎𝑡𝐼,𝑇𝑙,𝑠𝑃∞+𝐶𝑔𝐷𝑔𝑆ℎ𝑔∗ln(1+𝐵𝑀)2𝐵𝑀𝑃𝑠𝑎𝑡(𝐼,𝑇𝑙,𝑠)𝑃∞
	The original well-mixed DQMoM model with a single liquid mole fraction distribution13 was developed by applying a monovariate, spatially homogenous DQMoM approach.18 In contrast, the finite diffusivity model requires the solution of two separate liquid mole fraction distributions, one for the average (𝑥¯𝑙) and one for the surface (𝑥𝑙,𝑠), which are related by the algebraic relationship of Eq. (21). Therefore, the finite liquid diffusivity model requires two sets of N weights and two sets of N nodes to be defined. The average weights, 𝑤¯𝑗, and average nodes, 𝐼¯𝑗, characterize the composition of the droplet with respect to the average liquid mole fraction. The surface weights, 𝑤𝑠,𝑗, and surface nodes, 𝐼𝑠,𝑗, similarly correspond to the liquid composition at the droplet surface. The subscript j represents the node index, with j = 1:N, resulting in 4 N unknowns for 𝑤¯𝑗, 𝐼¯𝑗, 𝑤𝑠,𝑗, 𝐼𝑠,𝑗. DQMoM, as developed in,18 is applied to the average liquid mole fraction distribution since 𝑥¯𝑙 is the differential variable. A moment transform is applied to Eq. (19) to obtain 2N ODEs for the evolution of the moments of the average liquid mole fraction distribution:
	(22) 𝑑𝑚¯𝑙𝑘𝑑𝑡=𝑆¯𝑘=0∞𝑆(𝐼)𝐼𝑘𝑑𝐼
	where k is the index for the moments and is evaluated for 𝑘=0:2𝑁−1. 
	In the original well-mixed DQMoM model,13 the single mole fraction distribution was extracted from the integral in Eq. (22), with the remaining terms being nearly polynomial, in order to apply the Gaussian quadrature approximation.27 However, for the finite diffusion model, the integral in Eq. (22) must be separated into two integrals so that the average and surface mole fraction distributions can be extracted:
	(23) 𝑆¯𝑘=0∞𝑆(𝐼)𝐼𝑘𝑑𝐼=0∞𝑥𝑙,𝑠(𝐼)𝑓(𝐼)𝑑𝐼−0∞𝑥¯𝑙(𝐼)𝑓(𝐼)𝑑𝐼
	where the term 𝑓(𝐼) represents the terms left over and is given by
	(24) 𝑓(𝐼)=15𝐷𝑙𝑅2+3𝑅𝑑𝑅𝑑𝑡𝐼𝑘
	A Gaussian quadrature approximation is needed for both the average and surface liquid mole fraction distributions. As discussed, each distribution has its own set of weights and nodes:
	(25) 0∞𝑥¯𝑙(𝐼)𝑓(𝐼)𝑑𝐼≈𝑗=1𝑁𝑤¯𝑗𝑓𝐼¯𝑗
	(26) 0∞𝑥𝑙,𝑠(𝐼)𝑓(𝐼)𝑑𝐼≈𝑗=1𝑁𝑤𝑠,𝑗𝑓𝐼𝑠,𝑗
	DQMoM solves for the evolution of the weights and nodes of the Gaussian quadrature directly instead of solving for the evolution of the moments, as is done in QMoM.18,27 Additionally, DQMoM does not require the closure algorithm that QMoM does18 and has been proven to be more stable for Modeling droplet vaporization.13 In DQMoM, the distribution function for the differential variable is approximated as the sum of N delta functions, evaluated at the nodes of the distribution variable, multiplied by the weights.18 Thus, the continuous average liquid mole fraction distribution, 𝑥𝑙¯(𝐼), is set equal to a sum of delta functions evaluated at the average liquid nodes, 𝐼¯𝑗, and multiplied by the average liquid weights, 𝑤¯𝑗:
	(27) 𝑥¯𝑙(𝐼)=𝑗=1𝑁𝑤¯𝑗𝛿𝐼−𝐼¯𝑗
	Taking the derivative and combining with Eq. (19) yields
	(28) 𝑑𝑥¯𝑙(𝐼)𝑑𝑡=𝑗=1𝑁𝜕𝜕𝑡𝑤¯𝑗𝛿(𝐼−𝐼¯𝑗)=𝑆(𝐼,𝑡)
	To develop the DQMoM matrix, the product rule, chain rule, and a moment transform are applied to Eq. (28). Details of the full derivation of the left hand side of the DQMoM matrix can be found in.13,18 The resulting DQMoM system of equations is given by:
	(29) (1−𝑘)𝑗=1𝑁𝐼¯𝑗𝑘𝑑𝑤¯𝑗𝑑𝑡+𝑘𝑗=1𝑁𝐼¯𝑗𝑘−1𝑑(𝑤¯𝑗𝐼¯𝑗)𝑑𝑡=0∞𝑆(𝐼)𝐼𝑘𝑑𝐼=𝑆¯𝑘
	where the moments are evaluated for 𝑘=0:2𝑁−1.
	In matrix form, Eq. (29) is given by
	1⋯10⋯00⋯01⋯1−𝐼¯12⋯−𝐼¯𝑁22𝐼¯1⋯2𝐼¯𝑁⋮⋮⋮⋮⋮⋮2(1−𝑁)𝐼¯12𝑁−1⋯2(1−𝑁)𝐼¯𝑁2𝑁−1(2𝑁−1)𝐼¯12𝑁−2⋯(2𝑁−1)𝐼¯𝑁2𝑁−2×𝑑𝑤¯1/𝑑𝑡⋮𝑑𝑤¯𝑁/𝑑𝑡𝑑(𝑤¯1𝐼¯1)/𝑑𝑡⋮𝑑(𝑤¯𝑁𝐼¯𝑁)/𝑑𝑡=𝑆¯0⋮⋮⋮⋮𝑆¯2𝑁−1 
	Although the basic DQMoM approach for the left hand side is the same for both the well-mixed13 and finite diffusivity models, the right hand side source terms are quite different. To obtain the source terms, 𝑆¯𝑘, the Gaussian quadrature approximations of Eqs. (25), (26) are applied to Eq. (23):
	(31) 𝑆¯𝑘=15𝐷𝑙𝑅2+3𝑅𝑑𝑅𝑑𝑡𝑗=1𝑁𝑤𝑠,𝑗𝐼𝑠,𝑗𝑘−𝑗=1𝑁𝑤¯𝑗𝐼¯𝑗𝑘
	The ODEs of Eq. (30) combined with the source terms of Eq. (31) provide 2N equations. For a typical homogeneous DQMoM 𝐼𝑠,𝑗 approach like that of the original well-mixed DQMoM model,13 the 2N ODEs would be sufficient to solve for the evolution of the N weights and N nodes of the single distribution. However, for the present model with two distributions and 4N unknowns 𝑤¯𝑗,𝐼¯𝑗,𝑤𝑠,𝑗,𝐼𝑠,𝑗, an additional 2N equations are required to solve for the evolution of the droplet. This is where the coupled algebraic portion of the CA-DQMoM method is needed: an additional 2N algebraic equations are required to simultaneously solve for the algebraic variables 𝑤𝑠,𝑗 and. These 2N equations are obtained by applying a moment transform and quadrature approximations to the algebraic expression for the continuous surface liquid mole fraction distribution. Applying a moment transform to Eq. (21) and factoring out the original mole fraction distributions results in the following equation:
	(32) 0∞𝑥𝑙,𝑠(𝐼)𝑓1(𝐼)𝑑𝐼=0∞𝑥¯𝑙(𝐼)𝑓2(𝐼)𝑑𝐼+0∞𝑥𝑔,∞(𝐼)𝑓3(𝐼)𝑑𝐼
	where after some rearrangement, the functions of the terms left over can be written as
	(33) 𝑓1(𝐼)=5𝐶𝑙𝐷𝑙+𝐶𝑙𝑅𝑑𝑅𝑑𝑡1−𝑃𝑠𝑎𝑡(𝐼,𝑇𝑙,𝑠)𝑃∞+𝐶𝑔𝐷𝑔𝑆ℎ𝑔∗ln(1+𝐵𝑀)2𝐵𝑀𝑃𝑠𝑎𝑡(𝐼,𝑇𝑙,𝑠)𝑃∞𝐼𝑘
	(34) 𝑓2(𝐼)=5𝐶𝑙𝐷𝑙𝐼𝑘
	(35) 𝑓3(𝐼)=𝐶𝑔𝐷𝑔𝑆ℎ𝑔∗ln(1+𝐵𝑀)2𝐵𝑀𝐼𝑘
	An additional quadrature approximation is defined for the far-field gas phase mole fractions
	(36) 0∞𝑥𝑔,∞(𝐼)𝑓(𝐼)𝑑𝐼≈𝑖=1𝑛𝑥𝑔,∞𝑖𝑓(𝑇𝑛𝑏𝑖)
	where the summation is evaluated for the n discrete species since the far-field gas composition is assumed to be constant and known. Thus, applying the quadrature approximations of Eqs. (25), (26), (36) to Eq. (32) results in the 2N coupled algebraic expressions given by
	(37) 𝑗=1𝑁5𝐶𝑙𝐷𝑙+𝐶𝑙𝑅𝑑𝑅𝑑𝑡1−𝑃𝑠𝑎𝑡(𝐼𝑠,𝑗,𝑇𝑙,𝑠)𝑃∞+𝐶𝑔𝐷𝑔𝑆ℎ𝑔∗ln(1+𝐵𝑀)2𝐵𝑀𝑃𝑠𝑎𝑡(𝐼𝑠,𝑗,𝑇𝑙,𝑠)𝑃∞𝑤𝑠,𝑗𝐼𝑠,𝑗𝑘=𝑗=1𝑁5𝐶𝑙𝐷𝑙𝑤¯𝑗𝐼¯𝑗𝑘+𝑖=1𝑛𝐶𝑔𝐷𝑔𝑆ℎ𝑔∗ln(1+𝐵𝑀)2𝐵𝑀𝑥𝑔,∞𝑖𝑇𝑛𝑏,𝑖𝑘
	where the moments are evaluated for 𝑘=0:2𝑁−1. Thus, the final CA-DQMoM model consists of the 2 N DQMoM ODEs in Eq. (30) coupled with the 2 N algebraic expressions in Eq. (37) to solve for 𝑤¯𝑗, 𝐼¯𝑗, 𝑤𝑠,𝑗, and 𝐼𝑠,𝑗.
	The initial conditions for the differential variables, 𝑤¯𝑗 and 𝐼¯𝑗, are calculated using QMoM and Wheeler’s algorithm,28 utilizing the same method as the well-mixed model.14 Since the surface weights and nodes are algebraically calculated variables, the DAE solver computes consistent initial conditions for 𝑤𝑠,𝑗, and 𝐼𝑠,𝑗.
	2.3. Delumping
	Delumping enables the reconstruction of discrete species information following a computationally efficient CTM solution. A delumping method was previously used for algebraic equations to calculate species information from CTMs for flash tank calculations.29,30 Delumping of a DQMoM solution to the nonlinear differential equations governing droplet vaporization was demonstrated by Singer.14 At the completion of the CA-DQMoM solution, all of the total mixture properties are known at every time step which linearizes the original non-linear discrete ODE. The now linear first order ODE can then be easily solved using an integrating factor.14,31 Because delumping only involves numerical integration, it is very computationally efficient.14
	The differential equation for the average liquid mole fraction in Eq. (14) cannot be delumped as written since it is dependent on both 𝑥¯𝑙𝑖 and 𝑥𝑙,𝑠𝑖. Therefore, for delumping to be applicable, Eq. (14) must be combined with Eqs. (12), (16) and rearranged to obtain an ODE in terms of 𝑥¯𝑙𝑖, the constant boundary conditions, and the total mixture properties:
	(38) 𝑑𝑥¯𝑙𝑖𝑑𝑡−(𝐴−𝐶)(𝐶𝐺𝑖)(𝐴−𝐶𝐺𝑖)𝑥¯𝑙𝑖=(𝐴−𝐶)(𝐶𝐸𝑖)𝐴−𝐶𝐺𝑖
	where the time dependent terms 𝐴, 𝐶, 𝐸𝑖, and 𝐺𝑖 are defined as
	(39) 𝐴=15𝐷𝑙𝑅2
	(40) 𝐶=3𝐶𝑔𝐷𝑔𝑆ℎ𝑔∗ln(1+𝐵𝑀)2𝐶𝑙𝑅2
	(41) 𝐸𝑖=𝑥𝑔,∞𝑖𝐵𝑀
	(42) 𝐺𝑖=1−𝑃𝑠𝑎𝑡𝑖(𝑇𝑙,𝑠)𝑃∞−𝑃𝑠𝑎𝑡𝑖(𝑇𝑙,𝑠)𝑃∞𝐵𝑀
	In each of these terms, the mixture properties are calculated from the results of CA-DQMoM, the values of the far-field gas phase mole fractions, 𝑥𝑔,∞𝑖, are known constants, and the saturation pressure, 𝑃𝑠𝑎𝑡𝑖, is only a function of normal boiling temperature, 𝑇𝑛𝑏𝑖, and the liquid surface temperature of the droplet, 𝑇𝑙,𝑠. Thus, the terms 𝐴, 𝐶, 𝐸𝑖, and 𝐺𝑖 are independent of 𝑥¯𝑙𝑖 and 𝑥𝑙,𝑠𝑖 and the ODE is now a linear, first order differential equation. The integrating factor method31 is used to solve the ODE, with the following integrating factor
	Thus, the solution for the average liquid mole fraction for each discrete species at every time is given by
	(44) 𝑥¯𝑙𝑖(𝑡)=0𝑡𝑢𝑖(𝑡)(𝐴−𝐶)(𝐶𝐸𝑖)(𝐴−𝐶𝐺𝑖)𝑑𝑡+𝑥¯𝑙𝑖(0)𝑢𝑖(𝑡)
	The surface liquid mole fractions can then be calculated explicitly using the algebraic relationship in Eq. (16). Using the same time dependent terms 𝐴, 𝐶, 𝐸𝑖, and 𝐺𝑖, the equation for the surface liquid mole fraction of each discrete species is given by
	(45) 𝑥𝑙,𝑠𝑖(𝑡)=𝐴𝑥¯𝑙𝑖(𝑡)+𝐶𝐸𝑖𝐴−𝐶𝐺𝑖
	Because delumping a CA-DQMoM solution only involves numerically integrating a linear, first order ODE followed by an explicit algebraic equation, it adds great benefit at very little computational expense.
	2.4. Other submodels
	The property correlations and mixing rules utilized in this paper for kerosene are obtained from,12,16,32 and are the same as those previously used in DQMoM with delumping for the well-mixed droplet summarized in the Appendix of.14 The liquid properties for the droplet are calculated using the average nodes, 𝐼¯𝑗, and the average liquid temperature, 𝑇¯𝑙 while the properties of the gas are calculated using the surface nodes, 𝐼𝑠,𝑗, and constant far-field boundary conditions following the 1/3 rule.
	2.5. CA-DQMoM with node approximation
	The system of DAEs developed using the CA-DQMoM approach defined in Section 2.2 is based on two sets of weights and nodes: one set to characterize the average liquid mole fraction distribution and one set to characterize the surface liquid mole fraction distribution. A simplification can be made to this system of equations if it is assumed that a single set of nodes can be used for both distributions, or 𝐼¯𝑗≈𝐼𝑠,𝑗. This approximation is only valid when there is either no condensation on the droplet surface or if the condensate has a similar composition to that of the average liquid droplet composition. In other words, this approximation can be used if the constant far-field gas phase composition (𝑥𝑔,∞𝑖) is either pure air or a percentage of stoichiometric gaseous fuel. Applying the CA-DQMoM with node approximation approach results in a system of only 3 N unknowns 𝐼𝑗,𝑤¯𝑗,𝑤𝑠,𝑗 and therefore, Eq. (37) only needs to be solved for 𝑘=0:𝑁−1. Thus, the CA-DQMoM system of DAEs is reduced by N algebraic equations, leading to more computational savings.
	The reason that CA-DQMoM with node approximation is only valid for certain boundary conditions is similar to the limitations of CTMs which assume the distribution shape is represented by a gamma function.11 Constraining the surface distribution to be defined by the average nodes is similar, but not as restrictive, to assigning a fixed shape to the surface distribution. In test cases where the shape of the surface distribution mimics that of the average distribution, the approximation of 𝐼¯𝑗≈𝐼𝑠,𝑗 is valid. However, for atypical condensate compositions, such as a single component of the fuel present at the far-field boundary, the surface distribution will have a shape that is distinct from the average distribution and a full CA-DQMoM solution with 𝐼¯𝑗≠𝐼𝑠,𝑗 must be utilized. The applicability of CA-DQMoM with node approximation and the associated computational savings are demonstrated in Section 3.
	2.6. Numerical approach
	Similar to the well-mixed model,14 both the CA-DQMoM model and the finite diffusivity DCM used for comparison were solved in MATLAB utilizing the IDA solver developed by the Lawrence Livermore National Laboratory.33 Both the CA-DQMoM and the DCM models contain one ODE for temperature, one algebraic temperature equation, and one ODE for droplet radius. While the DCM model for a droplet with n components also solves n species ODEs and n algebraic species equations, the CA-DQMoM model utilizing N nodes solves 2N species ODEs and 2N algebraic species equations. Therefore, the DCM solves 2n + 3 equations while the CA-DQMoM model solves 4N + 3 equations, typically with N ≪ n. The delumping step, which involves integrals with respect to time, was computed using the trapezoid rule following the CA-DQMoM solution for the time interval.14 To utilize CA-DQMoM with delumping in a CFD simulation, the delumping step would need to be performed following every time step. A technique requiring only the current and previous time step for the integration as described in14 would also apply to the finite diffusivity model.
	3. Results and discussion
	The CA-DQMoM with delumping model for a multi-component droplet with finite liquid diffusivity was validated by comparing the results to those calculated using a DCM, which is considered to be an exact solution with respect to the model derived above. In order to demonstrate the accuracy and computational savings achieved using CA-DQMoM with delumping, test cases were performed for droplets ranging from 36 to 200 components.
	3.1. Droplet with 36 species (kerosene)
	Test conditions were specified for a 50 μm droplet of kerosene initially at 300 K exposed to gas at 500 K and 5 bar.12 The far-field conditions are specified as 𝑥𝑔,∞𝑎𝑖𝑟=0.7 and 𝑥𝑔,∞𝑖=1=0.3 where the first component i = 1 corresponds to isohexane, the most volatile component.12 As discussed in,12 these boundary conditions result in a computationally difficult test case for CTM, with condensation initially occurring. Similar to the well-mixed models,12,13 it is assumed that the boundary conditions are constant. The normal boiling points and initial liquid composition for the 36 species of kerosene are taken from16 and are used as the initial conditions for the average liquid mole fractions.
	CA-DQMoM was applied to the kerosene droplet using N = 2, 3, and 4 nodes. Fig. 1, Fig. 2, Fig. 3 show the evolution of the average and surface weights and nodes for the three cases. Similar to the results of the well-mixed droplet,13 the CA-DQMoM weights and nodes are smooth and stable.
	Fig. 1. Evolution of CA-DQMoM weights and nodes 𝐼¯𝑗,𝑤¯𝑗,𝐼𝑠,𝑗,𝑤𝑠,𝑗 for N = 2 for the kerosene test case.
	Fig. 2. Evolution of CA-DQMoM weights and nodes 𝐼¯𝑗,𝑤¯𝑗,𝐼𝑠,𝑗,𝑤𝑠,𝑗 for N = 3 for the kerosene test case.
	Fig. 3. Evolution of CA-DQMoM weights and nodes 𝐼¯𝑗,𝑤¯𝑗,𝐼𝑠,𝑗,𝑤𝑠,𝑗 for N = 4 for the kerosene test case.
	Fig. 4. Evolution of total vapor molar flow rate with time for CA-DQMoM (N = 2, 3, and 4) compared to the DCM for the kerosene test case.
	The accuracy of the CA-DQMoM model was first evaluated by comparing the results for the total mixture to those calculated using the DCM. Fig. 4 shows the total vapor molar flow rate calculated with N = 2, 3, and 4 compared to the DCM. CA-DQMoM with N = 3 and 4 produces extremely accurate results for the evolution of the total mixture, including during initial condensation where the total molar flow rate is negative. There is slight error observed for the total molar flow rate calculated with N = 2.
	The delumping portion of the model builds on the CA-DQMoM results and provides information on each real discrete species. The accuracy of CA-DQMoM with delumping (N = 3) is demonstrated in Fig. 5a and b for the average liquid mole fractions and the surface liquid mole fractions, respectively, for each of the 36 components of kerosene at various times. Fig. 6 shows that the vapor molar flow rates for each discrete species, which serve as source terms for the gas-phase solver in CFD codes, are also in good agreement with the values from DCM, including at an early time. The excellent agreement between CA-DQMoM with delumping and DCM affirmatively answers the question20 of whether moment methods can be successfully extended to droplets with finite liquid diffusivity.
	/
	Fig. 5. Comparison of the (a) average and (b) surface liquid mole fraction distributions 𝑥¯𝑙𝑖and𝑥𝑙,𝑠𝑖 calculated using CA-DQMoM with delumping (N = 3) and the DCM, at three times for the kerosene test case.
	Fig. 6. Comparison of discrete species vapor molar flow rates calculated using CA-DQMoM with delumping (N = 3) and the DCM, at four times for the kerosene test case.
	To evaluate the accuracy of CA-DQMoM with delumping as compared to the finite diffusivity DCM, the two-norm relative error was calculated according to the following equation:
	(46) 𝑒𝑟𝑟=𝑖=1𝑛𝑛̇𝐶𝐴−𝐷𝑄𝑀𝑜𝑀𝑖−𝑛̇𝐷𝐶𝑀𝑖212𝑖=1𝑛𝑛̇𝐷𝐶𝑀𝑖212
	The relative error in species vapor molar flow rates for CA-DQMoM with delumping for N = 2, 3, and 4 compared to the DCM are plotted in Fig. 7 for all times. The relative error decreases significantly from N = 2 to N = 3 with only a slight additional drop in error by increasing the number of CA-DQMoM nodes to N = 4. For N = 3 and N = 4, the relative error is below 1.5% for the majority of the simulation with a brief spike in error during the transition from condensation to evaporation. Based on computation time and accuracy, CA-DQMoM with three nodes would be the best option for implementation into CFD simulations.
	Fig. 7. Two-norm relative error in discrete species vapor molar flow rates calculated using CA-DQMoM with delumping for the kerosene test case.
	3.2. Droplet with 200 species
	The CA-DQMoM with delumping model was also applied to a droplet composed of 200 hypothetical species. Similar to the first test case, a 50 μm diameter droplet initially at 300 K exposed to gas at 500 K and 5 bar is employed. The initial conditions for the liquid include 200 discrete species with normal boiling points between 331 K and 560 K. The initial average liquid mole fractions are random and are shown in Fig. 8a. The constant far-field gas phase mole fractions, shown in Fig. 8b, are also randomized with a total gaseous fuel composition of 5% and the remaining 95% being air.
	/
	Fig. 8. (a) Initial conditions for the average liquid mole fraction distribution for a droplet with 200 hypothetical species and (b) constant far-field gas mole fraction distribution.
	The CA-DQMoM results for droplet radius calculated using N = 2, 3, and 4 are shown in Fig. 9. Similar to the kerosene test case, the total mixture results are extremely accurate for CA-DQMoM with three and four nodes, with a slight error observed for N = 2.
	Fig. 9. Evolution of droplet radius with time for CA-DQMoM (N = 2, 3, and 4) compared to the DCM for the 200 species test case.
	Delumping was performed following the CA-DQMoM solution and the discrete species results for the 200 hypothetical droplet components were compared to the full DCM. The agreement between the two models is excellent, as shown by the results for species vapor molar flow rates in Fig. 10. The two-norm relative error, defined in Eq. (46), was calculated for the 200 species vapor molar flow rates and is graphed in Fig. 11.
	/
	Fig. 10. Comparison of discrete species vapor molar flow rates calculated using CA-DQMoM with delumping (N = 3) and the DCM, at four times for the 200 species test case.
	Fig. 11. Two-norm relative error in discrete species vapor molar flow rates calculated using CA-DQMoM with delumping for the 200 species test case.
	The advantage of CA-DQMoM with delumping is the reduced computational time compared to a full DCM, without the loss of information on any discrete species. Fig. 12 shows the computational time for various models and numbers of species. For the test case in Section 3.1 with 36 components, CA-DQMoM (N = 3) with delumping is 35% more efficient than the DCM for the finite diffusivity model. As the number of species increases, the computational savings increases greatly, with savings of 62%, 80%, and 92% for 50, 100, and 200 species, respectively, using N = 3. The additional computational time required to perform delumping after a CTM solution is negligible, making it a very attractive method to solve for information on the discrete species.
	/
	Fig. 12. Comparison of computation times for CA-DQMoM with delumping and DCM for various number of species.
	3.3. CA-DQMoM with node approximation
	CA-DQMoM with node approximation, as described in Section 2.5, decreases the DAE system by N algebraic equations but is only valid when the boundary conditions are either pure air or a percentage of stoichiometric gaseous fuel. Fig. 13 graphs the total vapor molar flow rates calculated by CA-DQMoM with node approximation, CA-DQMoM, and the DCM for three different boundary conditions for a vaporizing kerosene droplet. The first and second graphs of Fig. 13 show the accuracy of the node approximation model when the boundary conditions are pure air or 30% stoichiometric kerosene gas. The third graph of Fig. 13 shows that for the unique boundary condition of 30% isohexane, which is the most volatile component of the droplet, the approximation of 𝐼¯𝑗≈𝐼𝑠,𝑗 is not valid and a full DQMoM model with 4N species equations must be used.
	Fig. 13. Evolution of total vapor molar flow rate with time for CA-DQMoM with node approximation (N = 4), CA-DQMoM (N = 4), and DCM for various boundary conditions.
	The same delumping procedure can be applied to the node approximation model. The species vapor molar flow rates for the test case of kerosene with pure air at the far-field boundary calculated by node approximation with delumping is compared to the results of the DCM in Fig. 14. Like the CA-DQMoM model, the delumped solution of the CA-DQMoM with node approximation shows excellent agreement with the DCM.
	Fig. 14. Comparison of discrete species vapor molar flow rates calculated using CA-DQMoM with node approximation and delumping (N = 3) and the DCM, at four times.
	The computational savings achieved by making the node approximation is shown in Fig. 15 for the 36 species kerosene model with a far-field gas composition of pure air. The node approximation eliminates N algebraic equations which results in a computational savings of about 30% for N = 3 and 32% for N = 4.
	/
	Fig. 15. Comparison of computation times for CA-DQMoM with delumping vs CA-DQMoM with node approximation and delumping for a kerosene droplet vaporizing in pure air.
	4. Conclusions
	A Coupled Algebraic-Direct Quadrature Method of Moments (CA-DQMoM) with delumping approach has been developed and applied to a vaporizing multicomponent droplet with finite liquid diffusivity. The model differs from previous QMoM and DQMoM approaches11,12,13,14 by employing two liquid distribution functions in order to account for liquid diffusion within the droplet represented by parabolic liquid mole fraction profiles. The CA-DQMoM model generates a system of DAEs comprised of 2N ODEs and 2N algebraic equations to solve for two sets of CA-DQMoM weights and nodes. After the CA-DQMoM solution, an inexpensive delumping technique14 was adapted for the finite diffusivity model in order to reconstruct the discrete species information. A supplemental node approximation model was also presented which simplified the CA-DQMoM model for increased computational efficiency and was shown to be appropriate for far-field boundary conditions of pure air or a percentage of stoichiometric gaseous fuel.
	The CA-DQMoM model was validated by comparing the delumped results with those of a finite diffusivity DCM. The accuracy of the method was shown to be excellent utilizing N = 3 nodes for any number of discrete species between 36 and 200, with increased accuracy using N = 4 nodes. The computationally difficult case studied by Laurent et al. for a kerosene droplet vaporizing in 30% isohexane gas12 was solved using CA-DQMoM with delumping, showing the robustness of the solution technique. The most important feature of the model was the minimal computation time required to obtain accurate information on all discrete species. The computational savings for droplets between 36 and 200 species was significant using CA-DQMoM (N = 3) with delumping compared to traditional DCM, with a computational savings of 92% for 200 species.
	The CA-DQMoM with delumping approach developed in this paper successfully extends continuous thermodynamics theory to droplets with finite liquid diffusion. The accuracy and computational efficiency achieved by this model, despite the added complexity of finite liquid diffusion, makes it well suited for implementation in combustion CFD simulations.
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