
Marquette University Marquette University 

e-Publications@Marquette e-Publications@Marquette 

Exercise Science Faculty Research and 
Publications Exercise Science, Department of 

8-2020 

Use of Self-Organizing Maps to Study Sex- and Speed-Dependent Use of Self-Organizing Maps to Study Sex- and Speed-Dependent 

Changes in Running Biomechanics Changes in Running Biomechanics 

Marwan Mahmoud A Aljohani 
Taibah University 

Kristof Kipp 
Marquette University, kristof.kipp@marquette.edu 

Follow this and additional works at: https://epublications.marquette.edu/exsci_fac 

Recommended Citation Recommended Citation 
Aljohani, Marwan Mahmoud A and Kipp, Kristof, "Use of Self-Organizing Maps to Study Sex- and Speed-
Dependent Changes in Running Biomechanics" (2020). Exercise Science Faculty Research and 
Publications. 183. 
https://epublications.marquette.edu/exsci_fac/183 

https://epublications.marquette.edu/
https://epublications.marquette.edu/exsci_fac
https://epublications.marquette.edu/exsci_fac
https://epublications.marquette.edu/exsci
https://epublications.marquette.edu/exsci_fac?utm_source=epublications.marquette.edu%2Fexsci_fac%2F183&utm_medium=PDF&utm_campaign=PDFCoverPages
https://epublications.marquette.edu/exsci_fac/183?utm_source=epublications.marquette.edu%2Fexsci_fac%2F183&utm_medium=PDF&utm_campaign=PDFCoverPages


 

Marquette University 

e-Publications@Marquette 
 

Physical Therapy Faculty Research and Publications/College of Health 
Sciences  

 

This paper is NOT THE PUBLISHED VERSION.  
Access the published version via the link in the citation below. 

 

Human Movement Science, Vol. 72, (2020): 102649. DOI. This article is © Elsevier and permission has 
been granted for this version to appear in e-Publications@Marquette. Elsevier does not grant 
permission for this article to be further copied/distributed or hosted elsewhere without the express 
permission from Elsevier.   

 

Use of Self-Organizing Maps to Study Sex- and 
Speed-Dependent Changes in Running 
Biomechanics 
 
Marwan Aljohani  
Department of Physical Therapy, Taibah University, Almadinah Almunawarah, Saudi Arabia 
Kristof Kipp  
Department of Physical Therapy, Marquette University, Milwaukee, WI 

Abstract 
Background 
Up to 79% of runners get injured every year, with higher rates of injuries occurring in females than males. A self-
organizing map (SOM) is a type of artificial neural network that can be used to inspect large datasets and study 
coordination patterns. The purpose of this study was to use an SOM to study the effects of sex and speed on 
biomechanical coordination patterns. 

https://doi.org/10.1016/j.humov.2020.102649
http://epublications.marquette.edu/


Method 
Thirty-two healthy runners ran on an instrumented treadmill at their long slow distance speed (LSD) and at 
speed 30% faster (LSD + 30%). Vertical ground reaction force (vGRF), vertical tibial acceleration, step 
parameters, electromyograms (EMG) of six lower limb muscles, and joint angles were collected across speeds. 
Rate of loading (ROL), tibial impact shock (TIS), coupling angle variability (CAV) and movement pattern 
proportions for hip/knee sagittal and hip frontal / knee sagittal plane couplings, peak EMG, step length, step 
rate, and knee and ankle joint angle at initial contact were used as an input for the SOM (37 variables). 

Results 
The analysis identified four clusters (i.e., running patterns). While males and females showed similar distribution 
across clusters at LSD (p = .36) and at LSD + 30% (p = .51), females did exhibit a significant (p = .03) shift between 
clusters as the speed increased from LSD to LSD + 30% whereas males did not (p = .17). The shift was associated 
with an increase in TIS, ROL, step length, step rate, vastus lateralis EMG, hip flexion/knee extension movement 
pattern proportion, and a decrease in ST EMG and CAVIC for hip sagittal/knee sagittal coupling. 

Conclusion 
As running speed increased there was a significant change in the coordination pattern in females, which was 
characterized by increases in several variables that are purported risk factors for running related injuries. 

Keywords 
Machine learning, Artificial neural network, Coordination, Injury, Sex differences 

1. Introduction 
Running is a common activity that is associated with most sports. There are about 52.3 million Americans who 
run on a regular basis (The Outdoor Foundation, 2017). Approximately 18 million runners participate in road 
races every year and about 60% of them are females (Running, 2017). Up to 79% of runners get injured every 
year, and the rate of injury has not changed in the past 30 years (Van Gent et al., 2007). Females may have a 
higher risk of developing running-related injuries (RRI), such as patellofemoral pain and tibial stress fracture than 
males (Taunton et al., 2002; Wright, Taylor, Ford, Siska, & Smoliga, 2015). However, there is still a lack of 
knowledge regarding sex-specific differences in etiology of RRI. Rate of loading (ROL) is considered one of the 
primary risk factors for RRI (Davis, Bowser, & Mullineaux, 2016; Zadpoor & Nikooyan, 2011). Healthy runners 
with high ROL had a higher risk of developing RRI compared to runners who had never been injured (Davis et al., 
2016). Furthermore, a meta-analysis suggested that ROL is higher in groups who developed tibial stress fracture 
compared to control groups (Zadpoor & Nikooyan, 2011). In addition, tibial impact shock (TIS) also appears to be 
highly associated with tibial stress fracture, and may also contribute to the development of RRI (Davis, Bowser, 
& Mullineaux, 2010; Milner, Ferber, Pollard, Hamill, & Davis, 2006). Although previous research has not found 
significant sex effects for ROL or TIS, these studies all used fixed absolute speeds, which may not represent the 
loading environment that runners actually experience as they run most of their mileage. (Keller et al., 
1996; Sinclair, Greenhalgh, Edmundson, Brooks, & Hobbs, 2012). Therefore, not much is known about sex 
differences at long slow distance speeds (LSD; i.e. the speed where they run most of their mileage). 

Previous research that investigated lower extremity muscle activation patterns during running found no 
significant differences in peak EMG of the tibialis anterior or medial gastrocnemius muscles between males and 
females (Mero & Komi, 1987). However, during running, landing and cutting maneuvers females demonstrate 
lower hamstring/quadriceps muscle activation ratios than males (Malinzak, Colby, Kirkendall, Yu, & Garrett, 
2001). Females typically exhibit higher quadriceps activation than males (i.e. quadriceps dominance), whereas 
males demonstrate higher hamstring activation compared to females (i.e. hamstring dominance). On the other 



hand, Chumanov and colleagues suggested that males and females demonstrated similar gluteus medius muscle 
activation (Chumanov, Wall-Scheffler, & Heiderscheit, 2008). However, they found that only females 
demonstrate greater increases in gluteus medius and vastus lateralis muscles EMG as running speed increases, 
which suggest an interaction effect between sex and running speed. The same authors further suggested that 
this increase in EMG of gluteus medius muscle may be due to the greater frontal plane motion in females during 
running (Chumanov et al., 2008). Again, however, these differences occurred at fixed absolute speed which may 
not represent the runner EMG profile as they ran most of their mileage. Therefore, there is a lack in 
understanding of the effect of sex and speed, and their interaction effect, on muscle activation patterns of lower 
extremity muscles. 

Movement variability has been associated with knee pain and the risk of RRI (Hamill, van Emmerik, Heiderscheit, 
& Li, 1999). For example, less movement variability between the hip and knee coupling in the sagittal plane is 
also associated with higher impact forces during running (Wang, Gu, Wang, Siao, & Chen, 2018). Previous 
research on the link between movement variability and risk of musculoskeletal injury further suggests that 
greater task demands reduce movement variability at hip and knee joints during drop landing (Nordin and 
Dufek, 2016, Nordin and Dufek, 2017). These studies manipulated the landing height and load to increase the 
difficulty of the task and found that increasing drop height and external load may decrease movement 
variability, which suggests that the greater task demand may constrain lower extremities movement variability 
and lead to repetitive load on musculoskeletal structures. There is limited evidence, however, about the effect 
of task demand and movement variability during running. One recent study, which used continuous relative 
phase variability, suggested that movement variability in the coupling between the hip and knee in the sagittal 
plane decreased as running speed increased (i.e. increased task demands) (Bailey, Silvernail, Dufek, Navalta, & 
Mercer, 2018). However, the effect of speed on movement patterns in sagittal plane and movement variability 
at other planes were not investigated yet. Also, the relationship of task demand and movement variability in 
relation to primary risk factors for RRI (i.e., impact kinetics) is not well understood. Vector coding (VC) is a 
measure that uses angle-angle plot to quantify the coupling angles and movement variability between two joints 
or segments (Heiderscheit, Hamill, & van Emmerik, 2002; Sparrow, Donovan, Van Emmerik, & Barry, 1987). In 
addition, VC allows for the quantification of movement patterns based on the motion direction of two joints, 
which may be useful to investigate whether the dominancy of a certain movement pattern is associated with RRI 
risk factors such as ROL and TIS (Chang, Van Emmerik, & Hamill, 2008). 

Given the large number of variables that are typically studied in biomechanics research, researchers have begun 
to use unsupervised learning techniques from machine learning to investigate and characterize a person's 
movement and coordination pattern. A self-organizing map (SOM) is a type of artificial neural network that can 
be used to investigate the non-linear nature of large dataset (Kohonen, 2001). SOMs can also be used to cluster 
and visualize large dataset and to categorize coordination patterns. SOMs have been used in many gait analysis, 
movement variability, and in investigating changes in coordination patterns (Bartlett, Lamb, O'Donovan, & 
Kennedy, 2014; Lamb, Mündermann, Bartlett, & Robins, 2011; Serrien et al., 2017). Using an SOM may be 
beneficial in categorizing and understanding coordination patterns during running. Given that there is a global 
lack of understanding about the influence of sex and running speed on impact forces, muscle activation, 
movement variability, and movement patterns, the purpose of this study was to use the SOM to investigate the 
effect of sex and speed on biomechanical coordination patterns during running. We hypothesized that as 
running speed increases (i.e. task demands), movement variability would decrease and impact kinetic would 
increase. 



2. Methods 
2.1. Participants 
Thirty-two healthy runners participated in this study (Table 1). Participants were excluded if they had a history 
of lower limb surgery or musculoskeletal / neuromuscular injury that prevented them from running for three 
consecutive training days in the past 6 months. In addition, all runners had to run at least 10 miles per week and 
report no pain while running. Inclusion and exclusion criteria were self-reported by the subjects. Participants 
signed an informed consent document approved by local's university's review board before data collection. 

Table 1. Demographic data (mean ± SD) for male and female participants.  
Males Females 

Age (years) 22 ± 3 22 ± 2 
Weekly Mileage (miles) 33 ± 15 31 ± 16 
Weight (kg) 69 ± 9 59 ± 7 
Height (m) 1.76 ± 0.07 1.65 ± 0.05 
LSD Speed (m/s) 3.19 ± 0.43 2.93 ± 0.42 
ROL (N*kg−1) 213 ± 38 207 ± 43 
TIS (g) 4.9 ± 1.2 5.1 ± 1.7 

 
2.2. Data collection 
Lower extremity kinematics were collected with a 14-camera motion analysis system (Vicon motion system Ltd) 
via twenty-three reflective markers. Markers were attached with a double sided adhesive tape (Tape2, Biopac 
Systems, Inc., Goleta, CA) to C7, sternum, T10, bilaterally to iliac crest, ASIS, PSIS, greater trochanters, lateral and 
medial epicondyles of the knee, lateral and medial malleoli of the ankle, 1st and 5th metatarsal of the foot 
(Geiser, O'connor, & Earl, 2010). Additionally, four rigid plates with four markers each were taped to the thigh 
and shank with elastic tape. Two rigid plates with three markers each were attached to the posterior side of the 
shoes with adhesive tape. A tri-axial accelerometer (Delsys, Natick, MA) was attached to the anteriomedial 
aspect of distal tibia and secured with athletic tape to reduce movement. Electromyography (EMG) sensors 
(Delsys, Natick, MA) were placed over the muscle belly of the gluteus medius (GM), vastus lateralis (VL), biceps 
femoris (BF), semitendinosus (ST), medial gastrocnemius (MG), and tibialis anterior (TA). All EMG sensors were 
attached to the skin parallel to the muscle fibers according to the SENIAM recommendations. The skin was 
shaved and cleaned with isopropyl wipes prior to the attachment of all EMG sensors. 

Participants performed an 11-min running protocol on an instrumented treadmill (SciFit, Noraxon, Scottsdale, 
AZ). All participants started with a five-minute warm-up at their own speed. They were first asked to be at their 
long slow distance speed (LSD) at the end of warm-up. After two minutes of running at the LSD speed, the speed 
increased by 15% (LSD + 15%) for two minutes and again by an additional 15% (LSD + 30%) for another two 
minutes. Thirty seconds of data were collected after one minute of running at each speed. Vertical ground 
reaction forces (vGRF) were collected by an instrumented treadmill. Kinematic and kinetic data were collected at 
100 Hz. Acceleration and EMG data were collected at 148 and 1000 Hz, respectively. Kinematic, kinetic, 
acceleration and EMG data were synchronously collected by Vicon Nexus 1.8.2. Kinetic data were exported from 
Noraxon (Noraxon, Scottsdale, AZ). 

2.3. Data processing 
A custom MATLAB (The Mathworks, Natick, MA, USA) program was used to filter and process kinematic and 
kinetic data. A fourth-order low-pass Butterworth filter was used to filter kinematic data at a cut frequency of 
8 Hz. Visual3D (C-Motion, Inc., Rockville, MD) was used to process markers position data. Mid-point between 



medial and lateral joint markers was used to locate the knee and ankle joint center. The hip joint center was 
defined as 25% of the distance between both greater trochanters in the medial direction from the closest 
greater trochanter marker. We used joint-based coordinate system approach to calculate hip, knee and ankle 
joint angles (Geiser et al., 2010; Grood & Suntay, 1983). Knee and ankle joints angle and foot segment angle at 
initial contact was also calculated. Initial contact was defined as the point when vGRF >10 N and toe off when 
vGRF <10 N. 

Fourth-order low-pass Butterworth filters with cut-off frequencies of 60 and 13 Hz were used to filter 
acceleration and kinetic data, respectively. TIS was calculated as the peak vertical tibial acceleration during the 
stance phase. ROL was calculated as peak derivative of the vGRF. Raw EMG signals were detrended, rectified, 
and filtered with a bandpass filter of 40–400 Hz. The EMG signals were normalized to the peak of muscles 
activity during treadmill walking at 1.16 m/s. The peak amplitude of GM, BF, ST, VL, TA, MG muscles of ten 
strides were extracted for analysis. 

The coupling angles (CA) were calculated for the hip sagittal / knee sagittal (HSKS) and hip frontal / knee sagittal 
(HFKS) (Fig. 1; Eq. 1) (Hamill, Haddad, & McDermott, 2000; Sparrow et al., 1987).Yi and xi represent the distal 
and proximal joints, respectively. Where t indicates the point of time during the stride cycle or the stance cycle, 
and i = 1…, n for number of trials. CA were corrected to obtain a value between 0°-360° (Eq2). Because of the 
directional nature of the CA, circular statistics were used to calculate the mean CA on the horizontal axisx¯i and 
vertical axis (𝑦𝑦�𝑖𝑖 (Eq3 and 4) (Batschelet, 1981). The length of CA was calculated according to Eq. 5, and coupling 
angle variability (CAV) was calculated according to Eq. 6. 

(1) 

𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡 = 𝑡𝑡𝑡𝑡𝑡𝑡−1 �
𝑦𝑦𝑖𝑖,𝑡𝑡+1 − 𝑦𝑦𝑖𝑖,𝑡𝑡
𝑥𝑥𝑖𝑖,𝑡𝑡+1 − 𝑥𝑥𝑖𝑖,𝑡𝑡

�
180
𝜋𝜋  

(2) 

𝐶𝐶𝐶𝐶 = �CA + 360CA < 0
CACA ≥ 0  

(3) 

𝑥̅𝑥𝑖𝑖,𝑡𝑡 =
1
𝑛𝑛� cos𝐶𝐶𝐶𝐶

𝑛𝑛

𝑡𝑡=1

 

(4) 

𝑦𝑦�𝑖𝑖,𝑡𝑡 =
1
𝑛𝑛� sin𝐶𝐶𝐶𝐶

𝑛𝑛

𝑡𝑡=1

 

(5) 

𝑟̅𝑟𝑖𝑖,𝑡𝑡 = �𝑥̅𝑥𝑖𝑖,𝑡𝑡2 + 𝑦𝑦�𝑖𝑖,𝑡𝑡2  

(6) 



𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 = �2. (1 − 𝑟̅𝑟𝑖𝑖)
180
𝜋𝜋  

 
Fig. 1. Angle–angle plot of the hip and knee joints in the sagittal plane, the arrows indicate the direction from 
the beginning of the gait cycle to the end. 
 

CAV was calculated over the full stride cycle (CAVSC), initial contact (CAVIC), mid-stance (CAVMS), and late stance 
(CAVLS) for each of the two couplings. Movement patterns were classified into one of eight distinct patterns 
based on the CA values (Fig. 2) (Chang et al., 2008). 

 
Fig. 2. Classification of movement pattern proportions for hip sagittal /knee sagittal coupling (top row) and hip 
frontal/knee sagittal coupling (bottom row). 
 



Processed kinematic, kinetic, EMG, and CAV data were extracted from the first ten strides during the 30 s 
interval when data were collected at each running speed. The average of ten strides of each variables (i.e. 
discrete variables) was then calculated for LSD and LSD + 30%. 

2.4. Self-organizing map 
While SOM input variables may include time-series data (Bartlett et al., 2014; Lamb et al., 2011; Lamb, Bartlett, 
Robins, & Kennedy, 2008), the current study used discrete variables as inputs for the SOM (Hébert-Losier, Lamb, 
& Beaven, 2020; Serrien et al., 2017). Variables for two different speeds (i.e. LSD and LSD + 30%) from 32 
participants were used. Therefore a 64*37 dataset was used as input to the SOM ([2 speeds × 32 runners] * 37 
variables). The rows of this input matrix represent subject data for the two different speeds. The columns of this 
input matrix represent all kinematic and kinetic variables (i.e., ROL, TIS, CAV variables [CAVIC, CAVMS, CAVLS, 
CAVSC], eight movement patterns for each coupling, EMG peak amplitudes of GM, BF, ST, VL, TA, MG, step 
length, step rate, foot segment and knee joint angles at initial contact). All input variables were normalized (i.e., 
linearly scaled) to range between zero and one, before used as input to the SOM. 

The SOM consists m x n grid of output nodes, which are connected to each input vector. Each output node has 
the same dimensionality as the input vectors (i.e., 1*37) but is initialized with random data. The input data are 
mapped onto the SOM based on the Euclidian distance between the input vector and the best matching output 
node. Similar input vectors are then grouped together based on a neighborhood function. The weight planes of 
the SOM were used to visualize the non-linear relationship between the biomechanical variables via the color 
gradients of the z-score color scale, and the hit histograms were used to map all trials onto the SOM. Lastly, a k-
means algorithm was used to create clusters of similar groups of input vectors (i.e., individual trials) on the SOM. 
The SOM tool box was used to initialize and train the SOM map with MATLAB R2017b (Vesanto, Himberg, 
Alhoniemi, & Parhankangas, 2000). The SOM training parameters are shown in Table 2. 

Table 2. SOM training parameters. 
SOM parameter option Selected SOM parameter 
Normalization Range (0,1) 
Initialization Linear (PCA) 
Lattice Hexagonal 
Neighborhood function Gaussian 
Training algorithm Batch 
Map size 7×6 
Quantization error 0.974 
Topological error 0.001 
Combined error 1.271 

 
2.5. Statistical analysis of SOM 
The Davis-Bouldin index was calculated to ascertain the appropriate number of clusters by calculating the lowest 
ratio of the average within cluster to the average between clusters (Davies & Bouldin, 1979). Individual trials 
were mapped onto the SOM, assigned to clusters, and used to construct contingency tables for all trials from 
males and females at each speed (Table 3). The contingency table can illustrate if an individual shifts between 
clusters and condition, because each cell shows the number of participants at each cluster for LSD and 
LSD + 30%. The Stuart-Maxwell Test, a non-parametric marginal homogeneity test for nominal data, was used to 
quantity the shift trials from males and females across clusters as running speed increased. In addition, Fisher's 
Exact Test was used to quantify differences in the number of trials of males and females across clusters. 

Table 3. Contingency tables for males (left) and females (right) counts. 



Males  LSD + 30%     Females  LSD + 30%      
 1 2 3 4 Total 

 
 1 2 3 4 Total 

LSD 1 2 1 2 0 5 LSD 1 2 0 1 0 3  
2 1 1 0 3 5 

 
2 2 1 3 3 9  

3 0 0 1 0 1 
 

3 0 0 3 0 3  
4 0 0 0 4 4 

 
4 0 0 0 2 2  

Total 3 2 3 7 
  

Total 4 1 7 5 
 

3. Results 
The Davis-Bouldin index showed a best-fit four-cluster solution for the SOM (Fig. 3). The Stuart-Maxwell Test 
indicated a significant difference in trial distributions between cluster for females (p = .03) but not for males 
(p = .17) as the speed increased from LSD to LSD + 30% (Table 3). Closer inspection of the contingency table 
showed that a large portion of trials from females shifted from clusters 1 and 2 to cluster 3 and 4 as the speed 
increased from LSD to LSD + 30%. Fisher's Exact Test indicated no significant differences in the distribution of 
trials across clusters for males and females at LSD (p = .36) and at LSD + 30% (p = .51) (Fig. 4, Table 4). The color 
gradients of the weight planes and normalized scores of each variable illustrate the biomechanical 
characteristics of the four clusters on the SOM (Fig. 5). 

 
Fig. 3. SOM with the four-cluster solution (yellow = cluster 1 (top left), cyan = cluster 2 (top right), red = cluster 3 
(bottom left), blue = cluster 4 (bottom right)) (left column). Hit histograms for long slow distance speed (LSD) 
(middle column) and LSD + 30% (right column). (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 

 
Fig. 4. Hit histograms for males (top row) and females (bottom row) at long slow distance speed (LSD) (left 
column) and LSD + 30% speed (right column). 
 

Table 4. Data for Fisher's exact test for LSD and LSD + 30% speeds. 



 
Cluster     

Speed 1 2 3 4 Total 
LSD 

     

Males 5 5 1 4 15 
Females 3 9 3 2 17 
Total 8 14 4 6 32 
LSD + 30% 

     

Males 3 2 3 7 15 
Females 4 1 7 5 17 
Total 7 3 10 12 32 

 

 
Fig. 5. Weight planes for SOM input variables. NOTE: colorbar reflects z-score for each input variable. ROL = Rate 
of loading, TIS = tibial impact shock, StepRate = step rate, StepLen = step length, HSKS_CAV_IC = hip 
sagittal/knee sagittal coupling angle variability for initial contact, HSKS = hip sagittal/knee sagittal, HFKE = hip 
flexion/knee extension pattern, VastLat = vastus lateralis, and SemTen = semitendinosus. 

4. Discussion 
The purpose of this study was to use SOM to investigate the effect of sex and speed on biomechanical 
coordination patterns. The k-means clustering results suggested that there were four types of coordination 
patterns (i.e., clusters). While the Fisher's Exact Test showed that both males and females displayed similar 
types of coordination patterns across speeds, the Stuart-Maxwell test indicated that females demonstrated a 
significant shift in coordination patterns as the speed increased from LSD to LSD + 30%. Our hypothesis, that 
there would be a significant change in coordination patterns as speed increased was therefore supported for 
female runners but not for male runners. However, there was no significant difference in coordination patterns 
between males and females. In addition, our hypothesis that there would be a speed-dependent reduction in 
movement variability, which would be associated with increases in impact kinetic, was supported for both joint 
couplings. 

The main finding from this study was that females changed their coordination patterns as the running speed 
increased. During running at LSD speeds, the hit histograms showed that most trials mapped into cluster 1 and 2 
(Fig. 3). However, as the speed increased to LSD + 30% the hit histograms and distributions in the contingency 
table showed a shifting of trials into cluster 3 and 4 (Fig. 3, Table 3). For example, at LSD speeds a total of nine 
female runners clustered into cluster 2, as the speed increased six subjects shifted into cluster 3 and 4, two 
subjects shifted into cluster 1 and only one subject remained in cluster 2. Although the speed-dependent shift 
between clusters was significant for females only, Fisher's Exact Test and visual inspection of the hit histograms 
showed that there were no clear differences in number of trials in any clusters between males and females (Fig. 
4, Table 4), which may suggest that differences in coordination patterns between males and females are not 
well defined at either of the running speeds in this study. 

The weight planes show how the z-score values of each variable mapped onto the SOM, and thus also show the 
relationship between variables across the four types of coordination patterns (Fig. 5). The weight plane figures 



help qualitatively identify the characteristic of each coordination patterns, because the separation of clusters is 
based on the similarity of variables within clusters and the difference of variables between clusters. For 
example, step rate may have a strong influence on separating cluster 3 from the other three clusters, because it 
has high to moderate (between ~0.5 and 1) scores values in cluster 3, whereas in other clusters the scores are 
moderate to low (between ~0 and ~ 0.5). Similarly, ROL may also influence the separation of cluster 3 because 
the weight planes show high to moderate (between ~0.3 and 1) scores values in cluster 3 but very low to 
moderate (between ~0 and ~ 0.3) scores in the other clusters. 

Consideration of multiple variables across clusters in light of the speed-dependent changes in nominal frequency 
distribution provides insight into subsequent changes in coordination patterns from a multi-variate perspective. 
Clusters 1 and 2 were characterized by low to moderate values of step rate, ROL, TIS, and moderate to high 
HSKS_CAV_IC. However, cluster 1 was also characterized by low to high value of VL EMG, and moderate to high 
HSKS_HFKE. On the other hand, cluster 2 was characterized by low VL EMG. Visual inspection of the hit 
histograms for LSD and LSD + 30% supports the statistical findings and showed that there was a speed-
dependent shift of trials for the majority of females into cluster 3, which was characterized by high ROL, TIS, VL 
EMG, step length and step rate (Fig. 5). In addition, the ST EMG and the CAVIC for the hip sagittal / knee sagittal 
coupling in cluster 3 were relatively low, whereas movement patterns proportion of hip flexion/knee extension 
were high (Fig. 5). Moreover, some female runners shifted toward cluster 4, which was characterized by low 
ROL, moderate to low TIS, high to low VL EMG, and high to moderate ST EMG. 

The biomechanical characteristics captured by cluster 3 may indicate that as speed increased, the majority of 
females shifted toward a coordination pattern that was characterized by higher impact kinetics, higher VL EMG, 
longer steps, greater step rate, greater hip flexion/knee extension proportion and lower movement variability. 
The speed effect on ROL and TIS in this study is consistent with previous research where ROL and TIS increased 
as the running speed increased (Keller et al., 1996; Sheerin, Besier, & Reid, 2018). It is likely that the speed-
dependent changes in females toward higher ROL and TIS were the result of increases in step length, as 
suggested by previous research (Derrick, Hamill, & Caldwell, 1998; Stergiou, Bates, & Kurz, 2003). The current 
findings further suggest that the speed-related increase in step length may be associated with an increase in the 
proportion of hip flexion/knee extension movement pattern. In addition, this speed-dependent increase in ROL 
can be explained by the increase activation of the VL muscle activation and a decrease in ST muscle activation in 
cluster 3. This result is in agreement with previous research that found quadriceps dominant neuromuscular 
activation was associated with stiffer landings and greater impact forces. (Williams III, Davis, Scholz, Hamill, & 
Buchanan, 2004). 

The reduction in movement variability as speed increased may occur as a result of the increase in task demands 
(i.e. increasing running speed). In general, as task difficulty increases, degrees of freedom decrease to simplify 
the task and produce controllable movement pattern. The speed-dependent reduction in movement variability 
is consistent with Bailey and colleagues' study in which they suggested that the variability of the continuous 
relative phase of the hip sagittal / knee sagittal coupling decreased as speed increased (Bailey et al., 2018). In 
addition, the reduction of movement variability with increases in task demand were also found in other tasks, 
such as drop landings (Nordin and Dufek, 2016, Nordin and Dufek, 2017). For example, one study found that the 
coefficient of variance of peak hip and knee sagittal plane angles during drop landing decreased as the height of 
drop landings increased (Nordin & Dufek, 2017). In addition, another study found that movement variability 
reduced as drop height and external load increased (Nordin & Dufek, 2016). The results of the current study are 
contrary to the results reported by (Floría, Sánchez-Sixto, Harrison, & Ferber, 2019) who reported that vector 
coding variability of the hip sagittal/knee sagittal plane coupling does not change as the running speed 
increases. This discrepancy could be explained by the percentage of the speed increase, (Floría et al., 2019) used 
15% increase, in contrast to the 30% increase in the current study. Therefore, the change in movement 



variability may depend on the magnitude of the increase in the running speed. Given that low movement 
variability is associated with RRI (Hamill et al., 1999; Heiderscheit et al., 2002; Miller, Meardon, Derrick, & 
Gillette, 2008), consistently training at high running speed may increase that risk. 

Results from the current study further suggest that the reduction in movement variability was associated with 
an increase in step rate. This result is in agreement with previous that found movement variability of hip sagittal 
/ knee sagittal coupling decreased as step rate increased (Hafer, Freedman Silvernail, Hillstrom, & Boyer, 2016). 
These results provide interesting context for gait retraining studies that use step rate modulation to reduce 
impact kinetics, because these results suggest an increase in running speed and step rate reduce the flexibility of 
motor system and its ability to attenuate impact kinetic as observed from the speed-dependent increases in ROL 
and TIS. Previous research has also found a negative correlation between the movement variability of sagittal 
plane coupling and the first (i.e. impact) peak of the GRF (Wang et al., 2018). Combined with previous findings 
the results of the current study thus provide support for a link between movement variability and impact 
kinetics, and indicates that an optimal amount of variability is necessary to reduce the cumulative loading of 
tissue via mitigating the magnitudes of well-established kinetic risk factors of RRI. 

One of the limitations in this study is that the order of the running speed was not randomized. This was a 
limitation that was necessary to implement since it would be difficult, and potentially unsafe, to achieve high 
running speed without first running at lower speeds. Although the current and previous research suggests that 
low movement variability may lead to RRI (Hamill, Haddad, Milner, & Davis, 2005; Miller et al., 2008), 
prospective studies are needed to investigate definitive cause and effect relationships between movement 
variability and overuse injuries. Further, while the results from the current study suggest that there was a 
significant shift toward lower movement variability as running speed increased, the likelihood of runners 
eliminating faster runs from their training is low and may not represent a feasible solution for decreasing the 
incidence of RRI. Future research should therefore focus on identifying interventions that mitigate the relevant 
at-risk biomechanical characteristics while running at faster than preferred speeds. Moreover, the results of the 
current study are based on data from healthy runners. Therefore, the results of this study may not represent the 
changes in coordination patterns for individuals with RRI. Further studies should include runners with RRI and 
investigate the effects of sex and speed on movement variability and risk factors for RRI in those populations. 

5. Conclusion 
The main finding of this study was that females exhibited a significant change in coordination pattern as they 
increased their running speeds from LSD to LSD + 30%. The coordination pattern at the faster speed was 
characterized by greater ROL, TIS, step rate, longer step length, and less movement variability, which collectively 
suggest that females may be exposed to greater risk of developing RRI if running at faster than preferred speeds. 
Given that eliminating speed training is likely not a feasible solution to decreasing the incidence of RRI, future 
research should focus on identifying interventions that mitigate the relevant at-risk biomechanical 
characteristics at faster than preferred speeds. 
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