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Abstract 
Many computer-aided diagnosis (CAD) methods, including 2D and 3D approaches, have been proposed for 
solitary pulmonary nodules (SPNs). However, the detection and diagnosis of SPNs remain challenging in many 
clinical circumstances. One goal of this work is to investigate the relative diagnostic accuracy of 2D and 3D 
methods. An additional goal is to develop a two-stage approach that combines the simplicity of 2D and the 
accuracy of 3D methods. The experimental results show statistically significant differences between the 
diagnostic accuracy of 2D and 3D methods. The results also show that with a very minor drop in diagnostic 
performance the two-stage approach can significantly reduce the number of nodules needed to be processed by 
the 3D method, streamlining the computational demand. 

Keywords 
Computer-aided diagnosis, Contrast enhancement, Lung cancer, Solitary pulmonary nodule, Lung nodule, 
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1. Introduction 
Lung cancer is the leading cause of cancer death in many regions of the world [1]. Detecting and diagnosing 
solitary pulmonary nodules (SPNs), the most common manifestation of lung cancer, are critical since early 
identification of malignant nodules is crucial to the chance for successful treatment [2]. Currently, computed 
tomography (CT), in particular spiral CT with contrast enhancement, is the imaging modality of choice for SPNs 
[3]. Previous studies have shown that making an accurate diagnosis based on CT data alone is often a very 
difficult task [4], [5]. As a result, many computer-aided diagnosis (CAD) methods have been proposed for SPNs 
[6], [7]. Based on the dimension of measurements, these CAD methods can be divided into two categories: 2D 
and 3D methods. 
 
In a 2D CAD method, features that are used to differentiate benign and malignant nodules are generated from a 
representative (typically the largest) slice of the nodule [4], [8], [9], [10], [11]. This eliminates the requirement of 
processing the entire 3D nodule volume and significantly reduces the operational complexity and computational 
cost that have hindered the application of 3D methods. Another factor that has hampered the development of 
3D CAD methods is a limitation of early CT hardware. With single detector row, early CT scanners often generate 
highly anisotropic image data. For these images, the resolution in the axial dimension was typically 10–20 times 
the size of the in-plane resolution, making accurate 3D nodule modeling very difficult. 
 
With the introduction of multidetector row CT (MDCT), which significantly improves the resolution and 
acquisition time, scanning the thorax with approximately isotropic 3D resolution without significant breathing 
artifacts is now possible [12]. Therefore, by employing features that characterize the entire nodule, 3D CAD 
methods have also been proposed [13], [14], [15], [16], [17], [18], [19]. The addition of the extra dimension 
dramatically increases the operational complexity and computational cost. This is particularly true for nodule 
segmentation, considered to be one of the most difficult tasks in analyzing SPN images [20], [21], [22], [23]. The 
major challenge for 3D segmentation is that nodules are frequently attached to other structures, such as the 
local pulmonary vasculature and the pleural surface adjoining the thoracic wall. A fully automatic segmentation 
method that can separate a nodule from such structures is not available. As a result, laborious, slice-by-slice, 
manual or semi-automatic segmentation operations are often required. 
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These additional costs required by the 3D CAD methods maybe worthwhile if the 3D method can provide better 
diagnostic performance than the 2D method. To the best of our knowledge, this idea has never been studied 
systematically. Therefore, a first goal of this work is to compare the diagnostic performance of 2D and 3D CAD 
methods. Considering the operational complexity and the computational cost of the 3D method, a second goal is 
to develop a criterion to determine which nodules can be diagnosed reliably by the 2D method to minimize the 
requirement for processing using a 3D method. 

2. Methodologies 
The computer-aided system used this work is adapted from the work of Yeh et al. [19]. In particular, after using 
a segmentation method to acquire the 3D nodule volume, features that are used to discriminate the benign and 
malignant nodules are generated. The procedure is described in Sections 2.2 Morphometric CT features, 2.3 
Perfusion CT features. The following Section 2.1 first introduces the basic methodologies behind these features. 
 

2.1. Perfusion CT and morphometric CT methods 
CAD systems for SPNs can be divided into two categories, perfusion CT and morphometric CT methods, based on 
the nature of features. The diagnostic decisions made by the morphometric CT methods are based on the 
morphological features, such as shape, size, texture, growth rate and degree of calcification [4], [11], [13], [15], 
[24]. 
 
Perfusion CT methods are motivated by the observation that the growth and spread of cancers depend on their 
ability to induce formation of nearby blood vessels, called angiogenesis [25]. The development of induced new 
vessels leads to physiological changes, especially increased perfusion, blood volume and capillary permeability 
[26]. Therefore, the focus of the perfusion CT study is to assess how the CT attenuation value of the nodule 
changes with time after the injection of a contrast medium. The dynamic behavior can be uncovered by 
determining attenuation within nodules at several time points after injection of the contrast medium [27]. In 
comparing the baseline scan with the post-contrast scans, it has been found that benign nodules tend to be 
enhanced substantially less than the malignant nodules [9], [10], [28]. Several CAD methods exploit this 
enhancement property [9], [10], [16], [28], [29], [30]. 
 
A direct extension of the morphometric CT and perfusion CT based CAD methods is to build a system that 
employs features of both methods. This design idea has proved to be effective [16], [17], and thus the CAD 
system adopted in this work employs both morphometric and perfusion CT features. The morphometric features 
used in this study are described in the following subsections. 
 

2.2. Morphometric CT features 
One of the drawbacks of some of the previously proposed morphometric CT methods is their dependence on 
human judgments, such as classifying nodules into one of several predefined shapes [31]. To eliminate the 
dependence on such subjective decisions, this work uses the 3D moment shape descriptors proposed by Sadjadi 
and Hall [32] to characterize the morphology of the nodules. This set of 3D moment shape descriptors has 
several advantages. First, the descriptors can be computed objectively and automatically from the image data. 
Second, they can be applied to 3D objects without constraints on the object's 3D topology [33]. Third, the 3D 
moments are invariant to translational shifts, changes of scale and rotations of the image. 
 
To compute 3D moment invariants, the nodule is first represented by the binary image function: 
 

𝑂𝑂(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = �
1 (𝑥𝑥,𝑦𝑦, 𝑧𝑧) ∈ 𝑅𝑅
0 (𝑥𝑥,𝑦𝑦, 𝑧𝑧) ∉ 𝑅𝑅   (1) 
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where R represents the selected nodule region. For a given set of integers p, q and r, with n = 1 + (p + q + r) / 3, 
the nth order 3D moment μpqr can be computed from 
 

𝜇𝜇𝑝𝑝𝑝𝑝𝑝𝑝 = � � � 𝑂𝑂(𝑥𝑥,𝑦𝑦, 𝑧𝑧)(𝑥𝑥 − 𝑥𝑥0)𝑝𝑝(𝑦𝑦 − 𝑦𝑦0)𝑝𝑝(𝑧𝑧 − 𝑧𝑧0)𝑝𝑝𝐼𝐼𝑧𝑧
𝑧𝑧=1

𝐼𝐼𝑌𝑌

𝑦𝑦=1

𝐼𝐼𝑋𝑋

𝑥𝑥=1

  (2) 

 
where (x0, y0, z0) is the centroid of the nodule and IX, IY, IZ denote the three dimensional image size for the 
selected nodule region. The corresponding normalized 3D central moments are given by 
 

𝜂𝜂𝑝𝑝𝑝𝑝𝑝𝑝 = 𝜇𝜇𝑞𝑞𝑞𝑞𝑞𝑞
(𝜇𝜇000)𝑛𝑛

  (3) 

 
With the normalized 3D central moments, the second order moment invariants derived by Sadjadi are written as 
 

𝑀𝑀21 = 𝜂𝜂200 + 𝜂𝜂020 + 𝜂𝜂002  (4) 
 

𝑀𝑀22 = 𝜂𝜂200𝜂𝜂020 + 𝜂𝜂200𝜂𝜂002 + 𝜂𝜂020𝜂𝜂002 − 𝜂𝜂1102 − 𝜂𝜂1012 − 𝜂𝜂0112   (5) 
 

𝑀𝑀23 = 𝜂𝜂200𝜂𝜂020𝜂𝜂002 + 2𝜂𝜂110𝜂𝜂101𝜂𝜂011 − 𝜂𝜂002𝜂𝜂1102 − 𝜂𝜂020𝜂𝜂1012 − 𝜂𝜂200𝜂𝜂0112   (6) 
 
To expand the set of 3D moment shape descriptors, higher order 3D moment invariants, including third to sixth 
order moments, have also been developed [34]. However, since higher order moments are more sensitive to 
noise than lower order moments, this work relies on the three second order 3D moment shape descriptors 
proposed by Sadjadi and Hall [32]. 
 

2.3. Perfusion CT features 
In applying the perfusion CT methods, the time period after the injection of the contrast material was divided 
roughly into two phases [26]: the first pass phase and the delay imagining phase. During the first pass phase, the 
contrast material is predominantly intravascular. CT scans are typically performed at 20, 40 and 60 s after the 
injection of the contrast material and used to estimate perfusion and blood volume. During the delay imaging 
phase, the rate of contrast material passing between vascular and extravascular spaces is bi-directionally 
balanced. An important property of this phase is that tumors are often characterized by significant return of the 
contrast material into the intravascular space during the first 2 min after the injection [27]. To identify this 
property, CT scans are taken at 90, 120 and 180 s after the injection. A sequence of post-contrast nodule images 
is shown in Fig. 1 to demonstrate this process. 
 

 

Fig. 1. Serial images with dynamic enhancement curve for a malignant nodule. 
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In applying the perfusion CT methods, the time enhancement value TE(t) is defined as 
 

TE(𝑡𝑡) = 𝐻𝐻(𝑡𝑡) −𝐻𝐻(0)  (7) 
 
where H(t) is the attenuation value at time t. By taking t = 0 as the time of injection, H(0) represents the pre-
enhancement attenuation value obtained by the baseline scan. 
 
Typically, the attenuation value H(t) is defined as the average CT value of all the nodule voxels at time t. 
However, in computing H(t), one modification is employed to improve the flexibility of the perfusion CT method 
[19]. In computing the TE(t), only the brightest r% of the non-calcified voxels are included. Introducing this 
inclusion ratio r has several advantages. First, by adjusting the value of r, a series of features can be generated to 
help classify the nodules. Second, this operation may alleviate the partial volume effect and thus improve the 
image quality [9], [28]. Third, in responding to contrast material, malignant nodules tend to enhance more than 
the benign nodules. By comparing only the brightest subset of the nodule voxels, the difference may be 
amplified and nodule classification can become easier. Finally, with the addition of this inclusion ratio r, the 
perfusion CT features employed in this work are denoted as TEr(t). 
 

2.4. Classification methods 
To differentiate the nodules, the proposed CAD methods use a neural network ensemble to perform 
classification [35]. With the multilayered perceptron (MLP) as the base classifier, the neural ensembles are 
designed by the Bagging method [36]. Several studies have shown that, compared with the standard MLP 
training method, Bagging can significantly improve the classification accuracy and is also robust to noise [37], 
[38]. 
 
To provide reliable estimates for the diagnostic performance of the tested CAD methods, this work divides the 
dataset into training and testing subsets with a 9:1 ratio. The Bagging method uses the training subset to adjust 
the connection weights of the MLPs. The testing subset is used to estimate the generalization accuracy of the 
classifiers. For the sake of reliability, the training process was repeated 2500 times using randomly partitioned 
training and testing subsets. The means of the classification accuracy, sensitivity, specificity, positive predict 
value (PPV), negative predict value (NPV), and area under the receiver operating characteristic curve (AUC) are 
metrics to characterize the diagnostic performance of the tested CAD methods. 
 
In addition to the direct applications of the 2D and 3D methods, this work also introduces a conceptually simple 
two-stage approach to combine the simplicity of 2D and the accuracy of 3D methods. The 2D and the 3D 
methods are applied at the first and second stages, respectively. The basic idea of this approach is to try to 
reliably classify most of the nodules at the first stage using the 2D method. Then only a small portion of nodules 
requires the second stage processing of the 3D method. The challenge is in determining which nodules are sent 
to the second stage. This difficulty is resolved by taking advantage of the capability of the MLPs in approximating 
posterior probabilities [39]. 
 
For the nodule classification problem considered in this study, a MLP is trained to approximate the posterior 
probabilities by first setting the number of the neural network outputs to two and by specifying the target 
outputs to be [1,0] and [0,1] for benign and malignant nodules, respectively. After defining the error as the 
difference between target and actual outputs and using the mean square error as the training error to be 
minimized, the first and second outputs of the neural network are trained to approximate the posterior 
probabilities of C1 (the class of benign nodules) and C2 (the class of malignant nodules) nodules, respectively. In 
particular, by denoting x as the neural network input vector and signifying the two neural network outputs as 
d1(x) and d2(x), 
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𝑑𝑑1(𝑥𝑥) ≈ 𝑃𝑃(𝐶𝐶1|𝑥𝑥)  (8) 
 

𝑑𝑑2(𝑥𝑥) ≈ 𝑃𝑃(𝐶𝐶2|𝑥𝑥)  (9) 
 
According to Bayes’ rule for minimum error, the nodule represented by x is assigned to C1 if 
 

𝑃𝑃(𝐶𝐶1|𝑥𝑥) > 𝑃𝑃(𝐶𝐶2|𝑥𝑥)  (10) 
 
Otherwise, the nodule is classified into C2. As the difference between these two posterior probabilities becomes 
smaller, the classification result will be more sensitive to a neural network training error and thus become less 
reliable. Based on this property, a nodule is sent to the second stage for further processing only when the MLP 
outputs used in the first stage satisfy the inequality: 
 

𝑑𝑑1(𝑥𝑥) − 𝑑𝑑2(𝑥𝑥)| ≤ 𝛿𝛿  (11) 
 
where δ represents a threshold value determined experimentally to balance the efficiency/cost tradeoff of the 
proposed two-stage approach. Due to the unavailability of the posterior probabilities, in the above inequality, 
the real posterior probabilities are replaced by the neural network outputs. 
 
The effectiveness of this two-stage approach in improving the computational efficiency of the CAD methods can 
be characterized by the ratio of the number of nodules that requires only first stage processing to the total 
number of nodules. Hereafter this ratio is referred to as the efficiency index (EI). A basic design goal of the 
proposed two-stage method is to maximize the EI while preserving the diagnostic performances of the 3D 
method as much as possible. Experimental results are reported in the following section to illustrate the design 
process. 

3. Experiments & results 
3.1. Materials 
From April 2005 to January 2007, a total of 89 patients (58 men and 31 women; age range 30–85 years; mean 
age 64.5 years ± standard deviation 14.0 years) with SPN based on chest radiography underwent perfusion chest 
CT. Images were obtained using a 16-detector row CT scanner (Siemens Sensation 16). Scans were performed 
with 1 mm thickness (0.7 mm interval between two slices and 0.3 mm overlapped), 120 kVp tube voltage, 200–
250 mA tube current. Based on the results of a non-enhanced baseline CT scan, the position of the SPN was 
located by the radiologists and the post-contrast scans were limited to nodule positions to moderate the 
patient's radiation exposure. Post-contrast scans were performed at 20, 40, 60, 90, 120 and 180 s after 
intravenous injection of contrast medium (2.0–2.5 ml/s injection rate, 1.0–1.5 ml/kg dose, Optiray 350, 
Mallinckrodt, Tyco) using a power injector (Missouri, Ulrich, Ulm, Germany). 
 
Of 89 nodules, 58 were malignant (37 men and 21 women; age range 31–85 years; mean age 67.0 ± 13.2 years) 
and 31 were benign (21 men and 10 women; age range 30–80 years; mean age 59.9 ± 14.4 years). Among the 31 
benign nodules, 14 of them were diagnosed as tuberculoma by histological diagnosis or laboratory culture. The 
remaining 17 were considered benign by histological diagnosis or regressed or were stable during the 2-year 
follow-up. The sizes (in diameter) of all SPNs were 11.9–110.3 mm (mean diameter 53.2 ± 19.7 mm). There was 
no significant difference between the diameters of malignant nodules (mean diameter 54.2 ± 18.9 mm; range 
13.5–102.6 mm) and benign nodules (mean diameter 51.3 ± 21.3 mm; range 11.9–110.3 mm). 
 
After these scans, image data were reconstructed with a thickness of 1.0 mm. These images were acquired with 
a 512 × 512 matrix and quantized with 12 bits. With fixed thickness, the actual number of image slices was 



dependent on the nodule size. The CT data were then transferred to digital imaging and communications in 
medicine (DICOM) format for analysis. 
 

3.2. Feature selection 
In this work, the feature variables for nodule differentiation included three shape moments M21, M22 and M23 
and perfusion CT features TEr(t). Ideally, a set of TEr(t) should be determined from 0 ≤ t < ∞ and 0 ≤ r ≤ 100. 
However, the values of t were limited to 20, 40, 60, 90, 120 and 180 since the post-contrast CT scans were 
performed only at these times. To further simplify the problem, for the inclusion ratio r, discrete values of r = 10, 
20, …., 100 were considered. 
 
In this work, the tested CAD methods used one morphometric and one perfusion CT feature. The reasons are 
explained as follows. Conventionally, a perfusion CT based CAD system requires multiple post-contrast scans so 
that features TEr(t) generated from different time points can be used simultaneously. However, by carefully 
selecting the time for the post-contrast scan, satisfactory diagnostic performance can be achieved with only a 
single post-contrast scan [19]. This strategy minimizes the amount of radiation exposure to patients and the 
data processing time. As such, to perform nodule classification, this work used only one perfusion CT feature. 
Experimental results verify that the diagnostic performance can be improved by combining the perfusion CT 
feature with the shape moments feature as the shape moments also provide valuable information for nodule 
classification. To demonstrate this property, Table 1 summarizes the classification accuracy of the shape 
moment features. Among the tested morphometric CT features, shape moment M21 yields the best overall 
result. The results in Table 1 also show that increasing the number of shape moment features does not improve 
the diagnostic performance effectively. Hence, the CAD methods tested in this work use only two features: the 
shape moment M21 and one perfusion feature TEr(t). For a given time t, the value of r is determined by testing all 
10 possible combinations of M21 and TEr(t) for r = 10, 20, …., 100. The value of r that yields the best classification 
accuracy is then selected. 
 
Table 1. Classification accuracy for the shape moment 
 

Features Classification accuracy (%) (mean ± standard deviation) 
M21 70.8 ± 11.5 
M22 69.0 ± 10.5 
M23 66.1 ± 9.1 
M21, M22 69.9 ± 11.3 
M21, M22, M23 68.2 ± 11.0 

 
Since finding an optimal set of feature variables is not our goal, the possibility of achieving higher accuracy by 
using more features has not been investigated comprehensively in this study. However, limited experimental 
results indicate that the best are likely near optimal. 
 

3.3. Experimental results 
In the first part of the experimental results the diagnostic performance metrics of the 2D and 3D methods are 
compared. The second part studies the effectiveness of the proposed two-stage strategy by comparing its 
diagnostic performance metrics with those of the 3D methods. 
 
Table 2 summarizes the results of the first part of the experiments and shows the testing subset classification 
accuracy for both 2D and 3D methods for t = 20, 40, 60, 90, 120 and 180. By performing the paired t-test to the 
results of the 2D and 3D methods obtained from the same scanning time instant, it is found that the p-values are 
smaller than 10−6 for all six cases of post-contrast scanning. These results indicate strongly that the difference 
between the classification accuracy obtained by the tested 2D and 3D methods are statistically significant. In 
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addition to the classification accuracy, comparative results are given in Table 3 for the two cases that have the 
highest accuracy (t = 90 and t = 180). In particular, with the malignancy as the positive class, Table 3 gives the 
means of sensitivity, specificity, PPV, NPV and AUC for the scanning data for t = 90 and t = 180. 
 
Table 2. Summary of classification accuracy for 2D and 3D CAD methods 
 

Time of scanning 
(s) 

Inclusion ratio r 
(%) 

 Classification accuracy (%) (mean ± standard 
deviation) 

 
 

CAD methods  CAD methods   
2D 3D 2D 3D 

20 10 10 69.3 ± 13.1 81. 
5 ± 11.8 

40 100 50 76.9 ± 12.5 87.1 ± 10.2 
60 80 80 82.7 ± 11.5 83.5 ± 11.2 
90 10 50 81.5 ± 11.6 88.1 ± 10.0 
120 50 50 81.2 ± 11.5 86.0 ± 10.5 
180 80 40 83.3 ± 11.6 88.9 ± 9.3 

 
Table 3. Summary of diagnostic performance for 2D and 3D CAD methods for t = 90 and 180 
 

Diagnostic performance t = 90  t = 180   
CAD methods  CAD methods   

2D 3D 2D 3D 
Sensitivity (%) 90.7 94.4 90.6 96.4 
Specificity (%) 61.7 74.4 69.7 73.7 
PPV (%) 82.6 88.1 85.7 88.0 
NPV (%) 76.9 87.0 78.8 91.2 
AUC 0.809 0.858 0.859 0.871 

 
The second part of the experimental work implements the proposed two-stage approach for t = 90. To 
demonstrate the influence of the threshold value δ used to determine which nodules are sent to the second 
stage for further processing, the classification accuracy and the percentage of samples that do not require 
second stage processing are plotted in Fig. 2 as a function of δ. The corresponding sensitivity and specificity are 
also shown graphically in Fig. 3. Based on the definition of δ, it is easy to see that the proposed two-stage 
strategy transforms into a standard 3D method when δ approaches infinity. Similarly, the proposed two-stage 
strategy downgrades to a 2D method when δ is set to zero. The results of Fig. 2 demonstrate the accuracy/cost 
tradeoff of the proposed two-stage strategy. In particular, as δ becomes smaller, fewer nodules require second 
stage processing and the classification process becomes more efficient. The penalty is increased classification 
error. 
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Fig. 2. The cost/accuracy tradeoff of the proposed two-stage strategy for t = 90. The solid line is the classification 
accuracy and the broken line represents the percentage ratio of the nodules that does not require second stage 
processing. 
 

 

Fig. 3. The corresponding sensitivity and specificity of Fig. 2. 
 
Misclassifying malignant nodules can result in serious consequences in clinical practice. Therefore controlling the 
percentage of the misclassified malignant nodules by requiring the sensitivity to be sufficiently high is a very 
important design consideration for the CAD methods. For the proposed two-stage approach, the value of δ can 
be varied to satisfy such a sensitivity requirement by using the sensitivity versus δ plot of Fig. 3. Table 3 shows 
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that the sensitivity of the 3D method is 94.4 for t = 90. By allowing 1%, 2% and 3% drops in sensitivity, Table 4 
summarizes the diagnostic performance of the two-stage CAD approaches with sensitivity 93.3%, 92.5% and 
91.5%. Compared with the 3D method, the classification accuracy of these three classifiers falls 3.8%, 4.6% and 
5.3%, respectively. However, as shown by the values EI, for these three cases, the number of nodules that 
require 3D method processing is reduced to 39.3%, 32.2% and 23.1%. From these results, by accepting a 
relatively small diagnostic performance loss, the proposed two-stage approach can improve the computational 
efficiency significantly. 
 
Table 4. Summary of diagnostic performance for 3D method and proposed two-stage strategy for t = 90 
 

Diagnostic performances 3D 
 

Two-stage 
 

Sensitivity (%) 94.4 93.3 92.5 91.5 
EI (%) 0 60.7 67.8 76.9 
Accuracy (%) 88.1 84.0 83.2 82.5 
Specificity (%) 74.4 65.3 64.6 64.4 
PPV (%) 88.1 84.3 84.0 83.7 
NPV (%) 87.0 83.0 81.2 79.1 

4. Discussion and conclusion 
Despite the common belief that 3D CAD methods can outperform 2D CAD methods in diagnosing solitary 
pulmonary nodules, to the best of our knowledge, this property has never been investigated systematically. The 
efficiency/accuracy tradeoff of these methods has also never been studied. By combining morphometric and 
perfusion CT features, this work performs a comparative study for the 2D and 3D CAD methods for SPNs. As 
demonstrated by the results of a series of experiments, the diagnostic performance metrics of the 3D method 
are consistently better than those of the 2D method. Moreover, these differences are also statistically 
significant. 
 
An important drawback of the 3D method is that it is computationally more intensive and complex than the 2D 
method. To combine the simplicity of the 2D method and the accuracy of the 3D method, this work proposes a 
two-stage CAD approach for SPNs. The first stage uses the 2D method to classify nodules. By studying the 
sensitivity of the decision made by the 2D method to the classifier training error, this work introduces a criterion 
to estimate the reliability of the classification results made by the 2D method. To improve the computational 
efficiency and processing complexity, only the nodules that fail to pass this reliability test are sent to the second 
stage which differentiates nodules by the 3D method. The efficiency/accuracy tradeoff of this two-stage 
approach can be controlled by adjusting a parameter that characterizes the tolerance of the reliability test. 
Experimental results show, with a small loss of diagnostic performance, that the efficiency of the computerized 
diagnosing process can be improved significantly. 
 
This work has restricted the number of features to two. A possible future research direction is to expand the 
scope using more features. In addition, to more rigorously verify the results obtained in this study, it may be 
valuable to repeat this work using a more comprehensive dataset. 
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