Computational Study of Vibrational Qubits in Anharmonic Linear Ion Traps

Lei Wang
Marquette University

Recommended Citation
http://epublications.marquette.edu/dissertations_mu/199
ABSTRACT

COMPUTATIONAL STUDY OF VIBRATIONAL QUBITS IN ANHARMONIC LINEAR ION TRAPS

Lei Wang, B.S., M.S.

Marquette University, 2012

A string of cold ions confined in a linear trap represents a man-made quantum object with a broad range of applications in atomic and molecular spectroscopy, such as high-precision measurement of atomic properties. An efficient isolation from the environment guarantees excellent coherent properties of such systems and makes them suitable for practical realization of the quantum information processing. The pioneering theoretical [Cirac and Zoller] and experimental [Wineland and Monroe] work in 1990s resulted in the explosive expansion of this field during the last decade. In this dissertation an alternative new method for controlling the quantized motional/vibrational states of ions in a trap is explored theoretically. It is proposed to create small anharmonicity in the trapping potential which would modify the spectrum of states and allow addressing the state-to-state transitions selectively. In this approach all ions remain in the ground electronic state and their motion is controlled adiabatically and coherently by applying the optimally shaped electric fields (RF). The optimal control theory, accurate numerical calculation of the energies and wavefunctions, and numerical propagation of wave packets are employed. Two sources of vibrational anharmonicity are studied: the intrinsic Coulomb anharmonicity due to the ion-ion interactions and the external anharmonicity of the trapping potential. It is shown that the magnitude of Coulomb anharmonicity is insufficient for the control. In contrast, anharmonicity of the trapping potential allows controlling the motion of ions very accurately. It is demonstrated that one ion in a slightly anharmonic trap can be easily controlled and used to represent one qubit. A multi-qubit system can be created by employing a long progression of states of a single ion, or by trapping multiple ions and controlling several normal vibration modes of the ion string. Up to four qubits are modeled in this work and accurate pulses are optimized for a set of universal quantum gates: NOT, conditional NOT (CNOT) and Hadamard transformation. The control field for Shor’s algorithm (quantum algorithm for factorization onto prime numbers) is also obtained. It is demonstrated that a careful choice of system properties allows achieving very high accuracy of qubit transformations, up to 0.999.
ACKNOWLEDGEMENTS

Lei Wang, B.S., M.S.

To begin with, I would like to convey my deepest appreciation to my research advisor, Dr. Dmitri Babikov, who initiated me into the area of “ion trap quantum computation”. His continuous help and inspiring guidance throughout all these years is a constant source of encouragement to me. It has been my great honor to be a member of his research group.

I would also like to thank Dr. Scott Reid and Dr. Qadir Timerghazin for the time they have taken to serve in my dissertation committee. Their moral support and patience have led to my successful completing of dissertation.

From the heart, I am grateful to my friends, research group members and all the people who have helped me during my project years.

At last, I would like to express my sincere gratitude to my parents. Their love and encouragement have made me grow.
Table of Contents

ACKNOWLEDGEMENTS .. i

LIST OF TABLES .. vi

LIST OF FIGURES ... viii

Chapter 1: Introduction .. 1

1.1 Ion-trap quantum computation and the background ... 1

1.2 The linear Paul trap ... 3

1.3 The Los Alamos ion-trap quantum computing experiment 4

1.3.1 Doppler cooling of calcium ions... 7

1.3.2 Sideband cooling of calcium ... 8

1.4 Motivation of the study .. 9

1.5 Summary of our project .. 11

Chapter 2: Theoretical methods with applications to adiabatic and optimal control of one ion in the trap .. 16

2.1 Trapping potential ... 16

2.2 Schrödinger equation and basis set expansion ... 18

2.3 Construction of the potential energy matrix and kinetic energy matrix 21

2.4 Matrix diagonalization and convergence studies ... 24

2.5 Analysis of results .. 27

2.6 The control scheme and the transition matrix .. 32

2.7 Optimal control theory (OCT) ... 37

2.8 Numerical propagation of vibrational wavepackets .. 43

2.9 Quantum bits (qubits), quantum gates and quantum computation 47

2.10 Examples of pulse optimization .. 51

 a) Qubit flips ... 52

 b) Gate NOT ... 55
Chapter 3: Feasibility of Encoding Shor’s Algorithm into the Motional States of Ion in the Anharmonic Trap

3.1 The model system

3.2 The quantum algorithm

3.3 OCT pulse shaping

3.4 Results and discussion

3.5 Conclusions

Chapter 4: Study of the two-ion system

4.1 Two ions in the harmonic trapping potential

 4.1.1 Harmonic trapping potential

 4.1.2 Minimization Method

 4.1.3 Normal vibration modes

 4.1.4 Hamiltonian and transformation of coordinates

 4.1.5 Harmonic Approximation

 4.1.6 2D Basis set expansion

 4.1.7 Convergence Studies

 4.1.8 Results and analysis

 4.1.9 Two-dimensional wavefunctions and transition matrix

4.2 Two ions in the anharmonic trapping potential

 4.2.1 Anharmonic trapping potential

 4.2.2 Analysis of the PES

4.3 Conclusions

Chapter 5: Three-ion system

5.1 Three ions in the harmonic trapping potential

 5.1.1 Harmonic trapping potential
5.1.2 Minimization Method ... 131
5.1.3 Normal vibration modes .. 133
5.1.4 Hamiltonian and transformation of coordinates 135
5.1.5 Basis set expansion ... 139
5.1.6 Results and analysis .. 140
5.1.7 Three dimensional wavefunctions and transition matrix 144
5.1.8 Effect of Coulomb interaction .. 150

5.2 Three ions in the anharmonic trapping potential 152
5.2.1 Anharmonic trapping potential .. 152
5.2.2 Three-dimensional wavefunctions and transition matrix 159
5.2.3 Effect of Coulomb anharmonicity ... 163

5.3 Conclusions .. 165

Chapter 6: Three ions in the combined potential traps with applications to adiabatic and optimal control of three ions in the trap ... 167

6.1 Combined anharmonic potential .. 167
6.2 Inverted combined potential ($\alpha < 0, \beta > 0$) 169
6.3 Three-dimensional wavefunctions and the transition matrix 176
6.4 Study of anharmonicity .. 180
6.5 Optimal control of three-ion system ... 182
 a) One qubit control and the gate NOT 183
 b) Two-qubit control and the Conditional NOT Gate (CNOT) 188
 c) Phase control and the Hadamard Gate 194

6.6 Conclusions .. 200

Chapter 7: Future research directions ... 202

BIBLIOGRAPHY .. 205

Appendix A .. 212

Appendix B .. 219
Appendix C.. 234
Appendix D.. 237
Appendix E.. 240
Appendix F.. 242
Appendix G.. 245
Appendix H.. 257
Appendix I.. 260
Appendix J.. 263
Appendix K.. 272
Appendix L.. 284
LIST OF TABLES

Table 2.1: Eigenvalues, assignments and deviations (from the harmonic model) of the vibrational states of 111Cd$^+$ ion in a slightly anharmonic trap. .. 31

Table 2.2: Values of transition matrix (11×11) of 111Cd$^+$ ion in the harmonic trapping potential (values are in units of ea_0). .. 36

Table 2.3: Values of transition matrix (11×11) of 111Cd$^+$ ion in the anharmonic trapping potential (values are in units of ea_0). .. 36

Table 3.1: Eigenvalues, transition frequencies, qubit state assignments, optimized transformations and their characteristic probabilities for sixteen lower vibrational states in a model of 111Cd$^+$ ion in a weakly anharmonic Paul trap. ... 63

Table 4.1: Eigenvalues, assignments and deviations (from the harmonic model) of the vibrational states of two 111Cd$^+$ ions in a harmonic trap... 110

Table 4.2: Eigenvalues, assignments and deviations (from the harmonic model) of the vibrational states of two 111Cd$^+$ ions in $\sim z^4$ potential trap. ... 120

Table 5.1: Eigenvalues, assignments and deviations (from the harmonic model) of the vibrational states of three 111Cd$^+$ ions in a harmonic trap. ... 141

Table 5.2: Coefficients of the fit by the Dunham expansion formula, Eq. (5.1.6.3), of the numerically calculated spectrum in Table 5.1 (vibrational states in the harmonic trap).

The shift parameter was $D/2\pi = -1.757 \times 10^{-5}$ MHz. ... 143

Table 5.3: Eigenvalues, assignments and deviations (from the harmonic model) of the vibrational states of three 111Cd$^+$ ions in a strongly anharmonic trap. 156

Table 5.4: Coefficients of the fit by the Dunham expansion formula, Eq. (5.1.6.3), of the numerically calculated spectrum in Table 5.3 (vibrational states in the strongly anharmonic trap). The shift parameter was $D/2\pi = -5.269 \times 10^{-4}$ MHz. ... 159
Table 6. 1: Eigenvalues, assignments and deviations (from the harmonic model) of the vibrational states of three 111Cd$^+$ ions in a combined inverted trap with $\alpha = -100$ and $\beta = 1$. See text for details. .. 174

Table 6. 2: Coefficients of the fit by the Dunham expansion formula, Eq. (5.1.6.3), of the numerically calculated spectrum in Table 6.1 (vibrational states in the combined inverted trap). The shift parameter was $D/2\pi = -2.115 \times 10^{-2}$ MHz. ... 175

Table 6. 3: Coefficients of the fit by the Dunham expansion formula, Eq. (5.1.6.3), of the numerically calculated spectrum (vibrational states in the strongly anharmonic combined inverted trap). The shift parameter was $D/2\pi = -0.331$ MHz. ... 182
LIST OF FIGURES

Fig. 1. 1: Seven ions in a linear Paul trap interacting with a laser beam (from Ref. [61]). 2

Fig. 1. 2: Schematic of four conducting electrodes of a linear Paul trap (from Ref. [62]). 3

Fig. 1. 3: The trap built at Los Alamos for quantum computation (from Ref. [3]). 5

Fig. 1. 4: Stepping to lower vibrational states by sideband cooling (from Ref. [3]). 8

Fig. 2. 1: One 111Cd$^+$ ion in the harmonic and anharmonic potential traps. Solid line: harmonic case; dotted line: anharmonic case .. 16

Fig. 2. 2: Spectrum of energies of 111Cd$^+$ ion in the anharmonic potential trap calculated numerically using basis sets of different sizes $N = 10, 20, 30, 40, 50$. In all calculations $z_{\text{max}} = 650$ Bohr and $\Delta z = 10$ Bohr ($\mathcal{N} = 131$) are used. Arrows indicate inaccurate results. .. 26

Fig. 2. 3: Spectrum of the lower eleven states for 111Cd$^+$ ion in the harmonic and anharmonic traps .. 28

Fig. 2. 4: Energy difference between the anharmonic spectrum and the harmonic spectrum of 111Cd$^+$ ion (from Table 2.1). ... 29

Fig. 2. 5: Green line is the anharmonic trapping potential $V_a(z) = \frac{1}{2}kz^2 + \frac{1}{4!}k'z^4$, red line is the harmonic part of this potential and blue line is the anharmonic part. Black solid line describes the wavefunctions and energy levels of 111Cd$^+$ ion in the harmonic trapping potential and the dotted line is that of anharmonic case. .. 31

Fig. 2. 6: Transition matrix of 111Cd$^+$ ion in the harmonic trapping potential. 34

Fig. 2. 7: Transition matrix of 111Cd$^+$ ion in the anharmonic trapping potential 35
Fig. 2.8: Pulse optimization for the qubit flip: $|0\rangle \rightarrow |1\rangle$ in the $^{111}\text{Cd}^+$ ion trap. (a) The guess field. (b) – (k) The optimized pulse and evolution of state populations after 1, 11, 101, 1001 and 2001 iteration steps. ... 53

Fig. 2.9: (a) The control pulse for qubit flip $|0\rangle \rightarrow |1\rangle$ in the $^{111}\text{Cd}^+$ ion trap. (b) Switching of state populations during the transition $|0\rangle \rightarrow |1\rangle$. (c) Convergence of the iterative procedure and the final transition probability... 54

Fig. 2.10: The gate NOT in the $^{111}\text{Cd}^+$ ion trap optimized with two transitions. (a) Optimally shaped electric field. (b) Average probability of the gate. (c) Switching of population between the qubit states during the NOT$|0\rangle \rightarrow |1\rangle$. (d) Switching of population between the qubit states during the NOT$|1\rangle \rightarrow |0\rangle$... 56

Fig. 2.11: (a) Optimally shaped pulse for the gate Hadamard in the $^{111}\text{Cd}^+$ ion trap. (b) The convergence of iterations and final fidelity of the qubit transformation. 57

Fig. 2.12: The gate Hadamard in the $^{111}\text{Cd}^+$ ion trap. (a) Creation of linear superposition of the qubit states as required by HAD$|0\rangle \rightarrow 1/\sqrt{2} (|0\rangle + |1\rangle)$. (b) The same during the HAD$|1\rangle \rightarrow 1/\sqrt{2} (|0\rangle - |1\rangle)$ transformation. (c) The same during the HAD$1/\sqrt{2} (|0\rangle + |1\rangle) \rightarrow |0\rangle$ transformation. (d) The same during the HAD$1/\sqrt{2} (|0\rangle - |1\rangle) \rightarrow |1\rangle$ transformation. ... 59

Fig. 3.1: Weakly anharmonic trapping potential in the model system. Energies of thirty-two quantized motional states of one trapped $^{111}\text{Cd}^+$ ion are indicated by horizontal lines. Effect of anharmonicity is clearly seen. Sixteen lower states (used to encode qubits) are indicated by solid lines. Upper states (included for completeness) are shown by dashed lines. Assignment of states of the four-qubit system is indicated in brackets. 62
Fig. 3. 2: Transition moment matrix for sixteen lower vibrational states in a model system of 111Cd$^+$ ion in a weakly anharmonic Paul trap. Color indicates magnitudes of matrix elements in the logarithmic scale (dark red corresponds $\mu_{14,15} = 1.08 \times 10^2 \text{ ea}_0$ ($\sim 2.75 \times 10^2$ D) and light blue corresponds $\mu_{0,5} = 4.98 \times 10^{-4} \text{ ea}_0$ ($\sim 1.27 \times 10^{-3}$ D). See text for further details).

Fig. 3. 3: Quantum circuit diagram for the phase estimation part of Shor's algorithm for factorizing number 15 using four qubits (read from left to right). See text for details.

Fig. 3. 4: (a) Optimally shaped 50 μs pulse for Shor's algorithm in the 111Cd$^+$ ion trap. (b) Windowed Fourier transform of the pulse. Horizontal dashed lines indicate frequencies of the state-to-state transitions. Dotted curves encircle two spectral features that correspond to the ladder climbing. See text for details.

Fig. 3. 5: Time evolution of state populations induced by the pulse optimized for Shor's algorithm in three representative cases: (a) Transformation #1 in Table 3.1. (b) Transformation #3 in Table 3.1. (c) Transformation #11 in Table 3.1. Thicker color lines indicate population of the initial and final states. Thinner black lines indicate population of intermediate states.

Fig. 3. 6: Fourier spectrum of the pulse optimized for Shor's algorithm in the 111Cd$^+$ ion trap: (a) broad range of frequencies (up to $\omega_{n,n+9}$). (b) focus on the frequency range of the main spectral structure ($\omega_{n,n+1}$ transitions). (c) focus on the frequency range of the overtone spectral structure ($\omega_{n,n+3}$ transitions). Arrows indicate frequencies of the state-to-state transitions from Table 3.1.

Fig. 4. 1: Two 111Cd$^+$ ions in the harmonic potential trap: (a) Equilibrium positions of ions and minimum energy of the two-ion string. (b) Vibrational spectrum of this system and possible encoding of states of the two-qubit system.

Fig. 4. 2: Potential energy surface of two 111Cd$^+$ ions in the harmonic potential trap using Cartesian coordinates. Anharmonicities due to Coulomb repulsion of ions are clearly seen.

Fig. 4. 3: Minimization from four different arbitrary initial positions.
Fig. 4.4: Change of potential energy of the system during minimization from four different guess positions. .. 94

Fig. 4.5: Potential energy surface of two 111Cd$^+$ ions in the harmonic potential trap using normal mode coordinates .. 104

Fig. 4.6: Convergence study with different integration limits ($\zeta_{\text{max}} = 1000, 500, 400$ Bohr). $\Delta\zeta = 6.25$ Bohr and $N = 20$.. 107

Fig. 4.7: Convergence study with different integration steps ($\Delta\zeta = 6.25, 10, 20$ Bohr).
$\zeta_{\text{max}} = 500$ Bohr and $N = 20$.. 108

Fig. 4.8: Convergence study with different number of basis functions $N = 10, 15, 20, 25$.
$\Delta\zeta = 10$ Bohr and $\zeta_{\text{max}} = 500$ Bohr .. 109

Fig. 4.9: Effect of anharmonicity for two modes of the vibrational spectrum of two 111Cd$^+$ ions in a harmonic ($\sim z^2$) potential trap ... 111

Fig. 4.10: Description of the ion motions for two vibrational motion modes. 112

Fig. 4.11: Wavefunctions of two 111Cd$^+$ ions in the harmonic potential trap......... 114

Fig. 4.12: Transition matrix for two 111Cd$^+$ ions in the harmonic potential trap. (black corresponds $\mu_{5,6} = 1.06 \times 10^2$ ea_0 ($\sim 2.69 \times 10^2$ D) and orange corresponds $\mu_{0,1} = 43.22$ ea_0 ($\sim 1.10 \times 10^2$ D) between states of mode 1) .. 115

Fig. 4.13: Two 111Cd$^+$ ions in the $\sim z^4$ potential trap: (a) Equilibrium positions of ions and minimum energy of the two-ion string. (b) Vibrational spectrum of this system and the encoding of two-qubit states. ... 117

Fig. 4.14: PES of two 111Cd$^+$ ions in the anharmonic potential trap using Cartisian coordinates. Anharmonicities due to Coulomb repulsion of ions are clearly seen. 118
Fig. 4. 15: PES of two 111Cd$^+$ ions in the anharmonic potential trap using normal mode coordinates. .. 119

Fig. 4. 16: Effect of anharmonicity for two modes of the vibrational spectrum of two 111Cd$^+$ ions in an anharmonic ($\sim z^3$) potential trap. .. 121

Fig. 4. 17: Components of the potential according to different orders of ζ. 126

Fig. 5. 1: Three 111Cd$^+$ ions in the harmonic potential trap: (a) Equilibrium positions of ions and minimum energy of the three-ion string; (b) Vibrational spectrum of this system and the encoding of two-qubit states proposed in this work. ... 129

Fig. 5. 2: PES of three 111Cd$^+$ ions in the harmonic potential trap using Cartesian coordinates. Three slices through the 3D-surface are shown: (a) perpendicular to z_1 through $z_1 = 0$, (b) perpendicular to z_2 through $z_2 = 0$ and (c) perpendicular to z_3 through $z_3 = 0$. .. 130

Fig. 5. 3: Potential energy difference between two consequent steps of the system during the minimization. ... 131

Fig. 5. 4: Absolute values of position difference between two consequent steps during the minimization. ... 132

Fig. 5. 5: PES of three 111Cd$^+$ ions in the harmonic potential trap using the normal mode coordinates. Three slices through the 3D-surface are shown: (a) perpendicular to ζ_1 through $\zeta_1 = 0$, (b) perpendicular to ζ_2 through $\zeta_2 = 0$ and (c) perpendicular to ζ_3 through $\zeta_3 = 0$. Note that the Coulomb repulsion part (white) goes parallel to ζ_1 everywhere. ... 139

Fig. 5. 6: Effect of anharmonicity on three modes of the vibrational spectrum of three 111Cd$^+$ ions in a harmonic ($\sim z^2$) potential trap. .. 142

Fig. 5. 7: Wavefunctions of the lower 40 states of three 111Cd$^+$ ions in the harmonic trapping potential. ... 145
Fig. 5. 8: Description of the motions of ions for three vibrational modes in the harmonic trapping potential. Length of the arrows indicates the vibrational motion amplitude of each ion. ... 148

Fig. 5. 9: Transition matrix of three 111Cd$^+$ ions in the harmonic potential trap and the diagram of allowed state-to-state transitions in this system. (black corresponds $\mu_{4,5} = 1.18 \times 10^2 \text{ ea}_0$ ($\sim 3.00 \times 10^2 \text{ D}$) and pink corresponds $\mu_{0,1} = 52.94 \text{ ea}_0$ ($\sim 1.35 \times 10^2 \text{ D}$) between states of mode 1). ... 149

Fig. 5. 10: Relations between the equilibrium distances, normal mode frequencies and vibrational anharmonicities for three 111Cd$^+$ ions in the harmonic potential trap. 151

Fig. 5. 11: Three 111Cd$^+$ ions in the $\sim z^4$ potential trap: (a) Equilibrium positions of ions and minimum energy of the three-ion string. (b) Vibrational spectrum of this system and the encoding of two-qubit states proposed in this work. ... 153

Fig. 5. 12: PES of three 111Cd$^+$ ions in the strongly anharmonic potential trap ($\sim z^4$) using the normal mode coordinates. Three slices through the 3D-surface are shown: (a) perpendicular to ζ_1 through $\zeta_1 = 0$, (b) perpendicular to ζ_2 through $\zeta_2 = 0$ and (c) perpendicular to ζ_3 through $\zeta_3 = 0$. ... 154

Fig. 5. 13: Effect of anharmonicity on three modes of the vibrational spectrum of three 111Cd$^+$ ions in a strongly anharmonic ($\sim z^4$) potential trap. ... 157

Fig. 5. 14: Wavefunctions of the lower 40 states of three 111Cd$^+$ ions in the $\sim z^4$ trapping potential... 160

Fig. 5. 15: Description of the motions of ions for three vibrational motion modes in the $\sim z^4$ trapping potential. Length of the arrows indicates the vibrational motion amplitude of each ion. ... 161

Fig. 5. 16: Transition matrix of three 111Cd$^+$ ions in the $\sim z^4$ potential trap and the diagram of allowed state-to-state transitions in this system. (black corresponds
$$\mu_{4,5} = 33.57 \, ea_o \,(\sim 85.33 \, D) \text{ between states of mode 1 and light yellow corresponds}$$

$$\mu_{0,1} = 3.50 \, ea_o \,(\sim 8.90 \, D) \text{ between states of mode 3)}$$

Fig. 5. 17: Relations between the equilibrium distances, normal mode frequencies and vibrational anharmonicities for three 111Cd$^+$ ions in the strongly ($\sim z^4$) anharmonic potential trap. ... 162

Fig. 6. 1: Relations between the equilibrium distances, normal mode frequencies and vibrational anharmonicities for three 111Cd$^+$ ions in the anharmonic combined potential trap ($\alpha \frac{1}{2} k z^2 + \beta \frac{1}{4!} k' z^4$, $\alpha > 0, \beta > 0$). ... 168

Fig. 6. 2: (a) Equilibrium positions of 111Cd$^+$ ions and minimum energy of a three-ion string trapped in a flat anharmonic potential of the form $\alpha \frac{1}{2} k z^2 + \beta \frac{1}{4!} k' z^4$. (b) Vibrational spectrum of this system and the encoding of two-qubit states proposed in this work. ... 170

Fig. 6. 3: PES of three 111Cd$^+$ ions in the inverted combined potential trap using the normal mode coordinates. Three slices through the 3D-surface are shown: (a) perpendicular to ζ_1 through $\zeta_1 = 0$, (b) perpendicular to ζ_2 through $\zeta_2 = 0$ and (c) perpendicular to ζ_3 through $\zeta_3 = 0$. ... 172

Fig. 6. 4: Effect of anharmonicity on three modes of the vibrational spectrum of three 111Cd$^+$ ions in an inverted combined potential trap (with $\alpha = -100$ and $\beta = 1$). 175

Fig. 6. 5: Wavefunctions of 40 states with excitation to the first and the third modes of three 111Cd$^+$ ions in the inverted combined trapping potential. 177

Fig. 6. 6: Description of the motions of ions for three vibrational motion modes in inverted combined trapping potential with $\alpha = -100$ and $\beta = 1$. Length of the arrows indicates the vibrational motion amplitude of each ion. 178

Fig. 6. 7: Transition matrix of three 111Cd$^+$ ions in inverted combined potential trap with $\alpha = -100$ and $\beta = 1$ and the diagram of allowed state-to-state transitions in this system.
Color indicates magnitudes of matrix elements in the logarithmic scale (dark purple corresponds $\mu_{4,5} = 82.77\, ea_0$ ($\sim 2.10\times10^2$ D) between states of mode 1 and light pink corresponds $\mu_{0,1} = 7.90\, ea_0$ (~ 20.08 D) between states of mode 3). 179

Fig. 6. 8: Relations between the equilibrium distances, normal mode frequencies and vibrational anharmonicities for three 111Cd$^+$ ions in the inverted combined potential trap. .. 180

Fig. 6. 9: Optimally shaped electric field of the gate NOT in the 111Cd$^+$ ion trap with inverted combined potential optimized with four transitions. ($\alpha_0 = 2.0 \times 10^{12}$) 184

Fig. 6. 10: The gate NOT on second qubit in the 111Cd$^+$ ion trap with inverted combined potential. (a) Switching of population between the qubit states during the NOT$|00\rangle \rightarrow |01\rangle$. (b) Switching of population between the qubit states during the NOT$|10\rangle \rightarrow |11\rangle$. (c) The same during NOT$|01\rangle \rightarrow |00\rangle$ transformation. (d) The same during NOT$|11\rangle \rightarrow |10\rangle$ transformation. ... 185

Fig. 6. 11: Fourier analysis of the pulse in Fig 6.9 for the gate NOT......................... 187

Fig. 6. 12: Optimally shaped electric field of the gate CNOT for the two-qubit system in the 111Cd$^+$ ion trap with inverted combined potential. Large penalty factor $\alpha_0 = 6.0 \times 10^{12}$. ... 188

Fig. 6. 13: The gate CNOT for the two-qubit control in the 111Cd$^+$ ion trap optimized with four transitions. Large penalty factor $\alpha_0 = 6.0 \times 10^{12}$. (a) Switching of population between the qubit states during the CNOT$|00\rangle \rightarrow |00\rangle$. (b) Switching of population between the qubit states during the CNOT$|10\rangle \rightarrow |11\rangle$. (c) The same during CNOT$|01\rangle \rightarrow |01\rangle$ transformation. (d) The same during CNOT$|11\rangle \rightarrow |10\rangle$ transformation. .. 189
Fig. 6.14: Fourier analysis of the pulse in Fig 6.12 for the gate CNOT. 190

Fig. 6.15: Optimally shaped electric field of the gate CNOT for the two-qubit control in the $^{111}\text{Cd}^+$ ion trap with inverted combined potential. Small penalty factor $a_0 = 8.0 \times 10^{11}$. .. 191

Fig. 6.16: The gate CNOT for the two-qubit control in the $^{111}\text{Cd}^+$ ion trap optimized with four transitions. Small penalty factor $a_0 = 8.0 \times 10^{11}$. (a) Switching of population between the qubit states during the CNOT$|00\rangle \rightarrow |00\rangle$. (b) Switching of population between the qubit states during the CNOT$|10\rangle \rightarrow |11\rangle$. (c) The same during CNOT$|01\rangle \rightarrow |01\rangle$ transformation. (d) The same during CNOT$|11\rangle \rightarrow |10\rangle$ transformation. .. 192

Fig. 6.17: Fourier analysis of the pulse in Fig 6.15 for the gate CNOT. 193

Fig. 6.18: Optimally shaped electric field of the gate Hadamard on the second qubit in the $^{111}\text{Cd}^+$ ion trap with inverted combined potential optimized with five transitions. ($a_0 = 1.0 \times 10^{12}$) .. 195

Fig. 6.19: The gate Hadamard on the second qubit in the $^{111}\text{Cd}^+$ ion trap optimized with five transitions. (a) Switching of population between the qubit states during the Hadamard$|00\rangle \rightarrow \frac{1}{\sqrt{2}}(|00\rangle + |01\rangle)e^{i\phi}$. (b) Switching of population between the qubit states during the Hadamard$|01\rangle \rightarrow \frac{1}{\sqrt{2}}(|00\rangle - |01\rangle)e^{i\phi}$. (c) The same during Hadamard$|10\rangle \rightarrow \frac{1}{\sqrt{2}}(|10\rangle + |11\rangle)e^{i\phi}$ transformation. (d) The same during Hadamard$|11\rangle \rightarrow \frac{1}{\sqrt{2}}(|10\rangle - |11\rangle)e^{i\phi}$ transformation.. 196

Fig. 6.20: The gate Hadamard on the second qubit in the $^{111}\text{Cd}^+$ ion trap. Frames (e) and (f): Switching of population of states $|00\rangle$ and $|01\rangle$ during the
\[\text{HAD} \frac{1}{2} (|00\rangle + |01\rangle + |10\rangle + |11\rangle) \rightarrow \frac{1}{\sqrt{2}} (|00\rangle + |10\rangle) e^{i\phi}. \]

(g) Average transition probability.

(h) Gate fidelity as functions of number of iterations ... 197

Fig. 6. 21: Fourier analysis of the pulse in Fig 6.18 for the gate Hadamard (lower frequency part). ... 198

Fig. 6. 22: Fourier analysis of the pulse in Fig 6.18 for the gate Hadamard (higher frequency part). ... 199

Fig. 7. 1: A four-ion string trapped in a flat anharmonic potential of the form
\[\alpha \frac{1}{2} k z^2 + \beta \frac{1}{4!} k' z^4 . \] ... 203
Chapter 1: Introduction

“...It seems that the laws of physics present no barrier to reducing the size of computers until bits are the size of atoms, and quantum behavior holds dominant sway.”

—R. P. Feynman, 1985

1.1 Ion-trap quantum computation and the background

In a classical computer, the unit of memory is bit, where each bit represents either a one or a zero. In contrast, in a quantum computer, which requires a very special physical environment, a sequence of quantum bits (qubits) is needed [1-3]. For quantum computation, a single qubit can represent a one, a zero, or, crucially, any quantum superposition of these:

$$|\Psi\rangle = \alpha|0\rangle + \beta|1\rangle,$$

where α and β are coefficients such that $\alpha^2 + \beta^2 = 1$. That means: a n bits classical computer can only be in one of these 2^n states at one time; while a n qubits quantum computer can be in an arbitrary superposition up to 2^n different states simultaneously, leading to the exponential increase of computer power. Further, because of the interaction between the quantum state and the environment, a quantum operation must be performed on the qubits before those states decohere. On the one hand, to limit decoherence, interaction between the qubits and the environment should be negligible. On the other hand, to
manipulate the quantum state, implement quantum algorithms and read out the result of a calculation, qubits must be easily accessible from the outside and must interact strongly with each other.

The original proposal of Cirac and Zoller [4] advanced a possible solution to this dilemma, where a linear radio frequency quadrupole (RFQ) ion trap, or a linear Paul Trap using time-varying electric fields to trap ions was employed to hold a line of ions in place, see Fig. 1.1. A string of atomic ions trapped and cooled in a linear Paul trap represents a man-made quantum system well isolated from the environment. In this method, the ions serve as the physical qubits of the quantum computer. States of qubits are encoded into electronic states of the ions, and quantum gates are

![Fig. 1. 1: Seven ions in a linear Paul trap interacting with a laser beam (from Ref. [61]).](image-url)
achieved by excitation of ions with sharply focused laser beams \([5-16]\). The interaction between the individual ions is mediated by the Coulomb force between the charged particles, while the motional mode of ions in the trapping potential is used to create entanglement. Favorable properties of this system, such as long coherence time and possibility of fast and reliable manipulations with its quantum states, make it suitable for practical realization of quantum computation. Realization of this proposal in the experiment \([17]\) led to many fascinating developments and explosive growth of the field \([18-60]\).

1.2 The linear Paul trap

Imagine a positively charged ion floating in free space and surrounded by

![Diagram of a linear Paul trap](image-url)

Fig. 1. 2: Schematic of four conducting electrodes of a linear paul trap (from Ref. [62]).
four infinitely long conducting rods [3]. Two opposing rods can be connected to one pole of a RF voltage source, whereas the remaining two to the other pole, see Fig. 1.2. Then one pair of opposing rods is charged positively and the other pair negatively. The positively charged conductors will give a repulsive force to the positive ion and push it toward the center of the trap. At the same time, the negatively charged conductors produce an attractive force to the ion and pull it outwards. If the polarity of the four electrodes is reversed, the ion motion will begin to reverse. Because the heavy ion which has too much inertia cannot respond to this fast change of electric field quickly, it becomes stuck in a rapid back-and-forth motion. Since the minimum of electric fields locates at the trap axis, the ion is pushed toward the center by an effective force, where it becomes trapped. In Fig 1.1, we show a schematic of linear Paul trap which is from the website of the research of group of R. Blatt in the University of Innsbruck [61]. In Fig. 1.2, we show a connection of electrodes of a linear Paul trap [62]. The axis of symmetry between the rods is the trap axis [3].

If a positive direct-current (DC) component to the RF voltage is introduced, the mass selectivity in the Paul trap can be generated. Positive ions outside a certain mass range feel less of a restoring force from the pseudo potential and are kicked out of the trap by the repulsive DC field.

1.3 The Los Alamos ion-trap quantum computing experiment
An experiment developed at Los Alamos uses calcium ions to implement the ion-trap quantum computation [3]. Theoretically, many different ion species can be used as qubits and numerous qubit schemes are possible, if the qubits satisfy the following condition: a) the trapped ions have two long-lived internal states (electronic states); b) the trap’s vibrational modes can serve as the qubits communicating with each other. Using relatively inexpensive diode lasers it is possible to produce the entire range of wavelengths needed for cooling and manipulation of the calcium ions; In addition, a reasonable number of coherent operations can be performed during the lifetime of the metastable state and the calcium isotope of interest which is most abundant can easily be loaded into the trap.

Any element that displays an ionic-level structure similar to that of calcium can be used in the basic quantum computational schemes. Recently strontium was

Fig. 1. 3: The trap built at Los Alamos for quantum computation (from Ref. [3]).
employed in the quantum computing experiment for mostly technical reasons.

Moreover, with slightly different technical approaches, ions like mercury and ytterbium are also applicable to quantum computation because of proper level schemes [3].

A schematic diagram of the internal-level structure of calcium ions is as follows: The $4^2S_{1/2}$ ground state and the metastable $3^2D_{5/2}$ excited state are used to form the logical qubit states $|0\rangle$ and $|1\rangle$, respectively. Because the decoherence is spontaneous emission from the excited state, a large number of computational steps should be performed before decoherence can destroy the internal state of the quantum register. The lifetime of metastable excited state is about 1 second and that is long enough.

Authors including Cirac and Zoller (1995) present the initial state of the computer as follows [4]: all qubits are in their electronic and vibrational ground states. For example, in a four-qubit system this corresponds to

$$|0000\rangle.$$ \hspace{1cm} (1.3.1)

However, because of the energy from a combination of the temperature of the calcium oven and that imparted to the ion by the electric field, the temperature of the newly trapped ions is very high. In order to initialize state of quantum system and perform quantum logic operations, the temperature must be reduced to its lowest
possible value. Two steps of cooling the ions are described in the next two sections.

1.3.1 Doppler cooling of calcium ions

In Doppler cooling, a laser which has a frequency below the resonance frequency of a transition in the ion is used. Only when the ion is moving at a certain velocity toward the laser it can absorb these “off-resonance” photons, because only then does it “see” the laser frequency shift into resonance. However, due to its random jiggling, the ion has a probability to emit photons at any frequency within its Doppler broadened emission line profile. The ion has a greater probability to emit a photon with a higher frequency than the absorbed photon. On average, more energy is emitted than absorbed, which leads to a cooling of the ion [3].

In the momentum space, after emitting a photon in one direction, the ion will recoil in the opposite direction with a momentum which is equal to the photon momentum. The heating effect of this recoil energy eventually counteracts any cooling process, which means Doppler cooling has its limits. For calcium ions, the temperature of the Doppler limit is about 3 microkelvins. Because the kinetic energy of the ions is significantly less than the mutual Coulomb repulsion, they do not have enough kinetic energy to leap-frog each other. Eventually, the cold ions remain frozen in their relative locations and form a string, see Fig. 1.1. However, even at this low temperature of 3 microkelvins, the ions have enough energy to occupy any of several
vibrational modes, with many phonons per mode. After Doppler cooling, the ions in the trap can typically occupy the common mode states from $|n = 10\rangle$ to about $|n = 30\rangle$. So, it requires an additional cooling scheme to get the qubits into the common-mode ground state ($|n = 0\rangle$).

1.3.2 Sideband cooling of calcium

Because of the limit of Doppler cooling, experimentalists cannot get to the quantum ground state of the motion. The sideband cooling is employed to cool the system beyond Doppler cooling. The internal degrees of freedom of ions in the trap can couple with their external motion which leads to sidebands at $\omega_0 \pm \omega_1$, where ω_0 is the internal ionic transition frequency and ω_1 is the common-mode motional/vibrational frequency. Thus, an ion can absorb photons not only at the carrier frequency ω_0 of their internal $|g\rangle \rightarrow |e\rangle$ transition but also on the upper and

Fig. 1. 4: Stepping to lower vibrational states by sideband cooling (from Ref. [3]).
lower sidebands at the frequencies $\omega_0 \pm \omega_1$. Assuming all ions are in the state $|g\rangle|n\rangle$, it is possible to tune a laser with a suitably narrow linewidth to the red sideband — photon energy $E_- = \hbar(\omega_0 - \omega_1)$ and excite one of the ions to the state $|e\rangle|n - 1\rangle$, see Fig. 1.4. In essence, energy is removed from the vibrational mode (the occupation number is reduced by one phonon) and is used to make up the deficit in photon energy. After its radiative lifetime, the ion can decay to one of three states: the state $|g\rangle|n - 2\rangle$, by emitting a photon with energy $E_+ = \hbar(\omega_0 + \omega_1)$; the state $|g\rangle|n - 1\rangle$, by emitting a photon with energy $E_0 = \hbar\omega_0$; or a return to its initial state, by emitting a photon with energy $E_- = \hbar(\omega_0 - \omega_1)$. On average, the ion loses one vibrational photon of energy $E = \hbar\omega_1$ for each excitation–decay cycle. Because usually it is started somewhere around $|n = 30\rangle$, it requires about 30 cycles to bring the vibrational mode to its ground state [3].

1.4 Motivation of the study

While the architecture of Cirac and Zoller rely mostly on the electronic states of individual ions, the quantized states of collective vibrational motion of ions along the trap axis are also employed. These states represent quantized eigenstates and form the normal-mode progressions (somewhat similar to the vibrational states of naturally occurring molecules). In a standard setup the trapping potential is harmonic (quadratic) and the vibrational states are all equidistant, like the states of multi-
dimensional harmonic oscillator. Frequencies of transitions between these states are usually in the few MHz region, but selective excitation/control of these states using the microwave fields is impossible, because all state-to-state transitions of the “ladder” have the same frequency and occur simultaneously. In a standard set up of Cirac and Zoller, the control is achieved by pumping the population of one vibrational state to the excited electronic state and dumping it onto another vibrational state (of the ground electronic state), see Fig. 1.4.

Recently, a new alternative method for adiabatic coherent control of the quantized motional states of ions in a Paul trap was suggested by Zhao and Babikov [63]. They proposed to modify the harmonic trapping potential along the axial direction of the Paul trap in order to introduce small anharmonicity into the spectrum of collective motional/vibrational states of ions. When the spectrum of motional states is slightly anharmonic, different state-to-state transitions occur at slightly different frequencies and in principle can be controlled selectively by applying electric fields of appropriate amplitude, duration, phase and frequency (in the MHz range). In such control scenario all ions remain in the ground electronic state and the dynamics is adiabatic. The phase of motion can also be controlled [63], which makes this scheme potentially useful for coherent manipulations with ions and for quantum computation. In the numerical simulations of Ref. [63] the qubit states were encoded into two
lowest motional states $|0\rangle$ and $|1\rangle$ of a single trapped ion. But this new control
scheme is not restricted to only two quantum states. The progression of multiple
motional states like $|0\rangle$, $|1\rangle$, $|2\rangle$, $|3\rangle$, … can also be controlled and used for the
quantum information processing. In such architecture the simple quantum algorithms
could be executed using a single trapped ion. If several ions are trapped, the multi-
qubit system can be created by encoding different qubits into different motional
modes. For example, different qubits can be encoded into different normal vibration
modes of the ion chain (e.g., the center-of-mass motion mode and the asymmetric
stretching mode) and addressed selectively using different frequencies. Addressing of
individual ions is unnecessary. Opportunity of using the vibrational states of ion
chains for encoding qubits and the time varying electric fields for applying quantum
gates is very attractive and should be explored. Nowadays the techniques of ion
trapping are improved quickly and multiple ion traps are placed on a single microchip
[64-67]. Some control tasks can be performed using the electric fields instead of
lasers, which could facilitate the ongoing miniaturization and the practical
implementation of scalability in the future.

1.5 Summary of our project

In their first paper on this topic, Ref. [63], Zhao and Babikov considered only
the simplest case – single ion in an anharmonic trap, and employed an approximate
analytic model in order to introduce anharmonicity into the spectrum of motional states. The state-to-state transition moment matrix was also described analytically and approximately. The optimal control theory (OCT) was employed to derive shaped pulses for several major quantum gates such as qubit flips, phase shifts, NOT and Hadamard transformation. They showed that the value of anharmonicity parameter on the order of 1% of the trap frequency is sufficient in order to obtain simply-shaped pulses optimized for accurate state-to-state transitions and for the quantum logics gates. Durations of predicted pulses were in the ten microsecond range; the field amplitudes were on the order of few mV/cm. It was suggested that the practical realization of this approach is within the reach of today’s technology.

In this work we go well beyond the assumptions of Zhao and Babikov and employ accurate numerically converged methods to characterize the system and carry out modeling of the adiabatic coherent control. We also go beyond the one-ion case and explore the control of two and three ions in several different trap architectures.

In Chapter 2, we present a very detailed study of the one-ion system in the anharmonic ion trap. Spectra of the motional states are computed accurately and analysis of the anharmonicities is carried out. Then we use OCT method to derive shaped pulses for several universal quantum gates, the results are consistent with the study of Zhao and Babikov in Ref. [63].
We see two methods of expanding this approach to the ion trap quantum computation onto larger number of qubits. The first method of scaling, discussed in Chapter 3, is to use more than one excited vibrational state. Indeed, even if we use just one single ion in an anharmonic ion trap, we may be able to access and control multiple excited vibrational states: $|0\rangle$, $|1\rangle$, $|2\rangle$, $|3\rangle$, etc. If the control of state-to-state transitions in this system is feasible, it should be relatively straightforward to use a fair number of such states for encoding and processing the quantum information. In Chapter 3 we focus onto this method of scaling. Based on results of the OCT calculations, we argue that one should be able to control accurately the state-to-state transitions between sixteen lower vibrational states – enough to encode a four-qubit system and implement the phase estimation part of Shor’s algorithm for factorizing the number 15 [53, 68].

A second method of scaling is to employ more than one ion. If a linear chain of trapped ions is employed, different qubits can be encoded into different normal vibration modes of the system. Clear advantage of this approach is that such qubits are relatively easy to control selectively using fields of different frequencies. Indeed, although all ions are identical, the normal mode frequencies of the multiple-ion system are quite different [69, 70]. Another advantage of this scaling method is that addressing individual ions is unnecessary because the control field is applied globally,
along the axis of the trap. This is researched in Chapter 4 and 5, where we study two and three ions in the harmonic ($\sim z^2$) and anharmonic ($\sim z^4$) ion traps. For each of these systems, we first compute accurate vibrational eigenstates and characterize anharmonicities of the system. Two sources of anharmonicity are considered: the intrinsic Coulomb anharmonicity and the anharmonicity from the trapping potential. Unfortunately, our calculations show that anharmonicities in these systems are not large enough. An extensive analysis of this problem is presented.

In a search for possible solution of this problem, we found a new architecture of the trapping potential [32, 71, 72] able to provide large enough anharmonicity for the control. It requires to create a very wide and highly anharmonic trapping potential by combining $\sim z^2$ and $\sim z^4$ potential terms, which is researched in Chapter 6. The center-of-mass motion mode and the asymmetric stretching mode in this system are used to represent two qubits. The overall ground vibrational state, the first excited state of each mode, and the combination state were used to encode four states of the two-qubit system: $|00\rangle$, $|01\rangle$, $|10\rangle$ and $|11\rangle$, respectively. Next, we use the OCT to determine the control pulses for various quantum gates such as gate NOT/CNOT and Hadamard transformation. It is found that by carefully choosing the trap parameters, a very accurate control over this system and implementation of the two-qubit gates are possible.
In fact, this second method of scaling is complementary to the first one and can be combined with it in a composite “divide-and-conquer” approach to scaling.

Finally, in Chapter 7 we describe several possible future research directions that have emerged from this study.
Chapter 2: Theoretical methods with applications to adiabatic and optimal control of one ion in the trap

2.1 Trapping potential

In this chapter, we explore and report the fundamental properties of the adiabatic control scheme for ions in a trap using the simplest case: We consider only one ion and restrict its motion to one dimension along the trap (z-axis), which is assumed to be sufficiently uncoupled from the radial motion. Thus, this model is essentially one dimensional. In the vast majority of experiments the trapping potential is harmonic:

![Diagram of trapping potential]

Fig. 2.1: One 111Cd$^+$ ion in the harmonic and anharmonic potential traps. Solid line: harmonic case; dotted line: anharmonic case.
\[V_h(z) = \frac{1}{2} k z^2, \] (2.1.1)

where \(k \) is the force constant. For example, in the work of Monroe group [73-75] the cadmium ions \((^{111}\text{Cd}^+)\) are used and the axial frequency is \(\omega/2\pi = 2.77 \text{ MHz} \), related to the force constant through \(k = m\omega^2 \), with \(k/2\pi = 1.483 \times 10^{-3} \text{ MHz}/a_0^2 \). For harmonic oscillator problem, solution of the Schrödinger equation is analytic and leads to the well-known result (atomic units are used in all equations here, \(a_0 \) and Bohr are both the length symbol in atomic units):

\[E_h = \omega \left(v + \frac{1}{2} \right), \quad v = 0, 1, 2 \cdots \] (2.1.2)

In the harmonic potential trap, as seen from this equation, the transition frequencies between different energy levels are all equal to \(\omega = E_{v'} - E_v \). As a consequence, it is impossible to selectively address and control transitions between two chosen energy levels. In order to achieve the control, we propose to add an *anharmonic* term to the harmonic trapping potential. Now the anharmonic trapping potential is:

\[V_a(z) = \frac{1}{2} k z^2 + \langle \text{anharmonic term} \rangle. \] (2.1.3)

This should result in a non-equidistant (anharmonic) spectrum of the motional states and should enable the control. In this work we consider the following anharmonic trapping potential:

\[V_a(z) = \frac{1}{2} k z^2 + \frac{1}{4!} k' z^4, \] (2.1.4)
where k' is a parameter which controls anharmonicity. The case of $k' = 0$ corresponds to usual harmonic potential. From the previous work by M. Zhao and D. Babikov [63], it is known that the anharmonicity on the order of 1% of the harmonic frequency is enough to achieve robust control. Larger values of k' are better for the control, but may be difficult to create experimentally due to the microscopic size of the trapping region. We studied several different values of $k'/2\pi = 3.558 \times 10^{-6}$, 1.423×10^{-7}, 1.067×10^{-7}, 3.558×10^{-9}, 3.558×10^{-10} MHz/a_0^4 to choose a suitable anharmonicity parameter. Based on the above consideration the value of $k'/2\pi = 1.067 \times 10^{-7}$ MHz/a_0^4 was chosen for the 1D model which was estimated to provide anharmonicity on the order of 1% of the axial trap frequency.

2.2 Schrödinger equation and basis set expansion

The time-independent Schrödinger equation for the axial direction of the ion trap is:

$$\hat{H}\psi_v(z) = E_v\psi_v(z), \quad (2.2.1)$$

where

$$\hat{H} = -\frac{1}{2m} \frac{d^2}{dz^2} + V_a(z)q \quad (2.2.2)$$

is 1D Hamiltonian operator, q is the electric charge of the ion and index v labels eigenstates of the system [76-78]. Using basis set expansion, the wavefunctions of the system can be written as:
\[\psi_v(z) = \sum_{j=1}^{N} C_{v,j} \varphi_j(z), \]

where \(\varphi_j(z) \) is the basis set of known one dimensional functions of coordinate \(z \), the index \(j \) labels basis functions, \(C_{v,j} \) are the coefficients of linear combination, \(N \) is the number of basis functions which is a convergence parameter determined by try-and-error during convergence studies. In this work, we use the orthonormal basis set of eigenwavefunctions of harmonic oscillator. It has the following form:

\[\varphi_j(z) = A_j H_j(y) e^{-y^2/2}, \quad y = az, \quad \alpha = \sqrt{m\omega} = \sqrt{k/\omega}. \]

Here \(H_j(y) \) is a Hermite polynomial [79],

\[A_j = \left[\alpha / \sqrt{\pi} 2^j \cdot j! \right]^{1/2}, \]

which is normalization constant. The basis functions are orthonormal

\[\int_{-\infty}^{\infty} \varphi_i(z) \varphi_j(z) \, dz = \delta_{ij}. \]

In the matrix form, the wavefunction and the basis set expansion can be written as follows:

\[\Psi = \begin{bmatrix} \varphi_1 \\ \varphi_2 \\ \vdots \\ \varphi_N \end{bmatrix}, \quad \Phi = \begin{bmatrix} \varphi_1 \\ \varphi_2 \\ \vdots \\ \varphi_N \end{bmatrix}, \quad C_{N\times N} = \begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1N} \\ c_{21} & c_{22} & \cdots & c_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ c_{N1} & c_{N2} & \cdots & c_{NN} \end{bmatrix}, \]

\[\Psi = C^T \Phi. \]

The time-independent Schrödinger equation in the matrix form is as follow:

\[\hat{H} \Psi = E \Psi, \]
where
\[\hat{\Psi} = \begin{bmatrix} \hat{\Psi}_1(z) \\ \hat{\Psi}_2(z) \\ \vdots \\ \hat{\Psi}_N(z) \end{bmatrix}, \quad E_{n \times n} = \begin{bmatrix} E_1 & 0 & \cdots & 0 \\ 0 & E_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & E_N \end{bmatrix}. \]

The transposed matrix of Eqs. (2.2.7) and (2.2.8) are as follows:

\[\Psi^T = \Phi^T c,\]

\[\hat{\Psi}^T = \Psi^T E,\]

Substituting Eq. (2.2.10) into Eq. (2.2.11), we obtain:

\[\hat{\Phi}^T c = \Phi^T C E,\]

Multiplying Eq. (2.2.12) by \(\Phi^*\) from the left side, we obtain the following secular equation:

\[HC = CE,\]

where \(\Phi^* \Phi^T = I\) (unit matrix) and \(H = \Phi^* \hat{\Phi}^T\) is the Hamiltonian matrix, which can be written explicitly as follows:

\[H_{n \times n} = \begin{bmatrix} \langle \varphi_1 | \hat{H} | \varphi_1 \rangle & \langle \varphi_1 | \hat{H} | \varphi_2 \rangle & \cdots & \langle \varphi_1 | \hat{H} | \varphi_N \rangle \\ \langle \varphi_2 | \hat{H} | \varphi_1 \rangle & \langle \varphi_2 | \hat{H} | \varphi_2 \rangle & \cdots & \langle \varphi_2 | \hat{H} | \varphi_N \rangle \\ \vdots & \vdots & \ddots & \vdots \\ \langle \varphi_N | \hat{H} | \varphi_1 \rangle & \langle \varphi_N | \hat{H} | \varphi_2 \rangle & \cdots & \langle \varphi_N | \hat{H} | \varphi_N \rangle \end{bmatrix}.\]

Here \(\langle \varphi_i | \hat{H} | \varphi_j \rangle, \ i, j = 1, 2, \cdots, N\) represent integrals over \(z\). After numerical diagonalization of this matrix (see our code Program 1DIONTRAP in Appendix A), we obtain eigenvalues of the system:

\[E = C^T HC.\]

Here \(C\) is unitary matrix of eigenvectors obtained after numerical diagonalization.
such that $C^+C = I$, where C^+ is Hermitian conjugate of C. Because the wavefunctions and the expansion coefficients are real in this time-independent problem, we have

$C^* = C$ and $C^TC = I$. When the matrix C is known, the wavefunctions of eigenstates of the system can be calculated from Eq. (2.2.7).

The elements of the Hamiltonian matrix Eq. (2.2.14) are computed as follows:

$$H_{i,j} = \langle \varphi_i(z)|\hat{H}(z)|\varphi_j(z)\rangle = \langle \varphi_i(z)|\hat{T}(z) + \hat{V}_a(z)|\varphi_j(z)\rangle$$

$$= \left(\varphi_i(z) \right) - \frac{1}{2m} \frac{d^2}{dz^2} + \frac{1}{2} k z^2 + \frac{1}{4!} k' z^4 \left| \varphi_j(z) \right).$$ (2.2.16)

Here we introduce kinetic energy matrix $T_{i,j}$ and potential energy matrix $V_{i,j}$ separately to represent the Hamiltonian matrix:

$$H_{i,j} = T_{i,j} + V_{i,j},$$ (2.2.17)

$$T_{i,j} = - \frac{1}{2m} \left(\varphi_i(z) \right) \frac{d^2}{dz^2} \varphi_j(z) \right),$$ (2.2.18)

$$V_{i,j} = \left(\varphi_i(z) \right) \frac{1}{2} k z^2 + \frac{1}{4!} k' z^4 \left| \varphi_j(z) \right).$$ (2.2.19)

2.3 Construction of the potential energy matrix and kinetic energy matrix

Integrals of Eqs. (2.2.18) and (2.2.19) can be computed numerically or analytically. For the potential energy part we can rewrite Eq. (2.2.19) in another form:

$$V_{i,j} = \int_{-\infty}^{+\infty} \varphi_i^*(z) \left(\frac{1}{2} k z^2 + \frac{1}{4!} k' z^4 \right) \varphi_j(z) dz.$$ (2.3.1)

In our codes, instead of the integral from negative infinity to positive infinity, we only
need to determine certain integration limits and calculate the integral between them which gives reliable numerical results. Here we define them as z_{min} and z_{max} with $z_{\text{min}} = -z_{\text{max}}$. Then the Eq. (2.3.1) can be written as follows:

$$V_{i,j} = \int_{z_{\text{min}}}^{z_{\text{max}}} \varphi_i^*(z) \left(\frac{1}{2} k z^2 + \frac{1}{4!} k' z^4 \right) \varphi_j(z) \, dz. \quad (2.3.2)$$

In the 1D code we use the straightforward Equally-Spaced Abscissas method to calculate the integral [80], so we have to choose a relatively small distance step Δz and replace the integral by the product of Δz and the sum of values of the integrand in different points z_n:

$$V_{i,j} = \Delta z \sum_{n=1}^{\mathcal{N}} \varphi_i^*(z_n) \left(\frac{1}{2} k z_n^2 + \frac{1}{4!} k' z_n^4 \right) \varphi_j(z_n), \quad (2.3.3)$$

here \mathcal{N} is the number of integration points and n is used to label the points. \mathcal{N} is calculated using the following equation:

$$\mathcal{N} = \frac{z_{\text{max}} - z_{\text{min}}}{\Delta z} + 1. \quad (2.3.4)$$

The value $n = 1$ corresponds to z_{min} and $n = \mathcal{N}$ corresponds to z_{max}. Because \mathcal{N} is integer, we change \mathcal{N} to obtain desirable distance step size Δz. Since the wavefunctions are real, $\varphi_i^* = \varphi_i$.

For the kinetic energy part, because $\varphi_i(z)$ is a known analytic function from Eq. (2.2.4), the second derivative of the basis function can be calculated analytically using rules of Hermite polynomials:
\[
\frac{d^2}{dz^2} \varphi_j(z) = A_j \left(H_j''(y) e^{-y^2/2} + 2H_j'(y) \left(e^{-y^2/2} \right)' \right) + H_j(y) \left(e^{-y^2/2} \right)'' .
\] (2.3.5)

It is easy to calculate the first and second derivatives of \(e^{-y^2/2} \), which are

\[
\left(e^{-y^2/2} \right)' = -\alpha ye^{-y^2/2} = -\alpha^2 ze^{-\alpha^2 z^2/2} ,
\] (2.3.6)

\[
\left(e^{-y^2/2} \right)'' = \alpha^2 (y^2 - 1)e^{-y^2/2} = \alpha^2(\alpha^2 z^2 - 1)e^{-\alpha^2 z^2/2} .
\] (2.3.7)

When we calculate the derivatives of Hermite polynomials, we can use the following property:

\[
H_j'(z) = 2j H_{j-1}(z).
\] (2.3.8)

Now we can calculate the terms of interest.

\[
H_j'(y) = H_j'(az) = \alpha H_j'(y) = \alpha H_j'(az) ,
\] (2.3.9)

\[
H_j''(y) = H_j'(az) = [H_j'(az)']' = [\alpha H_j'(az)]' = 2\alpha [H_{j-1}(az)]' = 2\alpha^2 H_{j-1}'(az).
\] (2.3.10)

Substituting Eqs. (2.3.5) - (2.3.10) into Eq. (2.2.18) we obtain the following formula for the kinetic part:

\[
T_{i,j} = -\frac{1}{2m} \langle \varphi_i(z) | A_j(4j(j - 1)\alpha^2 H_{j-2}(az)e^{-\alpha^2 z^2/2} + 4j\alpha H_{j-1}(az)\left(-\alpha^2 ze^{-\alpha^2 z^2/2} \right) + H_j(az)\left(\alpha^2(\alpha^2 z^2 - 1)e^{-\alpha^2 z^2/2} \right) \rangle .
\] (2.3.11)

Using Eq. (2.2.4), Eq. (2.3.11) can be integrated analytically [81]. For the upper triangle of the matrix, the result is:
Alternatively, we can generate Hermite polynomials and their first derivatives numerically using a subroutine OTHPL [82] and calculate the integral of Eq. (2.3.11) numerically, which serves as a check of the analytic expressions. Similar to Eq. (2.3.3) of the potential part, we calculate the integral along the axial z using the Equally-Spaced Abscissas method:

\[
T_{i,j} = -\frac{1}{2m} \langle \varphi_i(z) | \sqrt{4j(j-1)} \alpha^2 \varphi_{j-2}(z) \rangle \\
-2\sqrt{2}j \alpha^2 z \varphi_{j-1}(z) + \alpha^2 (\alpha^2 z^2 - 1) \varphi_j(z) \\
= -\frac{k}{4\alpha^2} \left(4\sqrt{j(j-1)} \delta_{i,j-2} - 4\sqrt{j} (\sqrt{i+1} \delta_{i,j-2} + \sqrt{i} \delta_{i,j}) \\
-2\delta_{i,j} + \left(2i+1 \right) \delta_{i,j} + \sqrt{(i+1)(i+2)} \delta_{i,j-2} \right). \tag{2.3.12}
\]

2.4 Matrix diagonalization and convergence studies

After the elements of Hamiltonian matrix are calculated, we need to diagonalize the matrix to obtain its eigenvalues (energies) and the eigenvectors (parameter matrix C). Computer code IDIONTRAP was written using FORTRAN language to carry out these calculations. The code is attached in Appendix A.

In my work, my FORTRAN program jobs are run at remote computer at
NERSC which is high performance scientific computing facility for research sponsored by the U.S. Department of Energy Office of Science. I used several computer system provided by NERSC to do my calculation. For example, Jacquard Linux system was used for the first two and half years of my research. After its retirement, I switched to Franklin, then to the newest one, Hopper, which I use until now.

Rigorous convergence studies were carried out in order to obtain reliable results and save the computer time. First, using very small step size $\Delta z = 1.0$ Bohr and very large size of basis set $N = 50$, we did calculations with different grid limits ($z_{\text{max}} = 500, 650$ and 900 Bohr) to determine the optimal value of z_{max}. The value of $z_{\text{max}} = 650$ Bohr was chosen for further calculations. With this z_{max}, the energy of eigenstates up to $\nu = 10$ (ν is quantum number) is accurate within 10^{-9} MHz.

Second, using $z_{\text{max}} = 650$ Bohr and $N = 50$, we studied the effect of the number of points. We carried out calculations with the number of points ($N = 101, 131, 501, 1001, 1501$ and 2501) along the axial direction. The value $N = 131$ (corresponding to $\Delta z = 10$ Bohr) was chosen. With this grid the deviation of energy for the state $\nu = 10$ from the most accurate results ($N = 2501$) is lower than 10^{-9} MHz. Finally, using $z_{\text{max}} = 650$ Bohr and $\Delta z = 10$ Bohr we investigated the effect of the size of the basis set with $N = 10, 20, 30, 40$ and 50. Results of all these
calculations are summarized in Fig. 2.2 which shows E_v as a function of quantum number in different calculations. One feature seen in these calculations is that results for some upper states calculated with smaller basis sets are noticeably different from those calculated with larger basis sets. For example, comparing the results obtained with $N = 40$ basis functions against those obtained with $N = 50$ basis functions, one can see apparent differences when the quantum number comes to about $v = 33$. In the numerical method, we can only use a limited number of basis functions in the

\[\text{Fig. 2.2: Spectrum of energies of } ^{111}\text{Cd}^+ \text{ ion in the anharmonic potential trap calculated numerically using basis sets of different sizes } N = 10, 20, 30, 40, 50. \text{ In all calculations } \tau_{\text{max}} = 650 \text{ Bohr and } \Delta z = 10 \text{ Bohr (} N = 131 \text{) are used. Arrows indicate inaccurate results.} \]
calculation, so there are always some deviations between calculated results with true values for the upper states. We have to use larger sizes of basis set if we want to obtain accurate results for upper states. Similarly, in calculations with $N = 40$ basis functions we cannot achieve 40 accurate eigenvalues, we need to compare their results with more accurate data from larger sizes of basis set to make sure how accurate they are. Recall that in our system the anharmonicity is small and the deviation of anharmonic results from harmonic ones is also small. In order to see this effect, the error of energy eigenvalues should be lower than 1% of anharmonicty, which is about 0.001 MHz. From our study, when the size of basis set is $N = 20$, the states up to $|v\rangle = 10$ are converged to 10^{-9} MHz compared to the more accurate results from $N = 50$. This is accurate enough for our purpose, so our final 1D calculations are carried out with $z_{max} = 650$ Bohr, $N = 131$ (Equally-Spaced Abscissas method with $\Delta z = 10$ Bohr) and $N = 20$ basis functions.

2.5 Analysis of results

Figure 2.3 shows energy eigenvalues of the states with quantum number $v = 0, 1, \cdots 10$. Results for the harmonic potential trap (plus) are calculated analytically using Eq. (2.1.2). Results for the anharmonic potential trap (circle) are from our numerical calculations. The third set of data points (box) in Fig. 2.3 corresponds to Dunham expansion formula [83]:

We used the first three numerical values \((v = 0, 1, 2)\) of the calculated anharmonic spectrum to fit the Dunham expansion formula and obtained the following values of the coefficients:

\[
\frac{\Omega}{2\pi} = 2.771 \text{ MHz},
\]

\[
\frac{\Delta}{2\pi} = -2.179 \times 10^{-2} \text{ MHz},
\]

\[
\frac{D}{2\pi} = -5.214 \times 10^{-3} \text{ MHz}.
\]

Note that the value of \(\Omega\) is practically equivalent to the harmonic frequency, which

Fig. 2. 3: Spectrum of the lower eleven states for \(^{111}\text{Cd}^+\) ion in the harmonic and anharmonic traps.
means that the Dunham expansion describes the low part of the spectrum very
accurately. Also, the value of $\Delta \approx -0.008 \Omega$, which is about 0.8% of Ω. As expected, it should be enough for the successful control.

From Fig. 2.3 it is also apparent that results of the anharmonic case are different from the analytic harmonic results. When $\nu = 0$, the difference is vanishingly small (smaller than 0.1 MHz), but with the increase of the quantum number the difference increases. When $\nu = 10$, the deviation is about 20 MHz. To find out the trend of the difference between the harmonic and anharmonic spectra, we

![Graph](image)

Fig. 2. 4: Energy difference between the anharmonic spectrum and the harmonic spectrum of 111Cd$^+$ ion (from Table 2.1).
plotted in Fig. 2.4 the energy differences:

\[\delta E = E_v - E_h, \]

(2.5.2)

The anharmonic results from numerical calculation (Table 2.1) and from the Dunham fit (Eq. (2.5.1)) are both used. The data in Fig. 2.4 show that the energy differences increase with a trend of parabola which is the evidence that the spectrum of ion in the anharmonic potential trap is non-equidistant. If the numerical spectrum is harmonic, the data in Fig. 2.4 would show a straight line. Also note that the spectrum from numerical calculations is close to the results calculated from Dunham expansion formula for small values of \(\nu \), which tells us that our fit values are qualitatively correct. But when the quantum number becomes larger, they are somewhat different. This means we can reproduce very accurately the results for several lower states with the Dunham fit using the lowest three states. All data used in Fig. 2.3 and 2.4 are summarized in Table 2.1.

In addition to analysis of the spectrum, we can also analyze wavefunctions of states of the trap. Because the matrix \(\mathbf{C} \) is obtained during the diagonalization of the Hamiltonian matrix, the wavefunctions of the system can be calculated from the Eq. (2.2.7). In Fig. 2.5, the harmonic (red) and anharmonic (green) trapping potentials are both plotted, the anharmonic term (blue) of the anharmonic potential is also included. We also draw the wavefunctions of different energy levels in the ion traps and it can
Table 2.1: Eigenvalues, assignments and deviations (from the harmonic model) of the vibrational states of 111Cd$^+$ ion in a slightly anharmonic trap.

<table>
<thead>
<tr>
<th># of state</th>
<th>E_h (MHz)</th>
<th>E_v (numerical) (MHz)</th>
<th>Anharmonic spectrum from Dunham expansion (MHz)</th>
<th>δE between E_v (numerical) and E_h (MHz)</th>
<th>δE between anharmonic (Dunham fit) and E_h (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>8.7022</td>
<td>8.7740</td>
<td>8.7740</td>
<td>0.0718</td>
<td>0.0718</td>
</tr>
<tr>
<td>1</td>
<td>26.1066</td>
<td>26.4619</td>
<td>26.4619</td>
<td>0.3552</td>
<td>0.3552</td>
</tr>
<tr>
<td>2</td>
<td>43.5110</td>
<td>44.4236</td>
<td>44.4236</td>
<td>0.9126</td>
<td>0.9126</td>
</tr>
<tr>
<td>3</td>
<td>60.9154</td>
<td>62.6480</td>
<td>62.6592</td>
<td>1.7326</td>
<td>1.7437</td>
</tr>
<tr>
<td>4</td>
<td>78.3198</td>
<td>81.1251</td>
<td>81.1686</td>
<td>2.8053</td>
<td>2.8488</td>
</tr>
<tr>
<td>5</td>
<td>95.7242</td>
<td>99.8458</td>
<td>99.9519</td>
<td>4.1216</td>
<td>4.2276</td>
</tr>
<tr>
<td>6</td>
<td>113.1287</td>
<td>118.8018</td>
<td>119.0090</td>
<td>5.6731</td>
<td>5.8804</td>
</tr>
<tr>
<td>7</td>
<td>130.5331</td>
<td>137.9855</td>
<td>138.3401</td>
<td>7.4524</td>
<td>7.8070</td>
</tr>
<tr>
<td>8</td>
<td>147.9375</td>
<td>157.3898</td>
<td>157.9449</td>
<td>9.4524</td>
<td>10.0075</td>
</tr>
<tr>
<td>9</td>
<td>165.3419</td>
<td>177.0085</td>
<td>177.8237</td>
<td>11.6666</td>
<td>12.4818</td>
</tr>
<tr>
<td>10</td>
<td>182.7463</td>
<td>196.8353</td>
<td>197.9763</td>
<td>14.0891</td>
<td>15.2300</td>
</tr>
</tbody>
</table>

Fig. 2.5: Green line is the anharmonic trapping potential $V_a(z) = \frac{1}{2}kz^2 + \frac{1}{4!}k'z^4$, red line is the harmonic part of this potential and blue line is the anharmonic part. Black solid line describes the wavefunctions and energy levels of 111Cd$^+$ ion in the harmonic trapping potential and the dotted line is that of anharmonic case.
help us understand the system in terms of the probability distribution for different states. From Fig. 2.5, it is shown that the anharmonic trapping potential is a little sharper than the harmonic potential which induces a shift up of the anharmonic energy levels compared to the energy levels of the harmonic case. The differences between energy levels of harmonic and anharmonic trap increase with the quantum number, which is consistent with Fig. 2.4. Because the anharmonicity is quite small, the shape of anharmonic potential trap is very similar to the harmonic trap which leads to the nearly same wavefunctions of two systems. However, the sharper anharmonic potential results in the slightly smaller axial extent of the corresponding wavefunctions compared to the harmonic case. This small effect is seen in Fig. 2.5.

2.6 The control scheme and the transition matrix

In order to control motion of the ion we propose to apply an additional time-dependent electric field $\epsilon(z, t)$ along the axis of the trap, so that the Hamiltonian becomes: $\hat{H}_{ion} = \hat{H} + \Phi(z, t)q$, where \hat{H} is the Hamiltonian from Eq. (2.2.2),

$\Phi(z, t) = - \int_0^z \epsilon(z, t)dz$ is the electric potential, and q is electric charge of the ion.

The easiest approach is to create a spatially homogeneous field with the time-dependent amplitude $\epsilon(t)$ which after trivial analytic integration gives:

$$\hat{H}_{ion} = \hat{H} - \epsilon(t)zq.$$

(2.6.1)

Note that this problem is very similar to the coherent control problem of
molecular vibrations using the ultra-fast optimally shaped laser pulses [8, 33, 37, 44, 84-88]. Indeed, the semiclassical molecule-light interaction is given by:

\[\hat{H}_{\text{mol}} = \hat{H} - \epsilon(t)\mu(r). \]

(2.6.2)

Here \(\hat{H} \) is molecular Hamiltonian, \(\epsilon(t) \) is intensity of the time-dependent laser field and \(\mu(r) \) is the molecular dipole moment function. The dipole moment of non-polar molecules executing small amplitude vibrational motion is a linear function of the internuclear distance:

\[\mu(r) \approx \left(\frac{\partial \mu}{\partial r} \right)_{r=r_{eq}} r + \cdots. \]

(2.6.3)

If only keeping the first term, the total molecular Hamiltonian becomes:

\[\hat{H}_{\text{mol}} = \hat{H} - \epsilon(t)r\mu'_{r_{eq}}. \]

(2.6.4)

Since this expression is mathematically equivalent to Eq. (2.6.1), the optimal control theory methods developed for molecular vibrations can be utilized to control the motion of ions in a trap [84].

Similar to the molecular dipole moment function \(\mu(r) \), for convenience, we introduce the dipole moment function \(d(z) \) of one-ion in a trap:

\[d(z) = qz. \]

(2.6.5)

Using this definition, the control Hamiltonian of Eq. (2.6.1) can be rewritten as:

\[\hat{H}_{\text{ion}} = \hat{H} - \epsilon(t)d(z). \]

(2.6.6)

The transition matrix elements of ion in the trap (needed in the following
section) are calculated as follows:

\[
M_{v,v'} = \langle \Psi_v(z) | d(z) | \Psi_{v'}(z) \rangle. \tag{2.6.7}
\]

Here \(\Psi_v \) and \(\Psi_{v'} \) are two wavefunctions of the ion which can be calculated from Eq. (2.2.3) for any pair of eigenstates. So the equation is rewritten as:

\[
M_{v,v'} = \left(\sum_{i=1}^{N} C_{v,i} \phi_i(z) \right) \left(\sum_{j=1}^{N} C_{v',j} \phi_j(z) \right):
\]

\[
= q \int_{-\infty}^{+\infty} \left(\sum_{i=1}^{N} C_{v,i} \phi_i(z) \right)^* \left(\sum_{j=1}^{N} C_{v',j} \phi_j(z) \right) zdz
\]

\[
= \frac{q}{\sqrt{2m\omega}} \sum_{i,j=1}^{N} C_{v,i}' C_{v',j}' \left(\sqrt{i} \delta_{i,j+1} + \sqrt{j} \delta_{i,j-1} \right). \tag{2.6.8}
\]

Here \(m \) is the mass of \(^{111}\text{Cd}^+\) ion, \(\omega \) is the axial frequency (see Eq. (2.2.4)) and \(N \) is the number of basis functions which are used to represent wavefunctions of the

![Fig. 2.6: Transition matrix of \(^{111}\text{Cd}^+\) ion in the harmonic trapping potential.](image-url)
system. Alternatively, we can calculate the elements of transition matrix numerically using the following equation which serves as a test:

\[M_{\nu',\nu} = q\Delta z \sum_{n=1}^{N} z_{n} \psi_{\nu'}(z_{n})^{*}\psi_{\nu}(z_{n}) \]

\[= q\Delta z \sum_{n=1}^{N} z_{n} \left(\sum_{i=1}^{N} C_{\nu,i} \phi_{i}(z_{n}) \right)^{*} \left(\sum_{j=1}^{N} C_{\nu',j} \phi_{j}(z_{n}) \right). \]

(2.6.9)

The code for calculation of transition matrix is program 1DIONTRAP (Appendix A, lines 264-286) using the numerical integral with Eq. (2.6.9).

If the trapping potential is harmonic, wavefunctions of the system are just basis functions from Eq. (2.2.4). In this case, the sum of Eq. (2.6.8) simplifies to only one term:

\[\text{Fig. 2. 7: Transition matrix of } ^{111}\text{Cd}^{+} \text{ ion in the anharmonic trapping potential.} \]
Table 2.2: Values of transition matrix (11×11) of \(^{111}\text{Cd}^+\) ion in the harmonic trapping potential (values are in units of \(ea_0\)).

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.00</td>
<td>30.56</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>1</td>
<td>30.56</td>
<td>0.00</td>
<td>43.22</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>2</td>
<td>0.00</td>
<td>43.22</td>
<td>0.00</td>
<td>52.94</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>3</td>
<td>0.00</td>
<td>0.00</td>
<td>52.94</td>
<td>0.00</td>
<td>61.13</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>4</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>61.13</td>
<td>0.00</td>
<td>68.34</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>5</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>68.34</td>
<td>0.00</td>
<td>74.87</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>6</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>74.87</td>
<td>0.00</td>
<td>80.87</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>7</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>80.87</td>
<td>0.00</td>
<td>86.45</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>8</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>86.45</td>
<td>0.00</td>
<td>91.69</td>
<td>0.00</td>
</tr>
<tr>
<td>9</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>91.69</td>
<td>0.00</td>
<td>96.65</td>
</tr>
<tr>
<td>10</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>96.65</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Table 2.3: Values of transition matrix (11×11) of \(^{111}\text{Cd}^+\) ion in the anharmonic trapping potential (values are in units of \(ea_0\)).

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.000</td>
<td>30.318</td>
<td>0.000</td>
<td>0.095</td>
<td>0.000</td>
<td>0.001</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>1</td>
<td>30.318</td>
<td>0.000</td>
<td>42.547</td>
<td>0.000</td>
<td>0.181</td>
<td>0.000</td>
<td>0.001</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>2</td>
<td>0.000</td>
<td>42.547</td>
<td>0.000</td>
<td>51.731</td>
<td>0.000</td>
<td>0.273</td>
<td>0.000</td>
<td>0.002</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>3</td>
<td>0.095</td>
<td>0.000</td>
<td>51.731</td>
<td>0.000</td>
<td>59.322</td>
<td>0.000</td>
<td>0.370</td>
<td>0.000</td>
<td>0.003</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>4</td>
<td>0.000</td>
<td>0.181</td>
<td>0.000</td>
<td>59.322</td>
<td>0.000</td>
<td>65.888</td>
<td>0.000</td>
<td>0.469</td>
<td>0.000</td>
<td>0.004</td>
<td>0.000</td>
</tr>
<tr>
<td>5</td>
<td>0.001</td>
<td>0.000</td>
<td>0.273</td>
<td>0.000</td>
<td>65.888</td>
<td>0.000</td>
<td>71.724</td>
<td>0.000</td>
<td>0.571</td>
<td>0.000</td>
<td>0.007</td>
</tr>
<tr>
<td>6</td>
<td>0.000</td>
<td>0.001</td>
<td>0.000</td>
<td>0.370</td>
<td>0.000</td>
<td>71.724</td>
<td>0.000</td>
<td>77.005</td>
<td>0.000</td>
<td>0.673</td>
<td>0.000</td>
</tr>
<tr>
<td>7</td>
<td>0.000</td>
<td>0.000</td>
<td>0.002</td>
<td>0.000</td>
<td>0.469</td>
<td>0.000</td>
<td>77.005</td>
<td>0.000</td>
<td>81.848</td>
<td>0.000</td>
<td>0.878</td>
</tr>
<tr>
<td>8</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.003</td>
<td>0.000</td>
<td>0.571</td>
<td>0.000</td>
<td>81.848</td>
<td>0.000</td>
<td>86.332</td>
<td>0.000</td>
</tr>
<tr>
<td>9</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.673</td>
<td>0.000</td>
<td>86.332</td>
<td>0.000</td>
<td>94.448</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>10</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.878</td>
<td>0.000</td>
<td>94.448</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

\[
M_{v,v'} = q\langle \varphi_v|z|\varphi_{v'}\rangle = \frac{q}{\sqrt{2m\omega}} \left(\sqrt{v} \delta_{v,v'+1} + \sqrt{v+1} \delta_{v,v'-1} \right). \tag{2.6.10}
\]

Figure 2.6 shows elements of 11×11 transition matrix for one ion in the harmonic trapping potential calculated using this analytic formula. As in the infrared spectroscopy, the selection rule \(\Delta v = \pm 1\) is revealed. Elements of 11×11 transition matrix for one ion in the anharmonic trapping potential calculated numerically using...
Eq. (2.6.9) are shown in Fig. 2.7. Because we only add a small anharmonicity to harmonic potential, the difference between the harmonic transition matrix and the anharmonic one is quite small. In Fig. 2.7, besides the $\Delta \nu = \pm 1$ transitions, $\Delta \nu = \pm 3, \pm 5 \cdots$ transitions also occur which are the contributions of the double sum in Eq. (2.6.8), and it is the effect of anharmonicity. All the data of Figs. 2.6 and 2.7 are summarized in the Tables 2.2 and 2.3.

2.7 Optimal control theory (OCT)

The purpose of optimal control theory is to design theoretically the pulse shape $\epsilon(t)$ which maximizes the transfer probability from a given initial state ϕ_i to a chosen target state ϕ_f (both can be eigenstates or superposition states). The optimization can be achieved by maximizing the objective functional with the monotonically convergent numerical algorithm of Rabitz [8], where the objective functional is defined as:

$$J = \left| \langle \Psi(T) | \phi_f \rangle \right|^2 - \int_0^T \alpha(t) |\epsilon(t)|^2 \, dt$$

$$-2 Re \left\{ \langle \Psi(T) | \phi_f \rangle \int_0^T \langle \Psi(t) | i \hat{H}_{ion} + \frac{\partial}{\partial t} | \Psi(t) \rangle dt \right\}.$$ \hspace{1cm} (2.7.1)

Here T presents duration of the pulse, $\Psi(t)$ is the time-dependent wave function driven by $\epsilon(t)$ from its initial state $\Psi(t = 0) = \phi_i$ to the final state $\Psi(t = T) = \phi_f$ and $\Psi(t)$ is the backward driven wave function. The first term in Eq. (2.7.1) is an overlap of the final wave function with the target state which is maximized; the
second term is required to minimize energy of the laser field and constrain its smooth switching on and off; the last term serves to satisfy the time-dependent Schrödinger equation with the evolution of the wave functions $\Psi(t)$ and $\Psi(t)$. The function $\alpha(t)$ is a penalty function, which has the following form [48]:

$$\alpha(t) = \frac{\alpha_0}{s(t)}$$ (2.7.2)

where α_0 is a constant penalty factor, $s(t)$ plays a role of the smooth switching-on and switching-off of the pulse:

$$s(t) = \sin^2\left(\pi \frac{t}{T}\right)$$ (2.7.3)

The brackets $\langle \cdot \rangle$ in Eq. (2.7.1) denote integration over the spatial coordinate z, which is omitted here for simplicity. This approach can be used, for example, for state flips like $|0\rangle \rightarrow |1\rangle$, when both the initial and the final states are uniquely defined.

In quantum computation, however we have to deal with more complicated gate transformations of the vibrational qubit. For example, for the logical gate NOT we have to find a pulse to induce two transitions between the qubit states simultaneously:

$$\text{NOT}|0\rangle \rightarrow |1\rangle$$ (2.7.4)

$$\text{NOT}|1\rangle \rightarrow |0\rangle$$ (2.7.5)

This means, the system should be driven into the state $|1\rangle$ if it was initially in the vibrational state $|0\rangle$, but if it was initially in the state $|1\rangle$ it should be driven into the
state |0⟩. One universal gate pulse should be able to achieve the population transfer for two transitions of interest simultaneously, which transition is actually performed depends only on the initial state of the qubit. This can be achieved by maximizing the functional where the sum over the two transitions of interest (Eqs. (2.7.4) and (2.7.5)) is introduced:

\[
J = \frac{1}{K} \sum_{k=1,2} |\langle \bar{\psi}^k_{f}(T) | \phi_f^k \rangle|^2 - \int_0^T \alpha(t)|\varepsilon(t)|^2 dt
- 2 \sum_{k=1,2} \text{Re} \left\{ \langle \bar{\psi}^k_{f}(T) | \phi_f^k \rangle \int_0^T \langle \bar{\psi}^k_{i}(t) | i\Pi_{ion} + \partial / \partial t | \bar{\psi}^k_{i}(t) \rangle dt \right\}.
\] (2.7.6)

Here index \(k \) labels \(K = 2 \) transitions of interest. For example, for the gate NOT we set: \(\phi_1^f = |0⟩, \phi_1^i = |1⟩, \) and \(\phi_2^f = |1⟩, \phi_2^i = |0⟩ \) according to Eqs. (2.7.4) and (2.7.5). The \(\bar{\psi}^k_{f}(t) \) and \(\bar{\psi}^k_{i}(t), k = \{1,2\} \), are the laser-driven time-dependent wave functions for two transitions of the gate, and \(\varepsilon(t) \) is the universal gate field.

In practice, the measure of success of the control pulse is the value of overlap \(\langle \bar{\psi}(T) | \phi_f \rangle \) between the actual final wave function and wave function of the target state. The control pulse designed to induce multiple state-to-state transitions (e.g., different transitions of the quantum gate) can be assessed by the value of cumulative transition probability defined as:

\[
P = \frac{1}{K} \sum_k |\langle \bar{\psi}(T) | \phi_f^k \rangle|^2.
\] (2.7.7)

Here the index \(k \) labels \(K \) transitions we want to optimize simultaneously, \(1 \leq k \leq K \).
The goal of this theory is to derive the equations for calculation of the optimal pulse \(\varepsilon(t) \). The procedure of this is very similar to the maximization of the Eq. \((2.7.1) \) described in detail in the literature [89]. It is required to maximize the functional with respect to variations in five functions: \(\tilde{\Psi}^k(t) \), \(\tilde{\varphi}^k(t) \), \(k = \{1,2\} \), and \(\varepsilon(t) \). We start with the variation of \(\tilde{\varphi}^k(t) \), \(k = \{1,2\} \). We get:

\[
\delta_{\varphi^k} J = J(\tilde{\Psi}^k(t), \tilde{\varphi}^k(t) + \delta \tilde{\varphi}^k(t), \varepsilon(t)) - J(\tilde{\Psi}^k(t), \tilde{\varphi}^k(t), \varepsilon(t))
\]

\[
= -2Re \left\{ \langle \tilde{\Psi}^k(T) | \phi^k_f \rangle \int_0^T \langle \delta \tilde{\varphi}^k(t) | i \hat{H}_{ion} + \partial / \partial t | \tilde{\Psi}^k(t) \rangle dt \right\}. \tag{2.7.8}
\]

Because \(\delta \tilde{\varphi}^k \) is chosen arbitrarily, Eq. \((2.7.8) \) can only be satisfied if

\[
\left(i \hat{H}_{ion} + \frac{\partial}{\partial t} \right) \tilde{\varphi}^k(t) = 0 \tag{2.7.9}
\]

By applying variations to the backward propagated wavefunctions \(\tilde{\varphi}^k(t) \) in Eq. \((2.7.6) \) separately, we obtain the following equations for each \(k, k = \{1,2\} \):

\[
i \frac{\partial}{\partial t} \tilde{\varphi}^k(t) = \hat{H}_{ion} \tilde{\varphi}^k(t),
\]

\[
\tilde{\varphi}^k(0) = \phi^k_i \tag{2.7.10}
\]

These are two time-dependent Schrödinger equations to propagate forward in time, each with its own initial condition \(\phi^k_i \).

In the similar way, variations of \(\tilde{\Psi}^1(t) \) and \(\tilde{\Psi}^2(t) \) in the Eq. \((2.7.6) \) give:

\[
\delta_{\Psi^k} J = J(\tilde{\Psi}^k(t) + \delta \tilde{\Psi}^k(t), \tilde{\varphi}^k(t), \varepsilon(t)) - J(\tilde{\Psi}^k(t), \tilde{\varphi}^k(t), \varepsilon(t))
\]

\[
= \langle \tilde{\Psi}^k(T) + \delta \tilde{\Psi}^k(T) | \phi^k_f \rangle \langle \phi^k_f | \tilde{\varphi}^k(T) + \delta \tilde{\varphi}^k(T) \rangle - \langle \tilde{\Psi}^k(T) | \phi^k_f \rangle \langle \phi^k_f | \tilde{\varphi}^k(T) \rangle
\]

\[-2Re \left\{ \langle \tilde{\Psi}^k(T) | \phi^k_f \rangle \int_0^T \langle \delta \tilde{\varphi}^k(t) | i \hat{H}_{ion} + \partial / \partial t | \tilde{\Psi}^k(t) \rangle dt \right\}.
\]
Here we omit terms that depend quadratically on $\delta \bar{\psi}^k$. From Eq. (2.7.9), the last term in Eq. (2.7.11) vanishes and we obtain:

$$\delta \bar{\psi}^k J = 2Re \left(\langle \bar{\psi}^k(T) | \phi_f^k \rangle \left(\langle \phi_f^k | \delta \bar{\psi}^k(T) \rangle - \int_0^T \langle \bar{\psi}^k(t) | i \bar{H}_{ion} + \partial / \partial t | \delta \bar{\psi}^k(t) \rangle dt \right) \right).$$

(2.7.12)

Due to the choice of a time-independent $\delta \bar{\psi}^k(t) = \delta \bar{\psi}^k$, the time derivative $\partial / \partial t$ vanishes. By moving the operator $i \bar{H}_{ion}$ to the left, it was indicated it will work on $\bar{\psi}^k(t)$, and then we get:

$$\delta \bar{\psi}^k J = 2Re \left[\langle \bar{\psi}^k(T) | \phi_f^k \rangle \times \left(\langle \phi_f^k | \delta \bar{\psi}^k \rangle - \int_0^T (-i \bar{H}_{ion} \bar{\psi}^k(t) | \delta \bar{\psi}^k) dt \right) \right].$$

(2.7.13)

Eq. (2.7.13) holds for a $\bar{\psi}^k(t)$ satisfying the Schrödinger equation with boundary condition $\bar{\psi}^k(T) = \phi_f^k$, so we obtain the following equation for each $k, k = \{1,2\}$:

$$i \frac{\partial}{\partial t} \bar{\psi}^k(t) = \bar{H}_{ion} \bar{\psi}^k(t),$$

$$\bar{\psi}^k(T) = \phi_f^k.$$

(2.7.14)

These are two time-dependent Schrödinger equations propagated backward in time, each one with its own target state ϕ_f^k as a boundary condition.

Finally, the variations $\epsilon(t)$ lead to the optimal field:
\[
\delta E = J(\tilde{\psi}^k(t), \tilde{\psi}^k(t), \epsilon(t) + \delta \epsilon(t)) - J(\tilde{\psi}^k(t), \tilde{\psi}^k(t), \epsilon(t))
\]
\[
= \alpha_0 \int_0^T \frac{|\epsilon(t)|^2}{s(t)} dt - \alpha_0 \int_0^T \frac{|\epsilon(t) + \delta \epsilon(t)|^2}{s(t)} dt
\]
\[
-2 \sum_{k=1,2} \text{Re} \left\{ (\tilde{\psi}^k(T) | \phi_f^k) \int_0^T (\tilde{\psi}^k(t) | -i \delta \epsilon(t) d(z) \tilde{\psi}^k(t)) dt \right\}
\]
\[
= -\alpha_0 \int_0^T \frac{2 \epsilon(t) \delta \epsilon(t) + \delta \epsilon^2(t)}{s(t)} dt
\]
\[
-2 \sum_{k=1,2} \text{Im} \left\{ \int_0^T (\tilde{\psi}^k(T) | \phi_f^k)(\tilde{\psi}^k(t) | d(z) \tilde{\psi}^k(t)) \delta \epsilon(t) dt \right\}
\]
\[
\approx \int_0^T \left\{ 2 \alpha_0 \frac{\epsilon(t)}{s(t)} + 2 \sum_{k=1,2} \text{Im}(\tilde{\psi}^k(T) | \phi_f^k)(\tilde{\psi}^k(t) | d(z) \tilde{\psi}^k(t)) \right\} \delta \epsilon(t) dt
\]
(2.7.15)

Eq. (2.6.1) was used here. Eq. (2.7.15) can be satisfied for all \(\delta E(t) \) only when

\[
\alpha_0 \frac{\epsilon(t)}{s(t)} + \sum_{k=1,2} \text{Im}(\tilde{\psi}^k(T) | \phi_f^k)(\tilde{\psi}^k(t) | d(z) \tilde{\psi}^k(t)) = 0.
\]
(2.7.16)

From Eqs. (2.7.10) and (2.7.14), we can obtain:

\[
\frac{d(\tilde{\psi}^k(t) | \tilde{\psi}^k(t))}{dt} = 0.
\]
(2.7.17)

So,

\[
(\tilde{\psi}^k(t) | \tilde{\psi}^k(t)) = (\tilde{\psi}^k(T) | \tilde{\psi}^k(T)),
\]
(2.7.18)

Finally, we obtain the equation of the field:

\[
\epsilon(t) = \frac{s(t)}{\alpha_0} \text{Im} \sum_{k=1,2} (\tilde{\psi}(t) | \tilde{\psi}(t))(\tilde{\psi}(t) | d(z) \tilde{\psi}(t)),
\]
(2.7.19)

here the sum is over the two optimized transitions of interest and the four Schrödinger equations (2.7.10) and (2.7.14) are coupled only through this field equation (2.7.19).
2.8 Numerical propagation of vibrational wavepackets

The forward and backward propagation of the time-dependent Schrödinger equation is achieved by expanding the time-dependent wavefunction $\Psi(z, t)$ and $\Psi(z, t)$ over the basis set of eigenstates $\Psi_{\nu}(z)$ of the system with time-dependent complex coefficients $a_{\nu}(t)$ and $b_{\nu'}(t)$:

\[
i \Psi(z, t) = \tilde{H}_{\text{ion}} \Psi(z, t), \quad (2.8.1)
\]

\[
\Psi(z, t) = \sum_{\nu=1}^{L} a_{\nu}(t)e^{-iE_{\nu}t}\Psi_{\nu}(z), \quad (2.8.2)
\]

\[
\Psi(z, t) = \sum_{\nu'=1}^{L} b_{\nu'}(t)e^{-iE_{\nu'}t}\Psi_{\nu'}(z), \quad (2.8.3)
\]

where \tilde{H}_{ion} is from Eq. (2.6.1). Indexes ν and ν' label eigenstates of the system and L is the total number of states in the expansion used for the propagation ($L \leq N$).

Probability of the system in states ν and ν' can be computed as $|a_{\nu}(t)|^2$ and $|b_{\nu'}(t)|^2$.

Substituting $\Psi(z, t)$ from Eq. (2.8.2) into Eq. (2.8.1), we can obtain the following coupled equations for time evolution of coefficient $a_{\nu}(t)$ for the forward propagation:

\[
i \sum_{\nu=1}^{L} \left\{ \dot{a}_{\nu}(t)e^{-iE_{\nu}t} + a_{\nu}(t)e^{-iE_{\nu}t}(-iE_{\nu}) \right\} \Psi_{\nu} = \sum_{\nu=1}^{L} a_{\nu}(t)e^{-iE_{\nu}t}\tilde{H}\Psi_{\nu} - \sum_{\nu=1}^{L} \int a_{\nu}(t)e^{-iE_{\nu}t}\varepsilon(t)d(z)\Psi_{\nu}. \quad (2.8.4)
\]

In Dirac form, it can be rewritten as follows:
\[
i \sum_{v=1}^{L} \{ \hat{a}_v(t)e^{-iE_v t} + a_v(t)e^{-iE_v t}(-iE_v)\}|v\rangle
\]

\[
= \sum_{v=1}^{L} a_v(t)e^{-iE_v t} E_v|v\rangle - \sum_{v=1}^{L} a_v(t)e^{-iE_v t} \varepsilon(t)d(z)|v\rangle.
\]

(2.8.5)

Or,

\[
i \sum_{v=1}^{L} e^{-iE_v t} \hat{a}_v(t)|v\rangle = -\varepsilon(t) \sum_{v=1}^{L} e^{-iE_v t}d(z)a_v(t)|v\rangle.
\]

(2.8.6)

Multiplying Eq. (2.8.6) by \(e^{iE_v t}|v'\rangle\) from the left and integrating, we obtain:

\[
i \hat{a}_v(t) = -\varepsilon(t) \sum_{v=1}^{L} e^{-i(E_v-E_{v'})t}M_{v,v'}a_v(t).
\]

(2.8.7)

Here \(M_{v,v'}\) is the element of the transition matrix defined in Eq. (2.6.7).

If we split Eq. (2.8.7) into its real and imaginary parts, the following equations are obtained \((v \leq L)\):

\[
\hat{a}_v^R(t) = \varepsilon(t) \sum_{v=1}^{L} \left(a_v^R(t) \sin \theta_{v,v'} - a_v^I(t) \cos \theta_{v,v'}\right) M_{v,v'}, \quad (2.8.8)
\]

\[
\hat{a}_v^I(t) = \varepsilon(t) \sum_{v=1}^{L} \left(a_v^R(t) \cos \theta_{v,v'} + a_v^I(t) \sin \theta_{v,v'}\right) M_{v,v'}, \quad (2.8.9)
\]

where \(\theta_{v,v'} = (E_v - E_{v'})t\) is the phase shift. \(\hat{a}_v^R(t)\) and \(\hat{a}_v^I(t)\) represent real and imaginary parts of complex coefficient \(\hat{a}_v(t)\).

Similarly, if we follow the same procedure to derive the equations for the backward propagation, we will come to the same equations as Eqs. (2.8.7)-(2.8.9) (but \(a(t)\) substituted by \(b(t)\)). For simplicity, in the following derivation we only show
the equations for forward propagation.

The optimized field $\epsilon(t)$ in Eqs. (2.8.8) and (2.8.9) is calculated using Eq. (2.7.19). Expansions for $\bar{\Psi}(t)$ and $\bar{\Phi}(t)$ are needed during the calculation:

$$
\bar{\Psi}(t) = \sum_{v=1}^{L} a_v(t) e^{-i E_v t} |v\rangle,
$$

(2.8.10)

$$
\bar{\Phi}(t) = \sum_{v'=1}^{L} b_{v'}(t) e^{-i E_{v'} t} |v'\rangle,
$$

(2.8.11)

Substituting Eqs. (2.8.10) and (2.8.11) into Eq. (2.7.19), the different parts of Eq. (2.7.19) are rewritten as follows:

$$
\langle \bar{\Psi}(t) | \bar{\Psi}(t) \rangle = \sum_{v=1}^{L} a_v^*(t) b_v(t),
$$

(2.8.12)

$$
\langle \bar{\Psi}(t) | \bar{\Phi}(t) \rangle^R = \sum_{v=1}^{L} (a_v^R(t)b_v^R(t) + a_v^I(t)b_v^I(t)),
$$

(2.8.13)

$$
\langle \bar{\Phi}(t) | \bar{\Psi}(t) \rangle^I = \sum_{v=1}^{L} (a_v^R(t)b_v^I(t) - a_v^I(t)b_v^R(t)),
$$

(2.8.14)

$$
\langle \bar{\Psi}(t) | d(z) | \bar{\Psi}(t) \rangle = \sum_{v=1}^{L} \sum_{v'=1}^{L} \left[\text{Re}_{v,v'} \cos \theta_{v,v'} + \text{Im}_{v,v'} \sin \theta_{v,v'} \right] M_{v,v'}^z,
$$

(2.8.15)

where

$$
\text{Re}_{v,v'} = a_v^R(t)b_{v'}^R(t) + a_v^I(t)b_{v'}^I(t),
$$

(2.8.16)

$$
\text{Im}_{v,v'} = a_v^I(t)b_{v'}^R(t) - a_v^R(t)b_{v'}^I(t).
$$

(2.8.17)

Now everything is ready for solving Eqs. (2.8.8) and (2.8.9).
Note that the forward and backward propagation follow the same equations which simplifies our calculations a lot. But one thing we need to point out is that the initial condition of the forward and backward propagation have to be set up differently. Assume that the initial and final target states are given by:

\[
\phi_i = \sum_{\nu=1}^{L} \tilde{a}_{\nu} |\nu\rangle, \tag{2.8.18}
\]

\[
\phi_f = \sum_{\nu=1}^{L} \tilde{b}_{\nu} |\nu\rangle. \tag{2.8.19}
\]

For the forward propagation, because at \(t = 0 \) the phase term in Eq. (2.8.10) is equal to 1, the wave function at \(t = 0 \) can be written as:

\[
\tilde{\Psi}(t = 0) = \sum_{\nu=1}^{L} a_{\nu}(t = 0) |\nu\rangle. \tag{2.8.20}
\]

Comparing Eqs. (2.8.18) and (2.8.20) we see that the initial boundary values are equal to the input coefficients: \(a_{\nu}(t = 0) = \tilde{a}_{\nu} \).

For the backward propagation, the setup becomes more complicated. The wave function at \(t = T \) is:

\[
\tilde{\Psi}(t = T) = \sum_{\nu=1}^{L} b_{\nu}(t = T)e^{-iE_{\nu}T} |\nu\rangle, \tag{2.8.21}
\]

The final boundary values for backward propagation are obtained from \(b_{\nu}(t = T)e^{-iE_{\nu}T} = \tilde{b}_{\nu} \). Now the phase term cannot be neglected any more, so we have to find out the relationship between \(b_{\nu}(t = T) \) and \(\tilde{b}_{\nu} \) in order to start propagation of
the wave function backward. After some mathematical manipulation, the equations for \(b_{\nu} (t = T) \) are obtained:

\[
b_{\nu}^R (t = T) = \bar{b}_{\nu}^R \cos E_{\nu} T - \bar{b}_{\nu}^I \sin E_{\nu} T,
\]

\[
b_{\nu}^I (t = T) = \bar{b}_{\nu}^R \sin E_{\nu} T + \bar{b}_{\nu}^I \cos E_{\nu} T,
\]

(2.8.22) (2.8.23)

Where \(b_{\nu}^R \) and \(b_{\nu}^I \) are the real and imaginary part of \(b_{\nu} \), \(\bar{b}_{\nu}^R \) and \(\bar{b}_{\nu}^I \) are the real and imaginary parts of the input value of \(\bar{b}_{\nu} \) for backward propagation.

When the boundary conditions are set up, we can solve the Eqs. (2.8.8) and (2.8.9) both forward and backward by the fourth-order Runge-Kutta method using RK4 subroutine of the numerical recipes [80]. The general optimization code (Program MAIN, see Appendix B) was initially written by Dr. Babikov, but was substantially modified for this work [63, 84, 85, 90, 91]. The code solves Eqs. (2.8.8), (2.8.9) iteratively and calculates the field \(\varepsilon (t) \) using Eq. (2.7.19). The spectra of eigenvalues and the transition matrix, which are obtained from code 1DIONTRAP in Appendix A, are needed as input files for this code.

2.9 Quantum bits (qubits), quantum gates and quantum computation

An electrical circuit containing wires and logic gates; a quantum computer is theoretically built from a quantum circuit containing wires and elementary quantum gates which is analogous to the way a classical computer is built from. Changes occurring to a quantum state can be described using the language of quantum
computation in order to carry around and manipulate the quantum information. The simplest case is the single qubit gates [53].

Just as a classical bit has a state – either \{0\} or \{1\} – a qubit also has a state. Two possible states for a qubit are the states \(|0\rangle\) and \(|1\rangle\), which as you might guess correspond to the states \{0\} and \{1\} for a classical bit. The difference between bits and qubits is that a qubit can be in a state other than \(|0\rangle\) and \(|1\rangle\). It is also possible to form linear combinations of states, often called superpositions:

\[
|\Psi\rangle = \alpha|0\rangle + \beta|1\rangle.
\]

(2.9.1)

The numbers \(\alpha\) and \(\beta\) are complex numbers. Differently, we cannot examine a qubit to determine its quantum state, the values of \(\alpha\) and \(\beta\). When we measure a qubit we get either the result 0, with probability \(|\alpha|^2\), or the result 1, with probability \(|\beta|^2\).

Naturally, \(|\alpha|^2 + |\beta|^2 = 1\), since the probabilities must sum to one. The state of a qubit is a vector in a two-dimensional complex vector space. The special states \(|0\rangle\) and \(|1\rangle\) are known as computational basis states, and form an orthonormal basis for this vector space.

Classical computer circuits consist of wires and logic gates. The wires are used to carry information around the circuit. The logic gates perform manipulations of the information and convert it from one form to another. For example, classical single bit logic gates – the only non-trivial member of this class is the NOT gate. The
operation of gate NOT is defined by its truth table, in which $\text{NOT}\{0\} \rightarrow \{1\}$ and $\text{NOT}\{1\} \rightarrow \{0\}$, that means, the $\{0\}$ and $\{1\}$ states are interchanged by the action of this gate.

To define an analogous quantum NOT gate using qubits, we can imagine that we had some process which took the state $|0\rangle$ to the state $|1\rangle$, and vice versa. Such a process would obviously be a good candidate for a quantum analogue to the NOT gate. However, specifying the action of the gate on the states $|0\rangle$ and $|1\rangle$ does not tell us what happens to superpositions of the states $|0\rangle$ and $|1\rangle$, without further knowledge about the properties of quantum gates. In fact, the quantum NOT gate acts linearly, that is, it takes the state

$$\alpha|0\rangle + \beta|1\rangle$$

(2.9.2)
to the corresponding state in which the role of $|0\rangle$ and $|1\rangle$ have been interchanged,

$$\alpha|1\rangle + \beta|0\rangle.$$

(2.9.3)

There is a convenient way of representing the quantum NOT gate in matrix form. Suppose we define a matrix U_{NOT} to represent the quantum NOT gate as follows:

$$U_{\text{NOT}} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

(2.9.4)

If the quantum state $\alpha|0\rangle + \beta|1\rangle$ is written in a vector notation as

$$\begin{bmatrix} \alpha \\ \beta \end{bmatrix},$$

(2.9.5)
with the top entry corresponding to the amplitude for \(|0\rangle \) and the bottom entry the amplitude for \(|1\rangle \), then the corresponding output from the quantum NOT gate is

\[
U_{\text{NOT}} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} \beta \\ \alpha \end{bmatrix}.
\] (2.9.6)

Notice that the action of the NOT gate is to take the state \(|0\rangle \) and replace it by the state corresponding to the first column of the matrix \(U_{\text{NOT}} \). Similarly, the state \(|1\rangle \) is replaced by the state corresponding to the second column of the matrix \(U_{\text{NOT}} \).

So quantum gates on a single qubit can be described by two-by-two matrices. Recall that the normalization condition requires \(\alpha^2 + \beta^2 = 1 \) for a quantum state \(\alpha |0\rangle + \beta |1\rangle \). This must also be true of the quantum state \(|\psi'\rangle = \alpha' |0\rangle + \beta' |1\rangle \) after the gate has acted. It turns out that the appropriate condition on the matrix representing the gate is that the matrix \(U \) describing the single qubit gate be unitary, that is \(U^+ U = I \), where \(U^+ \) is the Hermitian conjugate of \(U \).

Amazingly, this unitarity constraint is the only constraint on quantum gates. Any unitary matrix specifies a valid quantum gate. The interesting implication is that in contrast to the classical case, where only one non-trivial single bit gate exists – the NOT gate. There are many non-trivial single qubit gates. One important is the Hadamard gate,

\[
U_{\text{HAD}} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}.
\] (2.9.7)

This gate is sometimes described as being like a “square-root of NOT” gate,
that it turns a $|0\rangle$ into $(|0\rangle + |1\rangle)/\sqrt{2}$ (first column of U_{HAD}), “halfway” between $|0\rangle$ and $|1\rangle$, and turns $|1\rangle$ into $(|0\rangle - |1\rangle)/\sqrt{2}$ (second column of U_{HAD}), which is also “halfway” between $|0\rangle$ and $|1\rangle$.

$$U_{\text{HAD}} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix},$$

(2.9.8)

$$U_{\text{HAD}} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}.$$

(2.9.9)

The other important gate is the π-rotation gate (U_{π}):

$$U_{\pi} = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix},$$

(2.9.10)

which leaves the state populations unchanged, but introduces the phase difference between the states $|0\rangle$ and $|1\rangle$:

$$U_{\pi} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix},$$

(2.9.11)

$$U_{\pi} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}.$$

(2.9.12)

It is important to note that these three gates, together with the conditional two-qubit gate CNOT and the conditional three-qubit Toffoli gate (See section 3.2 and 6.5), form a universal set of quantum gates sufficient to represent any quantum algorithm.

2.10 Examples of pulse optimization

Although the optimal control theory methods developed for molecular vibrations can be used to control the motion of ions in a trap, the computational aspect of the trapped ion is complicated by several special properties: i) the spatial extent of
the motional wave functions $\Psi(z)$ of ion in a trap (~ 50 nm) is 500 times larger than the amplitude of a typical molecular vibration; ii) The energy differences between the motional states of ions in a trap (~ 1 MHz) is about 10^7 times smaller than that in the molecules; iii) The time scale of ionic motion (and control) is 10^8 times longer than the femtosecond scale of molecular motion. Due to these features, the time step for numerical propagation of ionic wavefunctions was very large, $dt \approx 3.3$ ns. The penalty factor was chosen to be a large number ($\alpha_0 = 10^{12}$) to reduce the field amplitude to the optimal level. The overall convergence of iterations was very slow and $\sim 10^4$ forward-backward propagation cycles were necessary to converge $\varepsilon(t)$.

In order to start the iterative improvement of the field, we use the “guess” pulse in the following form:

$$\varepsilon_{ini}(t) = A \times \sin (|E_2 - E_1|t). \quad (2.10.1)$$

Here A is a guessed amplitude of the electric field, E_1 and E_2 are the energies of the ground and first excited states, $|0\rangle$ and $|1\rangle$. During the propagation, α_0 from Eq. (2.7.19) is used to restrict the amplitude of the field and the shape of the pulse is modified step by step under the influence of Eq. (2.7.19).

a) Qubit flips

Here, as the simplest example, we optimize the pulse for a transition: $|0\rangle \rightarrow |1\rangle$, which gives general understanding of our optimal control approach. We
Fig. 2. 8: Pulse optimization for the qubit flip: $|0\rangle \rightarrow |1\rangle$ in the 111Cd$^+$ ion trap. (a) The guess field. (b) – (k) The optimized pulse and evolution of state populations after 1, 11, 101, 1001 and 2001 iteration steps.
numerically solve Eq. (2.7.19) to calculate the optimal pulses for this qubit flip with the ground vibrational state $|0\rangle$ being the initial boundary condition and the first excited vibrational state $|1\rangle$ being the final boundary condition. In Fig. 2.8 (a) we present the initial guess field with target time $T = 10 \, \mu s$. The process of optimization procedure is demonstrated in Fig. 2.8 (b) – (i) where the pulses after 1, 11, 101, 1001 and 2001 iterations are shown. The guess field is from Eq. (2.10.1). Such field carries single frequency. The amplitude changes gradually according to simple and symmetric function. The transition probabilities are shown together with the pulse and

![Graph](image)

Fig. 2.9: (a) The control pulse for qubit flip $|0\rangle \rightarrow |1\rangle$ in the 111Cd$^+$ ion trap. (b) Switching of state populations during the transition $|0\rangle \rightarrow |1\rangle$. (c) Convergence of the iterative procedure and the final transition probability.
they go up as iterations proceed. Fig. 2.9 (a) shows the optimized pulse $\varepsilon(t)$ for the transition $|0\rangle \rightarrow |1\rangle$ after 10,001 iteration steps, target time $T = 10 \mu$s. The optimized pulse shape is quite simple and nearly symmetric with the maximum amplitude about 2.8 mV/cm. Figure 2.9 (b) shows time evolution of the probabilities in two vibrational states during the pulse action. At $t = 0$, the ion is in state $v = |0\rangle$ with probability equal to 1. During the pulse, the probability in state $|0\rangle$ decreases, while the probability in state $|1\rangle$ increases. In the end $t = T$, the probability is transferred to state $v = |1\rangle$ almost completely (up to 0.999).

Convergence study was carried out to make sure that our results are reliable. The transition probabilities of forward and backward propagations are plotted in Fig. 2.9 (c), the curves are smooth and the results begin to converge after about 4000 iteration steps with accuracy approaching to 0.999.

b) Gate NOT

More complicated qubit transformation is presented by the gate NOT, where we need to control two transitions simultaneously from Eqs. (2.7.4) and (2.7.5). For the gate NOT: as many as 20,001 forward-backward iteration cycles were required to achieve convergence. The results are summarized in Fig. 2.10. The formulas of the average transition probability are given by the following equations:
\[P_i = \frac{1}{2} \sum_{k=1}^{K} \left| \langle \phi_i^k | \bar{\nu}^k(t = 0) \rangle \right|^2, \]
\[P_f = \frac{1}{2} \sum_{k=1}^{K} \left| \langle \phi_f^k | \bar{\nu}^k(t = T) \rangle \right|^2. \]

Where \(K = 2 \) is the number of transitions optimized simultaneously.

From Fig. 2.10, we can see that the optimized pulse of gate NOT is quite simple and nearly symmetric with the maximum amplitude about 2.8 mV/cm. The

\[\text{Fig. 2.10: The gate NOT in the } ^{111}\text{Cd}^+ \text{ ion trap optimized with two transitions. (a) Optimally shaped electric field. (b) Average probability of the gate. (c) Switching of population between the qubit states during the } \text{NOT}|0\rangle \rightarrow |1\rangle. \text{ (d) Switching of population between the qubit states during the } \text{NOT}|1\rangle \rightarrow |0\rangle. \]
pulse duration is 10 µs. The results converge very fast – within about 4000 iterations.

Both transitions are controlled accurately, up to 0.999. If the state is first in \(\psi = |0\rangle \), it is excited to \(\psi = |1\rangle \). In contrast, if it is first in \(\psi = |1\rangle \), population is transferred into state \(\psi = |0\rangle \) after the action of the pulse.

C) Hadamard gate, phase control

For the gates like Hadamard transformation:

\[
\text{HAD}|0\rangle \rightarrow \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle), \quad (2.10.4)
\]
\[
\text{HAD}|1\rangle \rightarrow \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle). \quad (2.10.5)
\]

The phase information is important and gate fidelity, \(F \), should be computed as a coherent sum over the optimized transitions.

\[
F_i = \frac{1}{K^2} \left| \sum_{k=1}^{K} \langle \phi_i^k | \overline{\psi}^k (t = 0) \rangle \right|^2, \quad (2.10.6)
\]

Fig. 2.11: (a) Optimally shaped pulse for the gate Hadamard in the \(^{111}\text{Cd}^+\) ion trap. (b) The convergence of iterations and final fidelity of the qubit transformation.
It was shown in the literature [85, 92] that optimizing just two transitions is not enough. At least one (or two) additional transitions should be included into the optimization process, in order to constrain the common phase. For example, the transition

\[\text{HAD} \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) \rightarrow |0\rangle, \]

(2.10.8)

and/or

\[\text{HAD} \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle) \rightarrow |1\rangle, \]

(2.10.9)

must be optimized simultaneously with transitions of Eqs. (2.10.4) and (2.10.5). Such calculations were carried out, and converged results were obtained after 40,001 iteration steps. They are summarized in the Fig. 2.11 and 2.12. The pulse shape in Fig. 2.11 is simple with the maximum amplitude about 2.3 mV/cm. Because we optimize four transitions simultaneously, the pulse is almost symmetric. Such a pulse is easy to create in the experiment. From Fig. 2.12 we can see that the transitions to the target states for Hadamard gate are not straight forward. For example, in Fig. 2.12(a), the population in states \(|0\rangle\) and \(|1\rangle\) is nearly 0.5 at about 5.5 µs. However it does not stop there, the population of state \(|0\rangle\) is transfered further into state \(|1\rangle\). At the end of the pulse duration, it returns to 0.5. Still, the transition probabilities for all four transitions
are very high simultaneously. The fidelity of Hadamard transformation is \(~0.999\).

Iterations begin to converge after about 3000 forward-backward loops.

2.11 Conclusions

![Fig. 2. 12: The gate Hadamard in the 111Cd$^+$ ion trap. (a) Creation of linear superposition of the qubit states as required by $\text{HAD}\vert 0\rangle \rightarrow \frac{1}{\sqrt{2}} (\vert 0\rangle + \vert 1\rangle)$. (b) The same during the $\text{HAD}\vert 1\rangle \rightarrow \frac{1}{\sqrt{2}} (\vert 0\rangle - \vert 1\rangle)$ transformation. (c) The same during the $\text{HAD}\frac{1}{\sqrt{2}} (\vert 0\rangle + \vert 1\rangle) \rightarrow \vert 0\rangle$ transformation. (d) The same during the $\text{HAD}\frac{1}{\sqrt{2}} (\vert 0\rangle - \vert 1\rangle) \rightarrow \vert 1\rangle$ transformation.](image-url)
In this chapter, we developed general theory, numerical methodology and computer codes to calculate the eigenvalues and wavefunctions of one ion in the anharmonic trap. Small anharmonicity ($\Delta = 0.008\Omega$) was found large enough to carry our very accurate state-to-state transformations [55, 63, 69, 70, 84, 90, 91, 93]. Pulses for a set of major quantum gates were optimized, such as qubit flips, gate NOT, CNOT and Hadamard transformation. The fidelity of all the transformations is very high, ~0.999. The field parameters obtained after optimization are $\varepsilon_{max} \approx 2.5\ mV/cm$ and $T = 10\ \mu s$. Because the optimized pulses are simple and symmetric, such pulses should be easy to create in the experiment.
Chapter 3: Feasibility of Encoding Shor’s Algorithm into the Motional States of Ion in the Anharmonic Trap

Those gates we optimized in Chapter 2 are used to control one-qubit encoded into states $|0\rangle$ and $|1\rangle$. One can expand this idea onto larger number of qubits by controlling more states. In general, in order to represent n qubits we need 2^n quantum states. Here we consider 16 lowest vibrational states of one ion in the anharmonic trap to represent a four-qubit system.

3.1 The model system

In this study we applied the same anharmonic system (the trapping potential is from Eq. (2.1.4)) as in Chapter 2. The two force constants k and k' of the anharmonic trapping potential are of the same values as in Chapter 2, with

$$k/2\pi = 1.483 \times 10^{-3} \text{ MHz}/a_0^2$$
$$k'/2\pi = 1.067 \times 10^{-7} \text{ MHz}/a_0^4$$

The resultant anharmonic potential along the axial direction of the trap is shown in Fig. 3.1.

Energy eigenvalues for the lower sixteen vibrational states are given in Table 3.1. The vibrational quantum number, v, is assigned to each state. Since anharmonicity is relatively small, wave functions of these states (not shown here) look very similar to the wave functions of harmonic oscillator. However, the effect of anharmonicity is easy to spot if one looks at the transition frequencies. The frequencies for excitation of one quantum of vibration, $\omega_{n,n+1}$, and three quanta of vibration, $\omega_{n,n+3}$, are also
given in Table 3.1 for each state. These frequencies increase as the vibrational quantum number increases. For example, for single excitation of the ground state the frequency is $\omega_{0,1}/2\pi = 2.8151$ MHz, while for the 16th state it is $\omega_{15,16}/2\pi = 3.3376$ MHz, which is about 19% higher. Effect of similar magnitude is found if we compare frequencies for excitation of three quanta of vibration:

$$\omega_{10,11} = 2\pi \times 3.3376 \text{ MHz},$$

$$\omega_{11,12} = 2\pi \times 3.3376 \text{ MHz},$$

$$\omega_{12,13} = 2\pi \times 3.3376 \text{ MHz},$$

$$\omega_{13,14} = 2\pi \times 3.3376 \text{ MHz}.$$

Fig. 3.1: Weakly anharmonic trapping potential in the model system. Energies of thirty-two quantized motional states of one trapped 111Cd$^+$ ion are indicated by horizontal lines. Effect of anharmonicity is clearly seen. Sixteen lower states (used to encode qubits) are indicated by solid lines. Upper states (included for completeness) are shown by dashed lines. Assignment of states of the four-qubit system is indicated in brackets.
Table 3.1: Eigenvalues, transition frequencies, qubit state assignments, optimized transformations and their characteristic probabilities for sixteen lower vibrational states in a model of 111Cd$^+$ ion in a weakly anharmonic Paul trap.

<table>
<thead>
<tr>
<th>ν</th>
<th>$E/2\pi$ (MHz)</th>
<th>$\omega_{0,n+1}/2\pi$ (MHz)</th>
<th>$\omega_{0,n+2}/2\pi$ (MHz)</th>
<th>Qubit states</th>
<th>Transformations of the Shor’s algorithm</th>
<th>Characteristic Probabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.3964</td>
<td>2.8151</td>
<td>8.5743</td>
<td>[0000]</td>
<td>#1 $</td>
<td>0\rangle \rightarrow \frac{1}{2} (</td>
</tr>
<tr>
<td>1</td>
<td>4.2115</td>
<td>2.8587</td>
<td>8.6999</td>
<td>[0001]</td>
<td>#2 $</td>
<td>1\rangle \rightarrow</td>
</tr>
<tr>
<td>2</td>
<td>7.0702</td>
<td>2.9005</td>
<td>8.8207</td>
<td>[0010]</td>
<td>#3 $</td>
<td>2\rangle \rightarrow</td>
</tr>
<tr>
<td>3</td>
<td>9.9707</td>
<td>2.9407</td>
<td>8.9372</td>
<td>[0011]</td>
<td>#4 $</td>
<td>3\rangle \rightarrow \frac{1}{2} (</td>
</tr>
<tr>
<td>4</td>
<td>12.9115</td>
<td>2.9795</td>
<td>9.0496</td>
<td>[0100]</td>
<td>#5 $</td>
<td>4\rangle \rightarrow \frac{1}{2} (</td>
</tr>
<tr>
<td>5</td>
<td>15.8910</td>
<td>3.0169</td>
<td>9.1584</td>
<td>[0101]</td>
<td>#6 $</td>
<td>5\rangle \rightarrow \frac{1}{2} (</td>
</tr>
<tr>
<td>6</td>
<td>18.9079</td>
<td>3.0532</td>
<td>9.2639</td>
<td>[0110]</td>
<td>#7 $</td>
<td>6\rangle \rightarrow \frac{1}{2} (</td>
</tr>
<tr>
<td>7</td>
<td>21.9611</td>
<td>3.0883</td>
<td>9.3662</td>
<td>[0111]</td>
<td>#8 $</td>
<td>7\rangle \rightarrow \frac{1}{2} (-</td>
</tr>
<tr>
<td>8</td>
<td>25.0494</td>
<td>3.1224</td>
<td>9.4657</td>
<td>[1000]</td>
<td>#9 $</td>
<td>8\rangle \rightarrow \frac{1}{2} (</td>
</tr>
<tr>
<td>9</td>
<td>28.1718</td>
<td>3.1555</td>
<td>9.5626</td>
<td>[1001]</td>
<td>#10 $</td>
<td>9\rangle \rightarrow \frac{1}{2} (</td>
</tr>
<tr>
<td>10</td>
<td>31.3273</td>
<td>3.1878</td>
<td>9.6569</td>
<td>[1010]</td>
<td>#11 $</td>
<td>10\rangle \rightarrow \frac{1}{2} (</td>
</tr>
<tr>
<td>11</td>
<td>34.5151</td>
<td>3.2192</td>
<td>9.7489</td>
<td>[1011]</td>
<td>#12 $</td>
<td>11\rangle \rightarrow \frac{1}{2} (</td>
</tr>
<tr>
<td>12</td>
<td>37.7343</td>
<td>3.2499</td>
<td>9.8387</td>
<td>[1000]</td>
<td>#13 $</td>
<td>12\rangle \rightarrow \frac{1}{2} (-</td>
</tr>
<tr>
<td>13</td>
<td>40.9842</td>
<td>3.2798</td>
<td>9.9265</td>
<td>[0101]</td>
<td>#14 $</td>
<td>13\rangle \rightarrow</td>
</tr>
<tr>
<td>14</td>
<td>44.2640</td>
<td>3.3090</td>
<td>10.0123</td>
<td>[0110]</td>
<td>#15 $</td>
<td>14\rangle \rightarrow</td>
</tr>
<tr>
<td>15</td>
<td>47.5731</td>
<td>3.3376</td>
<td>10.0963</td>
<td>[0111]</td>
<td>#16 $</td>
<td>15\rangle \rightarrow \frac{1}{2} (-</td>
</tr>
</tbody>
</table>

$\omega_{0,3}/2\pi = 8.5743$ MHz against $\omega_{15,18}/2\pi = 10.0963$ MHz.

Another way to quantify anharmonicity of the spectrum is to fit the spectrum by Dunham’s analytic expression from Eq. (2.5.1) [83]. Using numerical values of energies of three lower states ($\nu = 0, 1$ and 2 from Table 3.1) we obtained:

$$D/2\pi = -5.214 \times 10^{-3} \text{ MHz}, \quad (3.1.1a)$$
\[\Omega/2\pi = 2.771 \text{ MHz,} \quad (3.1.1b) \]
\[\Delta/2\pi = -2.179 \times 10^{-2} \text{ MHz.} \quad (3.1.1c) \]

Using numerical values of energies of three upper states \((v = 13, 14 \text{ and } 15 \text{ from Table 3.1})\) we obtained:

\[D/2\pi = -4.312 \times 10^{-1} \text{ MHz,} \quad (3.1.2a) \]
\[\Omega/2\pi = 2.870 \text{ MHz,} \quad (3.1.2b) \]
\[\Delta/2\pi = -1.462 \times 10^{-2} \text{ MHz.} \quad (3.1.2c) \]

These data show that the value of anharmonicity parameter, \(\Delta\), is close to 0.8% of the trap frequency for the lower part of spectrum and is about 0.5% for the upper part of spectrum. The value of \(\Omega\) from this fit is close to the harmonic frequency \(\omega\) (within the effect of small anharmonicity).

Using the numerically computed wave functions \(\psi_k(z)\) of vibrational eigenstates we calculated matrix elements of the transition dipole moment matrix for this system. The 16x16 part of this matrix is shown in Fig. 3.2, for the lower 16 states. Due to symmetry, only transitions characterized by odd values of \(\Delta v\) are allowed, \(e.g.:\)

\[\Delta v = \pm 1, \pm 3, \pm 5, \pm 7, \text{ etc.} \quad (3.1.3) \]

Figure 3.2 shows that the dipole moment matrix is clearly dominated by \(\Delta v = \pm 1\) transitions, which is consistent with low anharmonicity of the system. For example,
the matrix element $\mu_{0,1} = 30.32 \, e a_0$ ($\sim 77.07 \, D$) is two orders of magnitude larger
than the element $\mu_{0,3} = 9.47 \times 10^{-2} \, e a_0$ ($\sim 0.24 \, D$), which in turn is two orders of
magnitude larger than $\mu_{0,5} = 4.98 \times 10^{-4} \, e a_0$ ($\sim 1.27 \times 10^{-3} \, D$). This property suggests
that excitation of multiple quanta of vibration in this system might be easier to
achieve by inducing a ladder of consecutive state-to-state transitions. For example:

$$|v = 0\rangle \rightarrow |v = 1\rangle \rightarrow |v = 2\rangle \rightarrow |v = 3\rangle,$$

rather than $|v = 0\rangle \rightarrow |v = 3\rangle$ directly.

Another relevant property of the dipole moment matrix is that, when we go

Fig. 3. Transition moment matrix for sixteen lower vibrational states in a model
system of 111Cd$^+$ ion in a weakly anharmonic Paul trap. Color indicates magnitudes of
matrix elements in the logarithmic scale (dark red corresponds $\mu_{14,15} = 1.08 \times 10^2 \, e a_0$
($\sim 2.75 \times 10^2 \, D$) and light blue corresponds $\mu_{0,5} = 4.98 \times 10^{-4} \, e a_0$ ($\sim 1.27 \times 10^{-3} \, D$).
See text for further details).
down along its near-diagonal line that represents the dominant $\Delta v = \pm 1$ transitions (see Fig. 3.2), the values of matrix elements slightly increase. For example,

$$\mu_{6,7} = 77.01 \, ea_0 \, (\sim 1.96 \times 10^3 \, D)$$

is a factor of 2.5 larger than $\mu_{0,1}$, and is a factor of 1.4 smaller than $\mu_{4,15} = 1.08 \times 10^2 \, ea_0 \, (\sim 2.75 \times 10^2 \, D)$. Again, this behavior is reminiscent of the harmonic oscillator.

3.2 The quantum algorithm

Sixteen lower vibrational states are used in this work to encode states of the four-qubit system with the purpose of implementing, in the computational experiments, the four-qubit version of Shor’s algorithm for factorizing number 15 [53, 68]. The quantum circuit diagram for the phase-estimation part of this well known algorithm is shown in Fig. 3.3. Here qubits 1 and 2 represent the argument-register, while qubits 3 and 4 represent the function-register. The algorithm involves three major steps:

i) Preparation of the argument-register in an equally weighted coherent superposition of states. This is achieved by Hadamard gates on qubits 1 and 2 and is indicated by gray background in Fig. 3.3.

ii) Modular exponentiation of the function-register. This is achieved by a sequence of three conditional three-qubit gates, working as a controlled SWAP operation, also known as Fredkin-gate, and indicated by blue
background in Fig. 3. Qubits 2, 3 and 4 are involved.

iii) Inverse quantum Fourier transform of the argument-register. This is achieved by a sequence of three CNOT gates on qubits 1 and 2, known also as SWAP gate (green background in Fig. 3) with following Hadamard and conditional rotation gates (purple).

In the overall factorizing algorithm, the phase estimation part described above is followed by measurement of populations of the qubit states.

In the matrix form the preparation part of the algorithm (Hadamard transformation of two qubits) is described by the following unitary transformation matrix acting on four states:

\[
\bar{U}_i = \frac{1}{2} \begin{pmatrix}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{pmatrix}.
\] (3.2.1)

The modular exponentiation step creates a maximally entangled state and is given by

![Quantum circuit diagram](image_url)

Fig. 3. 3: Quantum circuit diagram for the phase estimation part of Shor’s algorithm for factorizing number 15 using four qubits (read from left to right). See text for details.
the following matrix acting in the three-qubit space (eight states):

\[
\mathcal{U}_2 = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{pmatrix}.
\] (3.2.2)

A sequence of three two-qubit gates CNOT is given by

\[
\mathcal{U}_3 = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}.
\] (3.2.3)

This transformation is also known as SWAP. Finally, a sequence of Hadamard, conditional rotation and Hadamard gates for two qubits is given by:

\[
\mathcal{U}_4 = \frac{1}{2} \begin{pmatrix}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & i & -1 & -i \\
1 & -i & -1 & i
\end{pmatrix}.
\] (3.2.4)

Each of these matrices can be easily expanded onto the entire space of four qubits (sixteen states) by adding the needed number of identity blocks and zero blocks to create the 16×16 matrices: \(U_1, U_2, U_3 \) and \(U_4 \), able to act on sixteen states of the entire four-qubit system. Then, the overall Shor’s algorithm can be represented by a single 16×16 unitary matrix obtained as a matrix product: \(U_{\text{Shor}} = U_4 U_3 U_2 U_1 \). We let readers to carry out these matrix manipulations. The final result is [33]:
This unitary matrix acts on the vector of sixteen states of the four-qubit system arranged in the following usual order:

\[
\Psi = \begin{bmatrix}
|0000\rangle \\
|0001\rangle \\
|0010\rangle \\
|0011\rangle \\
|0100\rangle \\
|0101\rangle \\
|0110\rangle \\
|0111\rangle \\
|1000\rangle \\
|1001\rangle \\
|1010\rangle \\
|1011\rangle \\
|1100\rangle \\
|1101\rangle \\
|1110\rangle \\
|1111\rangle \\
\end{bmatrix}
\]
In principle, the sixteen vibrational states could be used in their normal order to encode these qubit states, namely:

\[
\Psi = \begin{pmatrix}
|v = 0\rangle \\
|v = 1\rangle \\
|v = 2\rangle \\
|v = 3\rangle \\
|v = 4\rangle \\
|v = 5\rangle \\
|v = 6\rangle \\
|v = 7\rangle \\
|v = 8\rangle \\
|v = 9\rangle \\
|v = 10\rangle \\
|v = 11\rangle \\
|v = 12\rangle \\
|v = 13\rangle \\
|v = 14\rangle \\
|v = 15\rangle \\
\end{pmatrix}
\]

(3.2.7)

However, we found that this straightforward way of encoding is not the best. The difficulties created by this choice are easy to spot if one looks at the state-to-state transitions generated by applying the unitary matrix \(U_{\text{Shor}}\) of Eq. (3.2.5) to the state vector of Eq. (3.2.7). For example, if the initial state is \(|0000\rangle\), represented by the vibrational state \(|v = 0\rangle\), the unitary matrix \(U_{\text{Shor}}\) leads to the following transformation:

\[
U_{\text{Shor}}|v = 0\rangle \to \frac{1}{2}(|v = 1\rangle + |v = 2\rangle + |v = 9\rangle - |v = 10\rangle).
\]

(3.2.8)

Analogously, for the initial state \(|1111\rangle\), represented by \(|v = 15\rangle\), we obtain

\[
U_{\text{Shor}}|v = 15\rangle \to \frac{1}{2}(-i|v = 5\rangle + |v = 6\rangle + i|v = 13\rangle + |v = 14\rangle).
\]

(3.2.9)
We see that these two transformations require transferring 10 quanta of vibrational excitation, which is quite difficult to implement with the near-diagonal dipole moment matrix, as one presented in Fig. 3.2. Two other difficult to implement transformations associated with the straightforward encoding of Eq. (3.2.7) are:

\[
U_{\text{Shor}}|v = 13\rangle \rightarrow \frac{1}{2} \left((1 - i)|v = 4\rangle + (1 + i)|v = 12\rangle \right),
\]

\[
U_{\text{Shor}}|v = 3\rangle \rightarrow \frac{1}{2} \left(|v = 1\rangle + |v = 2\rangle - |v = 9\rangle + |v = 10\rangle \right)
\]

These transformations require transferring 9 and 7 quanta of the vibrational excitation.

In order to avoid such far state-to-state transitions, one has to search for an alternative, more convenient encoding of the qubit states.

We analyzed several alternative ways to encode the four-qubit states into the sixteen lower vibrational states and have, finally, chosen the following order of the vibrational states:
This way of encoding is also outlined in Table 3.1, where states of the four-qubit system are assigned to sixteen vibrational states, and all transformations of the initial states are indicated, as dictated by unitary matrix of Shor’s algorithm, Eq. (3.2.5).

Among those transitions, some of the most difficult to implement are:

\[U_{\text{Shor}} |v = 0\rangle \rightarrow \frac{1}{2} \left(|v = 1\rangle + |v = 2\rangle + |v = 5\rangle - |v = 6\rangle \right), \quad (3.2.13) \]

\[U_{\text{Shor}} |v = 8\rangle \rightarrow \frac{1}{2} \left(|v = 9\rangle + i |v = 10\rangle + |v = 13\rangle - i |v = 14\rangle \right). \quad (3.2.14) \]

They require excitation of only up to 6 quanta of vibration, compared to 10 quanta in the case of straightforward encoding. Two other difficult to implement transitions are:

\[U_{\text{Shor}} |v = 6\rangle \rightarrow \frac{1}{2} \left((1 + i) |v = 7\rangle + (1 - i) |v = 11\rangle \right), \quad (3.2.15) \]

\[U_{\text{Shor}} |v = 3\rangle \rightarrow \frac{1}{2} \left(|v = 1\rangle + |v = 2\rangle - |v = 5\rangle + |v = 6\rangle \right). \quad (3.2.16) \]
These transformations require excitation of only up to 5 and 3 quanta of vibration, compared to 9 and 7 quanta in the case of straightforward encoding. So, advantages offered by the encoding of Eq. (3.2.12) are clearly seen.

Another useful (and exactly equivalent) viewpoint onto the same issue is this: Instead of changing the order of vibrational states in the state vector of Eq. (3.2.7), one could permute the order of qubit states in the vector of Eq. (3.2.6) which corresponds to permuting, simultaneously, the corresponding columns and rows of the unitary matrix U_{Shor} in Eq. (3.2.5). The purpose is to obtain new unitary matrix U'_{Shor} that will be as close to the diagonal matrix as only possible. Indeed, the original matrix U_{Shor} of Eq. (3.2.5) has several non-zero off-diagonal elements that are very far from the diagonal line. These matrix elements are responsible for those far state-to-state transitions listed in Eqs. (3.2.8) – (3.2.11). Alternatively, the unitary matrix U'_{Shor}, which corresponds to the encoding of Eq. (3.2.12), is given by:
\[
U'_\text{Shor} = \frac{1}{2} \begin{pmatrix}
0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1+i & 0 & 0 & 0 & 1-i & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & -1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1+i & 0 & 0 & 0 & 1-i & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1-i & 0 & 0 & 0 & 1+i & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & i & 0 & 0 & 1 & -i & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & i & 0 & 0 & 1 & -i & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & -i & 1 & 0 & 0 & i \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -i & 0 & 0 & 1 & i & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0
\end{pmatrix}
\]

(3.2.17)

Here, the off-diagonal elements describe the transitions of Eqs. (3.2.13-3.2.16), but the overall structure of this matrix is much closer to the near-diagonal one, compared to the original matrix \(U'_\text{Shor}\) of Eq. (3.2.5).

3.3 OCT pulse shaping

Optimization of the pulse for the entire quantum algorithm, such as Shor’s algorithm, is a formidable task. Indeed, the optimal pulse should be able to carry out each of sixteen transformations listed in the 6\(^{th}\) column of Table 3.1 with high accuracy. Finding such a pulse is made feasible by employing a multi-target version of the objective functional [35, 37, 44, 63, 89, 90]. This approach requires propagating a set of sixteen identical Schrödinger equations (forward and backward in
time as explained above), but each with its own initial condition and its own target state, as dictated by transformations of sixteen qubit states (see Table 3.1, 6th column). The common field \(\varepsilon(t) \) is iteratively improved using all this information. See Chapter 2, Sec. 2.7 and 2.8 for further details of the method.

Such calculations are quite demanding. Our optimization code was parallelized using the MPI interface and was run in parallel on sixteen processors of Cray machine at NERSC center [94-96]. Numerical propagation of vibrational wave packets was employed. The wave packet was expanded in the basis set of 32 vibrational eigenstates to avoid unphysical reflection of wave packet from the upper states. The overall optimization procedure was semi-automated. Namely, it took many attempts made with different pulse durations, different guess amplitudes and different penalty factors, before the optimal pulse of acceptable accuracy, duration and shape was identified. We found that for this problem it was advantageous to start the search with a guess pulse of very large amplitude of the field, on order of 100 V/m. In the course of iterative improvement the pulse amplitude dropped quickly to only about \(\sim 0.4 \) V/m (in the final optimal pulse), but we saw that accuracy of the final pulse was better if amplitude of the initial guess pulse was much larger. The best penalty factors were between \(\alpha = 2 \times 10^{12} \) and \(4 \times 10^{13} \). The number of forward-backward iterations needed for convergence was on order of 10,000 or more. Durations of studies pulses
were between 10 and 50 µs. The number of time steps for numerical wave packet propagation was on order of few hundred thousand.

3.4 Results and discussion

The field optimized for Shor’s algorithm is shown in Fig. 3.4 (a). Duration of the pulse is 50 µs. The field amplitude does not exceed 0.4 V/m. The pulse shape is

Fig. 3. 4: (a) Optimally shaped 50 µs pulse for Shor’s algorithm in the 111Cd$^+$ ion trap. (b) Windowed Fourier transform of the pulse. Horizontal dashed lines indicate frequencies of the state-to-state transitions. Dotted curves encircle two spectral features that correspond to the ladder climbing. See text for details.
quite complicated, as one might expect from complexity of the optimization task that involves sixteen transformations optimized at the same time. Although it is very difficult to derive any useful information simply from the shape of the pulse in Fig. 3.4 (a), this optimized field gives very accurate control of all sixteen transformations given in Table 3.1. For different transformations of the training set the characteristic probabilities vary between 0.9977 and 0.9996 (see last column of Table 3.1) with an average (over sixteen transformations) close to 0.999. From our point of view, this is quite high, taking into account complexity of the optimization problem. Our results also indicate that it is possible to improve the average probability even further by increasing the pulse duration, doing more forward-backward iterations, and delicately changing some other numerical parameters of the method. However, we decided to stick with this set of parameters, as one providing very reasonable accuracy of the qubit state transformations.

A straightforward way to analyze the optimized pulse is to look at the state-to-state transitions induced by this pulse. In Fig. 3.5 we present three examples (out of sixteen optimized transformations) that are quite typical. The first example to discuss is the first transformation of Table 3.1, illustrated by Fig. 3.5 (a). In this case, population of the initial state $|v=0\rangle$ should be transferred in equal amounts to four final states: $|v=1\rangle$, $|v=2\rangle$, $|v=5\rangle$ and $|v=6\rangle$. Thus, each of the final states is expected
to receive the population of $P = 0.25$. The time evolution of state populations in Fig. 3.5 (a) is as follows: In the first 25 μs of the pulse the $|\nu = 0\rangle \rightarrow |\nu = 1\rangle$ transition is induced and population of the ground state is converted almost entirely into

![Time evolution of state populations induced by the pulse optimized for Shor’s algorithm in three representative cases: (a) Transformation #1 in Table 3.1. (b) Transformation #3 in Table 3.1. (c) Transformation #11 in Table 3.1. Thicker color lines indicate population of the initial and final states. Thinner black lines indicate population of intermediate states.](image)

Fig. 3.5: Time evolution of state populations induced by the pulse optimized for Shor’s algorithm in three representative cases: (a) Transformation #1 in Table 3.1. (b) Transformation #3 in Table 3.1. (c) Transformation #11 in Table 3.1. Thicker color lines indicate population of the initial and final states. Thinner black lines indicate population of intermediate states.
population of the first excited state. Transition to state $|v = 2\rangle$ starts showing up only after the population of state $|v = 1\rangle$ reaches a reasonably high value ($P \sim 0.7$ at $t \sim 22 \mu s$). Also note that the increase of population of state $|v = 2\rangle$ mirrors the decrease of population of state $|v = 1\rangle$. This certainly means that state $|v = 2\rangle$ is populated not directly from the ground state $|v = 0\rangle$, but through the state $|v = 1\rangle$. Next, the increase of population of state $|v = 3\rangle$ occurs only when the population of state $|v = 2\rangle$ reaches its maximum ($P \sim 0.4$ at $t \sim 26 \mu s$) and, again, the population of state $|v = 3\rangle$ increases at the same rate as the population of state $|v = 2\rangle$ decreases. Same scenario repeats again for transferring population from state $|v = 3\rangle$ to state $|v = 4\rangle$. The populations of states $|v = 3\rangle$ and $|v = 4\rangle$ reach $P \sim 0.3$ in the time interval near $t \sim 30-35 \mu s$. Note, however, that these states are expected to be unpopulated at the final moment of time.

Indeed, from Fig. 3.5 (a) we can see that they give all of their population either further up to state $|v = 5\rangle$, or back down to the $|v = 2\rangle$ state. Finally, at $t \sim 35-40 \mu s$, state $|v = 6\rangle$ starts receiving population from state $|v = 5\rangle$. At the end of the pulse, the final populations of states $|v = 1\rangle$ and $|v = 2\rangle$ are close to $P \sim 0.2632$, while the final populations of states $|v = 5\rangle$ and $|v = 6\rangle$ are close to $P \sim 0.2361$. Populations of states $|v = 3\rangle$ and $|v = 4\rangle$, and of all states above $|v = 6\rangle$, are close to zero.

Note that Transformation #1 depicted in Fig. 3.5 (a) is typical to the Shor’s algorithm. For example, Transformations #4, #5 and #8 have exactly the same
complexity. We analyzed state populations in those cases too, and observed very similar behavior. The only difference is that during the Transformation #1 (and #8) all population of the initial state is transferred up (down) first and then some part of it is returned down (up), while during the Transformations #4 and #5 the population of initial state is split from the beginning: about 50% of it go up and the remaining 50% go down. The Transformations #9, #12, #13 and #16 are also similar to Transformation #1 (apart from the phases involved). So, our conclusion is that controlling the ladders of consecutive state-to-state transitions is essential for successful implementation of the Shor’s algorithm in this architecture.

Next to discuss is Transformation #3 illustrated by Fig. 3.5 (b). Here the population transfer from $|v = 2\rangle$ to $|v = 3\rangle$ is relatively direct. The neighboring states $|v = 1\rangle$ and $|v = 4\rangle$ receive some relatively small population “erroneously” during the pulse ($P \sim 0.2$ at $t \sim 23-33 \mu$s), which is attributed to the relatively low anharmonicity of the system. However, this process is well controlled: By the end of the pulse this erroneous population is entirely returned to the target state. Final population of the target state is $P \sim 0.9995$. Similar behavior of state populations was observed during the Transformations #2, #14 and #15. These transformations belong to the same type, characterized as a state-to-the-next-state transition.

Finally, Fig. 3.5 (c) illustrates Transformation #11, which is example of
splitting population of the initial state between the two target states. Here, population of the initial state $|v=10\rangle$ is transferred very quickly ($t \sim 15 \mu s$) and almost entirely into the $|v=9\rangle$ state, and then, also very quickly (by $t \sim 22 \mu s$) and almost entirely into the $|v=8\rangle$ state. Then, state $|v=7\rangle$ starts receiving population. During the time period $t \sim 20\text{-}30 \mu s$ population oscillates between the states $|v=7\rangle$, $|v=8\rangle$ and $|v=9\rangle$. At $t \sim 30 \mu s$ the population is directed further down towards the final state $|v=7\rangle$ and, through the intermediate state $|v=10\rangle$, up into the other final state $|v=11\rangle$. Final populations are $P \sim 0.4972$ and $P \sim 0.5014$. This behavior is typical to Transformations #6, #7 and #10 as well.

Overall, this discussion demonstrates a very pronounced step-ladder climbing scenario which, undoubtedly, is a reflection of properties of the dipole moment matrix of this system, discussed in the Sec. 3.2 above.

Another way to analyze the optimized pulse is to look at its Fourier spectrum. Figure 3.6 (a) shows the spectrum in a broad range of frequencies. It exhibits five very distinct spectral structures. The first structure is in the frequency range of transitions between the neighboring states, $\Delta v = \pm 1$. Among those, the lowest frequency transition is at $\omega_{0\rightarrow1}$ and the highest frequency transition is at $\omega_{4\rightarrow15}$. Two arrows are given, near the top of the spectral structure in Fig. 3.6 (a), to indicate the corresponding range of frequencies. In the frequency range between these arrows the
spectral structure exhibits a plateau. Outside of this plateau the intensity drops exponentially. The second spectral structure corresponds to the overtone transitions, Fig. 3.

Fig. 3.6: Fourier spectrum of the pulse optimized for Shor’s algorithm in the 111Cd$^+$ ion trap: (a) broad range of frequencies (up to $\omega_{n,n+9}$). (b) focus on the frequency range of the main spectral structure ($\omega_{n,n+1}$ transitions). (c) focus on the frequency range of the overtone spectral structure ($\omega_{n,n+3}$ transitions). Arrows indicate frequencies of the state-to-state transitions from Table 3.1.
\(\Delta \nu = \pm 3 \), with the lowest frequency transition at \(\omega_{0,3} \) and the highest frequency transition at \(\omega_{12,15} \). Those are also indicated by arrows. And so on and so forth, up to the \(\Delta \nu = \pm 9 \) frequency range included into the Fig. 3.6 (a). Note, however, that the vertical axis in Fig. 3.6 (a) is in the logarithmic scale. When we go from the main spectral structure (\(\Delta \nu = \pm 1 \)) to the next and the next, the intensity drops each time by two-to-three orders of magnitude, on average. This certainly means that the step-ladder climbing transitions (described by the main spectral structure) are dominant, which is totally consistent with behavior observed in Figs. 3.5 (a-c) and discussed above. The overtone transitions, although clearly present in the pulse, play less important role.

Figure 3.6 (b) shows plateau of the main spectral structure in detail (no logarithmic scale for the intensity). Fifteen arrows indicate frequencies of the neighboring state-to-state transitions \(\omega_{n,n+1} \). Figure 3.6 (c) shows in detail the plateau of the spectral structure corresponding to the first overtone. Fourteen arrows indicate frequencies of the relevant state-to-state transitions \(\omega_{n,n+3} \). Majority of spectral peaks on these two pictures are easily assignable to the corresponding state-to-state transitions. Note that the lower frequency part of spectrum in Fig. 3.6 (b) is particularly “clean” and intensity of the corresponding overtone components in Fig. 3.6 (c) is quite low. In contrast, the higher frequency part of spectrum in Fig. 3.6 (b) is
more “congested” and intensity of the corresponding overtone components in Fig. 3.6 (c) is notably higher. These features have very straightforward interpretation: Recall that selective control of the state-to-state transitions is facilitated by anharmonicity of the spectrum. For a long progression of states, like the sixteen states used in this work, the parameter of anharmonicity can change as we go through the spectrum. As it was shown in Sec. 3.2 above, the lower part of our spectrum is more anharmonic (Δ is close to 0.8% of the trap frequency) compared to the upper part of spectrum (only 0.5%). It appears that when the spectrum is more anharmonic (lower part) the overtone transitions matter less and accurate control can be achieved mostly by means of the $\omega_{n,n+1}$. When the spectrum is less anharmonic (upper part), the role played by the overtone frequency components $\omega_{n,n+3}$ becomes more visible.

The conclusion here is that one could, probably, benefit from using somewhat more anharmonic trapping potential. This would increase the overall anharmonicity of the vibrational spectrum of the system, particularly that in its upper part, and would lead to simpler frequency content of the optimized pulse, which normally translates into simpler pulse shape and higher accuracy of the qubit transformations.

The last thing we did to analyze the optimized pulse was windowed Fourier transform shown in Fig. 3.4 (b). The time-frequency diagram was obtained using Gaussian window with half-width of ~ 190 μs, applied at 501 points evenly spaced
along the pulse duration period. Only the frequency range of the main spectral structure is shown in Fig. 3.4 (b), which corresponds to the \(\omega_{n,n+1} \) transition frequencies. Fifteen relevant frequencies \(\omega_{n,n+1} \) are indicated in Fig. 3.4 (b) by horizontal dashed lines.

It is instructive to analyze Fig. 3.4 (b) together with Fig. 3.5. Thus, a long ladder of state-to-state transitions seen in Fig. 3.5 (a) and discussed in detail above:

\[
|v = 0 \rangle \rightarrow |v = 1 \rangle \rightarrow |v = 2 \rangle \rightarrow |v = 3 \rangle \rightarrow |v = 4 \rangle \rightarrow |v = 5 \rangle \rightarrow |v = 6 \rangle ,
\]

is also clearly seen in Fig. 3.4 (b). It is located in the upper part of the figure (lower frequency range) and, for clarity, is encircled by thin dotted line. It spreads over a very broad time interval, \(10 \mu s < t < 40 \mu s \). This is one of the most pronounced features of the time-frequency diagram in Fig. 3.4 (b). Another important structure in the time-frequency diagram corresponds to the ladder of transitions depicted in Fig. 3.5 (c):

\[
|v = 10 \rangle \rightarrow |v = 9 \rangle \rightarrow |v = 8 \rangle \rightarrow |v = 7 \rangle .
\]

This structure is located in the middle part of Fig. 3.4 (b) and, for clarity, is also encircled by dotted line. Interestingly, one can see another ladder that “branches out” of this ladder near \(t \sim 35 \mu s \). It corresponds to the ladder of backward transitions:

\[
|v = 9 \rangle \rightarrow |v = 10 \rangle \rightarrow |v = 11 \rangle ,
\]

this is totally consistent with discussion of Fig. 3.5 (c) above.
Further analysis of the time-frequency diagram of Fig. 3.4 (b) reveals several other shorter ladders. One can also identify several “forks” (where two ladders are initiated at the same state), and several points where two different ladders cross each other. Overall, the time-frequency diagram of Fig. 3.4 (b) is rather complicated, but it can be rationalized in terms of multiple ladders that can cross each other, form branches and forks. For completeness, the codes of the 1D Fast Fourier Transform (FFT) and 2D Fourier analysis are given in the Appendix C and D.

3.5 Conclusions

The purpose of the work in this chapter is exploratory, rather than predictive. We do not really expect that the Shor pulse obtained here by calculations can be exactly reproduced in the experiment and can lead to exactly the same result under experimental conditions. However, we feel it is reasonable to expect that employment of an advanced experimental pulse optimization technique, such as feedback loop with evolutionary algorithm [33, 34], may lead to experimental result of acceptable quality. Thus, we encourage the members of experimental community to seriously consider this possibility. Computational results outlined in this work could serve as prediction of a reasonable set of parameters for the system and for the pulse.

Let’s start with the system. We found that small anharmonicity of the trapping potential, characterized by anharmonicity parameter close to 1% of the trap
frequency, is sufficient to alter the state-to-state transition frequencies and make the control feasible. In the case studied here, the sixteen lower vibrational states (used to encode the four-qubit system) exhibit the excitation frequencies in the range between roughly $2.82 \, \text{MHz}$ and $3.34 \, \text{MHz}$. So, the effect of anharmonicity is apparent. The dipole moment matrix for single trapped ion is dominated by transitions to the nearest states, $\Delta \nu = \pm 1$, suggesting the ladder-climbing scenario of the population transfer.

As for the pulse, we were able to reach the average (over sixteen states of the four-qubit system) transition probability of 0.999 with the pulse duration of 50 μs. Our calculations showed that 0.999 is not a limit. We saw clear indications that running more iterations would improve the accuracy of qubit transformations even further. The pulses longer than 50 μs can exhibit somewhat higher transition probabilities. Amplitude of the optimized control field is relatively small; it does not exceed 0.4 V/m. We should admit that shape of the optimized Shor pulse is rather complicated. Frequency content of the pulse is sharply peaked at the range of frequencies that corresponds to the ladder of state-to-state transitions with $\Delta \nu = \pm 1$ for the sixteen states involved. Frequencies of the overtone transitions with $\Delta \nu = \pm 3$, $\Delta \nu = \pm 5$, etc., are also present in the optimal pulse, but their intensity decreases exponentially as frequency increases. The time-frequency diagram of the pulse contains multiple ladders (that can cross and form branches and forks) and allows
explaining major features of the sequence of sub-pulses of different frequencies.
Chapter 4: Study of the two-ion system

In this chapter we study a two-ion system which represents a 2D quantum problem. Numerical solution of Schrödinger equation requires setting up the basis set in two-dimensions. Since our system is only slightly anharmonic, it is a good idea to use the normal mode coordinates and the normal mode frequencies to define the 1D basis functions for each dimension of the problem.

4.1 Two ions in the harmonic trapping potential

4.1.1 Harmonic trapping potential

In this section, we consider two $^{111}\text{Cd}^+$ ions in the harmonic trapping potential, Eq. (2.1.1). The value of the force constant $k/2\pi = 1.483 \times 10^{-3}$ MHz/\(a_0^2\) is the same as in the one-ion case studied in Chapters 2 and 3. However, due to the Coulomb interaction, this is a totally different system. We restrict the motions of ions to one dimension along the trap (z-axis). Our initial intention was to use two normal modes of this system to encode two qubits. For example, one can try to use the center-of-mass motion mode to encode the first qubit and the symmetric stretching mode to encode the second qubit. The trapping potential, equilibrium positions, relevant energy levels and the possible encoding of the two-qubit states are shown in Fig. 4.1.

The potential energy of the two ions in the harmonic trapping potential is
expressed as follows (in atomic units):

\[
V(z_1, z_2) = V(z_1) + V(z_2) + \frac{1}{|z_2 - z_1|} \]
\[
= \frac{1}{2} k z_1^2 + \frac{1}{2} k z_2^2 + \frac{1}{|z_2 - z_1|}.
\]

Equation (4.1.1.1)

As before, \(k \) is the force constant, we use \(z_1 \) and \(z_2 \) to describe the positions of two ions and set \(z_2 > z_1 \).

Potential energy surface (PES) of two ions in the trap based on Eq. (4.1.1.1) is

Fig. 4. 1: Two \(^{111}\text{Cd}^+\) ions in the harmonic potential trap: (a) Equilibrium positions of ions and minimum energy of the two-ion string. (b) Vibrational spectrum of this system and possible encoding of states of the two-qubit system.
shown in Fig. 4.2. When the two ions come close to each other \((z_1 \approx z_2)\), the potential energy approaches infinity which is the effect of Coulomb repulsion. This part of the PES is shown in white color. Second, although the trapping potential from Eq. (2.1.1) is harmonic, the potential energy of the system is anharmonic due to ion-ion Coulomb interaction. The main question here: *is Coulomb interaction of ions enough to introduce anharmonicity sufficient for accurate control?*

4.1.2 Minimization Method

When we consider one ion in the trap, it is obvious that the equilibrium

![Potential energy surface of two \(^{111}\text{Cd}^+\) ions in the harmonic potential trap using Cartesian coordinates. Anharmonicities due to Coulomb repulsion of ions are clearly seen.](image-url)
position of the ion is at \(z = 0 \) (right at the center of the trap). But now there are two ions in the trap and we have to determine the equilibrium positions of these two ions first. The second-order derivative minimization methods represent powerful tools, because they use both the gradients and the second derivatives to locate the minimum. The Newton-Raphson (NR) method is the simplest second-order derivative method [97]. To describe this method, it is useful to recall the expression for the Taylor series expansion in the vicinity of \(z_0 \):

\[
 f(z) = f(z_0) + (z - z_0)f'(z_0) + \frac{1}{2}(z - z_0)^2f''(z_0) + \cdots. \tag{4.1.2.1}
\]

Keeping only terms through quadratic, we can express the derivative of this function as:

\[
 f'(z) \approx f'(z_0) + (z - z_0)f''(z_0). \tag{4.1.2.2}
\]

At the minimum, which we’ll call \(z_e \), the first derivative is zero, thus:

\[
 f'(z_e) = 0 = f'(z_0) + (z_e - z_0)f''(z_0), \tag{4.1.2.3}
\]

\[
 z_e = z_0 - \frac{f'(z_0)}{f''(z_0)}. \tag{4.1.2.4}
\]

This equation allows us to approach the minimum \(z_e \) using information about \(f' \) and \(f'' \) at an arbitrary initial point \(z_0 \) from which we start the minimization. On the harmonic PES, the minimum energy point is found in one step. Our PES is anharmonic and iterations are needed. Because our system is two dimensional, in this method we need to calculate the inverse second derivative, which will be an inverse
matrix of second derivatives.

The two dimensional minimization equation is shown as follows:

\[
\begin{pmatrix}
Z_{e1} \\
Z_{e2}
\end{pmatrix}
= \begin{pmatrix}
Z_{01} \\
Z_{02}
\end{pmatrix} - f^{-1}\left(f'(z_{01})\right) - f^{-1}\left(f'(z_{02})\right),
\]

(4.1.2.5)

where \((Z_{e1}, Z_{e2})\) characterizes the equilibrium positions of two ions and \((Z_{01}, Z_{02})\) describes a set of arbitrary initial positions.

Since the potential is analytic, the gradient and the second-order derivative are also analytic. From Eq. (4.1.1.1), we obtain the first and second derivatives of the potential energy for two-ion system:

\[
\frac{\partial V(Z_{1}, Z_{2})}{\partial Z_{1}} = kZ_{1} + \frac{1}{(Z_{2} - Z_{1})^{2}},
\]

(4.1.2.6)

Fig. 4.3: Minimization from four different arbitrary initial positions.
These derivatives are used in Eq. (4.1.2.5) to locate the equilibrium positions of these two ions in the trap with NR method. A computer code Program 2DMIN written in FORTRAN language is used to carry out these optimizations numerically (see Appendix E). In the algorithm, the equilibrium position \((z_{e1}, z_{e2})\) is approached iteratively from an arbitrary initial point \((z_{01}, z_{02})\) by consecutive application of Eq.

\[
\frac{\partial V(z_1, z_2)}{\partial z_2} = kz_2 - \frac{1}{(z_2 - z_1)^2}, \tag{4.1.2.7}
\]
\[
\frac{\partial^2 V(z_1, z_2)}{\partial z_2^2} = k + \frac{2}{(z_2 - z_1)^3}, \tag{4.1.2.8}
\]
\[
\frac{\partial^2 V(z_1, z_2)}{\partial z_1^2} = k + \frac{2}{(z_2 - z_1)^3}, \tag{4.1.2.9}
\]
\[
\frac{\partial V(z_1, z_2)}{\partial z_1 \partial z_2} = \frac{\partial V(z_1, z_2)}{\partial z_2 \partial z_1} = -\frac{2}{(z_2 - z_1)^3}. \tag{4.1.2.10}
\]

Fig. 4.4: Change of potential energy of the system during minimization from four different guess positions.
(4.1.2.5) until the convergence is achieved.

Figure 4.3 illustrates the minimization process in four different runs when the initial guess positions were \((z_{01}, z_{02}) = (-15000 \text{ Bohr}, 15000 \text{ Bohr}), (-15000 \text{ Bohr}, 10000 \text{ Bohr}), (-15000 \text{ Bohr}, 0 \text{ Bohr}), (-10000 \text{ Bohr}, -7500 \text{ Bohr})\). All four calculations resulted in the same equilibrium position after about 40 iterations. The results are as follows:

\[
z_{e1} = -5.6103 \times 10^3 \text{ Bohr},
\]
\[
z_{e2} = 5.6103 \times 10^3 \text{ Bohr}.
\]

The value of potential energy at this point was \(V^{eq} = V(z_{e1}, z_{e2}) = 8.796 \times 10^5\) MHz. In Fig. 4.4, we present the change of the potential energy of the system during the minimization and the minimized potential energy was found in the end. In all four runs, the results converged to accuracy up to \(10^{-8}\) Bohr, which is the position difference between two subsequent steps.

4.1.3 Normal vibration modes

At the equilibrium point \((z_1 = z_{e1}\) and \(z_2 = z_{e2}\)), the Hessian matrix of the system is expressed by the following equation:

\[
\mathbf{V}'' = \begin{pmatrix}
\frac{\partial^2 V}{\partial z_1^2} & \frac{\partial^2 V}{\partial z_1 \partial z_2} \\
\frac{\partial^2 V}{\partial z_2 \partial z_1} & \frac{\partial^2 V}{\partial z_2^2}
\end{pmatrix}_{(z_{e1}, z_{e2})},
\]

(4.1.3.1)

To obtain the frequency of two normal vibration modes, the Hessian matrix \(\mathbf{V}''\) of Eq.
(4.1.3.1) must be converted into the matrix \(\mathbf{F} \) in mass-weighted coordinates first,

which is presented as follows:

\[
\mathbf{F} = \mathbf{M}^{-1/2} \mathbf{V}' \mathbf{M}^{-1/2}.
\]

(4.1.3.2)

Substitution of Eqs. (41.2.8) - (4.1.2.10) into Eq. (4.1.3.2), the equation of the

Hessian matrix at equilibrium position in mass-weighted coordinates is obtained:

\[
\mathbf{F} = \begin{pmatrix}
\frac{\partial^2 V}{\partial z_1^2} & \frac{\partial^2 V}{\partial z_1 \partial z_2} \\
\frac{\partial^2 V}{\partial z_2 \partial z_1} & \frac{\partial^2 V}{\partial z_2^2}
\end{pmatrix}_{(z_{e1}, z_{e2})} \begin{pmatrix}
m & 0 \\
0 & m
\end{pmatrix}^{-1/2}
\]

\[
= \frac{1}{m} \begin{pmatrix}
\frac{\partial^2 V}{\partial z_1^2} & \frac{\partial^2 V}{\partial z_1 \partial z_2} \\
\frac{\partial^2 V}{\partial z_2 \partial z_1} & \frac{\partial^2 V}{\partial z_2^2}
\end{pmatrix}_{(z_{e1}, z_{e2})} \\
\end{pmatrix}_{(z_{e1}, z_{e2})} \begin{pmatrix}
m & 0 \\
0 & m
\end{pmatrix}^{-1/2}
\]

\[
= \frac{1}{m} \begin{pmatrix}
\frac{2}{(z_{e2} - z_{e1})^3} & \frac{2}{(z_{e2} - z_{e1})^3} \\
\frac{-2}{(z_{e2} - z_{e1})^3} & \frac{2}{(z_{e2} - z_{e1})^3}
\end{pmatrix}_{(z_{e1}, z_{e2})} \begin{pmatrix}
k + \frac{k}{m} \\
k + \frac{k}{m}
\end{pmatrix}_{(z_{e1}, z_{e2})} \\
\end{pmatrix}_{(z_{e1}, z_{e2})} \begin{pmatrix}
m & 0 \\
0 & m
\end{pmatrix}^{-1/2}
\]

(4.1.3.3)

Eq. (4.1.3.3) can be diagonalized analytically to obtain the eigenvalues and

eigenvectors of the matrix \(\mathbf{F} \). The results are as follows:

\[
\lambda_1 = \frac{k}{m}
\]

\[
\lambda_2 = \frac{k}{m} + \frac{4}{(z_{e2} - z_{e1})^3}
\]

\[
\mathbf{A} = \begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{pmatrix} = \begin{pmatrix}
\sqrt{2} & -\sqrt{2} \\
\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2}
\end{pmatrix}
\]

Here \(\lambda_1 \) and \(\lambda_2 \) are two eigenvalues of the matrix \(\mathbf{F} \), and the columns in matrix \(\mathbf{A} \)
describe two eigenvectors of the system. The first column of matrix \(\mathbf{A} \) describes the
first mode with lower frequency which is the center-of-mass motion mode ($\Delta z_1 = \Delta z_2$) and the second column describes the higher frequency mode which is the symmetric stretching mode ($\Delta z_1 = -\Delta z_2$).

The frequency of each normal mode can be calculated from the eigenvalues using the following relationship:

$$v_i = \frac{\sqrt{\lambda_i}}{2\pi} = \frac{\omega_i}{2\pi},$$

(4.1.3.4)

here i labels normal vibration modes. Using Eq. (4.1.3.4), we calculate the frequency of these two modes and transfer them from atomic units to MHz. For parameters of the system given on page 17, this gives:

$$\frac{\omega_1}{2\pi} = 2.770 \text{ MHz}$$

$$\frac{\omega_2}{2\pi} = 4.798 \text{ MHz}$$

Note that here for two (and in the later Chapter for three) ions this step can be carried out either analytically or numerically. For four and more ions (in the future work) the numerical procedure is required. In order to test our computer codes we did both numerical and analytic diagonalization and obtained equivalent results. Program 2DHESSIAN in Appendix F shows example of numerical calculations.

4.1.4 Hamiltonian and transformation of coordinates

In the Cartesian coordinates, the Hamiltonian of the system can be written as:
\[\hat{H}(z_1, z_2) = -\frac{1}{2m} \frac{\partial^2}{\partial z_1^2} - \frac{1}{2m} \frac{\partial^2}{\partial z_2^2} + V(z_1, z_2) - V^{eq}, \] (4.1.4.1)

here \(V(z_1, z_2) \) is the potential from Eq. (4.1.1.1), \(z_1 \) and \(z_2 \) are the Cartesian coordinates of two ions. \(V^{eq} = V(z_{e1}, z_{e2}) \) is the constant energy shift by the minimum potential energy of system when two ions are at their classical minimum energy point \((z_{e1}, z_{e2})\). In order to use simple basis functions for numerical solution of this problem, we need to transform the coordinates from Cartesian to the normal mode coordinates. First we transform the coordinates to mass scaled coordinates:

\[\tilde{z}_1 = \sqrt{m} z_1, \quad \tilde{z}_2 = \sqrt{m} z_2, \] (4.1.4.2)

\[\hat{H} (\tilde{z}_1, \tilde{z}_2) = -\frac{1}{2 \sqrt{m}} \frac{\partial^2}{\partial \tilde{z}_1^2} - \frac{1}{2 \sqrt{m}} \frac{\partial^2}{\partial \tilde{z}_2^2} + \hat{V} (\tilde{z}_1, \tilde{z}_2) - V^{eq}, \] (4.1.4.3)

\[\hat{V} (\tilde{z}_1, \tilde{z}_2) = \frac{1}{2} k \left(\sqrt{m} \tilde{z}_1^2 + \frac{1}{2} \frac{1}{m} \tilde{z}_2^2 + \frac{\sqrt{m}}{|\tilde{z}_2 - \tilde{z}_1|} \right), \] (4.1.4.4)

here \(\tilde{z}_1 \) and \(\tilde{z}_2 \) are the mass scaled coordinates of \(z_1 \) and \(z_2 \). Using the following transformation, the expression of Hamiltonian in the mass scaled displacement coordinates is achieved:

\[\begin{cases} \tilde{z}_1 - \sqrt{m} z_{e1} = \Delta \tilde{z}_1, \\ \tilde{z}_2 - \sqrt{m} z_{e2} = \Delta \tilde{z}_2 \end{cases}, \] (4.1.4.5)

\[\hat{H} (\Delta \tilde{z}_1, \Delta \tilde{z}_2) = -\frac{1}{2 \sqrt{m}} \frac{\partial^2}{\partial \Delta \tilde{z}_1^2} - \frac{1}{2 \sqrt{m}} \frac{\partial^2}{\partial \Delta \tilde{z}_2^2} + \hat{V} (\Delta \tilde{z}_1, \Delta \tilde{z}_2) - V^{eq}, \] (4.1.4.6)

\[\hat{V} (\Delta \tilde{z}_1, \Delta \tilde{z}_2) = \frac{1}{2} k \left(\frac{\Delta \tilde{z}_1}{\sqrt{m}} + z_{e1} \right)^2 + \frac{1}{2} k \left(\frac{\Delta \tilde{z}_2}{\sqrt{m}} + z_{e2} \right)^2 \]

\[\frac{\sqrt{m}}{|\Delta \tilde{z}_2 - \Delta \tilde{z}_1 + \sqrt{m} (z_{e2} - z_{e1})|}, \] (4.1.4.7)

here \(\Delta \tilde{z}_1 \) and \(\Delta \tilde{z}_2 \) are the mass scaled displacement coordinates for two ions. In the next step, we need to transform coordinates to mass-weighted normal mode...
coordinates [98] and the transformation is as follows:

\[
\begin{bmatrix}
\Delta \bar{z}_1 \\ \Delta \bar{z}_2
\end{bmatrix} =
\begin{bmatrix}
a_{11} & a_{12} \\ a_{21} & a_{22}
\end{bmatrix}
\begin{bmatrix}
\bar{\xi}_1 \\ \bar{\xi}_2
\end{bmatrix} =
\begin{bmatrix}
-\sqrt{2} & -\sqrt{2} \\ \frac{2}{\sqrt{2}} & \frac{2}{\sqrt{2}} \\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\
-\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}
\end{bmatrix}
\begin{bmatrix}
\bar{\xi}_1 \\ \bar{\xi}_2
\end{bmatrix},
\]

(4.1.4.8)

here \(\bar{\xi}_1\) and \(\bar{\xi}_2\) are the mass-weighted normal mode coordinates of the two-ion system and the matrix of eigenvetors \(\mathbf{A}\) is used in the coordinate transformation. From the equations above, the expression of variable \(\Delta \bar{z}_1\) and \(\Delta \bar{z}_2\) through \(\xi_1\) and \(\xi_2\) is presented:

\[
\begin{aligned}
\begin{cases}
\Delta \bar{z}_1 = -\frac{\sqrt{2}}{2}(\xi_1 + \xi_2) \\
\Delta \bar{z}_2 = \frac{\sqrt{2}}{2}(\xi_2 - \xi_1)
\end{cases}
\end{aligned}
\]

(4.1.4.9)

Now we know the relation between the mass scaled displacement coordinates and mass scaled normal mode coordinates and we need to find the expression for Hamiltonian in the mass scaled normal mode coordinates.

For the kinetic energy part of the Hamiltonian operator, the transformation to the mass scaled displacement coordinates gives (see Eq. (4.1.4.6)):

\[
\hat{T}(\Delta \bar{z}_1, \Delta \bar{z}_2) = -\frac{1}{2} \frac{\partial^2}{\partial \Delta \bar{z}_1^2} - \frac{1}{2} \frac{\partial^2}{\partial \Delta \bar{z}_2^2}.
\]

(4.1.4.10)

Using Eq. (4.1.4.9), we obtain the following expressions [98]:

\[
\begin{aligned}
\frac{\partial}{\partial \xi_1} &= \frac{\partial}{\partial \Delta \bar{z}_1} + \frac{\partial}{\partial \Delta \bar{z}_2} - \frac{1}{\sqrt{2}} \frac{\partial}{\partial \Delta \bar{z}_1} - \frac{1}{\sqrt{2}} \frac{\partial}{\partial \Delta \bar{z}_2}, \\
\frac{\partial^2}{\partial \Delta \bar{z}_1 \partial \Delta \bar{z}_2} &= \frac{\partial^2}{\partial \Delta \bar{z}_2 \partial \Delta \bar{z}_1}, \\
\frac{\partial^2}{\partial \xi_1^2} &= -\frac{1}{\sqrt{2}} \left(\frac{\partial^2}{\partial \Delta \bar{z}_1^2} - \frac{\partial^2}{\partial \Delta \bar{z}_2 \partial \Delta \bar{z}_1} \right) + \frac{\partial^2}{\partial \Delta \bar{z}_1 \partial \Delta \bar{z}_2} \frac{\partial}{\partial \xi_1}.
\end{aligned}
\]

(4.1.4.11, 4.1.4.12)
In the same way, we obtain the second derivative of the second mode:

\[
\frac{\partial^2}{\partial \zeta_2^2} = \frac{1}{2} \left(\frac{\partial^2}{\partial \Delta \zeta_1^2} + \frac{\partial^2}{\partial \Delta \zeta_2^2} - 2 \frac{\partial^2}{\partial \Delta \zeta_1 \partial \Delta \zeta_2} \right). \tag{4.1.14}
\]

Using Eqs. (4.1.13) and (4.1.14), we obtain the following final expression of the kinetic energy operator:

\[
\frac{\partial^2}{\partial \zeta_1^2} + \frac{\partial^2}{\partial \zeta_2^2} = \frac{\partial^2}{\partial \Delta \zeta_1^2} + \frac{\partial^2}{\partial \Delta \zeta_2^2}. \tag{4.1.15}
\]

This means that in the mass scaled normal mode coordinates the kinetic energy part of Hamiltonian is still in the same form:

\[
\hat{T}(\zeta_1, \zeta_2) = -\frac{1}{2} \frac{\partial^2}{\partial \zeta_1^2} - \frac{1}{2} \frac{\partial^2}{\partial \zeta_2^2}. \tag{4.1.16}
\]

By substitution Eq. (4.1.9) into Eq. (4.1.7), the equation of potential energy part in the mass scaled normal mode coordinates is obtained:

\[
\hat{V}(\zeta_1, \zeta_2) = \frac{1}{2} k \left(\frac{\zeta_1}{\sqrt{2m}} + \frac{\zeta_2}{\sqrt{2m}} \right)^2 + \frac{1}{2} k \left(\frac{\zeta_2 - \zeta_1}{\sqrt{2m}} \right)^2 + \frac{1}{2} \frac{k}{m} \frac{(z_{e2} - z_{e1})}{|\sqrt{2m}(z_{e2} - z_{e1})|}. \tag{4.1.17}
\]

Here

\[
V_{eq} = \frac{1}{2} k z_{e1}^2 + \frac{1}{2} k z_{e2}^2 + \frac{1}{|z_{e2} - z_{e1}|}. \tag{4.1.18}
\]

If we expand the brackets in Eq. (4.1.17), we obtain:

\[
\hat{V}(\zeta_1, \zeta_2) = \frac{1}{2} \frac{k}{m} \zeta_1^2 + \frac{1}{2} \frac{k}{m} \zeta_2^2 + \frac{k\zeta_2(z_{e2} - z_{e1})}{\sqrt{2m}}. \]
Note that the Coulomb interaction is included only into the term \(\frac{1}{\sqrt{\frac{2}{m} \xi_2 + (z_{e2} - z_{e1})}} \) of Eq. (4.1.4.19). This term is clearly anharmonic and depends only on the symmetric stretching coordinate \(\xi_2 \). Also there is no coupling terms between the two vibration modes, so this potential is analytically separable. The first mode is harmonic and the second mode is anharmonic due to the Coulomb.

\[
\begin{align*}
\tilde{V} (\xi_1) &= \frac{1}{2} \frac{k}{m} \xi_1^2 + \frac{k}{2} z_{e1}^2, \\
\tilde{V} (\xi_2) &= \frac{1}{2} \frac{k}{m} \xi_2^2 + \frac{k}{2} \xi_2 (z_{e2} - z_{e1}) + \frac{1}{\sqrt{\frac{2}{m} \xi_2 + (z_{e2} - z_{e1})}} + \frac{k}{2} z_{e2}^2.
\end{align*}
\] (4.1.4.20)

Finally, the Hamiltonian in mass scaled normal mode coordinates is expressed by the following equation:

\[
\tilde{H}(\xi_1, \xi_2) = -\frac{1}{2} \frac{\partial^2}{\partial \xi_1^2} - \frac{1}{2} \frac{\partial^2}{\partial \xi_2^2} + \tilde{V} (\xi_1) + \tilde{V} (\xi_2) - V_{eq}. \tag{4.1.4.22}
\]

4.1.5 Harmonic Approximation

It is instructive to consider an approximation to the Hamiltonian in Eq. (4.1.4.19), which allows solving the Schrödinger equation analytically and approximately. We expand the term \(\frac{1}{\sqrt{\frac{2}{m} \xi_2 + (z_{e2} - z_{e1})}} \) in the Taylor Expansion. This leads to the following equation:
We can define the equilibrium energy as:

\[V_{eq} = V(\bar{z}_1 = 0, \bar{z}_2 = 0) = \frac{1}{2} k z_{e1}^2 + \frac{1}{2} k z_{e2}^2 + \frac{1}{|z_{e2} - z_{e1}|}. \]

(4.1.5.2)

Next, from the expression above, using properties of the equilibrium point \((\bar{z}_1 = \bar{z}_2 = 0, -z_{1e} = z_{2e} \text{ and } \partial V / \partial z_{1e} = 0)\) we can obtain approximate analytical expressions for the equilibrium positions (in the harmonic approximation):

\[z_{e1} \approx -\left(\frac{1}{4k}\right)^{\frac{1}{3}}, \]

(4.1.5.3)

\[z_{e2} \approx \left(\frac{1}{4k}\right)^{\frac{1}{3}}. \]

(4.1.5.4)

and for the equilibrium energy (in the harmonic approximation):

\[V_{eq} \approx V(z_{e1}, z_{e2}) = \frac{3}{2} \left(\frac{k}{2}\right)^{1/3}. \]

(4.1.5.5)

Substituting Eqs. (4.1.5.3) and (4.1.5.4) into Eq. (4.1.5.1), we obtain the following expression:

\[\mathcal{V}(\bar{z}_1, \bar{z}_2) \approx \frac{1}{2} k \bar{z}_1^2 + \frac{1}{2} k \bar{z}_2^2 + \frac{3}{2} \left(\frac{k}{2}\right)^{1/3} = \mathcal{V}(\bar{z}_1) + \mathcal{V}(\bar{z}_2). \]

(4.1.5.6)

Substitution Eqs. (4.1.5.5) and (4.1.5.6) in to Eq. (4.1.4.22), the Hamiltonian in harmonic approximation is obtained:

\[\mathcal{H}(\bar{z}_1, \bar{z}_2) = -\frac{1}{2} \frac{\partial^2}{\partial \bar{z}_1^2} - \frac{1}{2} \frac{\partial^2}{\partial \bar{z}_2^2} + \frac{1}{2} k \bar{z}_1^2 + \frac{1}{2} k \bar{z}_2^2. \]

(4.1.5.7)
The Hamiltonian operator is separable and harmonic in ξ_1 and ξ_2 (two uncoupled harmonic oscillators) and has analytic solutions to energies and wave functions. We found it convenient to introduce the “unscaled” normal mode coordinates ζ_1 and ζ_2 (measured in the units of length, a_0) according to the following:

$$\begin{cases}
\mu_1 = \frac{m}{2}, \\
\mu_2 = \frac{m}{3}.
\end{cases}$$

Here (μ_1, μ_2) are the effective masses. In such unscaled coordinates the Hamiltonian is expressed simply as:

$$\hat{H}(\zeta_1, \zeta_2) = -\frac{1}{2\mu_1} \frac{\partial^2}{\partial \zeta_1^2} - \frac{1}{2\mu_2} \frac{\partial^2}{\partial \zeta_2^2} + \frac{1}{2} k \zeta_1^2 + \frac{1}{2} k \zeta_2^2.$$ \hspace{1cm} (4.1.5.10)

The Harmonic frequencies of two modes are (in the harmonic approximation):

$$\omega_1 = \sqrt{k/m} = \omega,$$ \hspace{1cm} (4.1.5.11)

$$\omega_2 = \sqrt{k/m} = \sqrt{3} \omega.$$ \hspace{1cm} (4.1.5.12)

Using parameters of our model we obtain, in the harmonic approximation,

$$z_{\omega_1} = -5.610 \times 10^3 a_0, \quad z_{\omega_2} = 5.610 \times 10^3 a_0, \quad V_{eq} = 8.796 \times 10^5 \text{ MHz}, \quad \omega_1/2\pi = 2.770 \text{ MHz and } \omega_2/2\pi = 4.798 \text{ MHz. These numbers are close to those obtained numerically at the beginning of this section.}$$

Note that analytical expressions of Eqs. (4.1.5.3) and (4.1.5.4) for the
equilibrium distances, Eqs. (4.1.5.11) and (4.1.5.12) for the vibration frequencies, obtained here within the harmonic approximation, are consistent with results of James and coworkers [69, 70] obtained in a different way, and also with the NIST data [99]. This comparison provides an important benchmark for our theory and clearly demonstrates that the exact framework (beyond the harmonic approximation) developed in this work goes beyond the existing theoretical treatments of the ion chains in Paul traps.

Using conclusions of the discussion above it is convenient to rewrite the exact Hamiltonian of Eq. (4.1.4.22) using the mass-unscaled normal mode coordinates \((\zeta_1, \zeta_2)\). The resultant expression is:

Fig. 4.5: Potential energy surface of two \(^{111}\text{Cd}^+\) ions in the harmonic potential trap using normal mode coordinates.
\[H(\zeta_1, \zeta_2) = -\frac{1}{2m} \frac{\partial^2}{\partial \zeta_1^2} - \frac{1}{2} \left(\frac{m}{3} \right) \frac{\partial^2}{\partial \zeta_2^2} + \hat{V}(\zeta_1) + \hat{V}(\zeta_2) - V_{eq}. \]

(4.1.5.13)

\[\hat{V}(\zeta_1) = \frac{1}{2} k \zeta_1^2 + \frac{k}{2} z_{e1}^2, \]

(4.1.5.14)

\[\hat{V}(\zeta_2) = \frac{1}{6} k \zeta_2^2 + \frac{k \zeta_2 (z_{e2} - z_{e1})}{\sqrt{6}} + \frac{1}{\sqrt{\frac{2}{3} \zeta_2 + (z_{e2} - z_{e1})}} + \frac{k}{2} z_{e2}^2. \]

(4.1.5.15)

This expression is exact and contains all anharmonicities. It involves no approximations, just the transformation of coordinates. In Fig. 4.5, the PES in the normal mode coordinates \((\zeta_1, \zeta_2)\) is shown. Only the part of \(z_2 > z_1\) is relevant after the transformation. From the picture we can see that: The motion along \(\zeta_1\) goes parallel to the white part, where Coulomb interaction is significant. So the motion along this mode does not bring the system towards the region of strong Coulomb interaction. As a result the system remains harmonic. In contrast, the motion along \(\zeta_2\) brings the system closer to the Coulomb region, which makes this mode anharmonic.

4.1.6 2D Basis set expansion

Two-dimensional wavefunctions of this system and the corresponding energy eigenvalues are calculated using the direct product basis set expansion method in the normal mode coordinates:

\[\Psi_u(\zeta_1, \zeta_2) = \sum_{i,j}^N C_{uij} \varphi_i(\zeta_1) \varphi_j(\zeta_2), \]

(4.1.6.1)

here \(\varphi_i(\zeta_1)\) and \(\varphi_j(\zeta_2)\) are given by the expression of Eq. (2.2.4). They describe the
basis functions of two vibrational modes of the system. Their vibration frequencies are \(\omega_1 \) (center-of-mass motion mode \(\zeta_1 \)) and \(\omega_2 \) (symmetric stretching mode \(\zeta_2 \)).

Indexes \(i \) and \(j \) label basis functions and run from 1 to \(N \). Index \(\nu \) labels states of the two-ion system; it runs from 1 to \(N^2 \). The \(C_{\nu,i,j} \) are coefficients of linear combination.

In the matrix form they can be written as \(C_{N^2,N^2} \).

Substituting the basis functions \(\varphi_i(\zeta_1)\varphi_j(\zeta_2) \) \((i,j = 1,\cdots,N)\) into Eq. (2.2.14), we obtain the Hamiltonian matrix of the two-ion system. Similar in form to the one-ion case, but the dimension of this matrix is \(N^2 \times N^2 \), where \(N \) is the number of basis functions for each mode. The kinetic energy part and the potential energy part are calculated numerically using the Equally-Spaced Abscissas method. A computer code named 2DIONTRAP was written to carry out all these calculations numerically (see Appendix G).

4.1.7 Convergence Studies

Rigorous convergence studies were carried out to optimize different parameters in our calculations: the integration limit \(\zeta_{\text{max}} \), the step size \(\Delta \zeta \) and the basis set size \(N \). First, using a small integration step \(\Delta \zeta = 6.25 \) Bohr and large size of the basis set \(N = 20 \), we did calculations with different integration limits \((\zeta_{\text{max}} = 1000, 500, 400 \) Bohr\). We defined the numerical accuracy as:

\[
\delta E = E_{\zeta_{\text{max}}=1000} - E_{\zeta_{\text{max}}=400/500}.
\] (4.1.7.1)
From Fig. 4.6, we can see the difference between the results computed with $\zeta_{\text{max}} = 500$ and 1000 Bohr, and the difference between the results computed with $\zeta_{\text{max}} = 400$ and 1000 Bohr. It is found that results obtained with $\zeta_{\text{max}} = 500$ Bohr are accurate enough and their differences from those obtained with $\zeta_{\text{max}} = 1000$ Bohr is smaller than 10^{-9} MHz up to 400 states. So the value of $\zeta_{\text{max}} = 500$ Bohr is used in further calculations.

Next, using $\zeta_{\text{max}} = 500$ Bohr and $N = 20$, we studied the effect of the integration step size ($\Delta \zeta = 6.25, 10, 20$ Bohr). We defined the numerical accuracy as:

$$\delta E = E_{\Delta \zeta = 6.25} - E_{\Delta \zeta = 10/20}.$$ (4.1.7.2)

Fig. 4. 6: Convergence study with different integration limits ($\zeta_{\text{max}} = 1000, 500, 400$ Bohr). $\Delta \zeta = 6.25$ Bohr and $N = 20$.
The value $\Delta \zeta = 10$ Bohr was chosen with this grid: the deviation of energies from the most accurate result ($\Delta \zeta = 6.25$ Bohr) is lower than 10^{-9} MHz for up to 400 states.

Finally, we fixed $\zeta_{\text{max}} = 500$ Bohr and $\Delta \zeta = 10$ Bohr to study the effect of the size of basis set ($N = 10, 15, 20, 25$). The definition of the numerical accuracy in this case is given by the following expression:

$$
\delta E = E_{N=25} - E_{N=10/15/20}.
$$

(4.1.7.3)

From Fig. 4.8, we see that the results obtained using 15 basis functions per normal mode are good enough for the first 77 states which contain all the vibrational states we need with accuracy better than 10^{-9} MHz. In the final 2D calculations, the

![Diagram](image)

Fig. 4.7: Convergence study with different integration steps ($\Delta \zeta = 6.25, 10, 20$ Bohr). $\zeta_{\text{max}} = 500$ Bohr and $N = 20$.
following parameters are used: $\zeta_{1\text{max}} = \zeta_{2\text{max}} = 500$ Bohr, $N_1 = N_2 = 101$

(Equally-Spaced Abscissas method: $\Delta \zeta_1 = \Delta \zeta_2 = 10$ Bohr) and $N_1 \times N_2 = 15 \times 15$.

4.1.8 Results and analysis

In order to elucidate the effect of Coulomb anharmonicity, we computed deviations of the numerical spectrum from the Harmonic one:

$$\delta E = E_v - E_h,$$ \hspace{1cm} \text{(4.1.8.1)}

where

$$E_h = \omega_1 \left(v_1 + \frac{1}{2} \right) + \omega_2 \left(v_2 + \frac{1}{2} \right).$$ \hspace{1cm} \text{(4.1.8.2)}

Fig. 4.8: Convergence study with different number of basis functions $N = 10, 15, 20, 25$. $\Delta \zeta = 10$ Bohr and $\zeta_{\text{max}} = 500$ Bohr.
Table 4.1: Eigenvalues, assignments and deviations (from the harmonic model) of the vibrational states of two $^{111}\text{Cd}^+$ ions in a harmonic trap.

<table>
<thead>
<tr>
<th># of state</th>
<th>E_v (MHz)</th>
<th>E_h (MHz)</th>
<th>v_1</th>
<th>v_2</th>
<th>δE (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>23.77492</td>
<td>23.77487</td>
<td>0</td>
<td>0</td>
<td>0.00005</td>
</tr>
<tr>
<td>2</td>
<td>41.17934</td>
<td>41.17929</td>
<td>1</td>
<td>0</td>
<td>0.00005</td>
</tr>
<tr>
<td>3</td>
<td>53.92034</td>
<td>53.92021</td>
<td>0</td>
<td>1</td>
<td>0.00013</td>
</tr>
<tr>
<td>4</td>
<td>58.58375</td>
<td>58.58371</td>
<td>2</td>
<td>0</td>
<td>0.00005</td>
</tr>
<tr>
<td>5</td>
<td>71.32475</td>
<td>71.32462</td>
<td>1</td>
<td>1</td>
<td>0.00013</td>
</tr>
<tr>
<td>6</td>
<td>75.98817</td>
<td>75.98812</td>
<td>3</td>
<td>0</td>
<td>0.00005</td>
</tr>
<tr>
<td>7</td>
<td>84.06584</td>
<td>84.06554</td>
<td>0</td>
<td>2</td>
<td>0.00031</td>
</tr>
<tr>
<td>8</td>
<td>88.72917</td>
<td>88.72903</td>
<td>2</td>
<td>1</td>
<td>0.00014</td>
</tr>
<tr>
<td>9</td>
<td>93.39259</td>
<td>93.39253</td>
<td>4</td>
<td>0</td>
<td>0.00005</td>
</tr>
<tr>
<td>10</td>
<td>101.47026</td>
<td>101.46996</td>
<td>1</td>
<td>2</td>
<td>0.00031</td>
</tr>
<tr>
<td>11</td>
<td>106.13358</td>
<td>106.13345</td>
<td>3</td>
<td>1</td>
<td>0.00013</td>
</tr>
<tr>
<td>12</td>
<td>110.79700</td>
<td>110.79695</td>
<td>5</td>
<td>0</td>
<td>0.00005</td>
</tr>
<tr>
<td>13</td>
<td>114.21143</td>
<td>114.21087</td>
<td>0</td>
<td>3</td>
<td>0.00056</td>
</tr>
<tr>
<td>14</td>
<td>118.87467</td>
<td>118.87437</td>
<td>2</td>
<td>2</td>
<td>0.00031</td>
</tr>
<tr>
<td>15</td>
<td>123.53800</td>
<td>123.53786</td>
<td>4</td>
<td>1</td>
<td>0.00014</td>
</tr>
<tr>
<td>16</td>
<td>128.20142</td>
<td>128.20137</td>
<td>6</td>
<td>0</td>
<td>0.00005</td>
</tr>
<tr>
<td>17</td>
<td>131.61584</td>
<td>131.61528</td>
<td>1</td>
<td>3</td>
<td>0.00056</td>
</tr>
<tr>
<td>18</td>
<td>136.27908</td>
<td>136.27878</td>
<td>3</td>
<td>2</td>
<td>0.00031</td>
</tr>
<tr>
<td>19</td>
<td>140.94241</td>
<td>140.94228</td>
<td>5</td>
<td>1</td>
<td>0.00014</td>
</tr>
<tr>
<td>20</td>
<td>144.35710</td>
<td>144.35620</td>
<td>0</td>
<td>4</td>
<td>0.00090</td>
</tr>
<tr>
<td>21</td>
<td>145.60583</td>
<td>145.60579</td>
<td>7</td>
<td>0</td>
<td>0.00005</td>
</tr>
<tr>
<td>26</td>
<td>163.01024</td>
<td>163.01019</td>
<td>8</td>
<td>0</td>
<td>0.00005</td>
</tr>
<tr>
<td>29</td>
<td>174.50287</td>
<td>174.50154</td>
<td>0</td>
<td>5</td>
<td>0.00133</td>
</tr>
<tr>
<td>32</td>
<td>180.41466</td>
<td>180.41461</td>
<td>9</td>
<td>0</td>
<td>0.00005</td>
</tr>
<tr>
<td>40</td>
<td>204.64871</td>
<td>204.64687</td>
<td>0</td>
<td>6</td>
<td>0.00185</td>
</tr>
<tr>
<td>53</td>
<td>234.79465</td>
<td>234.79221</td>
<td>0</td>
<td>7</td>
<td>0.00244</td>
</tr>
<tr>
<td>67</td>
<td>264.94067</td>
<td>264.93753</td>
<td>0</td>
<td>8</td>
<td>0.00314</td>
</tr>
<tr>
<td>82</td>
<td>295.08676</td>
<td>295.08286</td>
<td>0</td>
<td>9</td>
<td>0.00391</td>
</tr>
</tbody>
</table>

Here ω_1 and ω_2 are the normal mode frequencies obtained from diagonalization of the Hessian matrix in Sec. 4.1.3.

The eigenvalues calculated numerically, the harmonic spectrum and their assignments in terms of the normal vibration mode quantum numbers (v_1, v_2) are given in Table 4.1. From Table 4.1, it is found that our numerical results for energies...
are a little higher than the analytic spectrum from harmonic approximation. It is because in the harmonic approximation we only keep the first three terms of the Taylor series. The values of deviations from harmonic model, \(\delta E \), are given in Table 4.1 and are also presented in Fig. 4.9 for the ten lowest states of each normal mode progression. Figure 4.9 shows very clearly that Mode 1 (center-of-mass motion) remains harmonic, while Mode 2 (symmetric stretching) shows a distinct effect of Coulomb anharmonicity. We can understand this effect more directly from Fig. 4.10.

In Mode 1 two ions move together along the \(z \)-axis as a single pseudo-particle. Such simultaneous center-of-mass motion of two ions does not change the distance between

Fig. 4.9: Effect of anharmonicity for two modes of the vibrational spectrum of two \(^{111}\text{Cd}^+\) ions in a harmonic (\(\sim z^2 \)) potential trap.
them, and does not change the amount of Coulomb interaction. Excitation of the
Mode 2, however, brings ions closer together and takes them further apart, changing
the Coulomb repulsion energy of the system.

In order to quantify the effect of Coulomb anharmonicity we calculated the
coefficients for the 2D-Dunham expansion [83]:

\[
E_{v_1, v_2} = D + \Omega_1 \left(v_1 + \frac{1}{2} \right) - \Delta_1 \left(v_1 + \frac{1}{2} \right)^2
+ \Omega_2 \left(v_2 + \frac{1}{2} \right) - \Delta_2 \left(v_2 + \frac{1}{2} \right)^2 - \Delta_{12} \left(v_1 + \frac{1}{2} \right) \left(v_2 + \frac{1}{2} \right),
\]

(4.1.8.3)
based on numerical values of six eigenstates (ground state, first exited states of each
mode, their overtones, and the combination state). The results are:

\[
D/2\pi = 6.280 \times 10^{-6} \text{ MHz},
\]
\[
\Omega_1/2\pi = 2.770 \text{ MHz},
\]
\[
\Omega_2/2\pi = 4.798 \text{ MHz},
\]
\[
\Delta_1 \approx 0 \text{ MHz},
\]
\[
\Delta_2/2\pi = -6.851 \times 10^{-6} \text{ MHz},
\]

\[|z_2 - z_1| = \text{const.}\]

\[|z_2 - z_1| \neq \text{const.}\]

Fig. 4.10: Description of the ion motions for two vibrational motion modes.
\[\Delta_{12} \approx 0 \text{ MHz.} \]

From these data we see that the center-of-mass motion mode is strictly harmonic \((\Delta_1 \approx 0)\). Although the Coulomb interaction introduces some anharmonicity into the spectrum of the symmetric stretching mode, the value of this anharmonicity is too low for the control. The anharmonicity parameter in this case is \(\Delta_2 \sim 10^{-6} \Omega_2 \), which is about four orders of magnitude smaller than is needed for the successful control. Thus, the Coulomb anharmonicity by itself is clearly insufficient for the control.

4.1.9 Two-dimensional wavefunctions and transition matrix

Using eigenvectors \(c_{i,j} \) from diagonalization of Hamiltonian matrix and the basis functions \(\varphi_i(\zeta_1)\varphi_j(\zeta_2) \) \((i, j = 1, \ldots, N)\) of the system, the wavefunctions \(\Psi_v \) of the eigenstates in the harmonic potential trap can be computed using Eq. (2.2.7). In Fig. 4.11 we present wavefunctions for several lower states. Based on shapes of wavefunctions we can assign the normal mode quantum numbers \((v_1, v_2)\) to these states.

In the two-ion system, the elements in transition matrix are computed as follows:

\[
M_{v,v'} = \langle \Psi_v | d(z_1, z_2) | \Psi_{v'} \rangle.
\] \hspace{1cm} (4.1.9.1)

Here

\[
d(z_1, z_2) = q(z_1 + z_2)
\] \hspace{1cm} (4.1.9.2)
is the dipole moment function. The brackets $\langle \parallel \rangle$ in Eq. (4.1.9.1) represent integration over two spatial variables. Note that the wavefunctions are obtained in the normal mode coordinates, while the dipole moment function of Eq. (4.1.9.2) is expressed in Cartesian coordinates. In order to carry out the integration of Eq. (4.1.9.1) using wavefunctions in the normal mode coordinates, one has to transform the dipole moment function into the normal mode coordinates using Eqs. (4.1.4.2), (4.1.4.5), (4.1.4.9) and (4.1.5.9). This can be done using the following expressions:

$$z_1 = -\frac{\sqrt{2}}{2}\left(\zeta_1 + \frac{\zeta_2}{\sqrt{3}}\right) + z_{e1},$$

(4.1.9.3)

\[Fig. 4.11: \text{Wavefunctions of two}^{111}\text{Cd}^+ \text{ions in the harmonic potential trap.}\]
Finally, we use Eq. (4.1.9.5) to rewrite the expression of the dipole moment in the following form:

\[z_1 + z_2 = -\sqrt{2}\zeta_1. \]

From Eq. (4.1.9.6) we can see that the transition dipole moment depends only on one coordinate \(\zeta_1 \). That means there are only state-to-state transitions between states of the first mode, the second mode is “dark” in this two-ion system.

\[d(\zeta_1, \zeta_2) = -\sqrt{2}\zeta_1 q = d(\zeta_1) \]

Fig. 4.12: Transition matrix for two \(^{111}\)Cd\(^+\) ions in the harmonic potential trap. (black corresponds \(\mu_{5,6} = 1.06 \times 10^2 \ e\alpha_0 \ (\sim 2.69 \times 10^2 \ D) \) and orange corresponds \(\mu_{0,1} = 43.22 \ e\alpha_0 \ (\sim 1.10 \times 10^2 \ D) \) between states of mode 1).
Then the elements of transition matrix in the mass unscaled normal mode coordinates are expressed as:

\[M_{\nu,\nu'} = -\sqrt{2}q\langle \Psi_\nu(\zeta_1, \zeta_2) | \zeta_1 | \Psi_{\nu'}(\zeta_1, \zeta_2) \rangle. \] \hspace{2cm} (4.1.9.7)

In Fig. 4.12, we show the transition matrix of the lower 20 states, calculated from Eq. (4.1.9.7). The dipole moment function is an anti-symmetric (linear) function of \(\zeta_1 \). Thus, the matrix elements are non-zero only for transitions between states of different symmetries (e.g., symmetric-to-asymmetric states and vice versa), leading to the following selection rules:

\[\Delta \nu = \pm 1, \pm 3, \pm 5 \text{ etc.,} \] \hspace{2cm} (4.1.9.8)

for Modes 1. Mode 2 is “dark” and cannot be controlled using the spatially homogeneous electric field.

4.2 Two ions in the anharmonic trapping potential

4.2.1 Anharmonic trapping potential

Here we explore the possibility of using an anharmonic trapping potential in order to control the two-ion system. We consider the strongly anharmonic quartic trap where the potential is given by:

\[V_a(z) = \frac{1}{4!}k'z^4, \] \hspace{2cm} (4.2.1.1)

where \(k' \) is a parameter which controls trap frequency. Here, we present the results of
calculations with \(k'/2\pi = 3.558 \times 10^{-11} \text{ MHz/a}_0^4 \). This parameter was chosen in order to obtain vibration frequencies similar to the system of two ions in the harmonic trapping potential. In Fig. 4.13 we show the anharmonic trapping potential, the equilibrium positions of two ions and several lower energy levels of the system.

The PES of two ions in the anharmonic trapping potential based on Eq. (4.2.1.1) is shown in Fig. 4.14 using Cartesian coordinates. Overall, it looks similar to

![Diagram showing equilibrium positions and energy levels for two ions in a trap.](image)

Fig. 4.13: Two \(^{111}\text{Cd}^+\) ions in the \(z^4 \) potential trap: (a) Equilibrium positions of ions and minimum energy of the two-ion string. (b) Vibrational spectrum of this system and the encoding of two-qubit states.
Fig. 4.2, which is the PES of two ions in the harmonic trapping potential, but some differences are clearly seen. Again, when the two ions come close to each other, the potential energy approaches infinity which is the affect of Coulomb repulsion.

As before, the NR method was used to carry out the minimization and the results obtained for the equilibrium positions were:

\[z_{e1} = -8.4914 \times 10^3 \text{ Bohr}, \]
\[z_{e2} = 8.4914 \times 10^3 \text{ Bohr}. \]

The value of potential energy at this point was \(V^{eq} = V(z_{e1}, z_{e2}) = 4.843 \times 10^5 \) MHz.

Fig. 4.14: PES of two 111Cd$^+$ ions in the anharmonic potential trap using Cartisian coordinates. Anharmonicities due to Coulomb repulsion of ions are clearly seen.
In the next step, diagonalization of the Hessian matrix was done and eigenvalues were obtained:

\[\lambda_1 = 6.05 \times 10^{-18} \text{ a.u.} \]

\[\lambda_2 = 1.009 \times 10^{-17} \text{ a.u.} \]

Using Eq. (4.1.3.4), we calculate the frequencies of these two modes and transform to the units of MHz:

\[\omega_1/2\pi = 2.577 \text{ MHz}, \]

\[\omega_2/2\pi = 3.326 \text{ MHz}. \]

The eigenvectors were also obtained:

\[A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = \begin{pmatrix} -0.70711 & -0.70711 \\ -0.70711 & 0.70711 \end{pmatrix}. \]

Fig. 4.15: PES of two 111Cd$^+$ ions in the anharmonic potential trap using normal mode coordinates.
Table 4.2: Eigenvalues, assignments and deviations (from the harmonic model) of the vibrational states of two 111Cd$^+$ ions in $\sim z^4$ potential trap.

<table>
<thead>
<tr>
<th># of state</th>
<th>E (MHz)</th>
<th>E_h (MHz)</th>
<th>v_1</th>
<th>v_2</th>
<th>δE (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>18.54483</td>
<td>18.54478</td>
<td>0</td>
<td>0</td>
<td>0.00005</td>
</tr>
<tr>
<td>2</td>
<td>34.73405</td>
<td>34.73406</td>
<td>1</td>
<td>0</td>
<td>-0.00001</td>
</tr>
<tr>
<td>3</td>
<td>39.44524</td>
<td>39.44506</td>
<td>0</td>
<td>1</td>
<td>0.00019</td>
</tr>
<tr>
<td>4</td>
<td>50.92324</td>
<td>50.92335</td>
<td>2</td>
<td>0</td>
<td>-0.00011</td>
</tr>
<tr>
<td>5</td>
<td>55.63440</td>
<td>55.63434</td>
<td>1</td>
<td>1</td>
<td>0.00006</td>
</tr>
<tr>
<td>6</td>
<td>60.34582</td>
<td>60.34533</td>
<td>0</td>
<td>2</td>
<td>0.00049</td>
</tr>
<tr>
<td>7</td>
<td>67.11240</td>
<td>67.11263</td>
<td>3</td>
<td>0</td>
<td>-0.00023</td>
</tr>
<tr>
<td>10</td>
<td>81.24658</td>
<td>81.24561</td>
<td>0</td>
<td>3</td>
<td>0.00097</td>
</tr>
<tr>
<td>11</td>
<td>83.30153</td>
<td>83.30192</td>
<td>4</td>
<td>0</td>
<td>-0.00038</td>
</tr>
<tr>
<td>15</td>
<td>99.49063</td>
<td>99.49120</td>
<td>5</td>
<td>0</td>
<td>-0.00057</td>
</tr>
<tr>
<td>16</td>
<td>102.14750</td>
<td>102.14588</td>
<td>0</td>
<td>4</td>
<td>0.00161</td>
</tr>
<tr>
<td>20</td>
<td>115.67970</td>
<td>115.68048</td>
<td>6</td>
<td>0</td>
<td>-0.00078</td>
</tr>
<tr>
<td>23</td>
<td>123.04859</td>
<td>123.04616</td>
<td>0</td>
<td>5</td>
<td>0.00243</td>
</tr>
<tr>
<td>26</td>
<td>131.86874</td>
<td>131.86977</td>
<td>7</td>
<td>0</td>
<td>-0.00103</td>
</tr>
<tr>
<td>31</td>
<td>143.94985</td>
<td>143.94644</td>
<td>0</td>
<td>6</td>
<td>0.00341</td>
</tr>
<tr>
<td>33</td>
<td>148.05775</td>
<td>148.05905</td>
<td>8</td>
<td>0</td>
<td>-0.00130</td>
</tr>
<tr>
<td>41</td>
<td>164.85128</td>
<td>164.84671</td>
<td>0</td>
<td>7</td>
<td>0.00457</td>
</tr>
<tr>
<td>52</td>
<td>185.75287</td>
<td>185.74699</td>
<td>0</td>
<td>8</td>
<td>0.00589</td>
</tr>
</tbody>
</table>

Again, the mass unscaled normal mode coordinates were used to set up the 2D basis set and compute the eigenvalues and eigenfunctions of the system. In Fig. 4.15, the PES in the normal mode coordinates is shown. Only the part of $z_2 > z_1$ is relevant after the transformation. From the picture we come to conclusions somewhat similar to the harmonic case: The motion along ζ_1 goes parallel to the white part, where Coulomb interaction is significant. So this mode is somehow harmonic even in the anharmonic trapping potential! In contrast, the motion along ζ_2 clearly brings the system closer to the Coulomb region, which makes this mode anharmonic as expected.
To reduce the computer time, the Gaussian Quadrature Method was used here in order to compute integrals numerically. After the convergence studies the following values were selected: \(N_1 = N_2 = 91 \) (points along the two normal modes, which was probably an overkill.) and \(N_1 \times N_2 = 35 \times 35 \) (the number of basis functions). Note that the Gaussian Quadrature Method does not require choosing \(\zeta_{\text{mas}} \) [100]. The eigenvalues calculated numerically, the harmonic spectrum to compare with, and their assignments in terms of the normal vibration mode quantum numbers are given in Table 4.2. The values of deviation from the harmonic spectrum, \(\delta E \), are also given in

![Graph](image)

Fig. 4.16: Effect of anharmonicity for two modes of the vibrational spectrum of two \(^{111}\text{Cd}^+\) ions in an anharmonic \((\sim z^4)\) potential trap.
Table 4.2 and are also presented in Fig. 4.16 for nine lowest states of each normal mode progression. Figure 4.16 shows very clearly that Mode 1 (center-of-mass motion) is slightly anharmonic and this is different from the case of harmonic trap, illustrated in Fig. 4.9. However this anharmonicity is very weak, despite the fact that a strongly anharmonic trapping potential is used. Mode 2 (symmetric stretching) is anharmonic due to the effect of Coulomb as we expected. Compared to the case of harmonic trap, Mode 2 is only slightly more anharmonic (see Fig. 4.9).

To determine anharmonicities in the $\sim z^4$ potential, the two dimensional Dunham expansion from Eq. (4.1.8.3) was used again to fit 6 lower states, the results are as follows:

$$D/2\pi = 7.371 \times 10^{-6} \text{ MHz},$$

$$\Omega_1/2\pi = 2.577 \text{ MHz},$$

$$\Omega_2/2\pi = 3.326 \text{ MHz},$$

$$\Delta_1/2\pi = 2.435 \times 10^{-6} \text{ MHz},$$

$$\Delta_2/2\pi = -1.346 \times 10^{-5} \text{ MHz},$$

$$\Delta_{12}/2\pi = 9.927 \times 10^{-6} \text{ MHz}.$$

So, the conclusion is that: In the $\sim z^4$ potential Δ_1 is no more zero, which is the result of using the anharmonic trapping potential. The value of Δ_2 is somewhat larger than that in harmonic trapping potential, but overall we do not see any significant
improvement in the case of strongly anharmonic ($\sim z^4$) potential trap. The anharmonicity parameters in this case are $\Delta_1 \sim 10^{-6} \omega_1$, $\Delta_2 \sim 4 \times 10^{-6} \omega_2$. They are still four orders of magnitude smaller than that is needed for the successful control. It is particularly surprising that the Mode 1 does not gain any appreciable anharmonicity. Analysis of this unexpected result is given below.

4.2.2 Analysis of the PES

In order to understand why the normal vibration modes of two ions in a strongly anharmonic potential are still nearly harmonic, we carried out analytic analysis of the PES in the vicinity of the equilibrium position.

Using Eq. (4.2.1.1), the potential energy of the two ions in the anharmonic trapping potential can be expressed as follows (in atomic units):

$$V(z_1, z_2) = V(z_1) + V(z_2) + \frac{1}{|z_2 - z_1|}$$

$$= \frac{1}{4!} k'z_1^4 + \frac{1}{4!} k'z_2^4 + \frac{1}{|z_2 - z_1|}, \quad (4.2.2.1)$$

The equilibrium energy of the system can be written as:

$$V_{eq} = V(z_{e1}, z_{e2}) = \frac{1}{4!} k'z_{e1}^4 + \frac{1}{4!} k'z_{e1}^4 + \frac{1}{|z_{e2} - z_{e1}|}, \quad (4.2.2.2)$$

Again, the procedure of transformation of coordinates was followed as in Sec. 4.1.4 and 4.1.5. We derived the formula in the mass scaled normal mode coordinates and transformed the equation of PES into the mass unscaled normal mode coordinates. We obtained:
Finally,

\[
\hat{V}(\zeta_1, \zeta_2) = \frac{1}{4!} k' \left(z_{e_1} - \frac{\zeta_1 + \zeta_2}{\sqrt{2m}} \right)^4 + \frac{1}{4!} k' \left(z_{e_2} + \frac{\zeta_2 - \zeta_1}{\sqrt{2m}} \right)^4 \\
+ \frac{1}{4!} \sqrt{\frac{2m}{2\zeta_2 + \sqrt{2m}(z_{e_2} - z_{e_1})}} \\
= \frac{1}{4!} k' \left(z_{e_1}^2 - 2z_{e_1} \frac{\zeta_1 + \zeta_2}{\sqrt{2m}} + \frac{\zeta_1^2 + \zeta_2^2 + 2\zeta_1 \zeta_2}{2m} \right)^2 \\
+ \frac{1}{4!} k' \left(z_{e_2}^2 + 2z_{e_2} \frac{\zeta_2 - \zeta_1}{\sqrt{2m}} + \frac{\zeta_1^2 + \zeta_2^2 - 2\zeta_1 \zeta_2}{2m} \right)^2 \\
+ \frac{\sqrt{2m}}{2\zeta_2 + \sqrt{2m}(z_{e_2} - z_{e_1})} \\
= \frac{1}{4!} k' \left(z_{e_1}^4 - 4z_{e_1}^3 \frac{\zeta_1 + \zeta_2}{\sqrt{2m}} + 3z_{e_1}^2 \frac{\zeta_1^2 + \zeta_2^2 + 2\zeta_1 \zeta_2}{m} \right. \\
- \sqrt{2z_{e_1}^2} \frac{\zeta_1^3 + \zeta_2^3 + 3\zeta_1 \zeta_2^2 + 3\zeta_1^2 \zeta_2}{m \sqrt{m}} + \frac{\zeta_1^4 + \zeta_2^4 + 6\zeta_1^2 \zeta_2^2 + 4\zeta_1^3 \zeta_2 + 4\zeta_1 \zeta_2^3}{4m^2} \\
+ \left. \frac{1}{4!} k' \left(z_{e_2}^4 + 4z_{e_2}^3 \frac{\zeta_2 - \zeta_1}{\sqrt{2m}} + 3z_{e_2}^2 \frac{\zeta_1^2 + \zeta_2^2 - 2\zeta_1 \zeta_2}{m} \right. \\
+ \sqrt{2z_{e_2}^2} \frac{\zeta_1^3 + \zeta_2^3 - 3\zeta_1 \zeta_2^2 + 3\zeta_1^2 \zeta_2}{m \sqrt{m}} + \frac{\zeta_1^4 + \zeta_2^4 + 6\zeta_1^2 \zeta_2^2 - 4\zeta_1^3 \zeta_2 - 4\zeta_1 \zeta_2^3}{4m^2} \\
+ \frac{\sqrt{2m}}{2\zeta_2 + \sqrt{2m}(z_{e_2} - z_{e_1})} \right) \\
= \frac{1}{4!} k' \left(z_{e_1}^4 + z_{e_2}^4 \right) + 2 \sqrt{\frac{2m}{z_{e_2}^3 - z_{e_1}^3}} \left(z_{e_2}^2 - z_{e_1} \right) + \frac{3}{m} \left(\zeta_1^2 + \zeta_2^2 \right) \left(z_{e_1}^2 + z_{e_2} \right) \\
+ \frac{1}{m} \sqrt{\frac{2m}{z_{e_2}^3 + 3\zeta_1^2 \zeta_2} \left(z_{e_2} - z_{e_1} \right) + \frac{\zeta_1^4 + \zeta_2^4 + 6\zeta_1^2 \zeta_2^2}{2m^2}} \\
+ \frac{\sqrt{2m}}{2\zeta_2 + \sqrt{2m}(z_{e_2} - z_{e_1})} \right) \right) \\
(4.2.2.3)

Finally,
As in the case of harmonic trap, the Coulomb interaction term depends on ζ_2 only.

But now, due to the cross terms of $\zeta_1^2 \zeta_2$ and $\zeta_1 \zeta_2^2$, the PES is not separable. The equilibrium energy:

$$V_{eq} = V(\zeta_1 = 0, \zeta_2 = 0) = \frac{1}{4!} k' z_{e1}^4 + \frac{1}{4!} k' z_{e2}^4 + \frac{1}{|z_{e2} - z_{e1}|}.$$ (4.2.2.5)

Since the equation (4.2.2.4) is non-separable, we will analyze only the slice along ζ_2, keeping $\zeta_1 = 0$:

$$\hat{V}(\zeta_2, \zeta_1 = 0) = \frac{1}{4!} k' \left(z_{e1}^4 + z_{e2}^4 + 2 \sqrt{\frac{6}{5}} (z_{e2}^3 - z_{e1}^3) \zeta_2 + \frac{9}{5} (z_{e1}^2 + z_{e2}^2) \zeta_2^2 \right) + \frac{3}{5} \sqrt{\frac{6}{5}} (z_{e2} - z_{e1}) \zeta_2^3 + \frac{9}{50} \zeta_2^4 + \frac{1}{\sqrt{\frac{6}{5} \zeta_2 + (z_{e2} - z_{e1})}}.$$ (4.2.2.6)

This expression is exact. No approximations have been made. It contains the terms from zero order to fourth order in ζ_2 and the Coulomb term. Subtracting the equilibrium energy Eq. (4.2.2.5) from the Eq. (4.2.2.6), we plot the contribution of terms with different orders of ζ_2 in Fig. 4.17. From the figure, we can see that in the system of two ions in the $\sim z^4$ trapping potential for the symmetric stretching mode: (i)
the quadratic term is much larger than the quartic and third order terms; (ii) the linear (first order) term and the Coulomb term cancel each other! This is beyond our expectation. So the total contribution to the trapping potential of Eq. (4.2.2.6) is mostly from the quadratic term. That means the potential in Eq. (4.2.2.6) is very close to harmonic. This is consistent with results of the fit by Dunham expansion in Sec. 4.2.1. If we keep $\zeta_2 = 0$, the same method can be applied to analyze the slice along ζ_1.

![Graph](image)

Fig. 4.17: Components of the potential according to different orders of ζ_2.
After the correction with equilibrium energy only quadratic and quartic terms are left (no Coulomb for Mode 1). Again, the quadratic term is much larger than the quartic term, which gives a nearly harmonic PES.

4.3 Conclusions

In the system of two 111Cd$^+$ ions in the harmonic trapping potential, the center-of-mass motion mode is exactly harmonic ($\Delta_1 \approx 0$) and cannot be controlled. The Coulomb interaction of two ions introduces weak anharmonicity into the symmetric stretching mode at the level of $\Delta_2 \sim 10^{-6} \Omega_2$. Clearly, this is not sufficient for the control. Furthermore, in this system the symmetric stretching mode is “dark” and cannot be excited by the spatially homogeneous electric field.

In the case of strongly anharmonic trapping potential ($\sim z^4$), the center-of-mass motion mode gains some anharmonicity. But this anharmonicity is very weak, at the level of $\Delta_1 \sim 10^{-6} \Omega_1$. Compared to the harmonic trapping potential, the symmetric stretching mode is only slightly more anharmonic $\Delta_2 \sim 4 \times 10^{-6} \Omega_2$.

So, using two trapped ions does not offer any advantage over the one-ion system. It is even worse. In the two-ion case we cannot even control the center-of-mass motion mode in the strongly anharmonic trap because of the small local anharmonicity of the 2D PES.
Chapter 5: Three-ion system

5.1 Three ions in the harmonic trapping potential

5.1.1 Harmonic trapping potential

In this section, we consider a system of three 111Cd$^+$ ions in the harmonic potential trap of the same form as in Eq. (2.1.1) and restrict the motions of ions to one dimension along the trap axis (z-axis). The force constant k is the same as was used in Chapter 2, 3 and 4 for the one-ion and two-ion systems. In the three-ion system there are three normal vibration modes and we can try to use them to encode qubits. In Fig. 5.1, we show the harmonic trapping potential, the equilibrium positions and several lower lying energy levels of three-ion system. Based on the two-ion case considered in the previous chapter, we expect that here the symmetric stretching mode (Mode 2) is also “dark”. So, we may only be able to employ two modes for encoding qubits: the center of mass motion mode (Mode 1) and the asymmetric stretching mode (Mode 3).

The following mapping between the vibrational states of the three-ion-string, labeled by three normal mode quantum numbers (v_1, v_2, v_3), and the four states of the two-qubit system is proposed:

$$|00\rangle \Leftrightarrow (0,0,0); \quad |01\rangle \Leftrightarrow (1,0,0);$$

$$|10\rangle \Leftrightarrow (0,0,1); \quad |11\rangle \Leftrightarrow (1,0,1).$$

(5.1.1.1)
The potential energy of the three ion system can be written as follows (in atomic units):

\[
V(z_1, z_2, z_3) = V(z_1) + V(z_2) + V(z_3) \\
= \frac{1}{2} k z_1^2 + \frac{1}{2} k z_2^2 + \frac{1}{2} k z_3^2 \\
+ \frac{1}{|z_2 - z_1|} + \frac{1}{|z_3 - z_1|} + \frac{1}{|z_3 - z_2|}.
\]

(5.1.1.2)

Fig. 5. 1: Three 111Cd$^+$ ions in the harmonic potential trap: (a) Equilibrium positions of ions and minimum energy of the three-ion string; (b) Vibrational spectrum of this system and the encoding of two-qubit states proposed in this work.
where \(k \) is the force constant. We use \(z_1, z_2, \) and \(z_3 \) to describe the positions of all these three ions and set \(z_3 > z_2 > z_1 \). Potential energy surface (PES) of three ions in the trap, based on Eq. (5.1.1.2), is shown in Fig. 5.2. When any two ions come close to each other, the potential energy approaches infinity due to Coulomb repulsion (white parts of the Fig. 5.2). Furthermore, although the trapping potential from Eq. (2.1.1) is harmonic, the potential energy of the system is anharmonic due to ion-ion

![Fig. 5.2: PES of three \(^{111}\)Cd\(^+\) ions in the harmonic potential trap using Cartesian coordinates. Three slices through the 3D-surface are shown: (a) perpendicular to \(z_1 \) through \(z_1 = 0 \), (b) perpendicular to \(z_2 \) through \(z_2 = 0 \) and (c) perpendicular to \(z_3 \) through \(z_3 = 0 \).]
Coulomb interaction.

5.1.2 Minimization Method

Again, in order to perform minimization of the potential energy function in 3D and find the equilibrium positions of three ions we use the Newton-Raphson (NR) method. It requires calculating the first and second derivatives of the potential energy of the system and these are available analytically:

\[
\frac{\partial V(z_1, z_2, z_3)}{\partial z_1} = k z_1 + \frac{1}{(z_2 - z_1)^2} + \frac{1}{(z_3 - z_1)^2}, \quad (5.1.2.1)
\]

\[
\frac{\partial V(z_1, z_2, z_3)}{\partial z_2} = k z_2 - \frac{1}{(z_2 - z_1)^2} + \frac{1}{(z_3 - z_2)^2}, \quad (5.1.2.2)
\]

\[
\frac{\partial V(z_1, z_2, z_3)}{\partial z_3} = k z_3 - \frac{1}{(z_3 - z_1)^2} - \frac{1}{(z_3 - z_2)^2}, \quad (5.1.2.3)
\]

![Newton-Raphson Minimization of the V(z_1,z_2,z_3)](image)

Fig. 5.3: Potential energy difference between two consequent steps of the system during the minimization.
A computer code 3DMIN was written using FORTRAN language (see Appendix H) to carry out these optimizations for three-ion system numerically. Using the indicated parameters of the trap, we obtained the equilibrium positions of these

\[
\frac{\partial^2 V(z_1, z_2, z_3)}{\partial z_1^2} = k + \frac{2}{(z_2 - z_1)^3} + \frac{2}{(z_3 - z_1)^3},
\]

\[
\frac{\partial^2 V(z_1, z_2, z_3)}{\partial z_2^2} = k + \frac{2}{(z_2 - z_1)^3} + \frac{2}{(z_3 - z_2)^3},
\]

\[
\frac{\partial^2 V(z_1, z_2, z_3)}{\partial z_3^2} = k + \frac{2}{(z_3 - z_1)^3} + \frac{2}{(z_3 - z_2)^3},
\]

\[
\frac{\partial^2 V(z_1, z_2, z_3)}{\partial z_1 \partial z_2} = \frac{\partial^2 V(z_1, z_2, z_3)}{\partial z_2 \partial z_1} = -\frac{2}{(z_2 - z_1)^3},
\]

\[
\frac{\partial^2 V(z_1, z_2, z_3)}{\partial z_1 \partial z_3} = \frac{\partial^2 V(z_1, z_2, z_3)}{\partial z_3 \partial z_1} = -\frac{2}{(z_3 - z_1)^3},
\]

\[
\frac{\partial^2 V(z_1, z_2, z_3)}{\partial z_2 \partial z_3} = \frac{\partial^2 V(z_1, z_2, z_3)}{\partial z_3 \partial z_2} = -\frac{2}{(z_3 - z_2)^3}.
\]

Fig. 5.4: Absolute values of position difference between two consequent steps during the minimization.
three ions:

\[z_{e1} = -9.5934 \times 10^3 \text{ Bohr}, \]

\[z_{e2} = -5.0871 \times 10^{-6} \approx 0 \text{ Bohr}, \]

\[z_{e3} = 9.5934 \times 10^3 \text{ Bohr}. \]

The value of potential energy at this point was \(V^{eq} = V(z_{e1}, z_{e2}, z_{e3}) = 2.572 \times 10^6 \) MHz. To monitor the progress of minimization, we plot potential energy difference between two consequent steps in Fig. 5.3. It is seen from the graph that the results are converged very fast and after 25 iterations the energy difference is lower than \(1 \times 10^{-7} \) MHz. In Fig. 5.4, position differences between two subsequent steps during minimization are presented. The results converge fast, which is consistent with data from Fig. 5.3. Figures 5.3 and 5.4 show that convergence is exponential in both energy and positions.

5.1.3 Normal vibration modes

To describe the vibrations of three different modes in the trap, we need to diagonalize Hessian Matrix to find out the different frequencies of three modes.

The Hessian Matrix in mass-weighted coordinates is given as follows:
Because the system is more complicated than the two-ion case, we did the calculation numerically using program 3DHESsian to diagonalize the Hessian matrix in Eq. (5.1.3.1) (see appendix I). We obtained the following eigenvalues of three normal modes:

\[\lambda_1 = 6.997 \times 10^{-18} \text{ a.u.} \]
\[\lambda_2 = 2.099 \times 10^{-17} \text{ a.u.} \]
\[\lambda_3 = 4.058 \times 10^{-17} \text{ a.u.} \]

Using Eq. (4.1.3.4), we calculate frequencies of these three modes and transform to the units of MHz:

\[\omega_1/2\pi = 2.770 \text{ MHz} \]
\[\omega_2/2\pi = 4.798 \text{ MHz} \]
\[\omega_3/2\pi = 6.671 \text{ MHz} \]

The eigenvectors are as follows:
These numbers describe three familiar normal modes: the first column describes Mode 1 with \(a_{11} = a_{21} = a_{31} \) which is the center-of-mass motion mode, where all three ions move together; the second column describes Mode 2 with \(a_{12} = -a_{32} \) and \(a_{22} = 0 \) which is the symmetric stretching mode, where the central ion stays still while two terminal ions move in the opposite directions; the third column describes Mode 3 with \(2a_{13} = -a_{23} = 2a_{33} \) which is the asymmetric stretching mode, where the central ion moves in the direction opposite to the motion of two terminal ions, with twice larger amplitude. These three modes are very well known normal modes.

5.1.4 Hamiltonian and transformation of coordinates

Hamiltonian of three-ion system in Cartesian coordinates is expressed by the following formula:

\[
\hat{H}(z_1, z_2, z_3) = -\frac{1}{2m} \frac{\partial^2}{\partial z_1^2} - \frac{1}{2m} \frac{\partial^2}{\partial z_2^2} - \frac{1}{2m} \frac{\partial^2}{\partial z_3^2} + \hat{V}(z_1, z_2, z_3) - V^{eq},
\]

(5.1.4.1)

where \(\hat{V}(z_1, z_2, z_3) \) is from Eq. (5.1.1.2) and \(V^{eq} = V(z_{e1}, z_{e2}, z_{e3}) \) is the constant energy shift by the minimum potential energy of the system when three ions are at their classical minimum energy points \((z_{e1}, z_{e2}, z_{e3})\).

Second, the mass scaled coordinates are introduced:

\[
A = \begin{bmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{bmatrix} = \begin{bmatrix}
0.57735 & 0.70711 & -0.40825 \\
0.57735 & 0.00000 & 0.81650 \\
0.57735 & -0.70711 & -0.40825
\end{bmatrix}
\]
\[
\ddot{z}_1 = \sqrt{m}z_1, \quad \ddot{z}_2 = \sqrt{m}z_2, \quad \ddot{z}_3 = \sqrt{m}z_3,
\]
(5.1.4.2)

The Hamiltonian in mass scaled coordinates can be written as follows:

\[
\hat{H}(\ddot{z}_1, \ddot{z}_2, \ddot{z}_3) = - \frac{1}{2} \frac{\partial^2}{\partial \ddot{z}_1^2} - \frac{1}{2} \frac{\partial^2}{\partial \ddot{z}_2^2} - \frac{1}{2} \frac{\partial^2}{\partial \ddot{z}_3^2} + \hat{\mathcal{V}}(\ddot{z}_1, \ddot{z}_2, \ddot{z}_3) - V^{eq},
\]
(5.1.4.3)

\[
\hat{\mathcal{V}}(\ddot{z}_1, \ddot{z}_2, \ddot{z}_3) = \frac{1}{2} \frac{k}{m} \ddot{z}_1^2 + \frac{1}{2} \frac{k}{m} \ddot{z}_2^2 + \frac{1}{2} \frac{k}{m} \ddot{z}_3^2 + \frac{\sqrt{m}}{|\ddot{z}_3 - \ddot{z}_1|} + \frac{\sqrt{m}}{|\ddot{z}_3 - \ddot{z}_2|}
\]
(5.1.4.4)

Then, we transform equations above to the mass scaled displacement coordinates:

\[
\begin{align*}
\begin{cases}
z_1 - z_{e1} &= \Delta z_1 \\
z_2 - z_{e2} &= \Delta z_2 \\
z_3 - z_{e3} &= \Delta z_3
\end{cases}
\Rightarrow
\begin{cases}
\ddot{z}_1 - \sqrt{m}z_{e1} &= \Delta \ddot{z}_1 \\
\ddot{z}_2 - \sqrt{m}z_{e2} &= \Delta \ddot{z}_2 \\
\ddot{z}_3 - \sqrt{m}z_{e3} &= \Delta \ddot{z}_3
\end{cases}
\]
(5.1.4.5)

\[
\hat{H}(\Delta \ddot{z}_1, \Delta \ddot{z}_2, \Delta \ddot{z}_3) = - \frac{1}{2} \frac{\partial^2}{\partial \Delta \ddot{z}_1^2} - \frac{1}{2} \frac{\partial^2}{\partial \Delta \ddot{z}_2^2} - \frac{1}{2} \frac{\partial^2}{\partial \Delta \ddot{z}_3^2} + \hat{\mathcal{V}}(\Delta \ddot{z}_1, \Delta \ddot{z}_2, \Delta \ddot{z}_3) - V^{eq},
\]
(5.1.4.6)

\[
\hat{\mathcal{V}}(\Delta \ddot{z}_1, \Delta \ddot{z}_2, \Delta \ddot{z}_3) = \frac{1}{2} k \left(\frac{\Delta \ddot{z}_1}{\sqrt{m} + z_{e1}} \right)^2 + \frac{1}{2} k \left(\frac{\Delta \ddot{z}_2}{\sqrt{m} + z_{e2}} \right)^2 + \frac{1}{2} k \left(\frac{\Delta \ddot{z}_3}{\sqrt{m} + z_{e3}} \right)^2 + \frac{\sqrt{m}}{\sqrt{\Delta \ddot{z}_2 - \Delta \ddot{z}_1 + \sqrt{m}(z_{e2} - z_{e1})}} + \frac{\sqrt{m}}{\sqrt{\Delta \ddot{z}_3 - \Delta \ddot{z}_1 + \sqrt{m}(z_{e3} - z_{e1})}} + \frac{\sqrt{m}}{\sqrt{\Delta \ddot{z}_3 - \Delta \ddot{z}_2 + \sqrt{m}(z_{e3} - z_{e2})}}.
\]
(5.1.4.7)

Next we introduce the mass scaled normal mode coordinate transformations is as follows:

\[
\begin{pmatrix}
\Delta \ddot{z}_1 \\
\Delta \ddot{z}_2 \\
\Delta \ddot{z}_3
\end{pmatrix}
= A
\begin{pmatrix}
\ddot{\xi}_1 \\
\ddot{\xi}_2 \\
\ddot{\xi}_3
\end{pmatrix}
= \begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{pmatrix}
\begin{pmatrix}
\ddot{\xi}_1 \\
\ddot{\xi}_2 \\
\ddot{\xi}_3
\end{pmatrix},
\]
(5.1.4.8)

\[
\begin{pmatrix}
\ddot{\xi}_1 \\
\ddot{\xi}_2 \\
\ddot{\xi}_3
\end{pmatrix}
= \begin{pmatrix}
a_{11} \ddot{\xi}_1 + a_{12} \ddot{\xi}_2 + a_{13} \ddot{\xi}_3 \\
a_{21} \ddot{\xi}_1 + a_{22} \ddot{\xi}_2 + a_{23} \ddot{\xi}_3 \\
a_{31} \ddot{\xi}_1 + a_{32} \ddot{\xi}_2 + a_{33} \ddot{\xi}_3
\end{pmatrix}
\]
(5.1.4.9)

Here matrix A in Eq. (5.1.4.8) contains eigenvectors of three modes (from
diagonalization of the Hessian Matrix of the three-ion system in Sec. 5.1.3). Referred to the derivations in Sec. 4.1.4, we obtained the formula of the kinetic energy part of Hamiltonian for the three-ion system:

\[\hat{H}(\bar{\zeta}_1, \bar{\zeta}_2, \bar{\zeta}_3) = \frac{1}{2} \left(\frac{\partial^2}{\partial \bar{\zeta}_1^2} + \frac{\partial^2}{\partial \bar{\zeta}_2^2} + \frac{\partial^2}{\partial \bar{\zeta}_3^2} \right)
+ \frac{1}{2} \left(\frac{\partial^2}{\partial \xi_1^2} + \frac{\partial^2}{\partial \xi_2^2} + \frac{\partial^2}{\partial \xi_3^2} \right) \]

\[= \frac{1}{2} \left(\frac{\partial^2}{\partial \bar{\zeta}_1^2} + \frac{\partial^2}{\partial \bar{\zeta}_2^2} + \frac{\partial^2}{\partial \bar{\zeta}_3^2} \right). \]

(5.1.4.10)

The potential energy part of the system can be rewritten as follows:

\[\hat{V}(\bar{\zeta}_1, \bar{\zeta}_2, \bar{\zeta}_3) = \frac{1}{2} k \left(\frac{a_{11} \bar{\xi}_1 + a_{12} \bar{\xi}_2 + a_{13} \bar{\xi}_3}{\sqrt{m}} + z_{e1} \right)^2
+ \frac{1}{2} k \left(\frac{a_{21} \bar{\xi}_1 + a_{22} \bar{\xi}_2 + a_{23} \bar{\xi}_3}{\sqrt{m}} + z_{e2} \right)^2
+ \frac{1}{2} k \left(\frac{a_{31} \bar{\xi}_1 + a_{32} \bar{\xi}_2 + a_{33} \bar{\xi}_3}{\sqrt{m}} + z_{e3} \right)^2 \]

\[+ \frac{1}{\sqrt{m}} \left(\frac{a_{11} \bar{\xi}_1 + a_{12} \bar{\xi}_2 + a_{13} \bar{\xi}_3}{\sqrt{m}} + z_{e1} \right) \]

\[+ \frac{1}{\sqrt{m}} \left(\frac{a_{21} \bar{\xi}_1 + a_{22} \bar{\xi}_2 + a_{23} \bar{\xi}_3}{\sqrt{m}} + z_{e2} \right) \]

\[+ \frac{1}{\sqrt{m}} \left(\frac{a_{31} \bar{\xi}_1 + a_{32} \bar{\xi}_2 + a_{33} \bar{\xi}_3}{\sqrt{m}} + z_{e3} \right). \]

(5.1.4.11)

Finally, using expressions of the effective masses \(\mu_1, \mu_2, \) and \(\mu_3 \):

\[\begin{align*}
\bar{\zeta}_1 &= \sqrt{\mu_1} \zeta_1, \\
\bar{\zeta}_2 &= \sqrt{\mu_2} \zeta_2, \\
\bar{\zeta}_3 &= \sqrt{\mu_3} \zeta_3.
\end{align*} \]

(5.1.4.12)

we can introduce the “unscaled” normal mode coordinates \((\zeta_1, \zeta_2, \zeta_3) \) instead of the mass scaled normal mode coordinates:

\[\begin{align*}
\mu_1 &= m, \\
\mu_2 &= m/(\lambda_2/\lambda_1), \\
\mu_3 &= m/(\lambda_3/\lambda_1).
\end{align*} \]

(5.1.4.13)
Using the relationship between ω and λ from Eq. (4.1.3.4), we can rewrite Eq. (5.1.4.13) as follows:

\[
\begin{align*}
\mu_1 &= \mu, \\
\mu_2 &= (\omega_1^2/\omega_2^2)m, \\
\mu_3 &= (\omega_1^2/\omega_3^2)m.
\end{align*}
\] (5.1.4.14)

Finally, the Hamiltonian in the mass unscaled normal mode coordinates can be written as:

\[
\dot{H}(\zeta_1, \zeta_2, \zeta_3) = -\frac{1}{2\mu_1} \frac{\partial^2}{\partial \zeta_1^2} - \frac{1}{2\mu_2} \frac{\partial^2}{\partial \zeta_2^2} - \frac{1}{2\mu_3} \frac{\partial^2}{\partial \zeta_3^2} + V(\zeta_1, \zeta_2, \zeta_3) - V_{eq},
\] (5.1.4.15)

\[
V(\zeta_1, \zeta_2, \zeta_3) = \frac{k}{2} \omega_1^2 \left(a_{11} \frac{\zeta_1}{\omega_1} + a_{12} \frac{\zeta_2}{\omega_2} + a_{13} \frac{\zeta_3}{\omega_3} + \zeta_1^{eq} \right)^2 + \frac{k}{2} \omega_2^2 \left(a_{21} \frac{\zeta_1}{\omega_1} + a_{22} \frac{\zeta_2}{\omega_2} + a_{23} \frac{\zeta_3}{\omega_3} + \zeta_2^{eq} \right)^2 + \frac{k}{2} \omega_3^2 \left(a_{31} \frac{\zeta_1}{\omega_1} + a_{32} \frac{\zeta_2}{\omega_2} + a_{33} \frac{\zeta_3}{\omega_3} + \zeta_3^{eq} \right)^2
\]

\[
+ \frac{1}{\omega_1} \left(a_{11} - a_{12} \right) \frac{\zeta_1}{\omega_1} + \frac{1}{\omega_2} \left(a_{22} - a_{12} \right) \frac{\zeta_2}{\omega_2} + \frac{1}{\omega_3} \left(a_{33} - a_{13} \right) \frac{\zeta_3}{\omega_3} + \zeta_1^{eq} - \zeta_1^{eq}
\]

\[
+ \frac{1}{\omega_1} \left(a_{11} - a_{12} \right) \frac{\zeta_1}{\omega_1} + \frac{1}{\omega_2} \left(a_{22} - a_{12} \right) \frac{\zeta_2}{\omega_2} + \frac{1}{\omega_3} \left(a_{33} - a_{13} \right) \frac{\zeta_3}{\omega_3} + \zeta_2^{eq} - \zeta_2^{eq}
\]

\[
+ \frac{1}{\omega_1} \left(a_{11} - a_{12} \right) \frac{\zeta_1}{\omega_1} + \frac{1}{\omega_2} \left(a_{22} - a_{12} \right) \frac{\zeta_2}{\omega_2} + \frac{1}{\omega_3} \left(a_{33} - a_{13} \right) \frac{\zeta_3}{\omega_3} + \zeta_3^{eq} - \zeta_3^{eq} \right).
\] (5.1.4.16)

The potential energy surface in the normal mode coordinates $(\zeta_1, \zeta_2, \zeta_3)$ is shown in Fig. 5.5. Note that white area on the picture goes parallel to the ζ_1-axis.

Recall that in this (white) area of the configuration space the Coulomb repulsion
become very large. Figure 5.5 shows that excitation of Mode 1 does not bring the system closer to the white area, which suggests that Mode 1 is probably harmonic. However, the motion along ζ_2 and/or ζ_3 does bring the system closer to the Coulomb interaction region, which suggests that Modes 2 and 3 are probably anharmonic.

5.1.5 Basis set expansion

Fig. 5.5: PES of three 111Cd$^+$ ions in the harmonic potential trap using the normal mode coordinates. Three slices through the 3D-surface are shown: (a) perpendicular to ζ_1 through $\zeta_1 = 0$, (b) perpendicular to ζ_2 through $\zeta_2 = 0$ and (c) perpendicular to ζ_3 through $\zeta_3 = 0$. Note that the Coulomb repulsion part (white) goes parallel to ζ_1 everywhere.
Three-dimensional wavefunctions of the system and the corresponding energy eigenvalues are calculated using the direct product basis set expansion method in the normal mode coordinates:

$$\Psi_v(\zeta_1, \zeta_2, \zeta_3) = \sum_{i,j,k}^N C_{v,i,j,k} \varphi_i(\zeta_1)\varphi_j(\zeta_2)\varphi_k(\zeta_3),$$

(5.1.5.1)

here $\varphi_i(\zeta_1)$, $\varphi_j(\zeta_2)$ and $\varphi_k(\zeta_3)$ in the same form of Eq. (2.2.4) are used as basis functions of three different vibrational modes of the system. Index i, j and k label basis functions and range from 1 to N. Index v labels eigenstates in the three-ion system and ranges from 1 to N^3. $C_{v,i,j,k}$ are the coefficients of linear combination and in the matrix form it can be written as C_{N^3, N^3}.

Based on the formalism above, a FORTRAN code named 3DIONTRAP was written. The code is presented in detail (see Appendix J).

5.1.6 Results and analysis

In order to make the three-ion case numerically manageable we used the Message Passing Interface (MPI) to parallelize the calculations (see appendix K) and employed the Gaussian quadrature to calculate the matrix elements of the potential energy operator more efficiently (see appendix L). The calculations for three ions were run using 16 processors of Franklin computer at NERCS [96], the run time for an average job was about 6 wall-clock hours. In the numerical calculations the size of
Table 5.1: Eigenvalues, assignments and deviations (from the harmonic model) of the vibrational states of three 111Cd$^+$ ions in a harmonic trap.

<table>
<thead>
<tr>
<th># of state</th>
<th>E_v (MHz)</th>
<th>E_h (MHz)</th>
<th>v_1</th>
<th>v_2</th>
<th>v_3</th>
<th>δE (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>44.73272</td>
<td>44.73257</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00015</td>
</tr>
<tr>
<td>2</td>
<td>62.13713</td>
<td>62.13698</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0.00015</td>
</tr>
<tr>
<td>3</td>
<td>74.87813</td>
<td>74.8779</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0.00023</td>
</tr>
<tr>
<td>4</td>
<td>79.54155</td>
<td>79.5414</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0.00015</td>
</tr>
<tr>
<td>5</td>
<td>86.64832</td>
<td>86.64795</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.00037</td>
</tr>
<tr>
<td>6</td>
<td>92.28254</td>
<td>92.28231</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0.00023</td>
</tr>
<tr>
<td>7</td>
<td>96.94597</td>
<td>96.9458</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0.00016</td>
</tr>
<tr>
<td>8</td>
<td>104.05273</td>
<td>104.05236</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0.00037</td>
</tr>
<tr>
<td>9</td>
<td>105.02356</td>
<td>105.02323</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0.00033</td>
</tr>
<tr>
<td>10</td>
<td>109.68696</td>
<td>109.6873</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0.00023</td>
</tr>
<tr>
<td>11</td>
<td>114.35038</td>
<td>114.35023</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0.00015</td>
</tr>
<tr>
<td>12</td>
<td>116.79381</td>
<td>116.79328</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0.00053</td>
</tr>
<tr>
<td>13</td>
<td>121.45715</td>
<td>121.45678</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0.00037</td>
</tr>
<tr>
<td>14</td>
<td>122.42797</td>
<td>122.42764</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0.00033</td>
</tr>
<tr>
<td>15</td>
<td>127.09137</td>
<td>127.09114</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0.00023</td>
</tr>
<tr>
<td>16</td>
<td>128.56409</td>
<td>128.56332</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0.00077</td>
</tr>
<tr>
<td>17</td>
<td>131.75479</td>
<td>131.75464</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0.00015</td>
</tr>
<tr>
<td>18</td>
<td>134.19823</td>
<td>134.19769</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.00054</td>
</tr>
<tr>
<td>19</td>
<td>135.16902</td>
<td>135.16856</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0.00046</td>
</tr>
<tr>
<td>20</td>
<td>138.86156</td>
<td>138.86119</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0.00037</td>
</tr>
<tr>
<td>25</td>
<td>149.15921</td>
<td>149.15906</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0.00015</td>
</tr>
<tr>
<td>34</td>
<td>165.31451</td>
<td>165.31389</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0.00062</td>
</tr>
<tr>
<td>35</td>
<td>166.56363</td>
<td>166.56348</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0.00015</td>
</tr>
<tr>
<td>38</td>
<td>170.48003</td>
<td>170.47871</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0.00132</td>
</tr>
<tr>
<td>47</td>
<td>183.96805</td>
<td>183.9679</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0.00015</td>
</tr>
<tr>
<td>56</td>
<td>195.46004</td>
<td>195.45923</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0.00081</td>
</tr>
<tr>
<td>62</td>
<td>201.37245</td>
<td>201.3723</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0.00015</td>
</tr>
<tr>
<td>72</td>
<td>212.39613</td>
<td>212.3941</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0.00203</td>
</tr>
<tr>
<td>86</td>
<td>225.60559</td>
<td>225.60455</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0.00104</td>
</tr>
<tr>
<td>124</td>
<td>254.31241</td>
<td>254.30948</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0.00293</td>
</tr>
<tr>
<td>126</td>
<td>255.75117</td>
<td>255.74989</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>0.00128</td>
</tr>
<tr>
<td>176</td>
<td>285.89679</td>
<td>285.89523</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>0.00156</td>
</tr>
<tr>
<td>196</td>
<td>296.22885</td>
<td>296.22485</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0.00400</td>
</tr>
<tr>
<td>237</td>
<td>316.04242</td>
<td>316.04056</td>
<td>0</td>
<td>9</td>
<td>0</td>
<td>0.00186</td>
</tr>
<tr>
<td>289</td>
<td>338.14548</td>
<td>338.14026</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>0.00522</td>
</tr>
<tr>
<td>403</td>
<td>380.06223</td>
<td>380.05563</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>0.00660</td>
</tr>
<tr>
<td>538</td>
<td>421.97900</td>
<td>421.97101</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>0.00799</td>
</tr>
</tbody>
</table>
the Gaussian quadrature was $N_1 = N_2 = N_3 = 21$ and the basis set size was $N_1 \times N_2 \times N_3 = 15 \times 15 \times 15$. With these parameters the accuracy of lowest 420 states was better than 10^{-9} MHz.

To simplify the analysis, we introduce an approximate harmonic spectrum of the system by the following formula:

$$E_n = \omega_1 \left(v_1 + \frac{1}{2} \right) + \omega_2 \left(v_2 + \frac{1}{2} \right) + \omega_3 \left(v_3 + \frac{1}{2} \right),$$

(5.1.6.1)

here ω_1, ω_2 and ω_3 are from diagonalization of Hessian matrix in Sec. 5.1.3. In the following study, we define:

Fig. 5. 6: Effect of anharmonicity on three modes of the vibrational spectrum of three 111Cd$^+$ ions in a harmonic ($\sim z^2$) potential trap.
Table 5.2: Coefficients of the fit by the Dunham expansion formula, Eq. (5.1.6.3), of the numerically calculated spectrum in Table 5.1 (vibrational states in the harmonic trap). The shift parameter was \(D/2\pi = -1.757 \times 10^{-5} \) MHz.

<table>
<thead>
<tr>
<th>Mode frequency (\Omega_i/2\pi) ((i = 1,2,3)) (MHz)</th>
<th>Intramode anharmonicity (\Delta_i/2\pi) ((i = 1,2,3)) (MHz)</th>
<th>Intermode anharmonicity (\Delta_{ij}/2\pi) (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.770</td>
<td>~ 0</td>
<td>(\Delta_{12} \sim 0)</td>
</tr>
<tr>
<td>4.798</td>
<td>-2.343 \times 10^{-6}</td>
<td>(\Delta_{13} \sim 0)</td>
</tr>
<tr>
<td>6.671</td>
<td>-1.358 \times 10^{-5}</td>
<td>(\Delta_{23}/2\pi = -1.393 \times 10^{-5})</td>
</tr>
</tbody>
</table>

\[\delta E = E_v - E_R, \] \hspace{1cm} (5.1.6.2)

in order to characterize the deviation of spectrum from the harmonic model. Table 5.1 gives several eigenvalues computed numerically, \(E_R \) from Eq. (5.1.6.1), their assignments and deviations \(\delta E \). From Table 5.1, one sees that our numerical results are a little higher than the analytic spectrum from harmonic approximation. Figure 5.6 shows deviations \(\delta E \) for the three normal mode progressions. These data for Mode 1 show a straight line, which means that Mode 1 is indeed harmonic in agreement with the arguments given above. In contrast, the data for Modes 2 and 3 look more like a parabola, which means that the spectra for these modes are slightly anharmonic, due to Coulomb interaction.
At the next step, we used three dimensional Dunham expansion, described by the following expression, to calculate parameters of the system:

\[
E_{v_1, v_2, v_3} = D + \Omega_1 \left(v_1 + \frac{1}{2} \right) - \Delta_1 \left(v_1 + \frac{1}{2} \right)^2 + \Omega_2 \left(v_2 + \frac{1}{2} \right) - \Delta_2 \left(v_2 + \frac{1}{2} \right)^2 + \Omega_3 \left(v_3 + \frac{1}{2} \right) - \Delta_3 \left(v_3 + \frac{1}{2} \right)^2 - \Delta_{12} \left(v_1 + \frac{1}{2} \right) \left(v_2 + \frac{1}{2} \right) - \Delta_{13} \left(v_1 + \frac{1}{2} \right) \left(v_3 + \frac{1}{2} \right) - \Delta_{23} \left(v_2 + \frac{1}{2} \right) \left(v_3 + \frac{1}{2} \right).
\]

This equation contains 10 parameters. By fitting ten lower states, we obtain the results of frequencies and anharmonicities, presented in Table 5.2. From the data above, we see that the first mode is purely harmonic ($\Delta_1 \approx 0$). We also see that $\Delta_2 \sim 10^{-6} \Omega_2$ and $\Delta_3 \sim 10^{-5} \Omega_3$, which means that the asymmetric stretching mode is more anharmonic (by about an order of magnitude) than the symmetric stretching mode.

Still this anharmonicity (due to Coulomb) is very low and is insufficient for the control.

5.1.7 Three dimensional wavefunctions and transition matrix

After diagonalization of the Hamiltonian matrix, wavefunctions of the system can be obtained from the basis functions and eigenvectors using Eq. (2.2.7).

The wavefunctions of the lower 40 states are shown in Fig. 5.7. Based on the shapes of wavefunctions we can assign the normal mode quantum number to these states.

In the three-ion system, the elements of transition matrix are written as follows:
Fig. 5.7: Wavefunctions of the lower 40 states of three 111Cd$^+$ ions in the harmonic trapping potential.
Where the dipole moment function of three ions is

\[d(z_1, z_2, z_3) = q \cdot (z_1 + z_2 + z_3). \] (5.1.7.2)

Note that wavefunctions are obtained in the normal mode coordinates, while the dipole moment function in Eq. (5.1.7.2) is in Cartesian coordinates. In order to carry out the integration in Eq. (5.1.7.1), we have to transform the dipole moment function into the normal mode coordinates using Eqs. (5.1.4.5), (5.1.4.9), (5.1.4.13) and (5.1.4.14). We start with the following equation:

\[M_{\nu,\nu'} = q \langle \psi_{\nu} (\zeta_1, \zeta_2, \zeta_3) | z_1 + z_2 + z_3 | \psi_{\nu'} (\zeta_1, \zeta_2, \zeta_3) \rangle, \] (5.1.7.3)

and substitute

\[
\begin{align*}
 z_1 &= a_{11} \zeta_1 + a_{12} (\omega_1 / \omega_2) \zeta_2 + a_{13} (\omega_1 / \omega_3) \zeta_3 + z_{e1} \\
 z_2 &= a_{21} \zeta_1 + a_{22} (\omega_1 / \omega_2) \zeta_2 + a_{23} (\omega_1 / \omega_3) \zeta_3 + z_{e2}, \\
 z_3 &= a_{31} \zeta_1 + a_{32} (\omega_1 / \omega_2) \zeta_2 + a_{33} (\omega_1 / \omega_3) \zeta_3 + z_{e3}.
\end{align*}
\] (5.1.7.4)

\[z_1 + z_2 + z_3 = (a_{11} + a_{21} + a_{31}) \zeta_1 + (\omega_1 / \omega_2) (a_{12} + a_{22} + a_{32}) \zeta_2 \\
+ (\omega_1 / \omega_3) (a_{13} + a_{23} + a_{33}) \zeta_3 + (z_{e1} + z_{e2} + z_{e3}). \] (5.1.7.5)

Finally, we use Eq. (5.1.7.5) to rewrite the expression for the of dipole moment in the following form:

\[
\begin{align*}
 d(z_1, z_2, z_3) &= q \cdot (z_1 + z_2 + z_3) \\
 &= q \frac{\omega_1}{\omega_1} (a_{11} + a_{21} + a_{31}) \zeta_1 + q \frac{\omega_1}{\omega_2} (a_{12} + a_{22} + a_{32}) \zeta_2 \\
 &+ q \frac{\omega_1}{\omega_3} (a_{13} + a_{23} + a_{33}) \zeta_3 + q (z_{e1} + z_{e2} + z_{e3}).
\end{align*}
\] (5.1.7.6)

The dipole moment function of Eq. (5.1.7.6) and the wave functions of Eq. (5.1.5.1) are substituted into Eq. (5.1.7.3). Using properties of the basis set functions...
[81], the integration in Eq. (5.1.7.3) is carried out analytically and elements of the dipole moment matrix are expressed through coefficients C_{ijk} of the basis set expansion:

$$M_{\nu,\nu'} = (a_{11} + a_{21} + a_{31}) q \sum_{ijk} C_{\nu,ijk}^* \sum_{ij'k'} C_{\nu',ij'k'} \left(\frac{\sqrt{i} \delta_{ij',j+1} + \sqrt{i+1} \delta_{ij',j-1}}{\sqrt{2\mu_i \omega_i}} \right) \delta_{j,j'} \delta_{k,k'}$$

$$+ \frac{\omega_1}{\omega_2} (a_{12} + a_{22} + a_{32}) q \sum_{ijk} C_{\nu,ijk}^* \sum_{ij'k'} C_{\nu',ij'k'} \left(\frac{\sqrt{j} \delta_{jj',j+1} + \sqrt{j+1} \delta_{jj',j-1}}{\sqrt{2\mu_j \omega_j}} \right) \delta_{j,j'} \delta_{k,k'}$$

$$+ \frac{\omega_1}{\omega_3} (a_{13} + a_{23} + a_{33}) q \sum_{ijk} C_{\nu,ijk}^* \sum_{ij'k'} C_{\nu',ij'k'} \left(\frac{\sqrt{k} \delta_{kk',k+1} + \sqrt{k+1} \delta_{kk',k-1}}{\sqrt{2\mu_k \omega_k}} \right) \delta_{j,j'} \delta_{k,k'}$$

$$+ (z_{1}^{eq} + z_{2}^{eq} + z_{3}^{eq}) q \sum_{ijk} C_{\nu,ijk}^* \sum_{ij'k'} C_{\nu',ij'k'} \delta_{j,j'} \delta_{k,k'} \delta_{i,i'}.$$ \hspace{1cm} (5.1.7.7)

Here $(\omega_1, \omega_2, \omega_3)$ are frequencies and (μ_1, μ_2, μ_3) are effective masses of the basis set functions, i.e., normal modes of the trap.

For the system studied in this harmonic trapping potential the second, third and last terms of this sum vanish exactly and are given here only for the purpose of generality. Indeed, from the values of eigenvectors of Hessian matrix, it is found that:

$$a_{11} + a_{21} + a_{31} = 1.73205,$$ \hspace{1cm} (5.1.7.8)

$$a_{12} + a_{22} + a_{32} = 0,$$ \hspace{1cm} (5.1.7.9)

$$a_{13} + a_{23} + a_{33} = 0.$$ \hspace{1cm} (5.1.7.10)

Note that for the system of three equivalent ions the last constant term in Eq. (5.1.7.6) vanishes simply because $z_{1}^{eq} = -z_{3}^{eq}$ and $z_{2}^{eq} = 0$. The symmetric stretching mode,
Mode 2, is characterized by $a_{12} = -a_{32}$ and $a_{22} = 0$, which means that the second term in Eq. (5.1.7.6) vanishes exactly. Similarly, the asymmetric stretching mode, Mode 3, is characterized by $2a_{13} = -a_{23} = 2a_{33}$, which means that the third term in Eq. (5.1.7.6) also vanishes exactly. Thus, the dipole moment function does not depend on ζ_2 and ζ_3 at all, which means that Mode 2 and Mode 3 are both “dark”. To better understand these results, we plot the motion of ions in these three modes in Fig. 5.8.

For the center-of-mass motion mode (Mode 1), all three ions move together with the

Fig. 5.8: Description of the motions of ions for three vibrational modes in the harmonic trapping potential. Length of the arrows indicates the vibrational motion amplitude of each ion.
same amplitude, just like one ion with triple mass in the harmonic potential trap. In this case the dipole moment is non-zero. For the symmetric stretching mode (Mode 2), the central ion doesn’t move while the other two ions move in the opposite position with the same amplitude. As a result, their contributions to the dipole moment cancel each other. In the asymmetric stretching mode the central ion moves in the opposite direction of the other two ions. Because the amplitude of its motion is twice larger than that of the other two ions, the total contribution to the dipole moment cancels.

Fig. 5.9: Transition matrix of three 111Cd$^+$ ions in the harmonic potential trap and the diagram of allowed state-to-state transitions in this system. (black corresponds $\mu_{4,5} = 1.18 \times 10^2 \, ea_0$ (~ 3.00 $\times 10^2$ D) and pink corresponds $\mu_{0,1} = 52.94 \, ea_0$ (~ 1.35 $\times 10^2$ D) between states of mode 1).
moment is still zero. These features lead to the result that in the harmonic trapping potential only transitions between states of the first mode are possible. This mode is active. The second and third modes are “dark”.

In Fig. 5.9, the elements of transition matrix obtained from the harmonic potential trap are shown. In this picture we can only see the transitions between states of the first mode, while the other two modes are dark. That means they cannot be controlled by the spatially homogeneous fields.

5.1.8 Effect of Coulomb interaction

In Section 5.1.6, we showed that the symmetric stretching mode and the asymmetric stretching mode are only slightly anharmonic due to Coulomb interaction. This puts forward some questions for us: can we increase the value of anharmonicity by bringing ions close together (which increases Coulomb interaction) and would such anharmonicity be large enough for accurate control? In order to answer these questions, we carried out a series of calculations with different values of the force constant \(k \) in Eq. (2.1.1).

The results are summarized in the Fig. 5.10, where we plot equilibrium positions and anharmonicities vs. axial frequencies. When we increase the value of \(k \), the shape of the trapping potential becomes sharper. The equilibrium positions of the terminal atoms become smaller, while frequencies of vibration increase. It is found
that the frequencies of three vibrational modes increase very fast with the increase of k, while the inter-ion distances decrease. When the value of k is increased 50 times, the value of $z_{e3} \approx 2500$ Bohr is observed and the values of frequencies are about 7 times larger (see Fig. 5.10 (a)). The values of Δ_1 stay zero independently of k, while values of Δ_2 and Δ_3 both increase as expected (see Fig. 5.10 (b)). The value of Δ_3 increases much faster than Δ_2, it reaches about -1.2×10^{-3} MHz when $\Omega_3 \approx 300$ MHz. The intermode anharmonicities, Δ_{12} and Δ_{13} stay at low values even when the

Fig. 5.10: Relations between the equilibrium distances, normal mode frequencies and vibrational anharmonicities for three 111Cd$^+$ ions in the harmonic potential trap.
mode frequencies increase to large values. At the same time, Δ_{23} goes up faster and
reaches about -1.2×10^{-3} MHz when $\Omega_3 \approx 300$ MHz.

The conclusion here is following: by bringing ions closer together we can
slightly increase anharmonicity of the symmetric and asymmetric stretching modes.
However, the frequencies of the modes increase at the same time so that the ratio of
intramode anharmonicity over vibrational frequency is still much lower than the
required $\sim 1\%$. The center-of-mass motion mode remains exactly harmonic ($\Delta_1 = 0$).

Anharmonicities of the symmetric and asymmetric stretching modes are both small
($\Delta_2 \sim 10^{-6} \Omega_2$, $\Delta_3 \sim 4 \times 10^{-6} \Omega_3$). This means that bringing ions closer together cannot
provide large enough anharmonicity for the optimal control. We need to seek some
other sources of anharmonicity for our system.

5.2 Three ions in the anharmonic trapping potential

5.2.1 Anharmonic trapping potential

Here we explore a possibility of using an anharmonic trapping potential for a
three-ion system. As in the two-ion case, we consider the simplest form of the trap
given by:

$$V_a(z) = \frac{1}{4!} k' z^4,$$

(5.2.1.1)

where k' is a parameter which controls trap frequency. Here, we present the results of
calculations with $k'/2\pi = 1.494 \times 10^{-7}$ MHz/α_0^4. In Fig. 5.11, we show the anharmonic trapping potential, the equilibrium positions and several lower lying energy levels of the three-ion system.

Again, NR method was used to carry out minimization. Results for equilibrium positions are found as follows:

$$z_{e1} = -2.2086 \times 10^3 \text{ Bohr},$$

Fig. 5.11: Three $^{111}\text{Cd}^+$ ions in the $\sim z^4$ potential trap: (a) Equilibrium positions of ions and minimum energy of the three-ion string. (b) Vibrational spectrum of this system and the encoding of two-qubit states proposed in this work.
\[z_{e2} = -2.9187 \times 10^{-8} \approx 0 \text{ Bohr}, \]
\[z_{e3} = 2.2086 \times 10^3 \text{ Bohr}. \]

The value of potential energy at this point was \(V^{eq} = V(z_{e1}, z_{e2}, z_{e3}) = 9.310 \times 10^6 \) MHz.

Diagonalization of the Hessian matrix gave the following eigenvalues:

\[\begin{pmatrix} -7500 & -5000 & -2500 & 0 & 2500 & 5000 & 7500 \\ -7500 & -5000 & -2500 & 0 & 2500 & 5000 & 7500 \\ -5000 & -2500 & 0 & 2500 & 5000 & 7500 & 7500 \\ -2500 & 0 & 2500 & 5000 & 7500 & 7500 & 7500 \\ 0 & 2500 & 5000 & 7500 & 7500 & 7500 & 7500 \\ 2500 & 5000 & 7500 & 7500 & 7500 & 7500 & 7500 \\ 5000 & 7500 & 7500 & 7500 & 7500 & 7500 & 7500 \\ 7500 & 7500 & 7500 & 7500 & 7500 & 7500 & 7500 \end{pmatrix} \]

\(\zeta_1 \)
\(\zeta_2 \)
\(\zeta_3 \)

Fig. 5.12: PES of three \(^{111}\text{Cd}^+\) ions in the strongly anharmonic potential trap \((\sim z^4) \) using the normal mode coordinates. Three slices through the 3D-surface are shown: (a) perpendicular to \(\zeta_1 \) through \(\zeta_1 = 0 \), (b) perpendicular to \(\zeta_2 \) through \(\zeta_2 = 0 \) and (c) perpendicular to \(\zeta_3 \) through \(\zeta_3 = 0 \).
\[\lambda_1 = 8.781 \times 10^{-16} \text{ a.u.} \]

\[\lambda_2 = 2.867 \times 10^{-15} \text{ a.u.} \]

\[\lambda_3 = 3.594 \times 10^{-15} \text{ a.u.} \]

Using Eq. (4.1.3.4), we calculate the frequencies of these three modes and transform to the units of MHz:

\[\omega_1/2\pi = 31.032 \text{ MHz} \]

\[\omega_2/2\pi = 56.071 \text{ MHz} \]

\[\omega_3/2\pi = 62.783 \text{ MHz} \]

Meanwhile, the eigenvectors are obtained:

\[
A = \begin{bmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{bmatrix} = \begin{bmatrix}
0.41966 & 0.70711 & -0.56911 \\
0.80484 & 0.00000 & 0.59349 \\
0.41966 & -0.70711 & -0.56911
\end{bmatrix}.
\]

From the values of eigenvectors we can see that in the \(\sim z^4 \) trapping potential the first mode (center-of-mass motion mode) represents a different kind of motion, compared to the well known \(\sim z^2 \) case. Now the central ion moves almost twice further than the terminal ions. One can explain this feature by flattening of the \(\sim z^4 \) potential near location of the central ion. The central ion can move further because the potential is flatter in its vicinity.

The PES in the normal mode coordinates is presented in Fig. 5.12. It is seen that the motion along any normal mode axis (\(\zeta_1, \zeta_2, \) or \(\zeta_3 \)) brings the system closer to the white part (strong Coulomb repulsion) and results in appearance of the Coulomb
Table 5.3: Eigenvalues, assignments and deviations (from the harmonic model) of the vibrational states of three 111Cd$^+$ ions in a strongly anharmonic trap.

<table>
<thead>
<tr>
<th># of state</th>
<th>E_v (MHz)</th>
<th>E_h (MHz)</th>
<th>v_1</th>
<th>v_2</th>
<th>v_3</th>
<th>δE (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>470.8868</td>
<td>470.8802</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0066</td>
</tr>
<tr>
<td>2</td>
<td>665.8705</td>
<td>665.8593</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0.0112</td>
</tr>
<tr>
<td>3</td>
<td>823.1980</td>
<td>823.1868</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0.0112</td>
</tr>
<tr>
<td>4</td>
<td>860.8562</td>
<td>860.8384</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0.0178</td>
</tr>
<tr>
<td>5</td>
<td>865.3718</td>
<td>865.3549</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.0169</td>
</tr>
<tr>
<td>6</td>
<td>1018.1835</td>
<td>1018.1660</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0.0175</td>
</tr>
<tr>
<td>7</td>
<td>1055.8441</td>
<td>1055.8176</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0.0265</td>
</tr>
<tr>
<td>8</td>
<td>1060.3585</td>
<td>1060.3340</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0.0245</td>
</tr>
<tr>
<td>9</td>
<td>1175.5116</td>
<td>1175.4935</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0.0181</td>
</tr>
<tr>
<td>10</td>
<td>1213.1710</td>
<td>1213.1451</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0.0259</td>
</tr>
<tr>
<td>11</td>
<td>1217.6852</td>
<td>1217.6615</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0.0237</td>
</tr>
<tr>
<td>12</td>
<td>1250.8340</td>
<td>1250.7968</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0.0372</td>
</tr>
<tr>
<td>13</td>
<td>1255.3473</td>
<td>1255.3131</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0.0342</td>
</tr>
<tr>
<td>14</td>
<td>1259.8645</td>
<td>1259.8296</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0.0349</td>
</tr>
<tr>
<td>15</td>
<td>1370.4989</td>
<td>1370.4727</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0.0262</td>
</tr>
<tr>
<td>16</td>
<td>1408.1606</td>
<td>1408.1243</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0.0364</td>
</tr>
<tr>
<td>17</td>
<td>1412.6737</td>
<td>1412.6406</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.0331</td>
</tr>
<tr>
<td>18</td>
<td>1445.8260</td>
<td>1445.7758</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0.0503</td>
</tr>
<tr>
<td>19</td>
<td>1450.3383</td>
<td>1450.2922</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0.0460</td>
</tr>
<tr>
<td>20</td>
<td>1454.8542</td>
<td>1454.8087</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0.0455</td>
</tr>
<tr>
<td>21</td>
<td>1527.8278</td>
<td>1527.8002</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0.0276</td>
</tr>
<tr>
<td>22</td>
<td>1565.4883</td>
<td>1565.4518</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0.0365</td>
</tr>
<tr>
<td>23</td>
<td>1570.0010</td>
<td>1569.9681</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0.0328</td>
</tr>
<tr>
<td>24</td>
<td>1603.1525</td>
<td>1603.1033</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0.0492</td>
</tr>
<tr>
<td>25</td>
<td>1607.6643</td>
<td>1607.6198</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0.0446</td>
</tr>
<tr>
<td>26</td>
<td>1612.1801</td>
<td>1612.1362</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0.0438</td>
</tr>
<tr>
<td>27</td>
<td>1640.8202</td>
<td>1640.7549</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0.0653</td>
</tr>
<tr>
<td>28</td>
<td>1645.3312</td>
<td>1645.2714</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>0.0598</td>
</tr>
<tr>
<td>29</td>
<td>1649.8461</td>
<td>1649.7878</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0.0582</td>
</tr>
<tr>
<td>30</td>
<td>1654.3647</td>
<td>1654.3043</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0.0604</td>
</tr>
<tr>
<td>31</td>
<td>1722.8169</td>
<td>1722.7793</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>0.0376</td>
</tr>
<tr>
<td>32</td>
<td>1760.4799</td>
<td>1760.4308</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0.0491</td>
</tr>
<tr>
<td>33</td>
<td>1764.9913</td>
<td>1764.9473</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0.0441</td>
</tr>
<tr>
<td>34</td>
<td>1798.1464</td>
<td>1798.0824</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>0.0640</td>
</tr>
<tr>
<td>35</td>
<td>1880.1464</td>
<td>1880.1068</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0.0396</td>
</tr>
<tr>
<td>55</td>
<td>2048.8728</td>
<td>2048.7791</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0.0938</td>
</tr>
<tr>
<td>68</td>
<td>2232.4675</td>
<td>2232.4133</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0.0542</td>
</tr>
<tr>
<td>92</td>
<td>2443.3884</td>
<td>2443.2537</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0.1348</td>
</tr>
<tr>
<td>104</td>
<td>2584.7913</td>
<td>2584.7200</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0.0713</td>
</tr>
<tr>
<td>148</td>
<td>2837.9119</td>
<td>2837.7285</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0.1833</td>
</tr>
</tbody>
</table>
anharmonicity. This means we can expect that the PES is anharmonic along all the three normal mode coordinates.

In numeric calculations the size of the Gaussian quadrature was $N_1 = N_2 = N_3 = 21$ and the basis set size was $N_1 \times N_2 \times N_3 = 15 \times 15 \times 15$. This provided accuracy better than 10^{-9} MHz to the lower 250 vibrational states. The spectrum of states is given in Table 5.3. Deviations of the normal mode progressions from the harmonic model are presented in Fig. 5.13. Figure 5.13 shows very clearly that in the anharmonic trap all three normal modes are slightly anharmonic (contrast to Fig. 5.6).

![Diagram](attachment:image.png)

Fig. 5. 13: Effect of anharmonicity on three modes of the vibrational spectrum of three 111Cd$^+$ ions in a strongly anharmonic ($\sim z^4$) potential trap.
Anharmonicities of the Modes 1 and 2 are very similar. Mode 3 is the most anharmonic mode.

To determine anharmonicity in the \(\sim z^4 \) potential, the three dimensional Dunham expansion from Eq. (5.1.6.3) was used to fit 10 lower states, the results for frequencies and anharmonicities are shown in Table 5.4. It was quite surprising to find that the spectrum of three ions in the *highly* anharmonic trap is only *slightly* anharmonic. It was especially unexpected to see that the center-of-mass motion mode (Mode 1) is the less anharmonic mode: \(\Delta_1 \sim 5 \times 10^{-6} \Omega_1 \). Based on general arguments one might expect that the center-of-mass motion mode of three ions in an anharmonic trap describes the motion similar to vibration of one ion in an anharmonic trap. Since anharmonicity of the one-ion spectrum was very pronounced (see Chapter 2), we expected to see the effect of similar magnitude in the three-ion case. It appears, however, that the Mode 1 in the anharmonic trap is special; it is different from the center-of-mass mode in the harmonic trap. Namely, in the anharmonic potential the terminal ions are allowed to move less than the central atom, which compensates for anharmonicity of the trapping potential and makes the Mode 1 less anharmonic. Put another way, for Mode 1 in the anharmonic trap the arrangement of three ions is not rigid and adjusts to the changes of the potential, minimizing the effect of anharmonicity. The positive outcome of this effect is that all three modes become
Table 5.4: Coefficients of the fit by the Dunham expansion formula, Eq. (5.1.6.3), of the numerically calculated spectrum in Table 5.3 (vibrational states in the strongly anharmonic trap). The shift parameter was $D/2\pi = -5.269 \times 10^{-4}$ MHz.

<table>
<thead>
<tr>
<th>Mode frequency $\Omega_i/2\pi$ $(i = 1, 2, 3)$ (MHz)</th>
<th>Intramode anharmonicity $\Delta_i/2\pi$ $(i = 1, 2, 3)$ (MHz)</th>
<th>Intermode anharmonicity $\Delta_{ij}/2\pi$ (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.032</td>
<td>-1.667x10^{-4}</td>
<td>$\Delta_{12}/2\pi = -2.916 \times 10^{-4}$</td>
</tr>
<tr>
<td>56.071</td>
<td>-1.989x10^{-4}</td>
<td>$\Delta_{13}/2\pi = -4.859 \times 10^{-4}$</td>
</tr>
<tr>
<td>62.783</td>
<td>-6.103x10^{-4}</td>
<td>$\Delta_{23}/2\pi = -3.517 \times 10^{-4}$</td>
</tr>
</tbody>
</table>

anharmonic. The negative outcome is that the values of anharmonicity parameters remain small. The magnitude of anharmonicity for Mode 2 is similar to that of Mode 1, $\Delta_2 \sim 4 \times 10^{-6} \Omega_2$. These data show that for the most anharmonic Mode 3 (asymmetric stretching mode) the parameter of anharmonicity reaches only $\Delta_3 \sim 10^{-5} \Omega_3$, insufficient for the control. This means that in a three-ion case a strongly anharmonic trap offers no improvements over the purely harmonic trap.

5.2.2 Three-dimensional wavefunctions and transition matrix

Using the basis functions and eigenvectors from diagonalization of the Hamiltonian matrix in Eq. (2.2.7), wavefunctions of the system can be obtained. The
Fig. 5. 14: Wavefunctions of the lower 40 states of three 111Cd$^+$ ions in the $\sim z^4$ trapping potential.
wavefunctions of lower 40 states are shown in Fig. 5.14. Based on shapes of the wavefunctions we can assign the normal mode quantum numbers to these states.

The transition matrix can be calculated using the Eqs (5.1.7.3) and (5.1.7.6).

The coefficients of three vibration modes in Eq. (5.1.7.6) are shown here:

\[
\begin{align*}
 a_{11} + a_{21} + a_{31} &= 1.64416, \\
 a_{12} + a_{22} + a_{32} &= 0, \\
 a_{13} + a_{23} + a_{33} &= -0.54473.
\end{align*}
\] (5.2.2.1) (5.2.2.2) (5.2.2.3)

Fig. 5.15: Description of the motions of ions for three vibrational motion modes in the \(\sim z^4 \) trapping potential. Length of the arrows indicates the vibrational motion amplitude of each ion.
The motions of three vibration modes are plotted in Fig. 5.15 in order to help us understand this system better. Note that the Modes 1 and 3 of the anharmonic trap are different from those of the harmonic trap. We see that in the eigenvector matrix of anharmonic trapping potential: \(a_{21} > a_{11} = a_{31} \) and \(|a_{23}| > |a_{13}| = |a_{33}| \). This happens because the \(\sim z^4 \) potential is flatter in the center and is sharper near the turning points, compared to the harmonic case. As a result, the amplitude of motion of the central ion is larger than the amplitudes of motion of the terminal ions.

These features lead to the following result: The third mode (asymmetric

Fig. 5.16: Transition matrix of three \(^{111}\text{Cd}^+\) ions in the \(\sim z^4 \) potential trap and the diagram of allowed state-to-state transitions in this system. (black corresponds \(\mu_{4,5} = 33.57 \text{ ea}_0 \) (~85.33 D) between states of mode 1 and light yellow corresponds \(\mu_{0,1} = 3.50 \text{ ea}_0 \) (~8.90 D) between states of mode 3).
stretching) becomes active and can be excited in principle. The first mode is also active, while the second mode (symmetric stretching) stays dark in the $\sim z^4$ potential. The transition matrix of two ions in the anharmonic trapping potential is shown in Fig. 5.16. From this picture, it is seen that the second mode is “dark”, while the transitions between the states of the first and third modes are possible.

5.2.3 Effect of Coulomb anharmonicity

We hoped to increase the values of anharmonicity parameters in this system by raising the value of force constant k'. A number of computational experiments were carried out. Their results are presented in Fig. 5.17. As one might expect, the frequencies of three vibrational modes increase as k' is raised, while the equilibrium internuclear distances decrease (see Fig. 5.17 (a)). Frequencies of Modes 2 and 3 remain close to each other and are about twice higher than the frequency of Mode 1. As k' is raised all three intramode anharmonicity parameters (see Fig. 5.17 (b)) and all three intermode anharmonicity parameters (see Fig. 5.17 (c)) grow about linearly. The Mode 3 remains most anharmonic. When k' is raised by a factor of 525, anharmonicity of this mode reaches almost $\Delta_3/2\pi = -6.4 \times 10^{-4}$ MHz. However, the frequency of this mode grows at the same time and reaches almost $\Omega_3/2\pi = 64$ MHz, leading to about the same relative effect of anharmonicity: $\Delta_3 \sim 10^{-5} \Omega_3$. Indeed, the linear dependencies in Figs. 5.17 (b, c) here and in Figs. 5.10 (b, c) above
demonstrate very clearly that raising force constant has negligible effect on the Δ_i/ω_i ratios in both harmonic and strongly anharmonic traps.

The conclusion here is following: by bringing ions closer together we can slightly increase anharmonicity of all three vibration modes. However, the frequencies of the modes increase at the same time so that the ratio of intramode anharmonicity over vibrational frequency is still much lower than the required ~1%. Anharmonicities of the center-of-mass motion mode and the symmemeetric stretching mode are

Fig. 5. 17: Relations between the equilibrium distances, normal mode frequencies and vibrational anharmonicities for three 111Cd$^+$ ions in the strongly ($\sim z^4$) anharmonic potential trap.
comparable ($\Delta_1 \sim 5 \times 10^{-6} \Omega_1$, $\Delta_2 \sim 3 \times 10^{-6} \Omega_2$). The most anharmonic mode is the asymmetric stretching mode, $\Delta_3 \sim 10^{-5} \Omega_3$. This means that bringing ions closer together cannot provide large enough anharmonicity for the optimal control in the $\sim z^4$ trapping potential.

5.3 Conclusions

In the system of three $^{111}\text{Cd}^+$ ions in the harmonic trapping potential, the first mode (center-of-mass motion mode) is exactly harmonic ($\Delta_1 \approx 0$) and cannot be controlled. The second mode (symmetric stretching mode) and the third mode (asymmetric stretching mode) are anharmonic even in the harmonic trapping potential due to Coulomb interaction ($\Delta_2 \sim 10^{-6} \Omega_2$, $\Delta_3 \sim 4 \times 10^{-6} \Omega_3$), but this anharmonicity is very weak. Clearly, this is not sufficient for the control.

In the case of strongly anharmonic trapping potential ($\sim z^4$), the center-of-mass motion mode gains some anharmonicity. But this anharmonicity is very weak, at the level of $\Delta_1 \sim 5 \times 10^{-6} \Omega_1$. Anharmonicities of symmetric and asymmetric stretching mode are not improved a lot ($\Delta_2 \sim 3 \times 10^{-6} \Omega_2$, $\Delta_3 \sim 10^{-5} \Omega_3$). This is only about 3 times larger than in the harmonic trap and is much smaller than requirement for accurate control. So, using three trapped ions does not offer any advantage over the one-ion system. It is even worse. In this three-ion case we cannot even control the center-of-mass motion mode in the strongly anharmonic trap because of the small
local anharmonicity of the 3D PES.

Furthermore, in this system the symmetric stretching mode is “dark” and cannot be excited by the spatially homogeneous electric field.
Chapter 6: Three ions in the combined potential traps with applications to adiabatic and optimal control of three ions in the trap

6.1 Combined anharmonic potential

In Chapter 5, we found that for the system of three ions in the purely harmonic ($\sim z^2$) or purely anharmonic ($\sim z^4$) potential traps, we could not obtain enough anharmonicity for the optimal control. One possibility is to check whether some kind of combination potentials is better. Here we will use the trapping potential in general form:

$$V_a(z) = \frac{1}{2}kz^2 + \frac{1}{4!}k'z^4,$$

(6.1.1)

where k and k' are two force constants. The axial frequency is $\omega/2\pi = 2.77$ MHz, related to the force constant through $k = m\omega^2$, with $k/2\pi = 1.483 \times 10^{-3}$ MHz/a_0^2, as it was used in Chapters 2 to 5. The value $k'/2\pi = 1.494 \times 10^{-7}$ MHz/a_0^4 was chosen again, like in Sec. 5.2. We can control the shape of the trap by changing the unitless parameters α and β in Eq. (6.1.1). We will determine anharmonicity of the system as a function of the β/α ratio.

We carried out calculations of the spectra for twelve values of this ratio in the range $7.1 \times 10^{-6} \leq \beta/\alpha \leq 7.1 \times 10^{-3}$. In each case we did the Dunham expansion fit to determine the frequencies, intramode and intermode anharmonicities of three vibration modes. All the results are summarized in the Fig. 6.1. From the picture, it is
seen that although the intramode and intermode anharmonicities increase as we raise the β/α ratio, the frequencies of three normal vibration modes increase at the same time. It means that even if we keep on increasing the value of ratio β/α, we will never reach the situation when the anharmonicity would approach 1% of the frequency.

As for the transition matrix, we saw that transitions between states of the first

Fig. 6. 1: Relations between the equilibrium distances, normal mode frequencies and vibrational anharmonicities for three 111Cd$^+$ ions in the anharmonic combined potential trap ($\frac{1}{2}kz^2 + \frac{1}{4!}k'z^4, \alpha > 0, \beta > 0$).
mode in this system are possible. The second mode (symmetric stretching mode) always stays “dark”. The third mode (asymmetric stretching mode) becomes active due to introduction of the quartic term, and in principle can be excited.

Conclusion for this combined anharmonic potential is following: the spectrum of three ions is only slightly anharmonic. The most anharmonic mode is Mode 3 (the asymmetric stretching mode), where the parameter of anharmonicity reaches \(\Delta_3 \sim 6 \times 10^{-6} \Omega_3 \). Anharmonicities of the center-of-mass motion mode and the symmetric stretching mode are comparable (\(\Delta_1 \sim 2 \times 10^{-6} \Omega_1, \Delta_2 \sim 2 \times 10^{-6} \Omega_2 \)). Clearly, this is insufficient for the control. In the combined potential anharmonicity is always lower than in the \(\sim z^4 \) potential, which makes sense. This means that the anharmonic potential with \(\alpha > 0 \) and \(\beta > 0 \) carries no improvement. So, in the combined trapping potential increasing the value of ratio \(\beta / \alpha \) cannot provide large enough anharmonicity for the optimal control.

6.2 Inverted combined potential (\(\alpha < 0, \beta > 0 \))

Here we consider the case of inverted combined potential trap, where \(\beta \) is positive, but \(\alpha \) is a negative number [32, 71, 72]. When the \(-\alpha / \beta \) ratio is very large this expression describes a double well potential with two (separated, almost independent) wells, but we are far from that limit. In the cases considered here the first term of Eq. (6.1.1) lifts, just slightly, the potential in the middle of the \(z^4 \) well,
creating a wide, strongly anharmonic trap, with the vibrational zero-point energy well above the top of the barrier at \(z = 0 \). The shape of this kind of potential trap is shown in Fig. 6.2, where \(k/2\pi = 1.483 \times 10^{-3} \text{ MHz}/a_0^2 \), same as in the harmonic case. The value of \(k'/2\pi = 1.494 \times 10^{-7} \text{ MHz}/a_0^4 \) is the same as in Chapters 5 and 6.

Parameters \(\alpha = -100 \) and \(\beta/\alpha = -0.01 \) are chosen for this example.

Again, the NR method was used to carry out minimization. The results of

Fig. 6.2: (a) Equilibrium positions of \(^{111}\text{Cd}^+ \) ions and minimum energy of a three-ion string trapped in a flat anharmonic potential of the form \(\alpha \frac{1}{2} k z^2 + \beta \frac{1}{4!} k' z^4 \). (b) Vibrational spectrum of this system and the encoding of two-qubit states proposed in this work.
equilibrium positions are:

\[z_{e1} = -2.8624 \times 10^3 \text{ Bohr}, \]

\[z_{e2} = -8.3218 \times 10^{-6} \approx 0 \text{ Bohr}, \]

\[z_{e3} = 2.8624 \times 10^3 \text{ Bohr}. \]

The value of potential energy at this point is \(V^{eq} = V(z_{e1}, z_{e2}, z_{e3}) = 3.367 \times 10^6 \text{ MHz}. \)

Next, the diagonalization of Hessian matrix was done and the following eigenvalues were found:

\[\lambda_1 = 6.817 \times 10^{-18} \text{ a.u.} \]

\[\lambda_2 = 2.716 \times 10^{-15} \text{ a.u.} \]

\[\lambda_3 = 2.748 \times 10^{-15} \text{ a.u.} \]

Using Eq. (4.1.3.4), we calculate the frequencies of these three vibration in the units of MHz:

\[\omega_1/2\pi = 2.734 \text{ MHz}, \]

\[\omega_2/2\pi = 54.579 \text{ MHz}, \]

\[\omega_3/2\pi = 54.890 \text{ MHz}. \]

Note that the frequencies of Mode 2 and 3 are very close to each other. They are nearly degenerate.

Meanwhile, the eigenvectors of the system are obtained:
The PES of this system, transformed into the normal mode coordinates is shown in Fig. 6.3. From analysis of Fig. 6.3 one can expect that in this system Mode 1 is the most anharmonic. Somewhat less obvious but still possible to derive from Fig.

\[A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} 0.15776 & 0.70711 & -0.68928 \\ 0.97480 & 0.00000 & 0.22310 \\ 0.15776 & -0.70711 & -0.68928 \end{bmatrix}. \]

Fig. 6.3: PES of three 111Cd$^+$ ions in the inverted combined potential trap using the normal mode coordinates. Three slices through the 3D-surface are shown: (a) perpendicular to ζ_1 through $\zeta_1 = 0$, (b) perpendicular to ζ_2 through $\zeta_2 = 0$ and (c) perpendicular to ζ_3 through $\zeta_3 = 0$.
6.3 is that the Modes 2 and 3 are also somewhat anharmonic.

Referring to the matrix A we can see that: The normal Modes 1 and 3 are very unusual. Mode 1 describes motion where amplitude of the central ion is almost an order of magnitude larger than amplitudes of the terminal ions: $a_{21} >> a_{i1} = a_{31}$. Mode 3 shows just opposite: $|a_{33}| << |a_{13}| = |a_{33}|$. The behavior of Mode 1 is easy to explain. The central atom sits on the top of a small “hill” so that its deviation from the equilibrium point reduces the potential energy, compensating for increase of potential energy due to the motion of terminal atoms. As a result, the PES is very flat along ζ_1 and is very anharmonic. The behavior of Mode 3 is less intuitive, or even somewhat counterintuitive. We think that the Mode 3 is as it is simply because it must be orthogonal to the Modes 1 and 2. Overall, the Mode 1 (low frequency mode) describes mostly the motion of central ion, while the Modes 2 and 3 (high frequency, nearly degenerate modes) describe mostly the motion of two terminal ions.

In numerical calculations, due to very different frequencies of the modes, we used the following parameters: $N_1 = 21, N_2 = N_3 = 17$ for the Gaussian quadratures in ζ_1, ζ_2 and ζ_3, respectively, and $N_1 \times N_2 \times N_3 = 15 \times 10 \times 10$ for the basis set size. Accuracy was comparable to or better than in the calculations presented above (10^{-9} MHz for the lower 364 vibrational states). The spectrum of numerical eigenvalues is given in Table 6.1, along with the state assignments and deviations of their energies.
Table 6.1: Eigenvalues, assignments and deviations (from the harmonic model) of the vibrational states of three 111Cd$^+$ ions in a combined inverted trap with $\alpha = -100$ and $\beta = 1$. See text for details.

<table>
<thead>
<tr>
<th># of state</th>
<th>E(MHz)</th>
<th>E_h(MHz)</th>
<th>v_1</th>
<th>v_2</th>
<th>v_3</th>
<th>δE(MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>352.6682</td>
<td>352.4980</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.1702</td>
</tr>
<tr>
<td>2</td>
<td>370.4720</td>
<td>369.6774</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0.7945</td>
</tr>
<tr>
<td>3</td>
<td>388.8237</td>
<td>386.8568</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1.9669</td>
</tr>
<tr>
<td>4</td>
<td>407.6818</td>
<td>404.0362</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3.6457</td>
</tr>
<tr>
<td>5</td>
<td>427.0121</td>
<td>421.2155</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>5.7965</td>
</tr>
<tr>
<td>6</td>
<td>446.7856</td>
<td>438.3949</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>8.3907</td>
</tr>
<tr>
<td>7</td>
<td>466.9779</td>
<td>455.5743</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>11.4036</td>
</tr>
<tr>
<td>16</td>
<td>695.5058</td>
<td>695.4293</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0.0765</td>
</tr>
<tr>
<td>17</td>
<td>697.4395</td>
<td>697.3835</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.0560</td>
</tr>
<tr>
<td>46</td>
<td>1038.3293</td>
<td>1038.3605</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>-0.0311</td>
</tr>
<tr>
<td>48</td>
<td>1042.2279</td>
<td>1042.2690</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>-0.0411</td>
</tr>
<tr>
<td>89</td>
<td>1381.1338</td>
<td>1381.2917</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>-0.1580</td>
</tr>
<tr>
<td>94</td>
<td>1387.0280</td>
<td>1387.1545</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>-0.1266</td>
</tr>
<tr>
<td>149</td>
<td>1723.9099</td>
<td>1724.2229</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>-0.3130</td>
</tr>
<tr>
<td>153</td>
<td>1731.8368</td>
<td>1732.0400</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>-0.2032</td>
</tr>
<tr>
<td>222</td>
<td>2066.6421</td>
<td>2067.1541</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>-0.5120</td>
</tr>
<tr>
<td>229</td>
<td>2076.6531</td>
<td>2076.9255</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>-0.2725</td>
</tr>
<tr>
<td>311</td>
<td>2409.3013</td>
<td>2410.0854</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>-0.7842</td>
</tr>
<tr>
<td>318</td>
<td>2421.4751</td>
<td>2421.8110</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>-0.3359</td>
</tr>
</tbody>
</table>

from the analytic harmonic model. Figure 6.4 shows deviations from the harmonic model for the three normal mode progressions. From this picture we see that all three normal modes are strongly anharmonic, with the Mode 1 being the most anharmonic. Anharmonicities of the Modes 2 and 3 seem to be comparable.

To determine anharmonicity in the inverted combined potential, the three dimensional Dunham expansion from Eq. (5.1.6.3) was used to fit 10 lower states, the results of frequencies and anharmonicities are shown in Table 6.2.
Table 6.2: Coefficients of the fit by the Dunham expansion formula, Eq. (5.1.6.3), of the numerically calculated spectrum in Table 6.1 (vibrational states in the combined inverted trap). The shift parameter was $D/2\pi = -2.115 \times 10^{-2}$ MHz.

<table>
<thead>
<tr>
<th>Mode frequency $\Omega_i/2\pi$ ($i = 1,2,3$) (MHz)</th>
<th>Intramode anharmonicity $\Delta_i/2\pi$ ($i = 1,2,3$) (MHz)</th>
<th>Intermode anharmonicity $\Delta_{ij}/2\pi$ (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.738</td>
<td>-4.361x10^{-2}</td>
<td>$\Delta_{12}/2\pi = -1.102 \times 10^{-2}$</td>
</tr>
<tr>
<td>54.580</td>
<td>1.106x10^{-3}</td>
<td>$\Delta_{13}/2\pi = -4.871 \times 10^{-3}$</td>
</tr>
<tr>
<td>54.886</td>
<td>-1.371x10^{-3}</td>
<td>$\Delta_{23}/2\pi = 3.872 \times 10^{-2}$</td>
</tr>
</tbody>
</table>

Fig. 6.4: Effect of anharmonicity on three modes of the vibrational spectrum of three 111Cd$^+$ ions in an inverted combined potential trap (with $\alpha = -100$ and $\beta = 1$).
In the inverted combined potential, frequencies of the second and third mode are very close to each other and are much larger than the frequency of Mode 1. Anharmonicity parameters in this system show dramatic improvement compared to all cases studied above. We see that $\Delta_1 \sim 10^{-2}\Omega_1$, which is well sufficient for the successful control. Mode 2 and 3 are less anharmonic: $\Delta_2 \sim 2 \times 10^{-5}\Omega_2$ and $\Delta_3 \sim 3 \times 10^{-5}\Omega_3$. Still, they are more anharmonic than any mode in the $\sim z^2$ or $\sim z^4$ potentials studied in Chapters 4 and 5.

6.3 Three-dimensional wavefunctions and the transition matrix

Using the basis functions and eigenvectors from diagonalization of Hamiltonian matrix in Eq. (2.2.7), the wavefunctions of the system can be obtained. The wavefunctions of some useful states without excitation of mode 2 (which is anyway “dark” and cannot be controlled) are shown in Fig. 6.5. The normal mode quantum numbers can be assigned based on shapes of the wavefunctions.

From the matrix of eigenvectors, one can obtain:

$$a_{11} + a_{21} + a_{31} = 1.29032,$$ \hspace{1cm} (6.3.1)

$$a_{12} + a_{22} + a_{32} = 0,$$ \hspace{1cm} (6.3.2)

$$a_{13} + a_{23} + a_{33} = -1.15546.$$ \hspace{1cm} (6.3.3)

The motions of ions in these three vibrational modes are plotted in Fig. 6.6. The normal Modes 1 and 3 are very unusual. Mode 1 describes motion where amplitude of
Fig. 6. 5: Wavefunctions of 40 states with excitation to the first and the third modes of three 111Cd$^+$ ions in the inverted combined trapping potential.
the central ion is almost an order of magnitude larger than amplitudes of the terminal ions: \(a_{21} \gg a_{11} = a_{31} \). The symmetric stretching mode (Mode 2) remains the same as in harmonic case due to symmetry. Mode 3 shows some opposite attribute to Mode 1: \(|a_{33}| \ll |a_{13}| = |a_{33}| \), the amplitudes of motion of the terminal ions are about 3 times larger than the amplitude of motion of the central ion.

As a result, the second mode (symmetric stretching mode) stays “dark” in inverted combined potential, while the third mode (asymmetric stretching mode)

![Diagram](image)

Fig. 6.6: Description of the motions of ions for three vibrational motion modes in inverted combined trapping potential with \(\alpha = -100 \) and \(\beta = 1 \). Length of the arrows indicates the vibrational motion amplitude of each ion.
becomes active and in principle can be excited. Using Eqs. (5.1.7.3) and (5.1.7.6), the transition matrix for three ions in the inverted combined potential was calculated in the normal mode coordinates. The results are shown in the Fig. 6.7. Because the second mode is always dark, we picked up only the states with \(\nu_2 = 0 \). For the first mode the \(\Delta \nu_1 = \pm 1 \) selection rule is lifted, because this mode is highly anharmonic. Thus, the transitions with \(\Delta \nu_1 = \pm 3, \pm 5 \cdots \) are allowed. Transitions between the states of the third mode are also allowed. Since Mode 3 is much less anharmonic (compared to the Mode 1), we see mostly the \(\Delta \nu_3 = \pm 1 \) transitions.

Fig. 6.7: Transition matrix of three \(^{111}\text{Cd}^+\) ions in inverted combined potential trap with \(\alpha = -100 \) and \(\beta = 1 \) and the diagram of allowed state-to-state transitions in this system. Color indicates magnitudes of matrix elements in the logarithmic scale (dark purple corresponds \(\mu_{4,5} = 82.77 \, ea_0 \) \(\sim 2.10 \times 10^2 \) D) between states of mode 1 and light pink corresponds \(\mu_{0,1} = 7.90 \, ea_0 \) \(\sim 20.08 \) D) between states of mode 3).
6.4 Study of anharmonicity

We also studied how the anharmonicity of the three-ion system in the inverted combined potential changes as the ratio of β/α is changed. The value of α was

Fig. 6. 8: Relations between the equilibrium distances, normal mode frequencies and vibrational anharmonicities for three 111Cd$^+$ ions in the inverted combined potential trap.
chosen fixed at \(\alpha = -100 \), while the value of \(\beta \) was varied. In Fig. 6.8, we show the values of frequencies and anharmonicities of this system versus \(\beta \), when \(\alpha = -100 \).

The following values were studied: \(\beta = 1.43, 1.19, 1.14, 1.10, 1.05, 1 \). Different values of \(\beta \) correspond to different equilibrium positions. For example, \(\beta = 1 \) corresponds \(z_{e3} = 2862 \) Bohr and \(\beta = 1.43 \) corresponds \(z_{e3} = 2534 \) Bohr.

Variations of \(\beta \) reveal an important and interesting property of this system.

When \(\beta \) is raised (from \(\beta = 1 \) to \(\beta = 1.43 \) in Fig. 6.8) the frequencies of all modes increase (see Fig. 6.8 (a, b)) while the values of anharmonicity parameters all drop (see Fig. 6.8 (c-f)). This behavior is exactly opposite to that seen in the \(\sim z^2 \) and \(\sim z^4 \) traps studied above. It appears that in the case of inverted combined potential there is no reason to raise \(\beta \). When \(\alpha = -100 \), small values of \(\beta \leq 1 \) are appropriate. The dependence of anharmonicity vs. frequency in Fig. 6.8 is quite dramatic. Note that the case we presented here in detail (\(\alpha = -100, \beta = 1 \)) is, in fact, just on the edge of the region where anharmonicity increases very sharply. If we move further into the region of small \(\beta \) or, alternatively, increase the value of \(\alpha \), even more anharmonic system is obtained. For example, we tried several smaller values of \(\beta \) and found that for \(\beta = 0.989 \) the Dunham parameters are even more attractive. The results of frequencies and anharmonicities are shown in Table 6.3. We conclude that the low frequency/high anharmonicity system can be readily created by the appropriate choice
Table 6.3: Coefficients of the fit by the Dunham expansion formula, Eq. (5.1.6.3), of the numerically calculated spectrum (vibrational states in the strongly anharmonic combined inverted trap). The shift parameter was $D/2\pi = -0.331$ MHz.

<table>
<thead>
<tr>
<th>Mode frequency $\Omega_i/2\pi$ ($i = 1,2,3$) (MHz)</th>
<th>Intramode anharmonicity $\Delta_i/2\pi$ ($i = 1,2,3$) (MHz)</th>
<th>Intermode anharmonicity $\Delta_{ij}/2\pi$ (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.210×10^{-2}</td>
<td>-0.562</td>
<td>$\Delta_{12}/2\pi = -0.128$</td>
</tr>
<tr>
<td>54.425</td>
<td>2.372×10^{-2}</td>
<td>$\Delta_{13}/2\pi = -8.610 \times 10^{-2}$</td>
</tr>
<tr>
<td>54.583</td>
<td>-3.677×10^{-2}</td>
<td>$\Delta_{23}/2\pi = 0.177$</td>
</tr>
</tbody>
</table>

of the two force constants in the combined potential of Eq. (6.1.1).

6.5 Optimal control of three-ion system

We propose to create a purely vibrational two-qubit system by encoding the first (control) qubit into the states of less anharmonic asymmetric stretching vibration mode, while the second qubit is encoded into the states of a more anharmonic center-of-mass motion mode. The third mode of this system, symmetric stretching, appears to be dark and should not interfere. Using tools of the optimal control theory, we carry out modeling of this two-qubit system and derive RF fields for direct adiabatic control of state-to-state transitions. Pulses for the major quantum gates are obtained and
properties of the qubit transformations in this system are explored.

a) One qubit control and the gate NOT

Here we focus on the gate NOT on second qubit in the two-qubit system:

\[
\text{NOT}|00\rangle \rightarrow |01\rangle, \tag{6.5.1}
\]

\[
\text{NOT}|01\rangle \rightarrow |00\rangle, \tag{6.5.2}
\]

\[
\text{NOT}|10\rangle \rightarrow |11\rangle, \tag{6.5.3}
\]

\[
\text{NOT}|11\rangle \rightarrow |10\rangle. \tag{6.5.4}
\]

Recall that in our approach the qubits are encoded into *collective* vibration modes, not into individual ions, and the control field is applied to the entire system, not to the individual qubits. For this reason, the state of the first qubit should also be reflected in the training set of transitions, even if we are trying to optimize the pulse for controlling the second qubit only. In this sense our gates are global. First two transitions of the training set describe action of gate NOT on first qubit with the second qubit being in state $|0\rangle$. Next two transitions of the training set describe gate NOT on second qubit with the first qubit being in state $|1\rangle$. Due to anharmonicities, the frequencies of corresponding $|00\rangle \leftrightarrow |01\rangle$ and $|10\rangle \leftrightarrow |11\rangle$ transitions are slightly different.

The optimization procedure is not fully automated. The pulse duration and the maximum allowed field amplitude should be tuned “by hand”. A number of
independent computational experiments were carried out with different values of the target time in the range between 2 μs and 20 μs and different values of the penalty factor between 10^{11} and 10^{13}. The following values led to the simplest pulse shape and were finally adopted for the gate NOT on the second qubit: $T = 4 \mu s$ and $a_0 = 2.0 \times 10^{12}$. A very large number of iterations, 4000 forward-backward loops, were needed in order to converge the pulse shape. The length of time-step in the wave packet propagation was on the order of 0.5 nanosecond (9000 time steps total).

The 4 μs pulse derived for the gate NOT on the second qubit is presented in Fig. 6.9. The pulse is quite symmetric and its shape is simple, the maximum field is achieved in the middle of the pulse. This shape reflects the envelope function (see Sec. 2.7) used to switch the pulse on and off smoothly. Amplitude of the electric field does not exceed 5.7 mV/cm. Such pulses should be relatively easy to produce in the experiment.

![Optimally shaped electric field of the gate NOT in the 111Cd$^+$ ion trap with inverted combined potential optimized with four transitions. ($a_0 = 2.0 \times 10^{12}$)](image-url)
Figure 6.10 shows evolution of state populations during the pulse. Four frames of this picture correspond to four optimized transitions of the training set. We see that, overall, the population transfer is quite direct, in a sense that population of the initial state(s) is monotonically transferred to the final state(s), without any reverse transfer.

Fig. 6. 10: The gate NOT on second qubit in the 111Cd$^+$ ion trap with inverted combined potential. (a) Switching of population between the qubit states during the NOT$|00\rangle \rightarrow |01\rangle$. (b) Switching of population between the qubit states during the NOT$|10\rangle \rightarrow |11\rangle$. (c) The same during NOT$|01\rangle \rightarrow |00\rangle$ transformation. (d) The same during NOT$|11\rangle \rightarrow |10\rangle$ transformation.
Note, however, that the system does not behave as an isolated four-state system of two qubits. The upper states of the normal mode progressions gain some population during the pulse. Here, the states $|02\rangle$ and $|12\rangle$ are excited most significantly (populations exceeds 0.1), which can be seen in Fig. 6.10 without any magnification. However, the system is well controlled – by the end of the pulse all population is dumped into the target state(s) of two qubits. The value of cumulative transition probability, as defined in Eq. (2.7.7), reaches $P = 0.996$.

In Fig. 6.11, the Fourier analysis of the pulse in Fig. 6.9 is carried out and it is shown that the spectrum is dominated by structure in the $\omega/2\pi = 2.7$-to-3.2 MHz region, which corresponds to excitation of one quantum of vibration in the first qubit. The structure is asymmetric. Its most intense peak corresponds to frequency of $|0\rangle \leftrightarrow |1\rangle$ transition in the second qubit. A wing, composed of series of less intense peaks, expends into the blue part of spectrum and covers $|1\rangle \leftrightarrow |2\rangle$, $|3\rangle \leftrightarrow |4\rangle$ and $|4\rangle \leftrightarrow |5\rangle$ transitions in the second qubit, which means that this pulse is trying to controll selectively the ladder of transitions (an anharmonic oscillator). Note that all these transitions are well resolved by the pulse – the widths of peaks in the spectrum are narrower than frequency differences. However, the transitions $|00\rangle \leftrightarrow |01\rangle$ and $|10\rangle \leftrightarrow |11\rangle$ etc., are not resolved. Frequencies of these transitions are very close to each other because anharmonicity of first qubit is very small. Widths of peaks in the
spectrum are much broader than this frequency difference, which means that the \(|00\rangle \leftrightarrow |01\rangle \) and \(|10\rangle \leftrightarrow |11\rangle \) transitions are controlled together, but not selectively.

Intensity of the signal near the frequency of \(|2\rangle \leftrightarrow |3\rangle \) transition is suppressed, relative to others, which explains why the population of state \(|3\rangle \) remains low during the pulse. Fourier analysis shows no frequency components near \(2\omega \) for the second qubit (consistent with selection rules described in Section 6.3) and only small intensity near \(3\omega/2\pi = 8.8 \) MHz region. \(|0\rangle \leftrightarrow |3\rangle \) transition in the second qubit, consistent with low population of state \(|3\rangle \). Nothing in the spectrum corresponds to transitions between states of the first qubit.

![Figure 6.11](image-url)

Fig. 6.11: Fourier analysis of the pulse in Fig 6.9 for the gate NOT.
Results obtained with longer pulses \((T > 4 \mu s)\) indicate that increase of the pulse duration leads to decrease of the field amplitude and decrease of population of the interfering upper states. For example, we found that during the pulse optimized with \(T = 20 \mu s\) the field does not exceed \(2.5 \text{ mV/cm}\), the populations of states \(|02\rangle\) and \(|12\rangle\) do not exceed 0.02, while the cumulative transition probability reaches \(P = 0.9998\).

b) Two-qubit control and the Conditional NOT Gate (CNOT)

For the gate CNOT, we need to control the following four transitions:

\[
\text{CNOT}|00\rangle \rightarrow |00\rangle, \quad (6.5.5)
\]

\[
\text{CNOT}|01\rangle \rightarrow |01\rangle, \quad (6.5.6)
\]

\[
\text{CNOT}|10\rangle \rightarrow |11\rangle, \quad (6.5.7)
\]

\[
\text{CNOT}|11\rangle \rightarrow |10\rangle. \quad (6.5.8)
\]

\textbf{Fig. 6. 12:} Optimally shaped electric field of the gate CNOT for the two-qubit system in the \(^{111}\text{Cd}^+\) ion trap with inverted combined potential. Large penalty factor \(a_0 = 6.0 \times 10^{12}\).
Here when the control (first) qubit is in state $|0\rangle$, the target (second) qubit stays unchanged. But if the control qubit is in state $|1\rangle$, the target qubit flips.

Experimentation with pulse duration showed that CNOT gate requires much longer pulses than NOT gate. In order to obtain accurate CNOT gate, we had to

![Diagram](image)

Fig. 6. 13: The gate CNOT for the two-qubit control in the 111Cd$^+$ ion trap optimized with four transitions. Large penalty factor $a_0 = 6.0 \times 10^{12}$. (a) Switching of population between the qubit states during the $\text{CNOT}|00\rangle \rightarrow |00\rangle$. (b) Switching of population between the qubit states during the $\text{CNOT}|10\rangle \rightarrow |11\rangle$. (c) The same during $\text{CNOT}|01\rangle \rightarrow |01\rangle$ transformation. (d) The same during $\text{CNOT}|11\rangle \rightarrow |10\rangle$ transformation.
increase the pulse duration to $T = 30 \, \mu s$. The number of time steps for wave packet propagation was increased to 18,000. Variation of the penalty factor revealed an interesting feature. This feature is demonstrated below using results for two pulses, one with $\alpha = 6.0 \times 10^{12}$ and second with $\alpha_0 = 8.0 \times 10^{11}$.

The pulse optimized with larger penalty factor, $\alpha_0 = 6.0 \times 10^{12}$, is shown in Fig. 6.12. This pulse is simply shaped, symmetric, and consists of two time-delayed sub-pulses. The maximum field amplitude of about 0.6 mV/cm is achieved at approximately $t = 7.5$ and $22.5 \, \mu s$. The state-to-state transitions driven by this pulse are shown in Fig. 6.13. Four frames correspond to four optimized transitions of the training set. When the control qubit is in state $|1\rangle$ the population transfer is monotonic.

![Fourier analysis of the pulse in Fig 6.12 for the gate CNOT.](image)

Fig. 6. 14: Fourier analysis of the pulse in Fig 6.12 for the gate CNOT.
and is very much direct, see Figs. 6.13 (b) and (d). Only two states of the system are involved and those are states $|10\rangle$ and $|11\rangle$ of the qubit. Transitions to any upper states of the system are suppressed. When the control qubit is in state $|0\rangle$ the population transfer is not monotonic: The first sub-pulse creates a superposition state of $|00\rangle$ and $|01\rangle$, while the second sub-pulse returns population back to the initial state(s), as required by this gate, see Figs. 6.13 (a) and (c). Cumulative accuracy of the qubit transformation is very high, $P \sim 0.9995$. Fourier analysis of the optimized pulse in Fig. 6.14 shows that the $|10\rangle \leftrightarrow |11\rangle$ transition is induced, while the frequency of the $|00\rangle \leftrightarrow |01\rangle$ transition is somewhat reduced. This is different from the unconditional gate NOT. The frequencies of all other transitions are completely suppressed. Even the frequency of $|1\rangle \leftrightarrow |2\rangle$ transition in the second qubit is entirely suppressed, which explains why population is restricted to only states $|0\rangle$ and $|1\rangle$ of

![Optimally shaped electric field of the gate CNOT for the two-qubit control in the $^{111}\text{Cd}^+$ ion trap with inverted combined potential. Small penalty factor $\alpha_0 = 8.0 \times 10^{11}$.

Fig. 6. 15: Optimally shaped electric field of the gate CNOT for the two-qubit control in the $^{111}\text{Cd}^+$ ion trap with inverted combined potential. Small penalty factor $\alpha_0 = 8.0 \times 10^{11}$.}
the second qubit.

The fact that transitions to the upper states of the system can be suppressed and population is restricted to only four states of the 2×2 qubit space is very interesting. We believe that such high selectivity is made possible by the relatively

Fig. 6. 16: The gate CNOT for the two-qubit control in the ¹¹¹Cd⁺ ion trap optimized with four transitions. Small penalty factor $\alpha_0 = 8.0 \times 10^{11}$. (a) Switching of population between the qubit states during the CNOT$|00\rangle \rightarrow |00\rangle$. (b) Switching of population between the qubit states during the CNOT$|10\rangle \rightarrow |11\rangle$. (c) The same during CNOT$|01\rangle \rightarrow |01\rangle$ transformation. (d) The same during CNOT$|11\rangle \rightarrow |10\rangle$ transformation.
low amplitude of field of the pulse in Fig. 6.12, leading to very delicate control of
vibrational excitations.

In order to support this hypothesis we present results for another pulse,
optimized with lower penalty factor $\alpha_0 = 8.0 \times 10^{11}$. In general, lowering the penalty
factor allows raising amplitude of the field during the optimization procedure. The
optimized pulse shape for this case is presented in Fig. 6.15. The maximum field
amplitude of this pulse is roughly 5.1 mV/cm, about an order of magnitude higher
compared to the previous case. The pulse shape is much more complicated,
asymmetric, containing multiple sub-pulses of different amplitudes. This shape
reflects complicated evolution of state populations presented in Fig. 6.16. During the

![Fourier analysis of the pulse in Fig 6.15 for the gate CNOT.](image)

Fig. 6.17: Fourier analysis of the pulse in Fig. 6.15 for the gate CNOT.
pulse, the populations are exchanged back and forth between the initial and the final states of the qubit, and are also transferred to the excited states of the system, $|02\rangle$ and $|12\rangle$. Despite complicated evolution during the pulse, at time $t = T$ the population is directed towards the target states, leading to high accuracy of qubit transformation, $P \approx 0.9996$. Fourier analysis of this optimized pulse in Fig. 6.17 shows a spectral structure that covers $|0\rangle \leftrightarrow |1\rangle$, $|1\rangle \leftrightarrow |2\rangle$ and $|3\rangle \leftrightarrow |4\rangle$ transitions in the second qubit, which clearly corresponds to control of the ladder. The frequency of $|2\rangle \leftrightarrow |3\rangle$ transition in the second qubit is, again, somewhat suppressed.

Two examples of CNOT gate presented above suggest that a careful choice of constrains on the control field, such as pulse duration and field amplitude, may be necessary in order to obtain the control pulses of desirable accuracy and simplicity.

c) Phase control and the Hadamard Gate

For the Hadamard gate, to achieve the phase control, we need to optimize five transitions at the same time and the training set of transitions for the Hadamard transformation of the second qubit is:

$$HAD|00\rangle \rightarrow \frac{1}{\sqrt{2}}(|00\rangle + |01\rangle) e^{i\phi_1},$$

$$HAD|01\rangle \rightarrow \frac{1}{\sqrt{2}}(|00\rangle - |01\rangle) e^{i\phi_2},$$

$$HAD|10\rangle \rightarrow \frac{1}{\sqrt{2}}(|10\rangle + |11\rangle) e^{i\phi_3},$$

(6.5.9)

(6.5.10)

(6.5.11)
The fifth transition here is the sum of the first four transitions and is included in order to achieve control over phases, which is essential for this gate: \(\varphi_1 = \varphi_2 = \varphi_3 = \varphi_4 \). Note that the cumulative probability of Eq. (2.7.7) neglects phases of transitions, since moduli squared of overlaps are used. However, the accuracy of gates like Hadamard should be measured by a phase-sensitive moiety, like the fidelity \(F \) defined on page 57 and 58 [35, 37]. One solution is to replace \(P \) by \(F \) in the functional of Eq. (2.7.6) and re-derive the equations [35, 37], but this approach was not followed here. A simpler fix to the standard procedure is to include, in addition to four transitions of the training set, one more transition that represents sum of the previous four [85, 92]. In order to ensure that the phase is indeed controlled, the fidelity rather

\[
\text{HAD}|11\rangle \rightarrow \frac{1}{\sqrt{2}}(|10\rangle - |11\rangle)e^{i\varphi_4}, \quad (6.5.12)
\]

\[
\text{HAD} \frac{1}{2}(|00\rangle + |01\rangle + |10\rangle + |11\rangle) \rightarrow \frac{1}{\sqrt{2}}(|00\rangle + |10\rangle)e^{i\varphi_5}, \quad (6.5.13)
\]

\[\text{Fig. 6. 18: Optimally shaped electric field of the gate Hadamard on the second qubit in the } ^{111}\text{Cd}^+ \text{ ion trap with inverted combined potential optimized with five transitions. } (\alpha_0 = 1.0 \times 10^{12})\]
than probability of Eq. (2.7.7), should be monitored as convergence criterion.

Different values of pulse duration and penalty factor were tried and the following parameters were finally adopted: $\alpha_0 = 1.0 \times 10^{12}$ and $T = 35$ μs. The number of time steps was also adjusted to 55,000.

Fig. 6.19: The gate Hadamard on the second qubit in the 111Cd$^+$ ion trap optimized with five transitions. (a) Switching of population between the qubit states during the $\text{HAD}|00\rangle \rightarrow \frac{1}{\sqrt{2}}(|00\rangle + |01\rangle)e^{i\phi}$. (b) Switching of population between the qubit states during the $\text{HAD}|01\rangle \rightarrow \frac{1}{\sqrt{2}}(|00\rangle - |01\rangle)e^{i\phi}$. (c) The same during $\text{HAD}|10\rangle \rightarrow \frac{1}{\sqrt{2}}(|10\rangle + |11\rangle)e^{i\phi}$. (d) The same during $\text{HAD}|11\rangle \rightarrow \frac{1}{\sqrt{2}}(|10\rangle - |11\rangle)e^{i\phi}$. transformation.
The optimized pulse is presented in Fig. 6.18. The pulse is asymmetric and consists of three sub-pulses of slightly different amplitudes. Maximum amplitude of the field is about 1.3 mV/cm. Roles of these sub-pulses are revealed by analysis of state populations presented in Fig. 6.19. The first sub-pulse achieves a significant transfer of populations, creating a superposition state with probabilities close to the needed 50/50, while the second sub-pulse manipulates phases of the optimized transitions.

Fig. 6. 20: The gate Hadamard on the second qubit in the 111Cd$^+$ ion trap. Frames (e) and (f): Switching of population of states $|00\rangle$ and $|01\rangle$ during the

$$
\text{HAD} \frac{1}{2} (|00\rangle + |01\rangle + |10\rangle + |11\rangle) \rightarrow \frac{1}{\sqrt{2}} (|00\rangle + |10\rangle) e^{i\phi}.
$$

(g) Average transition probability. (h) Gate fidelity as functions of number of iterations.
(with only minor population transfer). Third sub-pulse finalizes the entire
transformation by minor transfer of remaining populations and fine phase correction.

Analysis of phase angle of the optimized transitions supports this conclusion: During
the first sub-pulse phases are not controlled at all. Second sub-pulse reduces phase
differences monotonically to only ~ 30-50°. Third sub-pulse reduces phase differences
to less than 4° at the end of the pulse.

Fourier analysis of the optimized pulse shows two spectral structures. First
structure in Fig 6.21 is in the $\omega/2\pi = 2.7$-to-3.0 MHz region (excitation of one
quantum in the second qubit). Here the $|0\rangle \leftrightarrow |1\rangle$ transition is clearly dominant, while

![Hadamard](image.png)

Fig. 6. 21: Fourier analysis of the pulse in Fig 6.18 for the gate Hadamard (lower
frequency part).
the $|1\rangle \leftrightarrow |2\rangle$ transition is significantly suppressed, consistent with low population of states $|02\rangle$ and $|12\rangle$ in Fig. 6.19. The second spectral structure in Fig. 6.22 is in the $\omega/2\pi = 54.8$-to-54.9 MHz region, which corresponds to excitation of one quantum of the first qubit. Transitions between $|0\rangle \leftrightarrow |1\rangle$, $|1\rangle \leftrightarrow |2\rangle$, $|3\rangle \leftrightarrow |4\rangle$ and $|4\rangle \leftrightarrow |5\rangle$ states of the first qubit are covered by the blue-side wing of this spectral structure. We tend to state that these transitions are partially resolved because they all have different intensities, due to slope of the wing and some minor oscillations of intensity.

Note that frequency components that control first qubit have not been observed in the optimized NOT and CNOT pulses discussed above. We found that

![Hadamard](image)

Fig. 6.22: Fourier analysis of the pulse in Fig 6.18 for the gate Hadamard (higher frequency part).
these frequencies appear only when we include fifth transition into the training set (e.g., Eq. (6.5.13)) in order to control phases of the optimized transitions. The pulses optimized for such truly coherent manipulations of the qubit states always contain frequency components for control of both qubits of the two-qubit system.

In Fig. 6.20 we can see that average probability P converges much faster than the fidelity F. After about one hundred iterations, probability in the backward and forward propagations already converge, while it takes almost one thousand iterations for the convergence of the fidelity. This is evidence that controlling the phase is more difficult than controlling only the state populations. The cumulative transition probability for this Hadamard gate is $P \sim 0.998$. Its fidelity is slightly lower, $F \sim 0.990$, due to small residual difference of phases ($\sim 4^\circ$).

6.6 Conclusions

In this chapter we carried out the first optimal control study of a system of multiple ions in an anharmonic linear trap. The method of encoding qubits into the quantized collective motional/vibrational states of the linear ion-string was proposed and explored computationally. The time-varying microwave fields were used to achieve adiabatic control over these states.

Although all ions are identical, the vibration modes of the ion-string are different and the qubits, encoded into these modes, are also different. Numerical
analysis of frequencies and anharmonicities of the vibration modes was used to identify modes most suitable for encoding qubits. It was shown that in a strongly anharmonic trap, obtained by combining a repulsive quadratic with an attractive quartic potentials, the center-of-mass motion mode is the most anharmonic. It is most suitable for encoding states of the target qubit. The control qubit can be encoded into a less anharmonic asymmetric stretching mode. The symmetric stretching mode remains dark.

Optimal control theory was used to derive pulses for a set of universal quantum gates. It was shown that if parameters of the pulse, such as pulse duration and maximum field amplitude, are carefully chosen the qubit transformations (gates) are accurate and the pulses are simple. Durations of the pulses obtained were in the 4 μs to 40 μs range. Amplitudes of the control fields were on the order of few mV/cm.

Only one set of parameters for the shape of the trap was considered in this paper. It seems feasible, however, to further increase anharmonicity of the vibrational spectrum of the system by changing parameters of the trapping potential. Higher anharmonicities, in turn, should simplify the control and allow deriving more accurate and shorter gate pulses. Exploring a system of more than three ions offers more opportunities. There may be more than one anharmonic mode that can be efficiently controlled and used for encoding qubits.
Chapter 7: Future research directions

In this dissertation, we studied two scaling methods for the adiabatic optimal control scheme and its applications in quantum computation. First method of scaling is to use more than one excited vibrational state (Chapter 3). But only if the anharmonicity is large enough, we may be able to access and control multiple excited vibrational states: $|0\rangle$, $|1\rangle$, $|2\rangle$, $|3\rangle$, etc. It would be interesting to repeat such optimization calculations for an even more anharmonic system with more than 16 states. For example, the 6-qubit system requires 2^6 states. Can we control such a system? It seems that the limit in this approach is due to complexity of the pulse. Thus, incorporation of the experimental constrains onto the pulse optimization instrumentation is desirable.

Note that the quantum circuit diagram shown in Fig. 3.3 represents a standard implementation of Shor’s algorithm, in which it is assumed from the beginning that registers of information are represented by qubits – the physically distinct two-state quantum objects. In our physical system (vibrational states of trapped ion) the two-state qubits do not really exist. Physically, we operate with information registers of arbitrary length: q-words rather than q-bits. It would be very interesting to employ a better use of q-words, than simply splitting them onto a number of two-state qubits. There may be a better way of formulating Shor’s algorithm using the language of q-
words. In particular, the inconveniences brought by the near-diagonal structure of the dipole-moment matrix could be minimized which, hopefully, could lead to simpler shaped and more accurate pulses. This interesting opportunity will be explored in the future.

The second method of scaling is to employ more than one ion. In Chapter 6, we presented an architecture for the two-qubit system based on a linear chain of three trapped ions in the inverted combined trap. If we want to control more than two qubits, four of more ions should be trapped and different qubits should be encoded into different normal vibration modes of the system. Bad news is that the symmetric stretching modes will always be dark (using the spatially homogeneous control field), but there will be more than one asymmetric stretching mode in the four-ion case. Also, the system of four trapped ions is totally different from the three-ion system. For three ions in the inverted combined trapping potential, the central ion sits on top of the hill

![Diagram](image)

Fig. 7.1: A four-ion string trapped in a flat anharmonic potential of the form

\[\frac{1}{2} \alpha k z^2 + \frac{1}{4!} \beta k' z^4 \]
(see Fig. 6.2). In the four-ion system: four ions sit over two wells symmetrically (see Fig. 7.1). One can expect that this system carries more anharmonicity, because no ions are located near the hill, where the PES is flat. Thus, it would be very interesting to study the four-ion system in the inverted combined potential in the future.

Note that the symmetric stretching mode is dark only in the case when a spatially homogeneous field is used, as assumed in this work. Creating a quadrupole potential would allow controlling the symmetric stretching mode too. This opportunity will be studied theoretically and computationally in the future work.

We have done some preliminary investigation related to trapping molecular ions, such as H_3O^+. In this case we could encode the quantum information into the motional energy levels like in this dissertation, but also into the inversion-rotation energy levels of each ion. It was found that the frequency of transitions between the inversions-rotation energy levels is four orders of magnitude higher than the frequency of transitions between the motional modes. It may be not straightforward to implement transitions within these two kinds of energy levels with single control pulse. But two or more consequent pulses may work, which gives us another interesting possibility for the future research.

[53] Nielsen, M. A.; Chuang, I. L., Quantum Computation and Quantum Information

062323.

Phys. 2007, 126, 244505.

2008, 128, 064110.

2006, 8, 35.

[61] www.quantumoptics.at

[62] Ostendorf, A.; Roth, B.; Lammerzahl, C.; Schiller, S., Poster : “Preparation and
Storage of Ultracold Complex Molecules” in Cold Molecules(CM), 2002.

[65] Schulz, S.; Poschinger, U.; Singer, K.; Schmidt-Kaler, F., Fortschr. Phys. 2006,
54, 648-665.

DSYEV from LAPACK is a software package provided by Univ. of Tennessee, Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd, 2006.
Appendix A

This code is written to diagonalize the Hamiltonian matrix of one 111Cd$^+$ ion in the anharmonic potential trap to obtain its eigenvalues (energies) and the eigenvectors (parameter matrix C in Sec. 2.2). Lines 1-24 of this code contain the definition of variables; Lines 26-59 are the input data and step size definition; Lines 61-149 describe the basis set expansion; Lines 151-166 define kinetic energy matrix and lines 168-185 are definition of potential energy matrix; Hamiltonian matrix is constructed in lines 187-210; DSYEV subroutine from ACML library is used in lines 212-226 for matrix diagonalization [101]; Lines 228-262 are the construction of wavefunctions of the system; Transition matrix is calculated in lines 264-286; Lines 288-300 are the subroutine NVJ which is used to calculate $j!$ of Eq. (2.2.5) and the subroutine OTHPL in lines 302-361 describe calculation of Hermite polynomials and their first derivatives [82]. In this program, during the numerical calculations for the spectrum of vibrational states, I used atomic units. It was transformed into the units of MHz at the end.
Program 1DIONTRAP
implicit real*8 (a-h,o-z)
integer mv,nz
real*8 towpi,autonm
parameter(mv=20,max=60)
parameter(nz=501)
parameter(twopi=6.28318530717959d0)
parameter(autonm=0.05291772d0)
character*1 UPLO, JOBZ
parameter(JOBZ ='V',UPLO ='U')
integer INFO
double precision EV(mv), WORK(3*mv-1), Hamil(mv,mv)
real*8 energy1,energy2,delta1,delta2
real*8 mass1,mu,n1,beta1,y1,sum
double precision z(nz),psi1(max,nz),psi2(max,nz),h(max),dh(max)
double precision psi(max,nz),psir(max,nz),psii(max,nz)
double precision norm1(max,max),norm2(max,max),norm3(max,max)
double precision norm(max,max),wavef(max,nz),dipole(max,max)
dimension v1(nz),v2(nz),p2s2m(nz)
real*8 dp,n,b
pi=acos(-1.d0)

ccc Parameters for Cd ion from experiment (in a.u.):
mass1=111.d0
mass1=mass1*1822.8885d0
mu=1.d0
w=2770.0*2*pi
delta=27.7*2*pi ! (unit = KHz = 3.33*10^-8 cm^-1)
delta1=15.0*2*pi
delta2=30.0*2*pi

w=w*3.33564d-8/219474.63d0
delta=delta*3.33564d-8/219474.63d0
delta1=delta1*3.33564d-8/219474.63d0
delta2=delta2*3.33564d-8/219474.63d0

ccc Definition of distance step:
zi=-650.d0
zf=650.d0
dz=(zf-zi)/(nz-1)
write(8,*) zi*autonm,zf*autonm,dz*autonm

do iz=1,nz
 z(iz)=zi+(iz-1)*dz
end do

open(100,file='uneigen.dat',status='unknown')
do i=0,mv-1
 energy1=w*(i+0.5d0)-delta1*(i+0.5d0)*(i+0.5d0)
 energy2=w*(i+0.5d0)-delta2*(i+0.5d0)*(i+0.5d0)
 energy1=energy1*219474.63*2.997924d4
 energy2=energy2*219474.63*2.997924d4
 write(100,*) energy1,energy2
end do

close(100)

ccc Hamonic parameters for mode 1 (in a.u.):
w01=w
dk1=dsqrt(mass1)*w01 ! dk = dsqrt(k)
betal=dsqrt(mass1)*dk1

ccc Basis functions for mode 1:
do iz=1,nz
 yl=dsqrt(betal)*z(iz)
iv=0
psil(iv+1,iz)=(beta1/pi)**0.25d0*dexp(-1*y1**2/2.d0)
ccc Call the subroutine which will give the value of Hermite:
call othpl(4,mv,y1,h,dh)
do iv=1,mv-1,1
 n=iv
call nvj(n,b)
n1=dsqrt(dsqrt(beta1/pi)/(2**n)/b)
 psil(iv+1,iz)=n1*h(iv+1)*exp(-1*y1**2/2.d0)
end do
ccc Normalization of wavefunctions for mode 1:
open(9,file='gp.dat',status='unknown')
do iv=1,mv
 sum=0.d0
do iz=1,nz
 sum=sum+psi1(iv,iz)**2
 end do
 sum=sum*dz
 write(9,10) sum
 do iz=1,nz
 psi1(iv,iz)=psi1(iv,iz)/dsqrt(sum)
 end do
end do
close(9)
ccc Calculation of second derivative of kinetic part:
do iz=1,nz
 y1=dsqrt(beta1)*z(iz)
call othpl(4,mv,y1,h,dh)
 G=exp(-1*y1**2/2.d0)
 G1=-1*beta1*z(iz)*exp(-1*y1**2/2.d0)
 G2=beta1*exp(-1*y1**2/2.d0)**(y1**2-1)
 iv=0
 psi(iv+1,iz)=dsqrt(dsqrt(beta1/pi))*G2
 do iv=1,mv-1
 n=iv
call nvj(n,b)
n1=dsqrt(dsqrt(beta1/pi)/(2**n)/b)
 H1=dsqrt(beta1)*dh(iv+1)
 H2=2*iv*dh(iv)*beta1
 psi(iv+1,iz)=n1*(G2*H1+G1*H2)
 end do
end do
ccc Test of orthonormality:
do iv=1,mv
do jv=1,mv
 sum=0.d0
 do iz=1,nz
 sum=sum+psi1(iv,iz)*psil(jv,iz)
 end do
 norm3(iv,jv)=sum*dz
end do
close(20)
end do
end do

do iv=1,mv
 do iz=1,nz
 psir(iv,iz)= -psi(iv,iz)/(2*mass1)
 end do
end do

open(30,file='seccawr.dat',status='unknown')
do iz=1,nz
 write(30,30) z(iz),(psir(iv,iz),iv=1,mv)
end do
close(30)

ccc Kinetic part for Hamitonian:
do iv=1,mv
 do jv=1,mv
 sum=0.d0
 do iz=1,nz
 sum=sum+psi1(iv,iz)*psir(jv,iz)
 end do
 norm1(iv,jv)=sum*dz
 end do
end do

open(35,file='kinetic.dat',status='unknown')
do iv=1,mv
 write(35,50) (norm1(iv,jv),jv=1,mv)
end do
close(35)

ccc Potential part for Hamitonian:
do iv=1,mv
 do jv=1,mv
 sum=0.d0
 do iz=1,nz
 v1(iz)=0.5d0*dk1**2*z(iz)**2+3.0d-6*dk1**2*z(iz)**4
 sum=sum+psi1(iv,iz)*v1(iz)*psir(jv,iz)
 end do
 norm2(iv,jv)=sum*dz
 end do
end do

open(40,file='potential.dat',status='unknown')
do iv=1,mv
 write(40,50) (norm2(iv,jv),jv=1,mv)
end do
close(40)

ccc Hamitonian matrix:
do iv=1,mv
 do jv=1,mv
 norm(iv,jv)=norm1(iv,jv)+norm2(iv,jv)
 end do
end do

open(50,file='Hamitonian.dat',status='unknown')
do iv=1,mv
 write(50,50) (norm(iv,jv),jv=1,mv)
end do
close(50)
do iv=1,mv
 do jv=1,mv
 Hamil(iv,jv)=0
 end do
end do
do iv=1,mv
 do jv=iv,mv
 Hamil(mv+iv-jv,jv)=norm(iv,jv)
 end do
end do

ccc Diagonalization of Hamiltonian Matrix:
call DSYEV(JOBZ, UPLO, mv, Hamil, mv, EV, WORK, $ 3*(mv)-1, INFO)

open(60,file='Eigenvalue.dat',status='unknown')
do iv=1,mv
 write(60,50) EV(iv)*219474.63*2.997924d4
end do
close(60)

open(70,file='Eigenvector.dat',status='unknown')
do iv=1,mv
 write(70,50) (Hamil(iv,jv),jv=1,mv)
end do
close(70)

ccc Wavefunctions of the system:
do iz=1,nz
 do jv=1,mv
 wavef(jv,iz)=0.d0
 do iv=1,mv
 wavef(jv,iz)=wavef(jv,iz)+Hamil(iv,jv)*psi1(iv,iz)
 end do
 end do
end do

open(80,file='wavef1.dat',status='unknown')
do iz=1,nz
 write(80,10) z(iz),(wavef(jv,iz),jv=1,mv)
end do
close(80)

do iz=1,nz
 do jv=1,mv
 if(jv.eq.2) then
 wavef(jv,iz)=-wavef(jv,iz)
 else if(jv.eq.12) then
 wavef(jv,iz)=-wavef(jv,iz)
 else if(jv.eq.16) then
 wavef(jv,iz)=-wavef(jv,iz)
 else
 wavef(jv,iz)=wavef(jv,iz)
 end if
 end do
end do

open(90,file='wavefunction.dat',status='unknown')
do iz=1,nz
 do jv=1,mv
 write(90,10) z(iz),(wavef(jv,iz),jv=1,mv)
 end do
end do

ccc Transition Matrix:
do iv=1,mv
 do jv=1,mv
 sum=0.d0
 do iz=1,nz
 sum=sum+wavef(iv,iz)*mu*z(iz)*wavef(jv,iz)
 end do
 dipole(iv,jv)=sum*dz
 end do
end do
open(100, file='transitiondipole.dat', status='unknown')
do iv=1,mv
 write(100,20) (dipole(iv,jv), jv=1,mv)
end do
close(100)

CCC FACTORIAL OF N
SUBROUTINE NVJ(M,A)
REAL*8 I,M,A
IF(M.EQ.0) THEN
 A=1.0
ELSE
 A=1.0
 DO I=1,M
 A=A*I
 END DO
END IF
END

SUBROUTINE OTHPL(KF,N,X,PL,DPL)
C ================================
C PURPOSE: COMPUTE ORTHOGONAL POLYNOMIALS: TN(X) OR UN(X),
C OR LN(X) OR HN(X), AND THEIR DERIVATIVES
C INPUT : KF --- FUNCTION CODE
C KF=1 FOR CHEBYSHEV POLYNOMIAL TN(X)
C KF=2 FOR CHEBYSHEV POLYNOMIAL UN(X)
C KF=3 FOR LAGUERRE POLYNOMIAL LN(X)
C KF=4 FOR HERMITE POLYNOMIAL HN(X)
C N --- ORDER OF ORTHOGONAL POLYNOMIALS
C X --- ARGUMENT OF ORTHOGONAL POLYNOMIALS
C OUTPUT: PL(N) --- TN(X) OR UN(X) OR LN(X) OR HN(X)
C DPL(N) --- TN'(X) OR UN'(X) OR LN'(X) OR HN'(X)
C IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION PL(0:N),DPL(0:N)
A=2.0D0
B=0.0D0
C=1.0D0
Y0=1.0D0
Y1=2.0D0*X
DY0=0.0D0
DY1=2.0D0
IF (KF.EQ.1) THEN
 Y1=X
 DY1=1.0D0
 PL(1)=X
 DPL(1)=1.0D0
ELSE IF (KF.EQ.3) THEN
 Y1=1.0D0-X
 DY1=-1.0D0
 PL(1)=1.0D0-X
 DPL(1)=-1.0D0
END IF
DO 10 K=2,N
 IF (KF.EQ.3) THEN
 A=-1.0D0/K
 B=2.0D0+A
 C=1.0D0+A
 ELSE IF (KF.EQ.4) THEN
 C=2.0D0*(K-1.0D0)
 END IF
 YN=(A*X+B)*Y1-C*Y0
 DYN=A*Y1+(A*X+B)*DY1-C*DY0
 PL(K)=YN
 DPL(K)=DYN
 Y0=Y1
 Y1=YN
 DY0=DY1
10 DY1=DYN
RETURN
END
Appendix B

This code is written to calculate the optimized control pulse, transition probability and fidelity during the control of quantum gates. Lines 1-42 of this code contain the definition of variables; Lines 43-55 are used to initialize Message Passing Interface (MPI) calculation; Lines 57-110 are the step size definition and input data; Lines 112-206 are used to restart this code; Lines 208-264 are the names of output files; Lines 266-291 are used to calculate the phase term during the propagation of the time-dependent wavefunction; Lines 293-333 are used to propagate the backward wavefunction; Lines 335-387 are used to calculate the probability and fidelity versus time for the last but one iteration (backward); Lines 389-432 are used to output backward probability and fidelity; Lines 434-572 are used for forward propagation; Lines 574-587 are used to create the file for restarting the code; Lines 589-694 are used to output the optimized control pulse, state-to-state transition probability and finalize MPI; Lines 696-708 define the guess field and lines 710-809 are used to calculate the control pulse; Coefficients of the time-dependent wavefunctions are calculated in lines 811-876; RK4 subroutine is used in lines 878-915 [80]. Note that the optimization code is parallelized using MPI to carry out N propagations of the Schrödinger equations using N different processors of the parallel computer.
program main
 c this code was extracted from timeprop.f. (1-dimension) (09/22/05)
c this code can be used for restart, which means when the code was running, the power was off, c then the code can be restarted from the checkpoint of restart file (refer to the Parameter file).
 implicit real*8 (a-h,o-z)
 include 'parameter.h'
c-------------------------------------
 real*8 mij(nv,nv),e(nv),tt
 common/hamiltonian/mij,e,amp,omega,tpulse,pi
c/iteration/iter,idir,it
 dimension c0(2*nv,nt+1),c1(2*nv,nt+1)
 dimension c0Re(2*nv,nt+1),c0Im(2*nv,nt+1)
 !real and imaginary part of the backward wavefunction including the phase.
 dimension c1Re(2*nv,nt+1),c1Im(2*nv,nt+1)
 !real and imaginary part of the forward wavefunction including the phase.
 common /wavefunct/c0,c1
 dimension field0(nt+1),field1(nt+1)
 common /field/ field0,field1
 dimension fbsinij(nv,nv,2*nt+1),fbcosij(nv,nv,2*nt+1)
 common/phase/fbsinij,fbcosij
 c-------------------------------------
 dimension cre(nv),cim(nv),dcdt(2*nv)
 dimension time(nt+1),time1(nt+1),time2(2*nt+1)
 dimension strtre(mv),strtim(mv),targre(mv),targim(mv)
 dimension FRE(mv),FIM(mv),fidelity1(nt+1),fidelity2(nt+1)
 dimension probability1(nt+1),probability2(nt+1)
 dimension back_re(mv,nt+1),back_sin(mv,nt+1)
 dimension forw_re(mv,nt+1),forw_im(mv,nt+1)
 dimension forw_cos(mv,nt+1),forw_sin(mv,nt+1)
 character*13 fileout
 character*19 filepop
 external derivs,field_gess,field_iter
 !------------------- MPI STAFF -------------------
 include 'mpif.h'
 integer rc,comm
 common/pedat/mype,npe,comm
 !-------------------
 mpi start:
call MPI_INIT(ierr)
call MPI_COMM_WORLD
 call MPI_COMM_RANK(comm,mype,ierr)
call MPI_COMM_SIZE(comm,npe,ierr)
write(6,*), 'mype=',mype,' npe=',npe
 call MPI_BARRIER(comm,ierr)
call mysecond(ts)
c Pulse parameters:
tpulse=tt/automisec ! (unit: atomic)
dt=tpulse/nt
do it=1,nt+1
time(it)=(it-1)*dt ! (unit: atomic)
time1(it)=(it-1)*dt*automisec ! (unit: microsec)
end do
do it=1,2*nt+1
time2(it)=(it-1)*dt/2.d0 ! (unit: atomic, for sin and cos function)
end do

pi=acos(-1.d0)
c Open and read in eigenvalues:
open(20, file='eigen.dat', status='old')
read(20,*) n_read
if (n_read.lt.nv) then
 print*, 'ERROR: Problem reading eigenvalues.dat'
 stop
end if

do iv=1,nv
 read(20,*) e(iv)
end do
close(20)
c Open and read in transition moments matrix:
open(30, file='dipol.dat', status='old')
read(30,*) n_read
if (n_read.lt.nv) then
 print*, 'ERROR: Problem reading matrix.dat'
 stop
end if

do iv=1,nv
 read(30,*) mij(iv,jv), jv=1,nv
end do
close(30)
c Open and read in starting and target qubit states:
fileout='transition_'
write (fileout(12:13), '(i2.2)') mype+1
open(40, file=fileout, status='old')
do l=1,mv
 read(40,*) strtre(l), strtim(l), targre(l), targim(l)
end do
close(40)
c RESTART:
if (restart) then
 filepop= 'restart_.dat'
 write (filepop(9:10), '(i2.2)') mype+1
 open(16, file=filepop, status='old', form='unformatted')
 read (16) iter
 read (16) (field1(it), it=1, nt+1)
 read (16) ((c1(j,it), j=1,2*nv), it=1, nt+1)
close(16)
fileout='iter_back_'
write (fileout(11:12), '(i2.2)') mype+1
open(19, file=fileout, status='unknown')
fileout='iter_forw_'
write (fileout(11:12), '(i2.2)') mype+1
open(20, file=fileout, status='unknown')
fileout='re_back_'
write (fileout(9:10), '(i2.2)') mype+1
open(21, file=fileout, status='unknown')
fileout='im_back_'
write (fileout(9:10), '(i2.2)') mype+1
open(22, file=fileout, status='unknown')

fileout='re_forw_'
write(fileout(9:10),'(i2.2)') mype+1
open(25, file=fileout, status='unknown')

fileout='im_forw_'
write(fileout(9:10),'(i2.2)') mype+1
open(26, file=fileout, status='unknown')

fileout='back_fidel_'
write(fileout(12:13),'(i2.2)') mype+1
open(23, file=fileout, status='unknown')

fileout='forw_fidel_'
write(fileout(12:13),'(i2.2)') mype+1
open(24, file=fileout, status='unknown')

fileout='back_aprob_'
write(fileout(12:13),'(i2.2)') mype+1
open(29, file=fileout, status='unknown')

fileout='forw_aprob_'
write(fileout(12:13),'(i2.2)') mype+1
open(31, file=fileout, status='unknown')

do j=0, (iter-1)/2
 read (23,*) iter, prob1
 read (24,*) iter, probab2
 read (29,*) iter, prob2
 read (31,*) iter, probab4
 read (19,*) iter, probab
 read (20,*) iter, probab
 read (21,*) iter, sum1
 read (22,*) iter, sum2
 read (25,*) iter, sum3
 read (26,*) iter, sum4
end do

do j=1, 2*nt+1
 do i=1, nv
 fbsinij(i,i,it)=0.d0
 fbcosij(i,i,it)=1.d0
 end do
end do

do j=1, nv-1
 do i=j+1, nv
 det=(e(i)-e(j))*time2(it)
 fbsinij(i,j,it)=sin(det)
 end do
end do

do j=2, nv
 do i=1, j-1
 fbsinij(i,j,it)=-fbsinij(j,i,it)
 end do
end do

go to 10
end if

c First start:

fileout='iter_back_'
write(fileout(11:12),'(i2.2)') mype+1
open(19,file=fileout,status='unknown')

fileout='iter_forw_'
write(fileout(11:12),'(i2.2)') mype+1
open(20,file=fileout,status='unknown')

fileout='re_back_'
write(fileout(9:10),'(i2.2)') mype+1
open(21,file=fileout,status='unknown')

fileout='im_back_'
write(fileout(9:10),'(i2.2)') mype+1
open(22,file=fileout,status='unknown')

fileout='re_forw_'
write(fileout(9:10),'(i2.2)') mype+1
open(25,file=fileout,status='unknown')

fileout='im_forw_'
write(fileout(9:10),'(i2.2)') mype+1
open(26,file=fileout,status='unknown')

fileout='ini_state_'
write(fileout(11:12),'(i2.2)') mype+1
open(27,file=fileout,status='unknown')

fileout='fin_state_'
write(fileout(11:12),'(i2.2)') mype+1
open(28,file=fileout,status='unknown')

fileout='back_fidel_'
write(fileout(12:13),'(i2.2)') mype+1
open(23,file=fileout,status='unknown')

fileout='forw_fidel_'
write(fileout(12:13),'(i2.2)') mype+1
open(24,file=fileout,status='unknown')

fileout='back_aprob_'
write(fileout(12:13),'(i2.2)') mype+1
open(29,file=fileout,status='unknown')

fileout='forw_aprob_'
write(fileout(12:13),'(i2.2)') mype+1
open(31,file=fileout,status='unknown')

do l=1,mv
write(27,*) strtre(l),strtim(l)
end do

do l=1,mv
write(28,*) targre(l),targim(l)
end do

c Sin and Cos of (Ei-Ej)*t, for Interaction Representation only (phase term in subroutine):

do it=1,2*nt+1

do i=1,nv
fbsinij(i,i,it)=0.d0
fbcosij(i,i,it)=1.d0
end do
end do

do j=1,nv-1
 do i=j+1,nv
 det=(e(i)-e(j))*time2(it)
 fbsinij(i,j,it)=sin(det)
 fbcosij(i,j,it)=cos(det)
 end do
end do

end do

do j=2,nv
 do i=1,j-1
 fbsinij(i,j,it)=-fbsinij(j,i,it)
 fbcosij(i,j,it)=fbcosij(j,i,it)
 end do
end do

end do

c ITERATIONS

iter=-1

10 continue

call MPI_BARRIER(comm,ierror)

c Iteration number:

iter=iter+1

c Set up target wavefunction:

do l=1,nv
 cre(l)=0.d0
 cim(l)=0.d0
end do

do l=1,mv
 cre(l)=targre(l)
 cim(l)=targim(l)
end do

c Set up real vector out of Cre & Cim:

do l=1,nv
 c0(l,nt+1)=cre(l)*cos(e(l)*tpulse)
 $ -cim(l)*sin(e(l)*tpulse)
 c0(nv+l,nt+1)=cre(l)*sin(e(l)*tpulse)
 $ +cim(l)*cos(e(l)*tpulse)
end do

c Backward propagation:

idir=-1

do it=nt+1,2,-1
 call derivs(time(it),c0(1,it),dcdt,0)
 call rk4(c0(1,it),dcdt,2*nv,time(it),-dt,
 $ c0(1,it-1),derivs)
end do

c -------prob and fidelity etc. versus time for the last
but one iteration

if(iter.eq.(niter-1)) then
 do it=1,nt+1
 sum1=0.d0
end do

sum2=0.d0
do l=1,mv
 sum1=sum1+strtre(l)*(c0(l,1)*cos(e(l)*time(1)))
 $ +c0(nv+l,1)*sin(e(l)*time(1)))
 sum2=sum2-strtim(l)*(c0(1,1)*cos(e(l)*time(1)))
 $ -c0(1,1)*sin(e(l)*time(1)))
end do
probab5=sum1**2+sum2**2

ccc Consider the fidelity.
call MPI_ALLREDUCE(sum1,sum5,1,MPI_DOUBLE_PRECISION,
$ MPI_SUM,comm,ierror)
call MPI_ALLREDUCE(sum2,sum6,1,MPI_DOUBLE_PRECISION,
$ MPI_SUM,comm,ierror)
call MPI_ALLREDUCE(probab5,probab6,1,MPI_DOUBLE_PRECISION,
$ MPI_SUM,comm,ierror)

fidelity1(it)=(sum5**2+sum6**2)/N**2
probability1(it)=probab6/N
end do

filepop=' _backfidprb_ '
write(filepop(1:5),'(i5.5)') iter
write(filepop(18:19),'(i2.2)') mype+1
open(130,file=filepop,status='unknown')
do it=1,nt+1,printstep
 write(130,100)
 timel(it),fidelity1(it),probability1(it),
 & (back_re(i,it),i=1,mv),(back_im(i,it),i=1,mv)
end do
close(130)
end if
c Output final overlap and energy of the field:

sum1=0.d0
sum2=0.d0

do l=1,mv
 sum1=sum1+strtre(l)*(c0(l,1)*cos(e(l)*time(1)))
 $ +c0(nv+l,1)*sin(e(l)*time(1)))
 sum2=sum2-strtim(l)*(c0(1,1)*cos(e(l)*time(1)))
 $ -c0(1,1)*sin(e(l)*time(1)))
end do
probab=sum1**2+sum2**2

write(19,50) iter, probab
write(21,50) iter,sum1
write(22,50) iter,sum2
call myflush(19)
call myflush(21)
call myflush(22)

print*, 'pe #', mytype, ' Iteration', iter, ' Transfer:', probab

call MPI_BARRIER(comm, ierror)

call MPI_ALLREDUCE(sum1, sum5, 1, MPI_DOUBLE_PRECISION, $ MPI_SUM, comm, ierror)
call MPI_ALLREDUCE(sum2, sum6, 1, MPI_DOUBLE_PRECISION, $ MPI_SUM, comm, ierror)
Call MPI_ALLREDUCE(prob)ab, probab1, 1,
$ MPI_DOUBLE_PRECISION, MPI_SUM, comm, ierror)

prob1=(sum5**2+sum6**2)/N**2
!backward fidelity
probab2=probab1/N
!backward average prob
write(23,50) iter, probab2
write(29,50) iter, probab2

c Call myflush(23)
call myflush(29)

c Iteration number:
iter=iter+1
c Set up initial wavefunction:
do l=1,nv
 cre(l)=0.d0
cim(l)=0.d0
end do
do l=1,mv
 cre(l)=strtre(l)
cim(l)=strtim(l)
end do
c Set up real vector(size ntot) out of Cre & Cim:
do l=1,nv
c1(l,1)=cre(l)
c1(nv+l,1)=cim(l)
end do
c Forward propagation:
idir=1
do it=1,nt
 call derivs(time(it),c1(1,it),dcdt,0)
call rk4(c1(1,it),dcdt,2*nv,time(it),dt, $ c1(1,it+1),derivs)
end do
c---------- prob and fidelity etc. versus time for the last iteration

if(iter.eq.niter) then
do it=1,nt+1
 sum3=0.d0
 sum4=0.d0
do l=1,mv
 sum3=sum3+targre(l)*(c1(l,1)*cos(e(l)*time(it)) $ +c1(nv+l,1)*sin(e(l)*time(it)))
$ +targim(l)*(c1(nv+l,1)*cos(e(l)*time(it)))
end do

Consider the fidelity.

```
call MPI_ALLREDUCE(sum3,sum7,1,MPI_DOUBLE_PRECISION,
                   MPI_SUM,comm,ierror)
call MPI_ALLREDUCE(sum4,sum8,1,MPI_DOUBLE_PRECISION,
                   MPI_SUM,comm,ierror)
call MPI_ALLREDUCE(prob7,prob8,1,
                   MPI_DOUBLE_PRECISION,MPI_SUM,comm,ierror)
```

```
fidelity2(it)=(sum7**2+sum8**2)/N**2
```

```
write(140,100)
time1(it),fidelity2(it),probability2(it),
& (forw_re(i,it),i=1,mv),(forw_im(i,it),i=1,mv)
end do
```

```
c c Output overlap and energy of the field:
```

```
sum3=0.d0
sum4=0.d0
do l=1,mv
  sum3=sum3+targre(l)*(c1(l,nt+1)*cos(e(l)*time(nt+1))
  $ +c1(nv+l,nt+1)*sin(e(l)*time(nt+1))
  $ +targim(l)*(c1(nv+l,nt+1)*cos(e(l)*time(nt+1))
  $ -c1(l,nt+1)*sin(e(l)*time(nt+1))
  $ +c1(nv+l,nt+1)*sin(e(l)*time(nt+1))
  $ +targre(l)*(c1(nv+l,nt+1)*cos(e(l)*time(nt+1))
  $ -c1(l,nt+1)*sin(e(l)*time(nt+1)))
FRE(l)=c1(l,nt+1)*cos(e(l)*time(nt+1))
  $ +c1(nv+l,nt+1)*sin(e(l)*time(nt+1))
  $ -c1(l,nt+1)*sin(e(l)*time(nt+1))
  $ +c1(nv+l,nt+1)*sin(e(l)*time(nt+1))
  $ +targre(l)*(c1(nv+l,nt+1)*cos(e(l)*time(nt+1))
  $ -c1(l,nt+1)*sin(e(l)*time(nt+1)))
FIM(l)=c1(nv+l,nt+1)*cos(e(l)*time(nt+1))
  $ -c1(l,nt+1)*sin(e(l)*time(nt+1))
  $ -c1(l,nt+1)*sin(e(l)*time(nt+1)))
fim(l)=c1(nv+l,nt+1)*cos(e(l)*time(nt+1))
  $ -c1(l,nt+1)*sin(e(l)*time(nt+1))
  $ -c1(l,nt+1)*sin(e(l)*time(nt+1)))
!real part of forward function at time T, which can be
output with iter vs. real value.
FRE(l)=c1(l,nt+1)*cos(e(l)*time(nt+1))
  $ +c1(nv+l,nt+1)*sin(e(l)*time(nt+1))
  $ -c1(l,nt+1)*sin(e(l)*time(nt+1))
  $ +c1(nv+l,nt+1)*sin(e(l)*time(nt+1))
  $ +targre(l)*(c1(nv+l,nt+1)*cos(e(l)*time(nt+1))
  $ -c1(l,nt+1)*sin(e(l)*time(nt+1)))
!imaginary part of forward function at time T, it was used
for checking the phase during coding.
end do
```

```
write(20,50) iter,probab
```

ccc Consider the fidelity.

call MPI_ALLREDUCE(sum3,sum7,1,MPI_DOUBLE_PRECISION,
$ MPI_SUM,comm,ierror)
call MPI_ALLREDUCE(sum4,sum8,1,MPI_DOUBLE_PRECISION,
$ MPI_SUM,comm,ierror)
call MPI_ALLREDUCE(probab,probab3,1,
$ MPI_DOUBLE_PRECISION,MPI_SUM,comm,ierror)

prob2=(sum7**2+sum8**2)/N**2 !forward fidelity
probab4=probab3/N !forward average probability

write(24,50) iter,prob2
write(31,50) iter,probab4

ccc Output field and states populations during the run:

if (iter.eq.niter) then
 c By one processor only:
 if (mype.eq.0) then
 fileout=' _fields'
 open(16, file=fileout, status='unknown', form='unformatted ')
 write (16) iter
 write (16) ((field1(it),it=1,nt+1)
 write (16) ((c1(j,it),j=1,2*nv),it=1,nt+1)
 close(16)
 end if
end if

ccc By each processor:

filepop=' _transf_'
write(filepop(1:5),'(i5.5)') iter
write(filepop(14:15),'(i2.2)') mype+1
open(17,file=filepop,status='unknown')
do it=1,nt+1,printstep
 sum3=0.d0
 sum4=0.d0
 do l=1,mv
 sum3=sum3+targre(l)*(c1(l,it)*cos(e(l)*time(it))
 $ +c1(nv+l,it)*sin(e(l)*time(it)))
 $ -c1(l,it)*sin(e(l)*time(it)))
 sum4=sum4+targim(l)*c1(l,it)*cos(e(l)*time(it))
 $ +c1(nv+l,it)*sin(e(l)*time(it)))
 $ -c1(l,it)*sin(e(l)*time(it)))
 end do
write(17,100) time1(it),sum3**2+sum4**2
end do
close(17)

filepop=' _populs_ '
write(filepop(1:5),'(i5.5)') iter
write(filepop(14:15),'(i2.2)') mype+1
open(18,file=filepop,status='unknown')
do it=1,nt+1,printstep
 sum9=0.d0
 sum10=0.d0
 do i=1,nv
 sum9=sum9+c0(i,it)**2+c0(nv+i,it)**2
 sum10=sum10+c1(i,it)**2+c1(nv+i,it)**2
 c0Re(i,it)=c0(i,it)*cos(e(i)*time(it))
 $ +c0(nv+i,it)*sin(e(i)*time(it))
 c0Im(i,it)=c0(nv+i,it)*cos(e(i)*time(it))
 $ -c0(i,it)*sin(e(i)*time(it))
 c1Re(i,it)=c1(i,it)*cos(e(i)*time(it))
 $ +c1(nv+i,it)*sin(e(i)*time(it))
 c1Im(i,it)=c1(nv+i,it)*cos(e(i)*time(it))
 $ -c1(i,it)*sin(e(i)*time(it))
 end do
write(18,100) time1(it),
 & (c0(i,it)**2+c0(nv+i,it)**2,i=1,nv),
 & (c1(i,it)**2+c1(nv+i,it)**2,i=1,nv),
 & (c0Re(i,it),c0Im(nv+i,it),i=1,nv),
 & (c1Re(i,it),c1Im(nv+i,it),i=1,nv),sum9,sum10
end do
close(18)
call MPI_BARRIER(comm,ierror)
end if

c Iterations:
if(iter.lt.niter) goto 10
call mysecond(tf)
write(6,*)'PE:',mype,' Exiting...to Barrier'
write(6,807)'Final CPU Time=',(tF-tS)/60.0d0,'(min)'
call MPI_BARRIER(comm,ierror)
call MPI_FINALIZE(rc)
end

c--
function field_gess(t)
 implicit real*8 (a-h,o-z)
 include 'parameter.h'
 real*8 mij(nv,nv),e(nv),guessf
 common /hamiltonian/mij,e,amp,omega,tpulse,pi
 amp=guessf/automvcm
 omega=abs(e(2)-e(1))
 field_gess=amp*sin(omega*t)
return
end

c--
function field_iter(c,t,point)
 implicit real*8 (a-h,o-z)
 include 'parameter.h'
 real*8 mij(nv,nv),e(nv)
common /hamiltonian/mij,e,amp,omega,tpulse,pi
dimension fbsinij(nv,nv,2*nt+1),fbcosij(nv,nv,2*nt+1)
common/phase/fbsinij,fbcosij
common /iteration/iterate,dir,nt
dimension c0(2*nv,nt+1),c1(2*nv,nt+1),c(2*nv),cpr(2*nv)
common /wavefunct/ c0,c1
real*8 Im0,Re0,ReCC,ImCC,ReM,ImM
integer point
c Coefficients from previous iteration:
select case(dir)
case(1)
 select case(point)
case(0)
 do l=1,2*nv
 cpr(l)=c0(l,nt)
 end do
 case(1)
 do l=1,2*nv
 cpr(l)=(c0(l,nt)+c0(l,nt+1))/2.d0
 if((nt.gt.1).and.(nt.lt.(nt-1))) then
 cpr(l)=cpr(l)-((c0(l,nt-1)-c0(l,nt)+c0(l,nt+1))/16.d0
 $end if
 end do
 end select
end case(1)
case(2)
 do l=1,2*nv
 cpr(l)=c0(l,nt+1)
 end do
end case(2)
case(3)
 do l=1,2*nv
 cpr(l)=c0(l,nt+1)
 end do
end case(3)
end select
end function field_iter
jt=2*it-1+point !forward segment number of fbsin and fbcos

case(-1)
 select case(point)
 case(0)
 do l=1,2*nv
 cpr(l)=c1(l,it)
 end do
 case(1)
 do l=1,2*nv
 cpr(l)=(c1(l,it)+c1(l,it-1))/2.d0
 if((it.gt.2).and.(it lt (nt+1))) then
 cpr(l)=cpr(l)-((c1(l,it+1)-c1(l,it)-c1(l,it-1))/16.d0)
 end if
 end do
 case(2)
 do l=1,2*nv
 cpr(l)=c1(l,it-1)
 end do
 end select

jt=2*it-1-point !backward segment number of fbsin and fbcos

end select

c Overlap <psi_pr|mu|psi>:

ReM=0.d0
ImM=0.d0

do i=1,nv
 do j=1,nv
 ReCC=c(i)*cpr(j)+c(nv+i)*cpr(nv+j)
 ImCC=c(nv+i)*cpr(j)-c(i)*cpr(nv+j)
 ReM=ReM+(ReCC*fbcosij(j,i,jt)-
 ImCC*fbsinij(j,i,jt))*mij(i,j)
 ImM=ImM+(ImCC*fbcosij(j,i,jt)+ReCC*fbsinij(j,i,jt))*mij(i,j)
 end do
end do

c Overlap <psi|psi_pr>:

Re0=0.d0
Im0=0.d0

do i=1,nv
 Re0=Re0+(c(i)*cpr(i)+c(nv+i)*cpr(nv+i))
 Im0=Im0+(c(i)*cpr(nv+i)-c(nv+i)*cpr(i))
end do

c Field Im(<psi|psi_pr><psi_pr|mu|psi>/idir is used to modify the equation for backward propagation,because c cpr is now backward wavefunction in this case.

field_iter=-idir*(Im0*ReM+Re0*ImM)
return
end

c-----------------------------
subroutine derivs(t,c,dcdt,point)
implicit real*8 (a-h,o-z)

include 'parameter.h'

real*8 mij(nv,nv),e(nv),alpha
c Laser field action (interaction representation):
select case (idir)
 case(1)
 jt=2*it-1+point
 case(-1)
 jt=2*it-1-point
end select
do j=1,nv
 sum_re=0.d0
 sum_im=0.d0
 do i=1,nv
 sum_re=sum_re+(c(i)*fbsinij(i,j,jt)
 -c(nv+i)*fbcosij(i,j,jt))*mij(i,j)
 sum_im=sum_im+(c(i)*fbcosij(i,j,jt)
 +c(nv+i)*fbsinij(i,j,jt))*mij(i,j)
 end do
 dcdt(j)=field*sum_re
 dcdt(nv+j)=field*sum_im
end do
return
end
c--
subroutine rk4(y,dydx,n,x,h,yout,derivs)
 implicit real*8 (a-h,o-z)
 dimension dydx(n),y(n),yout(n)
 external derivs
 parameter(nmax=80) !should be larger than 2*nv.
 dimension dym(nmax),dyt(nmax),yt(nmax)
 integer comm
hh = h * 0.5d0
h6 = h / 6.d0
xh = x + hh

 do i = 1, n !!! First step
 yt(i) = y(i) + hh * dydx(i)
 end do

call derivs(xh, yt, dyt, 1) !!! Second step

do i = 1, n
 yt(i) = y(i) + hh * dyt(i)
end do

call derivs(xh, yt, dym, 1) !!! Third step.

 do i = 1, n
 yt(i) = y(i) + dym(i)
 dym(i) = dyt(i) + dym(i)
 end do

call derivs(x + h, yt, dyt, 2) !!! Fourth step

 do i = 1, n
 yout(i) = y(i) + h6 * (dydx(i) + dyt(i) + 2.0d0 * dym(i))
 end do

return
end

c--
subroutine mysecond(t)
real*8 t
include 'mpif.h'

t = MPI_WTIME()
return
end

c--
subroutine myflush(iout)
integer iout
flush(iout)
return
end

c--
Appendix C

This code is written to carry out 1D FFT. Lines 1-17 of this code contain the definition of variables; Lines 19-34 are the input data and step size definition; Lines 36-64 describe the process of FFT; Lines 66-75 are used to output final data.
Program 1DFFT

implicit real*8 (a-h,o-z)
integer nt,nj,n,mj
real*8 towpi,pi,deltat,maxw,dw
parameter(nm=600001,mm=1,nt=(nm-1)/mm+1,nj=2)
parameter(mj=81,n=mj*nt,automhz=6579682606.6812d0)
parameter(pi=3.1415926535897932384d0,twopi=6.28318530717959d0)
Parameter(automvcm=5.14221d12,automisec=0.0242d9,st=100,stp=5)
integer INFO
double precision COMM(3*n+100),X(n,nj),time(nt),tim(nt)
double precision field0(nt),field1(nt),field2(nm),field3(nm)
double precision w((n-1)/2),amp((n-1)/2,nj),phi((n-1)/2,nj)
common /field/ amp,phi,X,w

open(5, file='04001fields', status='old')
do it=1,nm
read(5,*) tim(it),field2(it),field3(it)
end do
close(5)
do it=1,nt
 time(it)=tim((it-1)*mm+1)
 field0(it)=field2((it-1)*mm+1)
 field1(it)=field3((it-1)*mm+1)
end do
deltat=time(2)-time(1)
maxw=0.5d0/deltat/twopi
dw=maxw/((n-1)/2)-1.d0
write(12,*) maxw

open(6, file='fields.dat', status='unknown')
do it=1,nt
 write(6,100) time(it),field0(it),field1(it)
end do
close(6)
do i=1,nj
 do it=1,n
 X(it,i)=0.d0
 end do
end do
do it=1,(n-1)/2
 w(it)=(it-1)*dw
end do
call DZFFTM(nj, n, X, COMM, INFO)
do i=1,nj
 do it=1,(n-1)/2
 amp(it,i)=dsqrt(X(it+1,i)**2+X(n-it+1,i)**2)
 phi(it,i)=atan(X(n-it+1,i)/X(it+1,i))
 end do
end do
open(10, file='FastFourier.dat', status='unknown')
do it=1,2*nt,stp
 write(10,40) w(it),(amp(it,i),phi(it,i),i=1,nj)
end do
end do
close(10)

40 format(150(x,e24.16))
100 format(e16.8,100(x,e24.12))
End
Appendix D

This code is written to carry out 2D Fourier analysis. Lines 1-23 of this code contain the definition of variables; Lines 25-64 are the input data and step size definition; Lines 66-91 describe the process of 2D Fourier transform; Lines 93-123 are used to output final data.
Program 2DFT
implicit real*8 (a-h,o-z)
integer nt,nj,n,mj,ntst,nted,lgwd,alpha,cs,step,st,nop
real*8 towpi,pi,deltat,maxw,dw,dt
parameter(nm=600001,mm=200,nt=(nm-1)/mm+1,
 nj=501,mj=85,n=mj*nt)
Parameter(alpha=100,cs=80,st=200,stl=20,nop=1001)
parameter(pi=3.1415926535897932384d0,twopi=6.2831853071795
 9d0)
Parameter(automvcm=5.14221d12,automisec=0.0242d-9)
Parameter(automhz=6579682606.6812d0)
integer INFO
double precision tim(nm),field2(nm),field3(nm)
double precision COMM(3*n+100),X(n,nj),t(nop),gauss(nop)
double precision field0(nt),field1(nt),time(nt),time1(nj)
double precision w((n-1)/2),amp((n-1)/2,nj),
 phi((n-1)/2,nj)
common /field/ amp,phi,X
character*8 filedat
character*14 fileout
open(5,file='04001fields',status='old')
do it=1,nm
 read(5,*) tim(it),field2(it),field3(it)
end do
close(5)
do it=1,nt
 time(it)=tim((it-1)*mm+1)
 field0(it)=field2((it-1)*mm+1)
 field1(it)=field3((it-1)*mm+1)
end do
open(6,file='fieldsa.dat',status='unknown')
do it=1,nt
 write(6,100) time(it),field0(it),field1(it)
end do
close(6)
dt=cs/(nop-1)
do i=1,nop
 t(i)=(i-1)*dt
 gauss(i)=alpha*exp(-(t(i)-cs/2.d0)**2.0/2/cs**2)
end do
open(7,file='gaussian.dat',status='unknown')
do i=1,nop
 write(7,100) t(i),gauss(i)
end do
close(7)
deltat=time(2)-time(1)
maxw=0.5d0/deltat/twopi
dw=maxw/(((n-1)/2)-1.d0)
write(13,*) maxw

do it=1,(n-1)/2
 w(it)=(it-1)*dw
end do
step=(nt-1)/(nj-1)
do i=1,nj
 time1(i)=time((i-1)*step+1)
end do

X(it,i)=0.d0
end do

do it=((mj-1)/2)*nt+1,((mj+1)/2)*nt
X(it,i)=field1(it-nt*((mj-1)/2))
end do

ntst=((mj-1)/2)*nt+(i-1)*step+1
do it=1,n
X(it,i)=X(it,i)*alpha*exp(-(it-ntst)**2.d0/2/cs**2)
end do

call DZFFTM(i, n, X, COMM, INFO)

do it=1,(n-1)/2
amp(it,i)=dsqrt(X(it+1,i)**2+X(n-it+1,i)**2)
phi(it,i)=atan(X(n-it+1,i)/X(it+1,i))
end do

close(18)

open(19,file='FFT2D2a.dat',status='unknown')
write(19,50) (time1(i),i=1,nj)
do it=nt*23,nt*31,stl
write(19,50) w(it),(amp(it,i),i=1,nj)
end do
close(19)

open(20,file='FFT2D3a.dat',status='unknown')
write(20,50) (time1(i),i=1,nj)
do it=1,(n-1)/2,st
write(20,50) w(it),(log(amp(it,i)),i=1,nj)
end do
close(20)

239

50 format(1000(x,e21.13))
100 format(e16.8,100(x,e24.12))

End
Appendix E

This code is written to carry out minimization for two-ion system. Lines 1-6 of this code contain the definition of variables; Lines 8-29 are the definition of potential energy of the system; Lines 33-58 describe the process of minimization; Lines 60-63 are used to output final data.
Program 2DMIN
parameter(nz=2,niter=2000,z1g=-15000,z2g=15000)
Parameter(automhz=6579682606.6812d0, std=1.0d-8)
real*8 mass1,mu,w,w01,dk1,betal,V,V1,zd
double precision z(nz),sdz(nz),fdz(nz),minz(nz)
pi=acos(-1.d0)

c harmonic parameters for Cd ion (in a.u.):

mass1=111.d0
mass1=mass1*1822.8885d0
mu=1.d0
w=2770.0*2*pi
w=w*3.33564d-8/219474.63d0

c Hamonic parameters for mode 1 (in a.u.)
w01=w
dk1=dsqrt(mass1)*w01 !dk=dsqrt(k)
betal=dsqrt(mass1)*dk1

V=0.5*dk1**2*minz(1)**2+0.5*dk1**2*minz(nz)**2
$ +1/abs(minz(nz)-minz(1))
write(60,20) iter,V,minz(1),minz(nz)
end do

if(std.lt.zd) goto 10
write(50,20) iter,V,minz(1),minz(nz)
20 format(i6,10(x,e25.16))
end
Appendix F

This code is written to diagonalize the Hessian matrix for two-ion system.

Lines 1-10 of this code contain the definition of variables; Lines 12-35 are the input data; Lines 37-83 describe the construction of Hessian matrix; Lines 85-101 are used to diagonalize the Hessian matrix and output final data.
Program 2DHESSIAN
parameter(nz=2)
real*8 mass1,mu,w,w01,dk1,beta1
double precision
z(nz),m(nz,nz),V(nz,nz),F(nz,nz),sqrtm(nz,nz)
character*1 UPLO, JOBZ
double precision Eigenv(nz),WORK(3*nz-1)
integer INFO
pi=acos(-1.d0)
c harmonic parameters for Cd ion (in a.u.):
mass1=111.d0
mass1=mass1*1822.8885d0
mu=1.d0
w=2770.0*2*pi
w=w*3.33564d-8/219474.63d0
c Harmonic parameters for mode 1 (in a.u.)
w01=w
dk1=dsqrt(mass1)*w01 !dk=dsqrt(k)
betal=dsqrt(mass1)*dk1
c potential
open(100,file='equilibrium.dat',status='old')
read(100,*) (z(iz),iz=1,nz)
close(100)
do iz=1,nz
do ix=1, nz
if(ix.eq.iz) then
 m(iz,ix)=mass1
else
 m(iz,ix)=0
end if
diend do
do iz=1,nz
do ix=1, nz
if(ix.eq.iz) then
 sqrtm(iz,ix)=m(iz,ix)**(-0.5)
else
 sqrtm(iz,ix)=0
end if
diend do
do iz=1,nz
do ix=1, nz
if(ix.eq.iz) then
 V(iz,ix)=dk1**2+2/(z(nz)-z(1))**3
else
 V(iz,ix)=-2/(z(nz)-z(1))**3
end do
end if
end do
end do

do iz=1,nz
do ix=1,nz
 F(iz,ix)=V(iz,ix)/mass1
end do
end do

open(50,file='function.dat',status='unknown')
do iz=1,nz
 write(50,20) (F(iz,ix),ix=1,nz)
end do
close(50)

call DSYEV(JOBZ, UPLO, nz, F, nz, Eigenv, WORK, 3*nz-1,
 INFO)

open(10,file='Eigenvalue.dat',status='unknown')
do iz=1,nz
 write(10,20) Eigenv(iz)
end do
close(10)

open(20,file='Eigenvector.dat',status='unknown')
do iz=1,nz
 write(20,20) (F(iz,ix),ix=1,nz)
end do
close(20)

20 format(10(x,e25.16))
end
Appendix G

This code is written to diagonalize the Hamiltonian matrix of two 111Cd$^+$ ions in the harmonic potential trap to obtain its eigenvalues (energies) and the eigenvectors (parameter matrix C in Sec. 2.2). Lines 1-32 of this code contain the definition of variables; Lines 34-78 are the input data and step size definition; Lines 80-299 describe the basis set expansion based on two normal vibration modes; Lines 300-348 define kinetic energy matrix and lines 350-387 are definition of potential energy matrix; Hamiltonian matrix is constructed in lines 389-413; DSYEV subroutine from ACML library is used in lines 415-428 for matrix diagonalization [101]; Lines 430-539 are the construction of wavefunctions of the system; Transition matrix is calculated in lines 541-667; Lines 670-683 are the subroutine NVJ which is used to calculate j^1 of Eq. (2.2.5) and the subroutine OTHPL in lines 684-741 describe calculation of Hermite polynomials and their first derivatives [82]. In this program, during the numerical calculations for the spectrum of vibrational states, I used atomic units. It was transformed into the units of MHz at the end.
Program 2DIONTRAP

implicit real*8 (a-h,o-z)
integer mv,nz,mz,ciz1,ciz2,dz1,dz2
real*8 towpi,autonm
parameter(mv=15,max=60)
parameter(nz=101,mz=2,dz1=10,dz2=10)
parameter(twopi=6.28318530717959d0)
parameter(autonm=0.05291772d0)
Parameter(automhz=6579682606.6812d0)
character*1 UPLO, JOBZ
parameter(JOBZ ='V',UPLO ='U')
integer INFO
double precision EV(mv*mv),EZ(mv*mv,mv*mv),WORK(3*(mv*mv)-1)
real*8
mass1,mu,n,n1,n2,y1,y2,sum1,sum2,sum3,sum4,sum,G,G1,G2
real*8 alpha1,alpha2,dk1,w,w1,w2
double precision ek(mz),cz(mz),
z1(nz),z2(nz)
double precision psi1(mv,nz),psi2(mv,nz),h(max),dh(max)
double precision psi1r(mv,nz),psi2r(mv,nz),V(nz,nz)
double precision norm1(mv,mv),norm2(mv,mv)
double precision psiil(mv,nz),psi2l(mv,nz)
double precision bs1(mv*mv,nz,nz),bs2(mv*mv,nz,nz)
double precision bs3(mv*mv,nz,nz),wavef(mv*mv,nz,nz)
double precision hkl(mv*mv,mv*mv),hk2(mv*mv,mv*mv)
double precision KE(mv*mv,mv*mv),PE(mv*mv,mv*mv)
double precision Hamil(mv*mv,mv*mv),Hamil1(mv*mv,mv*mv)
double precision KE1(mv*mv,mv*mv),PE1(mv*mv,mv*mv)
double precision AEV(mv,mv),Eval(mv,mv),dipole(mv,mv,mv,mv)
pi=acos(-1.d0)
c harmonic parameters for Cd ion(in a.u.):

mass1=111.d0
mass1=mass1*1822.8885d0
mu=1.d0
w=2770.0*2*pi
w=w*3.33564d-8/219474.63d0
dk1=dsqrt(mass1)^w
 !dk=dsqrt(k)
open(5,file='Eigenvalue.dat',status='old')
do iz=1,mz
 read(5,*) ek(iz)
end do
close(5)
open(3,file='position.dat',status='old')
do iz=1,mz
 read(3,*) cz(iz)
end do
close(3)
do i=1,mv
 do j=1,mv
 AEV(i,j)=(i-0.5d0)*dsqrt(ek(1))+(j-0.5d0)*dsqrt(ek(mz))
 end do
end do
open(2,file='ApproEigen.dat',status='unknown')
do i=1,mv
 write(2,50) (AEV(i,j),j=1,mv)
end do
close(2)

Zmax=dz1*(nz-1)
zi=-Zmax/2
zf=Zmax/2

do iz1=1,nz
 z1(iz1)=zi+(iz1-1)*dz1
end do

do iz2=1,nz
 z2(iz2)=zi+(iz2-1)*dz2
end do

c Basis functions for mode 1 (in a.u.)
w1=dsqrt(ek(1))
alpha1=dsqrt(mass1*w1)
do iz1=1,nz
 y1=alpha1*z1(iz1)
 iv1=0
 psi1(iv1+1,iz1)=dsqrt(alpha1)/(pi**0.25d0)*dexp(-y1**2/2.d0)
end do

!!!!!!!! call the subroutine which will give the value
of Hermite.
call othpl(4,mv,y1,h,dh)
do iv1=1,mv-1,1
 n=iv1
 call nvj(n,b)
 n1=dsqrt(alpha1/dsqrt(pi)/(2**n)/b)
 psi1(iv1+1,iz1)=n1*h(iv1+1)*dexp(-y1**2/2.d0)
end do
end do

c Test of wavefunction
open(10,file='basisset1.dat',status='unknown')
do iz1=1,nz
 write(10,10) z1(iz1),(psi1(iv1,iz1),iv1=1,mv)
end do
close(10)

c Test of orthonormality:
do iv1=1,mv
 do jv1=1,mv
 suml=0.d0
 do iz1=1,nz
 suml=suml+psi1(iv1,iz1)*psi1(jv1,iz1)
 end do
 norm1(iv1,jv1)=suml*dz1
 end do
end do
open(20,file='matrix1.dat',status='unknown')
do iv1=1,mv
 write(20,20) (norm1(iv1,jv1),jv1=1,mv)
end do
close(20)
c Basis functions for mode 2 (in a.u.)

\[w_2 = \text{dsqrt}(ek(mz)) \]
\[\alpha_2 = \text{dsqrt}(\text{mass}_1 \times w_2 \times ek(1)/ek(mz)) \]

\hspace{1cm} c Harmonic wavefunctions for ion 2

\hspace{1cm} do iz2=1,nz

\hspace{1.5cm} y2 = \alpha_2 \times z2(iz2)

\hspace{1.5cm} iv2=0

\hspace{1.5cm} psi2(iv2+1,iz2) = \frac{\text{dsqrt}(\alpha_2)}{\pi^{0.25d0}} \times \text{dexp}(-y2**2/2.d0)

\hspace{1cm} !!!!!!!!! call the subroutine which will give the value of Hermite.

\hspace{1cm} call othpl(4,mv,y2,h,dh)

\hspace{1cm} do iv2=1,mv

\hspace{2.5cm} n=iv2

\hspace{2.5cm} call nvj(n,b)

\hspace{2.5cm} n2 = \text{dsqrt}(\alpha_2/\text{dsqrt}(\pi)/(2**n)/b)

\hspace{2.5cm} psi2(iv2+1,iz2) = n2 \times h(iv2+1) \times \text{dexp}(-y2**2/2.d0)

\hspace{1cm} end do

\hspace{1cm} end do

\hspace{1cm} cc Normalization of wavefunctions for mode 2.

\hspace{1cm} do iv2=1,mv

\hspace{2.5cm} sum2=0.d0

\hspace{2.5cm} do iz2=1,nz

\hspace{3.5cm} sum2=sum2+psi2(iv2,iz2)**2

\hspace{2.5cm} end do

\hspace{2.5cm} sum2=sum2*dz2

\hspace{2.5cm} psi2(iv2,iz2) = psi2(iv2,iz2)/dsqrt(sum2)

\hspace{1cm} end do

\hspace{1cm} end do

c Test of wavefunction

\hspace{1cm} open(30,file='basisset2.dat',status='unknown')

\hspace{1cm} do iz2=1,nz

\hspace{2.5cm} write(30,10) z2(iz2),(psi2(iv2,iz2),iv2=1,mv)

\hspace{1cm} end do

\hspace{1cm} close(30)

c Test of orthonormality:

\hspace{1cm} do iv2=1,mv

\hspace{2.5cm} do jv2=1,mv

\hspace{3.5cm} sum2=0.d0

\hspace{3.5cm} do iz2=1,nz

\hspace{4.5cm} sum2=sum2+psi2(iv2,iz2)*psi2(jv2,iz2)

\hspace{3.5cm} end do

\hspace{3.5cm} norm2(iv2,jv2)=sum2*dz2

\hspace{2.5cm} end do

\hspace{1cm} end do

\hspace{1cm} open(40,file='matrix2.dat',status='unknown')

\hspace{1cm} do iv2=1,mv

\hspace{2.5cm} write(40,20) (norm2(iv2,jv2),jv2=1,mv)

\hspace{1cm} end do

\hspace{1cm} close(40)

c calculate Hamiltonian

c second derivative of kinetic energy part for mode 1

\hspace{1cm} do iz1=1,nz

\hspace{2.5cm} y1 = \alpha_1 \times z1(iz1)

\hspace{2.5cm} call othpl(4,mv,y1,h,dh)
G = \exp\left(-1 \cdot y_1^* y_1^2 / 2.0 \right)

G1 = -1 \cdot \alpha_1^* z_1(iz1) \cdot \exp\left(-1 \cdot y_1^* y_1^2 / 2.0 \right)

G2 = \alpha_1^* \exp\left(-1 \cdot y_1^* y_1^2 / 2.0 \right) \cdot (y_1^* - 1)

iv1=0

psi11(iv1+1,iz1) = dsqrt(\alpha_1 / dsqrt(pi)) \cdot G2

do iv1=1,mv-1

n=iv1

call nvj(n,b)

n1 = dsqrt(\alpha_1 / dsqrt(pi) / (2**n) / b)

H1 = \alpha_1 \cdot dh(iv1+1)

H2 = 2 \cdot iv1 \cdot dh(iv1) \cdot \alpha_1^* \cdot 2

psi11(iv1+1,iz1) = n1 \cdot (G2 \cdot h(iv1+1) + 2 \cdot G1 \cdot H1 + G \cdot H2)

end do

end do

do iv1=1,mv

doz1=1,nz

psi1r(iv1,iz1) = -psi11(iv1,iz1) / 2.0 / mass1

do end do
c

 second derivative of first mode

open(50, file='secwavr1.dat', status='unknown')
do iz1=1,nz

write(50, 30) z1(iz1), (psi1r(iv1,iz1),iv1=1,mv)

end do

close(50)
c

 second derivative of kinetic energy part for mode 2

do iz2=1,nz

y2 = \alpha_2^* z2(iz2)
call othpl(4,mv,y2,h,dh)

G = \exp\left(-1 \cdot y_2^* y_2^2 / 2.0 \right)

G1 = -1 \cdot \alpha_2^* z2(iz2) \cdot \exp\left(-1 \cdot y_2^* y_2^2 / 2.0 \right)

G2 = \alpha_2^* \exp\left(-1 \cdot y_2^* y_2^2 / 2.0 \right) \cdot (y_2^* - 1)

iv2=0

psi22(iv2+1,iz2) = dsqrt(\alpha_2 / dsqrt(pi)) \cdot G2

do iv2=1,mv-1

n=iv2

call nvj(n,b)

n2 = dsqrt(\alpha_2 / dsqrt(pi) / (2**n) / b)

H1 = \alpha_2 \cdot dh(iv2+1)

H2 = 2 \cdot iv2 \cdot dh(iv2) \cdot \alpha_2^* \cdot 2

psi22(iv2+1,iz2) = n2 \cdot (G2 \cdot h(iv2+1) + 2 \cdot G1 \cdot H1 + G \cdot H2)

end do

end do

do iv2=1,mv

doz2=1,nz

psi2r(iv2,iz2) = -psi22(iv2,iz2) * ek(mz) / ek(1) / 2.0 / mass1

end do

end do
c

 second derivative of second mode

open(60, file='secwavr2.dat', status='unknown')
do iz2=1,nz

write(60, 30) z2(iz2), (psi2r(iv2,iz2),iv2=1,mv)

end do

close(60)
c

 basis set of the system

do iz1=1,nz

doy =1,mv

do iz1=1,nz
do iz2=1,nz
bs1((jv-1)*mv+iv,iz1,iz2)=psi1(iv,iz1)*psi2(jv,iz2)
end do
end do
end do
do iv=1,mv
do jv =1,mv
do iz1=1,nz
do iz2=1,nz
bs2((jv-1)*mv+iv,iz1,iz2)=psi1r(iv,iz1)*psi2(jv,iz2)
end do
end do
end do
do iv=1,mv
do jv =1,mv
do iz1=1,nz
do iz2=1,nz
bs3((jv-1)*mv+iv,iz1,iz2)=psi2r(jv,iz2)*psi1(iv,iz1)
end do
end do
end do

sum3=sum3+bs1(i,iz1,iz2)*bs2(j,iz1,iz2)
end do
end do
hk1(i,j)=sum3*dz1*dz2
end do
end do
do i=1,mv*mv
do j=1,mv*mv
sum3=0.d0
do iz1=1,nz
do iz2=1,nz
sum3=sum3+bs1(i,iz1,iz2)*bs3(j,iz1,iz2)
end do
end do
hk2(i,j)=sum3*dz1*dz2
end do
end do

do i=1,mv*mv
do j=1,mv*mv
KE(i,j)=hk1(i,j)+hk2(i,j)
end do
end do

open(70,file='kinetic.dat',status='unknown')
do i=1,mv*mv
write(70,50) (KE(i,j),j=1,mv*mv)
end do
close(70)
do i=1,mv*mv
do j=1,mv*mv
KE1(i,j)=KE(i,j)*automhz
end do
end do

open(700,file='kinetic1.dat',status='unknown')
do i=1,mv*mv
 write(700,50) (KE1(i,j),j=1,mv*mv)
end do
close(700)

c potential energy matrix
do i=1,mv*mv
 do j=1,mv*mv
 sum4=0.d0
 do iz1=1,nz
 do iz2=1,nz

 V(iz1,iz2)=0.5d0*dk1**2*z1(iz1)**2
 $ +0.5d0*dk1**2*z2(iz2)**2*ek(1)/ek(mz)$
 $ +dk1**2*z2(iz2)*cz(mz)-cz(1))
 $ +1/abs(dsqrt(2.0d0*ek(1)/ek(mz)))$
 $ *z2(iz2)+cz(mz)-cz(1))$
 $ +0.5d0*dk1**2*cz(mz)**2-0.5d0*dk1**2*cz(1)**2$
 $ -0.5d0*dk1**2*cz(mz)**2-0.5d0*dk1**2*cz(1)**2$
 sum4=sum4+bs1(i,iz1,iz2)*V(iz1,iz2)*bs1(j,iz1,iz2)
 end do
 end do
 PE(i,j)=sum4*dz1*dz2
 end do
end do

open(80,file='potential.dat',status='unknown')
do i=1,mv*mv
 write(80,50) (PE(i,j),j=1,mv*mv)
end do
close(80)

do i=1,mv*mv
 do j=1,mv*mv
 PE1(i,j)=PE(i,j)*automhz
 end do
end do

open(800,file='potential1.dat',status='unknown')
do i=1,mv*mv
 write(800,50) (PE1(i,j),j=1,mv*mv)
end do
close(800)

c Hamiltonian matrix

do i=1,mv*mv
 do j=1,mv*mv
 Hamil(i,j)=KE(i,j)+PE(i,j)
 end do
end do

open(90,file='Hamitonian.dat',status='unknown')
do i=1,mv*mv
 write(90,50) (Hamil(i,j),j=1,mv*mv)
end do
close(90)

do i=1,mv*mv
 do j=1,mv*mv
 Hamil1(i,j)=Hamil(i,j)*automhz
 end do
end do
open(900,file='Hamitonian1.dat',status='unknown')
do i=1,mv*mv
 write(900,50) (Hamil1(i,j),j=1,mv*mv)
end do
close(900)
call DSYEV(JOBZ, UPLO, mv*mv, Hamil, mv*mv, EV, WORK, $ 3*(mv*mv)-1, INFO)
open(100,file='Eigen.dat',status='unknown')
do i=1,mv*mv
 write(100,50) EV(i)*automhz
end do
close(100)
open(110,file='Eigenvector.dat',status='unknown')
do i=1,mv*mv
 write(110,50) (Hamil(i,j),j=1,mv*mv)
end do
close(110)
do iz1=1,nz
 do iz2=1,nz
 do j=1,mv*mv
 sum=0.d0
 do i=1,mv*mv
 sum=sum+Hamil(i,j)*bs1(i,iz1,iz2)
 end do
 wavef(j,iz1,iz2)=sum
 end do
 end do
end do
c Output of wavefunctions
open(120,file='wavefunction00.dat',status='unknown')
write(120,50) (z1(iz1),iz1=1,nz)
do i=1,1
 do iz2=1,nz
 write(120,50) z2(iz2),(wavef(i,iz1,iz2),iz1=1,nz)
 end do
end do
close(120)
open(121,file='wavefunction10.dat',status='unknown')
write(121,50) (z1(iz1),iz1=1,nz)
do i=2,2
 do iz2=1,nz
 write(121,50) z2(iz2),(wavef(i,iz1,iz2),iz1=1,nz)
 end do
end do
close(121)
open(122,file='wavefunction01.dat',status='unknown')
write(122,50) (z1(iz1),iz1=1,nz)
do i=3,3
 do iz2=1,nz
 write(122,50) z2(iz2),(wavef(i,iz1,iz2),iz1=1,nz)
 end do
end do
close(122)
open(123,file='wavefunction20.dat',status='unknown')
write(123,50) (z1(iz1),iz1=1,nz)
do i=4,4
 do iz2=1,nz
 write(123,50) z2(iz2),(wavef(i,iz1,iz2),iz1=1,nz)
 end do
end do
close(123)

open(124,file='wavefunction30.dat',status='unknown')
write(124,50) (z1(iz1),iz1=1,nz)
do i=6,6
 do iz2=1,nz
 write(124,50) z2(iz2), (wavef(i,iz1,iz2),iz1=1,nz)
 end do
end do
close(124)

open(125,file='wavefunction02.dat',status='unknown')
write(125,50) (z1(iz1),iz1=1,nz)
do iz2=1,nz
 do i=7,7
 write(125,50) z2(iz2), (wavef(i,iz1,iz2),iz1=1,nz)
 end do
end do
close(125)

open(126,file='wavefunction40.dat',status='unknown')
write(126,50) (z1(iz1),iz1=1,nz)
do iz2=1,nz
 do i=9,9
 write(126,50) z2(iz2), (wavef(i,iz1,iz2),iz1=1,nz)
 end do
end do
close(126)

open(127,file='wavefunction50.dat',status='unknown')
write(127,50) (z1(iz1),iz1=1,nz)
do iz2=1,nz
 do i=12,12
 write(127,50) z2(iz2), (wavef(i,iz1,iz2),iz1=1,nz)
 end do
end do
close(127)

open(128,file='wavefunction03.dat',status='unknown')
write(128,50) (z1(iz1),iz1=1,nz)
do iz2=1,nz
 do i=13,13
 write(128,50) z2(iz2), (wavef(i,iz1,iz2),iz1=1,nz)
 end do
end do
close(128)

open(129,file='wavefunction60.dat',status='unknown')
write(129,50) (z1(iz1),iz1=1,nz)
do iz2=1,nz
 do i=16,16
 write(129,50) z2(iz2), (wavef(i,iz1,iz2),iz1=1,nz)
 end do
end do
close(129)

open(130,file='wavefunction04.dat',status='unknown')
write(130,50) (z1(iz1),iz1=1,nz)
do iz2=1,nz
 do i=20,20
 write(130,50) z2(iz2), (wavef(i,iz1,iz2),iz1=1,nz)
 end do
end do
close(130)

open(131,file='wavefunction05.dat',status='unknown')
write(131,50) (z1(iz1),iz1=1,nz)
do iz2=1,nz
do i=29,29
 write(131,50) z2(iz2),(wavef(i,iz1,iz2),iz1=1,nz)
end do
end do
close(131)

open(132,file='wavefunction06.dat',status='unknown')
write(132,50) (z1(iz1),iz1=1,nz)
do iz2=1,nz
 do i=40,40
 write(132,50) z2(iz2),(wavef(i,iz1,iz2),iz1=1,nz)
 end do
end do
close(132)

open(133,file='wavefunction11.dat',status='unknown')
write(133,50) (z1(iz1),iz1=1,nz)
do iz2=1,nz
 do i=5,5
 write(133,50) z2(iz2),(wavef(i,iz1,iz2),iz1=1,nz)
 end do
end do
close(133)

open(134,file='wavefunction12.dat',status='unknown')
write(134,50) (z1(iz1),iz1=1,nz)
do iz2=1,nz
 do i=10,10
 write(134,50) z2(iz2),(wavef(i,iz1,iz2),iz1=1,nz)
 end do
end do
close(134)

open(135,file='wavefunction13.dat',status='unknown')
write(135,50) (z1(iz1),iz1=1,nz)
do iz2=1,nz
 do i=17,17
 write(135,50) z2(iz2),(wavef(i,iz1,iz2),iz1=1,nz)
 end do
end do
close(135)

open(136,file='wavefunction21.dat',status='unknown')
write(136,50) (z1(iz1),iz1=1,nz)
do iz2=1,nz
 do i=8,8
 write(136,50) z2(iz2),(wavef(i,iz1,iz2),iz1=1,nz)
 end do
end do
close(136)

open(137,file='wavefunction22.dat',status='unknown')
write(137,50) (z1(iz1),iz1=1,nz)
do iz2=1,nz
 do i=14,14
 write(137,50) z2(iz2),(wavef(i,iz1,iz2),iz1=1,nz)
 end do
end do
close(137)

open(138,file='wavefunction23.dat',status='unknown')
write(138,50) (z1(iz1),iz1=1,nz)
do iz2=1,nz
 do i=22,22
 write(138,50) z2(iz2),(wavef(i,iz1,iz2),iz1=1,nz)
 end do
end do
close(138)
open(139, file='wavefunction31.dat', status='unknown')
write(139, 50) (z1(iz1), iz1=1, nz)
do iz2=1, nz
 do i=11, 11
 write(139, 50) z2(iz2), (wavef(i, iz1, iz2), iz1=1, nz)
 end do
end do
close(139)

open(140, file='wavefunction32.dat', status='unknown')
write(140, 50) (z1(iz1), iz1=1, nz)
do iz2=1, nz
 do i=18, 18
 write(140, 50) z2(iz2), (wavef(i, iz1, iz2), iz1=1, nz)
 end do
end do
close(140)

open(141, file='wavefunction33.dat', status='unknown')
write(141, 50) (z1(iz1), iz1=1, nz)
do iz2=1, nz
 do i=27, 27
 write(141, 50) z2(iz2), (wavef(i, iz1, iz2), iz1=1, nz)
 end do
end do
close(141)

do iz2=1, nz
 sum=sum+wavef(i, iz1, iz2)*mu*(-dsqrt(2/mass1)*z1(iz1))
 *wavef(j, iz1, iz2)
 end do
end do
dipole(i, j)=sum*dz1*dz2
end do
end do

open(200, file='transitiondipole.dat', status='unknown')
do i=1, mv*mv
 write(200, 20) (dipole(i, j), j=1, mv*mv)
end do
close(200)

10 format(e24.16, 150(x, f24.16))
20 format(150(x, e24.16))
30 format(e24.16, 150(x, f24.16))
40 format(150(x, e24.16))
50 format(550(x, e24.16))
End

c ---
SUBROUTINE NVJ(M, A)
REAL*8 I, M, A

IF(M.EQ.0) THEN
 A=1.0
ELSE
 A=1.0
 DO I=1, M
 A=A*I
 END DO
END
SUBROUTINE OTHPL(KF, N, X, PL, DPL)
C
PURPOSE: COMPUTE ORTHOGONAL POLYNOMIALS: TN(X) OR UN(X),
OR LN(X) OR HN(X), AND THEIR DERIVATIVES
C
INPUT:
KF --- FUNCTION CODE
C
KF=1 FOR CHEBYSHEV POLYNOMIAL TN(X)
C
KF=2 FOR CHEBYSHEV POLYNOMIAL UN(X)
C
KF=3 FOR LAGUERRE POLYNOMIAL LN(X)
C
KF=4 FOR HERMITE POLYNOMIAL HN(X)
C
N --- ORDER OF ORTHOGONAL POLYNOMIALS
C
X --- ARGUMENT OF ORTHOGONAL POLYNOMIALS
C
OUTPUT:
PL(N) --- TN(X) OR UN(X) OR LN(X) OR HN(X)
C
DPL(N) --- TN'(X) OR UN'(X) OR LN'(X) OR HN'(X)
C
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
C
DIMENSION PL(0:N), DPL(0:N)
A=2.0D0
B=0.0D0
C=1.0D0
Y0=1.0D0
Y1=2.0D0*X
DY0=0.0D0
DY1=2.0D0
PL(0)=1.0D0
PL(1)=2.0D0*X
DPL(0)=0.0D0
DPL(1)=2.0D0
IF (KF.EQ.1) THEN
Y1=X
DY1=1.0D0
PL(1)=X
DPL(1)=1.0D0
ELSE IF (KF.EQ.3) THEN
Y1=1.0D0-X
DY1=-1.0D0
PL(1)=1.0D0-X
DPL(1)=-1.0D0
END IF
DO 10 K=2,N
IF (KF.EQ.3) THEN
A=-1.0D0/K
B=2.0D0+A
C=1.0D0+A
ELSE IF (KF.EQ.4) THEN
C=2.0D0*(K-1.0D0)
END IF
YN=(A*X+B)*Y1-C*Y0
DYN=A*Y1+(A*X+B)*DY1-C*DY0
PL(K)=YN
DPL(K)=DYN
Y0=Y1
Y1=YN
DY0=DY1
10
DY1=DYN
RETURN
END
Appendix H

This code is written to carry out minimization for three-ion system. Lines 1-7 of this code contain the definition of variables; Lines 9-34 are the definition of potential energy of the system; Lines 36-80 describe the process of minimization; Lines 82-93 are used to output final data.
Program 3DMIN

Real*8 automhz, std

parameter(nz=3, z1g=-15000, z2g=-20, z3g=15000)

Parameter (automhz=6579682606.6812d0, std=2.4d-8)

real*8 mass1, mu, w01, dk1, V1, zd

double precision z(nz), sdz(nz), fdz(nz), minz(nz), V, V1

p1=acos(-1.d0)

c harmonic parameters for Cd ion (in a.u.):

mass1=111.d0
mass1=mass1*1822.8885d0
mu=1.d0
w=2770.0*2*pi
w=w*3.33564d-8/219474.63d0
w01=w
dk1=dsqrt(mass1)*w01

!!dk=dsqrt(k)

dl=(1/mass1/(w01**2))**((1.d0/3.d0)

x1=(-1)*((5.d0/4.d0)**(1.d0/3.d0)*dl

x2=0.d0*dl

x3=5.d0/4.d0)**(1.d0/3.d0)*dl

c potential

z(1)=z1g
z(2)=z2g
z(nz)=z3g

iter=0

V1=0.5*dk1**2*minz(1)**2+0.5*dk1**2*minz(2)**2
$ +0.5*dk1**2*minz(nz)**2
$ +1/abs(z(2)-z(1)) +1/abs(z(nz)-z(1)) +1/abs(z(nz)-z(2))

write(10,20) iter, V1, z(1), z(2), z(nz)

open(60, file='potential.dat', status='unknown')

10 continue

iter=iter+1

sdz(1)=dk1**2+2/(z(2)-z(1))**3+2/(z(nz)-z(1))**3
sdz(2)=dk1**2+2/(z(2)-z(1))**3+2/(z(nz)-z(2))**3
sdz(nz)=dk1**2+2/(z(nz)-z(1))**3+2/(z(nz)-z(2))**3

do iz=1, nz

write(20, *) sdz(iz)

end do

fdz(1)=dk1**2*z(1)+1/(z(2)-z(1))**2+1/(z(nz)-z(1))**2
fdz(2)=dk1**2*z(2)-1/(z(2)-z(1))**2+1/(z(nz)-z(2))**2
fdz(nz)=dk1**2*z(nz)-1/(z(nz)-z(1))**2-1/(z(nz)-z(2))**2

do iz=1, nz

write(30, *) fdz(iz)

end do

do iz=1, nz

minz(iz)=z(iz)-fdz(iz)/sdz(iz)

write(40, *) minz(iz)

end do

V=0.5*dk1**2*z(1)**2+0.5*dk1**2*z(2)**2
$ +0.5*dk1**2*z(nz)**2
$ +1/abs(z(2)-z(1)) +1/abs(z(nz)-z(1)) +1/abs(z(nz)-z(2))

write(60, 20) iter, V1, V1*automhz, minz(1), minz(2), minz(nz)

V=0.5*dk1**2*z(1)**2+0.5*dk1**2*z(2)**2
$ +0.5*dk1**2*z(nz)**2
$ +1/abs(z(2)-z(1)) +1/abs(z(nz)-z(1)) +1/abs(z(nz)-z(2))
Zd=abs(minz(2)-z(2))
z(1)=minz(1)
z(2)=minz(2)
z(nz)=minz(nz)

if(Zd.gt.std) goto 10
close(60)

write(50,20) iter,V,minz(1),minz(2),minz(nz)

open(70,file='equilibrium.dat',status='unknown')
do iz=1,nz
 write(70,30) z(iz)
end do
close(70)

write(80,30) x1,x2,x3
20 format(i6,10(x,e25.16))
30 format(10(x,e25.16))
end
Appendix I

This code is written to diagonalize the Hessian matrix for three-ion system.

Lines 1-10 of this code contain the definition of variables; Lines 12-26 are the input data; Lines 28-80 describe the construction of Hessian matrix; Lines 82-98 are used to diagonalize the Hessian matrix and output final data.
Program 3DHESSIAN
parameter(nz=3)
real*8 mass1,mu,w,w01,dk
double precision
z(nz),m(nz,nz),V(nz,nz),F(nz,nz),sqrtm(nz,nz)
character*1 UPLO, JOBZ
parameter(JOBZ = 'V', UPLO = 'U')
double precision Eigenv(nz), WORK(3*nz-1)
integer INFO
pi=acos(-1.d0)

character*100

mass1=111.d0
mass1=mass1*1822.8885d0
mu=1.d0
w=2770.0*2*pi
w=w*3.33564d-8/219474.63d0
w01=w

dk1=dsqrt(mass1)*w01 !dk=dsqrt(k)

c harmonic parameters for Cd ion(in a.u.):
mass1=111.d0
mu=1.d0
w=2770.0*2*pi
w=w*3.33564d-8/219474.63d0
w01=w

open(100,file='equilibrium.dat',status='old')
do iz=1,nz
read(100,20) z(iz)
end do
close(100)

do iz=1,nz
 do ix=1,nz
 if(ix.eq.iz) then
 m(iz,ix)=mass1
 else
 m(iz,ix)=0
 end if
 end do
end do

do iz=1,nz
 do ix=1,nz
 if(ix.eq.iz) then
 sqrtm(iz,ix)=m(iz,ix)**(-0.5)
 else
 sqrtm(iz,ix)=0
 end if
 end do
end do

open(40,file='mass.dat',status='unknown')
do iz=1,nz
 do ix=iz+1,nz
 V(iz,ix)=-2/(z(ix)-z(iz))**3
 end do
end do

end do
end do

end do
end do

end do
end do

end do

end do

end do

end do
end do

end do
end do

end do
end do

open(40,file='mass.dat',status='unknown')
do iz=1,nz
 do ix=iz+1,nz
 V(iz,ix)=-2/(z(ix)-z(iz))**3
 end do
end do

end do
end do

end do
end do

V(1,1)=dk1**2+2/(z(2)-z(1))**3+2/(z(nz)-z(1))**3
V(2,2)=dk1**2+2/(z(2)-z(1))**3+2/(z(nz)-z(2))**3
V(nz,nz)=dk1**2+2/(z(nz)-z(1))**3+2/(z(nz)-z(2))**3
do iz=1,nz
 do ix=1,nz
 F(iz,ix)=V(iz,ix)/mass1
 end do
end do

open(50,file='function.dat',status='unknown')
do iz=1,nz
 write(50,20) (F(iz,ix),ix=1,nz)
end do
close(50)
call DSYEV(JOBZ, UPLO, nz, F, nz, Eigenv, WORK, 3*nz-1, INFO)

open(10,file='Eigenvalue.dat',status='unknown')
do iz=1,nz
 write(10,20) Eigenv(iz)
end do
close(10)

open(20,file='Eigenvector.dat',status='unknown')
do iz=1,nz
 write(20,20) (F(iz,ix),ix=1,nz)
end do
close(20)

20 format(10(x,e25.16))
end
Appendix J

This code is written to diagonalize the Hamiltonian matrix of three 111Cd$^+$ ions in the harmonic potential trap to obtain its eigenvalues (energies) and the eigenvectors (parameter matrix C in Sec. 2.2). Lines 1-35 of this code contain the definition of variables; Lines 37-98 are the input data and step size definition; Lines 100-322 describe the basis set expansion based on three normal vibration modes; Lines 324-447 are used to construct kinetic energy matrix, potential energy matrix and Hamiltonian matrix; DSYEV subroutine from ACML library is used in lines 449-473 for matrix diagonalization [101]; Lines 475-486 are the subroutine NVJ which is used to calculate $j!$ of Eq. (2.2.5) and the subroutine OTHPL in lines 488-544 describe calculation of Hermite polynomials and their first derivatives [82]. In this program, during the numerical calculations for the spectrum of vibrational states, I used atomic units. It was transformed into the units of MHz at the end.
Program 3DIONTRAP
implicit real*8 (a-h,o-z)
integer mv,nz,mz,dz1,dz2,dz3
real*8 towpi,autonm
parameter(mv=15,max=60)
parameter(nz=121,mz=3,dz1=10,dz2=10,dz3=10)
parameter(twopi=6.28318530717959d0)
parameter(autonm=0.05291772d0)
Parameter(automhz=6579682606.6812d0)
character*1 UPLO, JOBZ
parameter(JOBZ ="V",UPLO ='U')
integer INFO
double precision EV(mv**3),EZ(mv**3,mv**3),WORK(3*(mv**3)-1)
real*8 mass1,mu,dk1,b,n,n1,n2,n3,y1,y2,y3
real*8 commt1,commt2,commte1,commte2,commter2
real*8 dd,comm1,comm2,comm3
real*8 alpha1,alpha2,alpha3,sum1,sum2,sum3,sum4,sum5,sum
real*8
w,w1,w2,w3,deter,deter1,deter2,deter3,G,G1,G2,za1,za2,za3
double precision ek(mz),cz(mz),z1(nz),z2(nz),z3(nz)
double precision psi1(mv,nz),psi2(mv,nz),psi3(mv,nz)
double precision ke(mv*mv*mv,mv*mv*mv),pe(mv*mv*mv,mv*mv*mv)
double precision aev(mv,mv,mv),V(nz,nz,nz)
double precision am(mz,mz)
pi=acos(-1.d0)

c harmonic parameters for Cd ion(in a.u.):
call mysecond(ts)
mass1=111.d0
mass1=mass1*1822.8885d0
mu=1.d0
w=2770.0*2*pi
w=w*3.33564d-8/219474.63d0
dk1=dsqrt(mass1)*w !dk=dsqrt(k)
open(5,file='Eigenvalue.dat',status='old')
do iz=1,mz
read(5,*) ek(iz)
end do
close(5)
open(4,file='Eigenvector.dat',status='old')
do iz1=1,mz
read(4,*) (am(iz1,iz2),iz2=1,mz)
end do
close(4)
open(3,file='position.dat',status='old')
do iz=1,mz
read(3,*) cz(iz)
end do
close(3)
do i=1,mv
do j=1,mv
do k=1,mv
AEV(i,j,k)=(i-0.5d0)*dsqrt(ek(i))
$ + (j-0.5d0)*dsqrt(ek(2))
$ + (k-0.5d0)*dsqrt(ek(mz))
AEV(i,j,k)=AEV(i,j,k)*automhz
end do
end do
end do

open(2,file='ApproEigen.dat',status='unknown')
do i=1,mv
do j=1,mv
 write(2,50) (AEV(i,j,k),k=1,mv)
end do
end do
close(2)

Zmax=dz1*(nz-1)
zi=-Zmax/2
zf=Zmax/2

do iz1=1,nz
 z1(iz1)=zi+(iz1-1)*dz1
end do

do iz2=1,nz
 z2(iz2)=zi+(iz2-1)*dz2
end do

do iz3=1,nz
 z3(iz3)=zi+(iz3-1)*dz3
end do

c Basis functions for mode 1 (in a.u.)

w1=dsqrt(ek(1))
alpha1=dsqrt(mass1*w1)
c Harmonic wavefunctions for ion 1

w1=dsqrt(ek(1))
alpha1=dsqrt(mass1*w1)
c Harmonic wavefunctions for ion 1

do iz1=1,nz
 y1=alpha1*z1(iz1)
 ivl=0

 psil(ivl+1,iz1)=dsqrt(alpha1)/(pi**0.25d0)
 !$
 *dexp(-y1**2/2.d0)
 $!!!!!!! call the subroutine which will give the value
 of Hermite.
 call othpl(4,mv,y1,h,dh)
do ivl=1,mv-1
 n=ivl
 call nvj(n,b)
 n1=dsqrt(alpha1/dsqrtpi)/(2**(n+1)/b)
 psil(ivl+1,iz1)=n1*h(ivl+1)*dexp(-y1**2/2.d0)
end do
end do

c Normalization of wavefunctions for mode 1.
do ivl=1,mv
 sum1=0.d0
 do iz1=1,nz
 sum1=sum1+psi1(ivl,iz1)**2
 end do
 sum1=sum1*dz1
 do iz1=1,nz
 psi1(ivl,iz1)=psi1(ivl,iz1)/dsqrt(sum1)
 end do
end do

c Test of wavefunction

open(10,file='basisset1.dat',status='unknown')
do izl=1,nz
 write(10,10) z1(iz1),(psi1(ivl,iz1),ivl=1,mv)
end do
c Basis functions for mode 2 (in a.u.)

\[
w_2 = \sqrt{2 \varepsilon_k(2)}
\]
\[
\alpha_2 = \sqrt{\frac{\text{mass}_1 w_2 \varepsilon_k(1)}{\varepsilon_k(2)}}
\]
\[
do \text{iz} = 1, n_z
\]
\[
y_2 = \alpha_2 z_2(iz)
\]
\[
iv = 0
\]
\[
\psi_2(iv+1,iz) = \frac{\sqrt{\alpha_2}}{\pi^{0.25d0}} \exp(-y_2^2/2.d0)
\]

$ \text{call the subroutine which will give the value of Hermite.}$

\[
call \text{othpl}(4,mv,y_2,h,dh)
\]
\[
do iv = 1,mv-1,1
\]
\[
n = iv
\]
\[
call \text{nvj}(n,b)
\]
\[
n = \sqrt{\frac{\alpha_2}{\sqrt{\pi}}/\left(2**n/b\right)}
\]
\[
\psi_2(iv+1,iz) = n \cdot h(iv+1) \cdot \exp(-y_2^2/2.d0)
\]
\end{do}
\end do

cc Normalization of wavefunctions for mode 2.

\[
do iv = 1,mv
\]
\[
sum = 0.d0
\]
\[
do iz = 1,n_z
\]
\[
sum = sum + \psi_2(iv,iz)^2
\]
\end do

\[
sum = sum * dz
\]
\[
do iz = 1,n_z
\]
\[
\psi_2(iv,iz) = \frac{\psi_2(iv,iz)}{\sqrt{sum}}
\]
\end do

cc Test of wavefunction

\[
\text{open(30,file='basisset2.dat',status='unknown')}
\]
\[
do iz = 1,n_z
\]
\[
write(30,10) z_2(iz), (psi_2(iv,iz), iv = 1,mv)
\]
\end do

\[
close(30)
\]

\[
c Basis functions for mode 3 (in a.u.)
\]
\[
w_3 = \sqrt{2 \varepsilon_k(m_z)}
\]
\[
\alpha_3 = \sqrt{\frac{\text{mass}_1 w_3 \varepsilon_k(1)}{\varepsilon_k(m_z)}}
\]
\[
c \text{Hamonic wavefunctions for ion 3}
\]
\[
do iz = 1,n_z
\]
\[
y_3 = \alpha_3 z_3(iz)
\]
\[
iv = 0
\]
\[
\psi_3(iv+1,iz) = \frac{\sqrt{\alpha_3}}{\pi^{0.25d0}} \exp(-y_3^2/2.d0)
\]

$ \text{call the subroutine which will give the value of Hermite.}$

\[
call \text{othpl}(4,mv,y_3,h,dh)
\]
\[
do iv = 1,mv-1,1
\]
\[
n = iv
\]
\[
call \text{nvj}(n,b)
\]
\[
n = \sqrt{\frac{\alpha_3}{\sqrt{\pi}}/\left(2**n/b\right)}
\]
\[
\psi_3(iv+1,iz) = n \cdot h(iv+1) \cdot \exp(-y_3^2/2.d0)
\]
\end do
\end do

cc Normalization of wavefunctions for mode 3.

\[
do iv = 1,mv
\]
\[
sum = 0.d0
\]
\[
do iz = 1,n_z
\]
\[
sum = sum + \psi_3(iv,iz)^2
\]
\end do

cc Normalization of wavefunctions for mode 3.

\[
do iv = 1,mv
\]
\[
sum = 0.d0
\]
\[
do iz = 1,n_z
\]
\[
sum = sum + \psi_3(iv,iz)^2
\]
\end do
end do
sum3=sum3*dz3
do iz3=1,nz
 psi3(iv3,iz3)=psi3(iv3,iz3)/dsqrt(sum3)
end do
end do
c Test of wavefunction
open(50,file='basisset3.dat',status='unknown')
do iz3=1,nz
 write(50,10) z3(iz3),(psi3(iv3,iz3),iv3=1,mv)
end do
close(50)
c calculation of Hamitonian

c Second direvative of kinetic energy part for mode 1

do iz1=1,nz
 y1=alpha1*z1(iz1)
call othpl(4,mv,y1,h,dh)
G=exp(-1*y1**2/2.d0)
G1=-1*alpha1**2*z1(iz1)*exp(-1*y1**2/2.d0)
G2=alpha1**2*exp(-1*y1**2/2.d0)*(y1**2-1)
ivl=0
psi11(iv1+1,iz1)=dsqrt(alpha1/dsqrt(pi))*G2
do iv1=1,mv-1
 n=ivl
call nvj(n,b)
n1=dsqrt(alpha1/dsqrt(pi))/(2**n)/b)
H1=alpha1*dh(ivl+1)
H2=2*ivl*dh(ivl)*alpha1**2
psi11(iv1+1,iz1)=n1*(G2*h(ivl+1)+2*G1*H1+G*H2)
end do
end do

end do

do ivl=1,mv
 do iz1=1,nz
 psi1r(iv1,iz1)=-psi11(iv1,iz1)/2.d0/mass1
end do
end do
c Second direvative of first mode
open(70,file='secwavrl.dat',status='unknown')
do iz1=1,nz
 write(70,30) z1(iz1),(psi1r(iv1,iz1),iv1=1,mv)
end do
close(70)
c Second direvative of kinetic energy part for mode 2

do iz2=1,nz
 y2=alpha2*z2(iz2)
call othpl(4,mv,y2,h,dh)
G=exp(-1*y2**2/2.d0)
G1=-1*alpha2**2*z2(iz2)*exp(-1*y2**2/2.d0)
G2=alpha2**2*exp(-1*y2**2/2.d0)*(y2**2-1)
iv2=0
psi22(iv2+1,iz2)=dsqrt(alpha2/dsqrt(pi))*G2
do iv2=1,mv-1
 n=iv2
call nvj(n,b)
n2=dsqrt(alpha2/dsqrt(pi))/(2**n)/b)
H1=alpha2*dh(iv2+1)
H2=2*iv2*dh(iv2)*alpha2**2
psi22(iv2+1,iz2)=n2*(G2*h(iv2+1)+2*G1*H1+G*H2)
end do
end do
do iv2=1,mv
do iz2=1,nz
 psi2r(iv2,iz2)=-psi22(iv2,iz2)*ek(2)/ek(1)/2.d0/mass1
end do
end do

c second derivative of second mode
open(80,file='secwavr2.dat',status='unknown')
do iz2=1,nz
 write(80,30) z2(iz2),(psi2r(iv2,iz2),iv2=1,mv)
end do
close(80)

c Second direvative of kinetic energy part for mode 3
do iz3=1,nz
 y3=alpha3*z3(iz3)
call othpl(4,mv,y3,h,dh)
 G=exp(-1*y3**2/2.d0)
 G1=-1*alpha3**2*z3(iz3)*exp(-1*y3**2/2.d0)
 G2=alpha3**2*exp(-1*y3**2/2.d0)*(y3**2-1)
 iv3=0
 psi33(iv3+1,iz3)=dsqrt(alpha3/dsqrt(pi))*G2
 do iv3=1,mv-1
 n=iv3
call nvj(n,b)
 n3=dsqrt(alpha3/dsqrt(pi))/(2**n)/b)
 H1=alpha3*h(iv3+1)
 H2=2*iv3*h(iv3)*alpha3**2
 psi33(iv3+1,iz3)=n3*(G2*h(iv3+1)+2*G1*H1+G*H2)
end do
end do
do iv3=1,mv
do iz3=1,nz
 psi3r(iv3,iz3)=-psi33(iv3,iz3)*ek(mz)/ek(1)/2.d0/mass1
end do
end do

c second derivative of third mode
open(90,file='secwavr3.dat',status='unknown')
do iz3=1,nz
 write(90,30) z3(iz3),(psi3r(iv3,iz3),iv3=1,mv)
end do
close(90)
c Calculation for elements of Hamiltonian matrix
do iz1=1,nz
do iz2=1,nz
do iz3=1,nz
 za1=am(1,1)*z1(iz1)+am(1,2)*z2(iz2)*dsqrt(ek(1)/ek(2))
$+am(1,3)*z3(iz3)*dsqrt(ek(1)/ek(mz))$
za2=am(2,1)*z1(iz1)+am(2,2)*z2(iz2)*dsqrt(ek(1)/ek(2))
$+am(2,3)*z3(iz3)*dsqrt(ek(1)/ek(mz))$
za3=am(3,1)*z1(iz1)+am(3,2)*z2(iz2)*dsqrt(ek(1)/ek(2))
$+am(3,3)*z3(iz3)*dsqrt(ek(1)/ek(mz))$
V(iz1,iz2,iz3)=
$0.5d0*dk1**2*(za1+cz(1))**2$
$+0.5d0*dk1**2*(za2+cz(2))**2$
$+0.5d0*dk1**2*(za3+cz(mz))**2$
$+1/abs((za2-za1)+(cz(2)-cz(1)))$
$+1/abs((za3-za1)+(cz(mz)-cz(1)))$
$+1/abs((za3-za2)+(cz(mz)-cz(2)))$
$-0.5d0*dk1**2*cz(1)**2$
$-0.5d0*dk1**2*cz(2)**2$
$-0.5d0*dk1**2*cz(mz)**2-1/abs(cz(2)-cz(1))$
dd=dz1*dz2*dz3

do iv=1,mv
 call mysecond(tf)
 open(6,file='cputime.dat',status='unknown')
 write(6,807) 'CPU Time= ',(tF-tS)/3600.0d0,' (hour)'
 do jv=1,mv
 do kv=1,mv
 write(200,70) iv,jv,kv
 call flush(200)
 end do
 end do
end do

sum5=sum5+comm3*V(iz1,iz2,iz3)
end do

KE((kv-1)*mv**2+(jv-1)*mv+(kv1-1)*mv**2+(jv1-1)*mv+iv1)=sum4*dd

PE((kv-1)*mv**2+(jv-1)*mv+(kv1-1)*mv**2+(jv1-1)*mv+iv1)=sum5*dd
end do
end do
end do
end do
end do

close(6)
c kinetic part for Hamiltonian
open(100,file='kinetic.dat',status='unknown',recl=74250)
do i=1,mv**3
 write(100,50) (KE(i,j),j=1,mv**3)
end do
close(100)

open(101,file='kinetic1.dat',status='unknown',recl=74250)
do i=1,mv**3
 write(101,50) (KE(i,j)*automhz,j=1,mv**3)
end do
close(101)
c potential part for Hamiltonian
open(110,file='potential.dat',status='unknown',recl=74250)
do i=1,mv**3
 write(110,50) (PE(i,j),j=1,mv**3)
end do
close(110)

open(111,file='potential1.dat',status='unknown',recl=74250)
do i=1,mv**3
 write(111,50) (PE(i,j)*automhz,j=1,mv**3)
end do
close(111)
c Hamiltonian matrix
do i=1,mv**3
do j=1,mv**3
 Hamil(i,j)=KE(i,j)+PE(i,j)
end do
close(120)

open(120,file='Hamitonian.dat',status='unknown',recl=74250)
do i=1,mv**3
 write(120,50) (Hamil(i,j),j=1,mv**3)
end do
close(120)

open(121,file='Hamitonian1.dat',status='unknown',recl=74250)
do i=1,mv**3
 write(121,50) (Hamil(i,j)*automhz,j=1,mv**3)
end do
close(121)
call DSYEV(JOBZ, UPLO, mv**3, Hamil, mv**3, EV, WORK,$ 3*(mv**3)-1, INFO)
open(130,file='Eigen.dat',status='unknown')
do i=1,mv**3
 write(130,60) EV(i)*automhz
end do
close(130)

open(140,file='EigenvectorOfHami.dat',status='unknown',recl=74250)
do i=1,mv**3
 write(140,50) (Hamil(i,j),j=1,mv**3)
end do
close(140)

10 format(e24.16,150(x,f24.16))
20 format(150(x,e24.16))
30 format(e24.16,150(x,f24.16))
40 format(150(x,e24.16))
50 format(3375(x,e21.13))
60 format(400(x,e24.16))
70 format(200(x,i4))
807 format(a20,f7.2,2x,a8)
End
SUBROUTINE NVJ(M,A)
REAL*8 I,M,A
IF(M.EQ.0) THEN
 A=1.0
ELSE
 A=1.0
 DO I=1,M
 A=A*I
 END
SUBROUTINE OTHPL(KF,N,X,PL,DPL)
C
====================
==============
==============
C PURPOSE: COMPUTE ORTHOGONAL POLYNOMIALS: TN(X) OR UN(X),
C OR LN(X) OR HN(X), AND THEIR DERIVATIVES
C INPUT : KF --- FUNCTION CODE
C KF=1 FOR CHEBYSHEV POLYNOMIAL TN(X)
C KF=2 FOR CHEBYSHEV POLYNOMIAL UN(X)
C KF=3 FOR LAGUERRE POLYNOMIAL LN(X)
C KF=4 FOR HERMITE POLYNOMIAL HN(X)
C N --- ORDER OF ORTHOGONAL POLYNOMIALS
C X --- ARGUMENT OF ORTHOGONAL POLYNOMIALS
C OUTPUT: PL(N) --- TN(X) OR UN(X) OR LN(X) OR HN(X)
C DPL(N)--- TN'(X) OR UN'(X) OR LN'(X) OR HN'(X)
C
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION PL(0:N),DPL(0:N)
A=2.0D0
B=0.0D0
C=1.0D0
Y0=1.0D0
Y1=2.0D0*X
DY0=0.0D0
DY1=2.0D0
PL(0)=1.0D0
PL(1)=2.0D0*X
DPL(0)=0.0D0
DPL(1)=2.0D0
IF (KF.EQ.1) THEN
 Y1=X
 DY1=1.0D0
 PL(1)=X
 DPL(1)=1.0D0
ELSE IF (KF.EQ.3) THEN
 Y1=1.0D0-X
 DY1=-1.0D0
 PL(1)=1.0D0-X
 DPL(1)=-1.0D0
END IF
DO 10 K=2,N
 IF (KF.EQ.3) THEN
 A=-1.0D0/K
 B=2.0D0+A
 C=1.0D0+A
 ELSE IF (KF.EQ.4) THEN
 C=2.0D0*(K-1.0D0)
 END IF
 YN=(A*X+B)*Y1-C*Y0
 DYN=A*Y1+(A*X+B)*DY1-C*DY0
 PL(K)=YN
 DPL(K)=DYN
 Y0=Y1
 Y1=YN
 DY0=DY1
10 DY1=DYN
RETURN
END
C====================
====================
Appendix K

During our work, the main difficulty that we faced was the increase in the computer time for the calculation of the eigenvalues and eigenvectors of the system.

For example, when we do calculation in one ion system with 15 basis functions, we need to diagonalize a 15×15 matrix and it takes only about 1 minute for calculation. If we come to the three ion system with $N = 15$, we have to deal with a very large matrix with the size $15^3 \times 15^3$. Now it takes more than 48 hours to finish the calculation, which exceeds the limit of computational time for one processor in Jacquard from NERSC. So it is necessary for us to find out a way to optimize our program and save the computer time.

Here, we try to parallelize our code (in Appendix I) with Message Passing Interface (MPI) method [94, 95]. In the MPI programming, we split our original serial code into several parallel parts which are arranged to different processors from the computer system for calculation. Different processors will run their own calculation separately and finally all the results from different processors are collected and transferred to the processor 0 (the first processor, we can transfer the final data to any processor we like) for the final data output. If $N = 15$ in our work, we need to request for 16 processors from Jacquard Linux System. One processor is for the calculation of kinetic energy matrix and the other 15 processors are used to calculate
potential energy matrix. During the calculation of potential energy matrix, because the matrix is symmetric, we only need to calculate the upper triangular matrix. To make sure the time consuming of every processor are almost the same, we arrange these 15 processors to do the calculation like this: processor 1 calculate matrix elements of columns 1, 16, 31, ..., processor 2 for columns 2, 17, 32, ..., data from all these 15 processors are added up with the internal command of MPI program in NERSC to finalize the potential energy matrix. After the MPI programming is applied, it reduces about 90% extra computational time.

This code is written to diagonalize the Hamiltonian matrix of three \(^{111}\text{Cd}^+ \) ions in the harmonic potential trap to obtain its eigenvalues (energies) and the eigenvectors (parameter matrix \(\mathbf{C} \) in Sec. 2.2), where MPI programming is applied. Lines 1-39 of this code contain the definition of variables; Lines 41-58 are used to initialize Message Passing Interface (MPI) calculation; Lines 60-120 are the input data and step size definition; Lines 122-348 describe the basis set expansion based on three normal vibration modes; Lines 350-467 are used to construct kinetic energy matrix, potential energy matrix and Hamiltonian matrix; DSYEV subroutine from ACML library is used in lines 469-493 for matrix diagonalization and MPI finalization [101]; Lines 495-504 are the subroutine NVJ which is used to calculate \(j! \) of Eq. (2.2.5) and the subroutine OTHPL in lines 506-579 describe calculation of Hermite polynomials and
their first derivatives [82]. In this program, during the numerical calculations for the
spectrum of vibrational states, I used atomic units. It was transformed into the units of
MHz at the end.
Program MPI3DIONTRAP

implicit real*8 (a-h,o-z)
integer mv,nz,mz,dz1,dz2,dz3
real*8 towpi,autonm,pi
parameter(mv=15,max=60)
parameter(nz=121,mz=3,dz1=10,dz2=10,dz3=10)
parameter(pi=3.1415926535897932384d0,twopi=6.283185307179
59d0)
parameter(autonm=0.05291772d0)
Parameter(automhz=6579682606.6812d0)
character*1 UPLO, JOBZ
current*10 filetime
parameter(JOBZ = 'V',UPLO = 'U')
integer INFO

double precision
EV(mv**3),EZ(mv**3,mv**3),WORK(3*(mv**3)-1)

real*8 mass1,mu,dk1,n1,n2,n3,y1,y2,y3
real*8 comm1,comm2,comm1e,comm2e,commter2
real*8 dd,comm1,comm2,comm3
real*8 alphal, alpha2, alpha3, sum1, sum2, sum3, sum4, sum5, sum6, sum

real*8 w,w1,w2,w3,deter,deter1,deter2,deter3,G,G1,G2,za1,za2,za3
double precision ek(mz),cz(mz),zl(nz),z2(nz),z3(nz)
double precision psi1(mv,nz),psi2(mv,nz),psi3(mv,nz)
double precision h(max),dh(max)
double precision psi1r(mv,nz),psi2r(mv,nz),psi3r(mv,nz)
double precision psi1l(mv,nz),psi22(mv,nz),psi33(mv,nz)
double precision
KE(mv*mv*mv,mv*mv*mv),PE(mv*mv*mv,mv*mv*mv)
double precision KE1(mv*mv*mv,mv*mv*mv),PE1(mv*mv*mv,mv*mv*mv)
double precision Hamil(mv**3,mv**3)

double precision AEV(mv,mv,mv),V(nz,nz,nz)
double precision am(mz,mz)

!---------------------- MPI STAFF ----------------------!
include 'mpif.h'
integer ierror,comm,rc
common/pedat/mye,npe,comm
!
---------------------- MPI start:----------------------!
call MPI_INIT(ierr)
comm=MPI_COMM_WORLD
call MPI_COMM_RANK(comm,mype,ierr)
call MPI_COMM_SIZE(comm,npe,ierr)
print *,
'mype=',mype,' npe=',npe
if (npe.ne.mv+1) then
 print *, 'processor # is wrong'
 stop
end if

c harmonic parameters for Cd ion(in a.u.):
call mysecod(ts)

mass1=111.d0
mass1=mass1*1822.8885d0
mu=1.d0
w=2770.0*2*pi
w=w*3.33564d-8/219474.63d0

open(5, file='Eigenvalue.dat', status='old')
do iz=1,mz
 read(5,*) ek(iz)
end do
close(5)

open(4,file='Eigenvector.dat',status='old')
do iz1=1,mz
 read(4,*) (am(iz1,iz2),iz2=1,mz)
end do
close(4)

do iz=1,mz
 read(3,*) cz(iz)
end do
close(3)

do i=1,mv
do j=1,mv
 do k=1,mv
 AEV(i,j,k)=(i-0.5d0)*dsqrt(ek(1))
 $+ (j-0.5d0)*dsqrt(ek(2))$
 $+(k-0.5d0)*dsqrt(ek(mz))$
 AEV(i,j,k)=AEV(i,j,k)*automhz
 end do
end do
end do

open(2,file='ApproEigen.dat',status='unknown')
do i=1,mv
do j=1,mv
 write(2,50) (AEV(i,j,k),k=1,mv)
end do
end do
close(2)

Zmax=dz1*(nz-1)
zi=-Zmax/2
zf=Zmax/2

do iz1=1,nz
 z1(iz1)=zi+(iz1-1)*dz1
end do

do iz2=1,nz
 z2(iz2)=zi+(iz2-1)*dz2
end do

do iz3=1,nz
 z3(iz3)=zi+(iz3-1)*dz3
end do

c Hamonic parameters for ion 1 (in a.u.)
wl=dsqrt(ek(1))
alpha1=dsqrt(mass1*wl)
c Hamonic wavefunctions for ion 1
do iz1=1,nz
 y1=alpha1*z1(iz1)
 iv1=0
 psi1(iv1+1,iz1)=dsqrt(alpha1)/(pi**0.25d0)*dexp(-y1**2/2.d0)
 call othpl(4,mv,y1,h,dh)
do iv1=1,mv,1
 n=iv1
 call nvj(n,b)
 n1=dsqrt(alpha1/h)/(2**n)*b
 psi1(iv1+1,iz1)=n1*h(iv1+1)*dexp(-y1**2/2.d0)
cc Normalization of wavefunctions for ion 1.
do iv1=1,mv
 sum1=0.d0
 do iz1=1,nz
 sum1=sum1+psi1(iv1,iz1)**2
 end do
 sum1=sum1*dz1
 do iz1=1,nz
 psi1(iv1,iz1)=psi1(iv1,iz1)/dsqrt(sum1)
 end do
end do

c Hamonic parameters for ion 2 (in a.u.)
w2=dsqrt(ek(2))
alpha2=dsqrt(mass1*w2*ek(1)/ek(2))
c Hamonic wavefunctions for ion 2
do iz2=1,nz
 y2=alpha2*z2(iz2)
 iv2=0
 psi2(iv2+1,iz2)=dsqrt(alpha2)/(pi**0.25d0)*dexp(-y2**2/2.d0)
 !!!!!!!!! call the subroutine which will give the value of Hermite.
call othpl(4,mv,y2,h,dh)
do iv2=1,mv-1,1
 n=iv2
 call nvj(n,b)
 n2=dsqrt(alpha2/dsqr(ek(2)))/dexp(-y2**2/2.d0)
 psi2(iv2+1,iz2)=n2*h(iv2+1)*dexp(-y2**2/2.d0)
end do
end do
cc Normalization of wavefunctions for ion 2.
do iv2=1,mv
 sum2=0.d0
 do iz2=1,nz
 sum2=sum2+psi2(iv2,iz2)**2
 end do
 sum2=sum2*dz2
 do iz2=1,nz
 psi2(iv2,iz2)=psi2(iv2,iz2)/dsqrt(sum2)
 end do
end do

c Hamonic parameters for ion 3 (in a.u.)
w3=dsqrt(ek(mz))
alpha3=dsqrt(mass1*w3*ek(1)/ek(mz))
c Hamonic wavefunctions for ion 3
do iz3=1,nz
 y3=alpha3*z3(iz3)
 iv3=0
 psi3(iv3+1,iz3)=dsqrt(alpha3)/(pi**0.25d0)*dexp(-y3**2/2.d0)
 !!!!!!!! call the subroutine which will give the value of Hermite.
call othpl(4,mv,y3,h,dh)
do iv3=1,mv-1,1
 n=iv3
 call nvj(n,b)
 n3=dsqrt(alpha3/dsqr(ek(2)))/(pi**0.25d0)*dexp(-y3**2/2.d0)
 psi3(iv3+1,iz3)=n3*h(iv3+1)*dexp(-y3**2/2.d0)
end do
cc Normalization of wavefunctions for ion 3.
do iv3=1,mv
 sum3=0.d0
 do iz3=1,nz
 sum3=sum3+psi3(iv3,iz3)**2
 end do
 sum3=sum3*dz3
 do iz3=1,nz
 psi3(iv3,iz3)=psi3(iv3,iz3)/dsqrt(sum3)
 end do
end do
c Test of wavefunction
if(mype.eq.0) then
 open(10,file='basisset1.dat',status='unknown')
do iz1=1,nz
 write(10,10) z1(iz1),(psi1(iv1,iz1),iv1=1,mv)
 end do
 close(10)
 open(30,file='basisset2.dat',status='unknown')
do iz2=1,nz
 write(30,10) z2(iz2),(psi2(iv2,iz2),iv2=1,mv)
 end do
 close(30)
 open(50,file='basisset3.dat',status='unknown')
do iz3=1,nz
 write(50,10) z3(iz3),(psi3(iv3,iz3),iv3=1,mv)
 end do
 close(50)
end if

calculate Hamitonian
c kinetic energy for ion 1
do iz1=1,nz
 y1=alpha1*z1(iz1)
call othpl(4,mv,y1,h,dh)
 G=exp(-1*y1**2/2.d0)
 G1=-1*alpha1**2*z1(iz1)*exp(-1*y1**2/2.d0)
 G2=alpha1**2*exp(-1*y1**2/2.d0)*(y1**2-1)
 iv1=0
 psi1l(iv1+1,iz1)=dsqrt(alpha1/dsqrt(pi))*G2
 do iv1=1,mv
 n=iv1
 call nvj(n,b)
 n1=dsqrt(alpha1/dsqrt(pi)/(2**n)/b)
 H1=alpha1*dh(iv1+1)
 H2=2*iv1*dh(iv1)*alpha1**2
 psi1l(iv1+1,iz1)=n1*(G2*h(iv1+1)+2*G1*H1+G*H2)
 end do
end do
do iv1=1,mv
 do iz1=1,nz
 psi1r(iv1,iz1)=-psi1l(iv1,iz1)/2.d0/mass1
 end do
end do
c kinetic energy for ion 2
do iz2=1,nz
 y2=alpha2*z2(iz2)
call othpl(4,mv,y2,h,dh)
\[G = \exp\left(-1 \cdot y^2 \cdot 2/2.0\right) \]
\[G_1 = -1 \cdot \alpha_2 \cdot z_2 \cdot \exp\left(-1 \cdot y^2 \cdot 2/2.0\right) \]
\[G_2 = \alpha_2 \cdot \exp\left(-1 \cdot y^2 \cdot 2/2.0\right) \cdot (y^2 - 1) \]
\[\text{iv}_2 = 0 \]
\[\text{psi}_{22}(\text{iv}_2+1, \text{iz}_2) = \text{dsqrt}(\alpha_2 / \text{dsqrt}(\pi)) \cdot G_2 \text{ do } \text{iv}_2=1, \text{mv}-1 \]
\[\text{n} = \text{iv}_2 \]
\[\text{call nvj}(n, b) \]
\[\text{n}_2 = \text{dsqrt}(\alpha_2 / \text{dsqrt}(\pi) / (2^n) / b) \]
\[H_1 = \alpha_2 \cdot \text{dh}(\text{iv}_2+1) \]
\[H_2 = 2 \cdot \text{iv}_2 \cdot \text{dh}(\text{iv}_2) \cdot \alpha_2 \cdot \text{**2} \]
\[\text{psi}_{22}(\text{iv}_2+1, \text{iz}_2) = n_2 \cdot (G_2 \cdot h(\text{iv}_2+1) + 2 \cdot G_1 \cdot H_1 + G \cdot H_2) \]
\[\text{end do} \]
\[\text{end do} \]
\[\text{do } \text{iv}_2=1, \text{mv} \]
\[\text{do } \text{iz}_2=1, \text{nz} \]
\[\text{psi}_{2r}(\text{iv}_2, \text{iz}_2) = -\text{psi}_{22}(\text{iv}_2, \text{iz}_2) \cdot \text{ek}(2) / \text{ek}(1) / 2.0 / \text{mass}_1 \]
\[\text{end do} \]
\[\text{end do} \]
\[\text{c kinetic energy for ion 3} \]
\[\text{do } \text{iz}_3=1, \text{nz} \]
\[y_3 = \alpha_3 \cdot z_3(\text{iz}_3) \]
\[\text{call othpl}(4, \text{mv}, y_3, h, dh) \]
\[G = \exp\left(-1 \cdot y^2 \cdot 2/2.0\right) \]
\[G_1 = -1 \cdot \alpha_3 \cdot z_3(\text{iz}_3) \cdot \exp\left(-1 \cdot y^2 \cdot 2/2.0\right) \]
\[G_2 = \alpha_3 \cdot \exp\left(-1 \cdot y^2 \cdot 2/2.0\right) \cdot (y^2 - 1) \]
\[\text{iv}_3 = 0 \]
\[\text{psi}_{33}(\text{iv}_3+1, \text{iz}_3) = \text{dsqrt}(\alpha_3 / \text{dsqrt}(\pi)) \cdot G_2 \text{ do } \text{iv}_3=1, \text{mv}-1 \]
\[\text{n} = \text{iv}_3 \]
\[\text{call nvj}(n, b) \]
\[\text{n}_3 = \text{dsqrt}(\alpha_3 / \text{dsqrt}(\pi) / (2^n) / b) \]
\[H_1 = \alpha_3 \cdot \text{dh}(\text{iv}_3+1) \]
\[H_2 = 2 \cdot \text{iv}_3 \cdot \text{dh}(\text{iv}_3) \cdot \alpha_3 \cdot \text{**2} \]
\[\text{psi}_{33}(\text{iv}_3+1, \text{iz}_3) = n_3 \cdot (G_2 \cdot h(\text{iv}_3+1) + 2 \cdot G_1 \cdot H_1 + G \cdot H_2) \]
\[\text{end do} \]
\[\text{end do} \]
\[\text{do } \text{iv}_3=1, \text{mv} \]
\[\text{do } \text{iz}_3=1, \text{nz} \]
\[\text{psi}_{3r}(\text{iv}_3, \text{iz}_3) = -\text{psi}_{33}(\text{iv}_3, \text{iz}_3) \cdot \text{ek}(mz) / \text{ek}(1) / 2.0 / \text{mass}_1 \]
\[\text{end do} \]
\[\text{end do} \]
\[\text{c second derivative of first ion wavefunction} \]
\[\text{if(mype.eq.0) then} \]
\[\text{open}(20, \text{file} = 'secwavr1.dat', \text{status} = 'unknown') \]
\[\text{do } \text{iz}_1=1, \text{nz} \]
\[\text{write}(20, 30) z_1(\text{iz}_1), (\text{psi}_{1r}(\text{iv}_1, \text{iz}_1), \text{iv}_1=1, \text{mv}) \]
\[\text{end do} \]
\[\text{close}(20) \]
\[\text{open}(40, \text{file} = 'secwavr2.dat', \text{status} = 'unknown') \]
\[\text{do } \text{iz}_2=1, \text{nz} \]
\[\text{write}(40, 30) z_2(\text{iz}_2), (\text{psi}_{2r}(\text{iv}_2, \text{iz}_2), \text{iv}_2=1, \text{mv}) \]
\[\text{end do} \]
\[\text{close}(40) \]
\[\text{open}(60, \text{file} = 'secwavr3.dat', \text{status} = 'unknown') \]
\[\text{do } \text{iz}_3=1, \text{nz} \]
\[\text{write}(60, 30) z_3(\text{iz}_3), (\text{psi}_{3r}(\text{iv}_3, \text{iz}_3), \text{iv}_3=1, \text{mv}) \]
\[\text{end do} \]
\[\text{close}(60) \]
c basis set
do iz1=1,nz
do iz2=1,nz
do iz3=1,nz
za1=am(1,1)*z1(iz1)+am(1,2)*z2(iz2)*dsqrt(ek(1)/ek(2))
$ +am(1,3)*z3(iz3)*dsqrt(ek(1)/ek(mz))
za2=am(2,1)*z1(iz1)+am(2,2)*z2(iz2)*dsqrt(ek(1)/ek(2))
$ +am(2,3)*z3(iz3)*dsqrt(ek(1)/ek(mz))
za3=am(3,1)*z1(iz1)+am(3,2)*z2(iz2)*dsqrt(ek(1)/ek(2))
$ +am(3,3)*z3(iz3)*dsqrt(ek(1)/ek(mz))
V(iz1,iz2,iz3)=
$ 0.5d0*dk1**2*(za1+cz(1))**2
$ +0.5d0*dk1**2*(za2+cz(2))**2
$ +0.5d0*dk1**2*(za3+cz(mz))**2
$ +1/abs((za2-zal)+(cz(2)-cz(1)))
$ +1/abs((za3-zal)+(cz(mz)-cz(1)))
$ +1/abs((za3-zal)+(cz(mz)-cz(2)))
$ -0.5d0*dk1**2*cz(1)**2
$ -0.5d0*dk1**2*cz(2)**2
$ -0.5d0*dk1**2*cz(mz)**2-1/abs(cz(2)-cz(1))
$ -1/abs(cz(mz)-cz(1))-1/abs(cz(mz)-cz(2))
end do
dd=dz1*dz2*dz3
if(mype.eq.mv) then
do iv=1,mv
do jv=1,mv
end do
else
do iv=mype+1,mype+1
do jv=1,mv
call mysecond(tf)
filetime='cputime_ '
write(filetime(9:10),'(i2.2)') mype+1
OPEN(6,FILE=FILETIME,STATUS='UNKNOWN')
WRITE(6,807) 'CPU Time = ',(T-F-T5)/3600.0D0, ' (hour)'
DO KV=1, MV
 DO IV1=1, MV
 DO JV1=1, MV
 DO KV1=KV, MV
 SUM=0.D0
 DO IZ1=1, NZ
 COMM1=PSI1(IV,IZ1)
 COMM1=PSI1(IV1,IZ1)
 DO IZ2=1, NZ
 COMM2=COMM1*PSI2(JV,IZ2)
 COMM2=COMM1*PSI2(JV1,IZ2)
 DO IZ3=1, NZ
 COMM3=COMM2*PSI3(KV,IZ3)
 COMM3=COMM2*PSI3(KV1,IZ3)
 END DO
 END DO
 END DO
 END DO
 END DO
 END DO
END DO
PE1((KV-1)*MV**2+(JV-1)*MV+IV,(KV1-1)*MV**2+(JV1-1)*MV+IV1)=SUM*DD
END DO
END IF
CALL MPI_BARRIER(COMM,IERRO)
DO I=1, MV**3
 DO J=I, MV**3
 PE(J,I)=PE(I,J)
 END DO
END DO
C Hamitonian
DO I=1, MV**3
 DO J=1, MV**3
 HAMIL(I,J)=KE(I,J)+PE(I,J)
 END DO
END DO
CALL DSYEV(JOBZ, UPLO, MV**3, HAMIL, MV**3, EV, WORK, 3*(MV**3)-1, INFO)
OPEN(130,FILE='EIGEN.DAT',STATUS='UNKNOWN')
DO I=1, MV**3
 WRITE(130,60) EV(I)*AUTOMHZ
END DO
CLOSE(130)
END IF
CALL MPI_BARRIER(COMM,IERRO)
10 FORMAT(E24.16,150(X,F24.16))
20 FORMAT(150(X,E24.16))
SUBROUTINE OTHPL(KF,N,X,PL,DPL)
C
C Purpose: Compute orthogonal polynomials: Tn(x) or Un(x),
C or Ln(x) or Hn(x), and their derivatives
C Input : KF --- Function code
C KF=1 for Chebyshev polynomial Tn(x)
C KF=2 for Chebyshev polynomial Un(x)
C KF=3 for Laguerre polynomial Ln(x)
C KF=4 for Hermite polynomial Hn(x)
C n --- Order of orthogonal polynomials
C x --- Argument of orthogonal polynomials
C Output: PL(n) --- Tn(x) or Un(x) or Ln(x) or Hn(x)
C DPL(n)--- Tn'(x) or Un'(x) or Ln'(x) or Hn'(x)
C
C IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION PL(0:N),DPL(0:N)
A=2.0D0
B=0.0D0
C=1.0D0
Y0=1.0D0
Y1=2.0D0*X
DY0=0.0D0
DY1=2.0D0
PL(0)=1.0D0
PL(1)=2.0D0*X
DPL(0)=0.0D0
DPL(1)=2.0D0
IF (KF.EQ.1) THEN
REAL*8 TIME
TIME=MPI_WTIME()
Appendix L

To optimize our code (in Appendix K) further and save more computer time, we use Gaussian Quadrature Method instead of the Equally-Spaced Abscissas method for the calculation of 3D integrals in our code. In Gaussian Quadrature Method [100], we could choose not only the weighting coefficients, but also the location of the abscissas at which the function is to be evaluated. Then we can calculate the integral exactly for a class of integrands: polynomials times some known function $W(z)$. In other words, if the integration number (N) is known, we can find a set of weighs w_j and abscissas z_j to make the approximation:

$$
\int_a^b W(z)f(z)dz \approx \sum_{j=0}^{N-1} w_j f(z_j),
$$

which is exact if $f(z)$ is a polynomial.

In our work, we are dealing with the integral of Gauss-Hermite type with the following weight functions, intervals and recurrence relations:

$$
W(z) = e^{-z^2}, \quad -\infty < z < \infty, \quad (2)
$$

$$
H_{j+1} = 2zh_j - 2jH_{j-1}. \quad (3)
$$

In the code, the orthonormal set of polynomials \tilde{H}_j is used to avoid computations overflow for large N instead of functions from Eqs. (2) and (3) and they are generated as follows:
The formula for the weights:

$$w_j = \frac{2}{[\hat{H}_N(z_j)]^2}$$ \hspace{1cm} (5)

The formula for the derivative with this normalization is:

$$\hat{H}'_j = \sqrt{2}j\hat{H}_{j-1}$$ \hspace{1cm} (6)

Then the integration formula can be written as follows:

$$\int_{-\infty}^{+\infty} e^{-z^2}f(z)dz = \sum_{j=0}^{N-1} w_j f(z_j),$$ \hspace{1cm} (7)

For our problem, because of the introduce of α, we need to make a correction to Eq. (7).

$$\int_{-\infty}^{+\infty} e^{-\alpha^2 z^2}f(az)dz = \int_{-\infty}^{+\infty} e^{-(az)^2} \frac{f(az)}{\alpha} daz,$$ \hspace{1cm} (8)

Setting:

$$y = az, \quad -\infty < y < \infty,$$ \hspace{1cm} (9)

Then we come to the final formula:

$$\int_{-\infty}^{+\infty} e^{-y^2} \frac{f(y)}{\alpha} dy = \sum_{j=0}^{N-1} w_j \frac{f(y_j)}{\alpha}.$$ \hspace{1cm} (10)

All the calculation to produce abscessas and weights is carried out using the subroutine GAUHER [100]. After implementation of the Gaussian Quadrature method, it saves about 90% of computer time as compared to the code.
This code is written to diagonalize the Hamiltonian matrix of three 111Cd$^+$ ions in the anharmonic potential trap to obtain its eigenvalues (energies) and the eigenvectors (parameter matrix C in Sec. 2.2), where MPI programming and Gaussian Quadrature Method are both applied. Lines 1-62 of this code contain the definition of variables; Lines 64-80 are used to initialize Message Passing Interface (MPI) calculation; Lines 82-130 are the input data, the abscissas and weights of integration points using Gaussian Quadrature Method; Lines 132-384 describe the basis set expansion based on three normal vibration modes; Lines 386-517 are used to construct kinetic energy matrix, potential energy matrix and Hamiltonian matrix; DSYEV subroutine from ACML library is used in lines 519-535 for matrix diagonalization [101]; Lines 537-722 are the construction of wavefunctions of the system; Transition matrix calculation and MPI finalization are carried out in lines 724-788; Subroutine in lines 790-799 is used to calculate the delta function; Lines 801-813 are the subroutine NVJ which is used to calculate $j!$ of Eq. (2.2.5) and the subroutine OTHPL in lines 815-875 describe calculation of Hermite polynomials and their first derivatives [82]. Subroutine GAUHER in lines 886-930 are used to produce abscissas and weights using Gaussian Quadrature Method. In this program, during the numerical calculations for the spectrum of vibrational states, I used atomic units. It was transformed into the units of MHz at the end.
Program MPIGAUSS3DIONTRAP
implicit real*8 (a-h,o-z)
integer mv,nz,mz,dz1,dz2,dz3,lm,lp
real*8 towpi,autonm,pi
parameter(mv=15,max=45)
parameter(nz=21,mz=3)
parameter(ns=53,lp=70,lm=30)
parameter(pi=3.1415926535897932384d0,twopi=6.28318530717959d0)
parameter(autonm=0.05291772d0,alpha=-100.d0,beta=4.2d-6)
parameter(automhz=6579682606.6812d0)
character*1 UPLO, JOBZ
character*10 filetime
character*10 filewavefp2
character*10 filewavefp1
character*8 filewavef
character*11 fileabswavef
character*13 filebsf
parameter(JOBZ ='V',UPLO ='U')
integer INFO
double precision
 EV(mv**3),EZ(mv**3,mv**3),WORK(3*(mv**3)-1)
real*8 mass1,mu,dk1,b,n,n1,n2,n3,y1,y2,y3
real*8 commt1,commt2,commt3
real*8 dd,comm1,comm2,comm3,sa1,sa2,sa3
real*8
 alph1,alph2,alph3,sum1,sum2,sum3,sum4,sum5,sum6,sum
real*8
 w1,w2,w3,deter,deter1,deter2,deter3,G,G1,G2,zal,za2,za3
double precision ek(mz),cz(mz),zf1(ns),zf2(ns),zf3(ns)
double precision
 wt1(ns),wt2(ns),wt3(ns),zf1x(ns),zf2x(ns),zf3x(ns)
double precision
 z1(nz),z2(nz),z3(nz),zp1(nz),zp2(nz),zp3(nz)
double precision weight1(nz),weight2(nz),weight3(nz)
double precision ps1(mv,nz),ps12(mv,nz),ps13(mv,nz)
double precision ps1(mv,nz),ps2(mv,nz),ps3(mv,nz)
double precision bs1(mv,nz),bs12(mv,nz),bs13(mv,nz)
double precision bs1(mv,nz),bs2(mv,nz),bs3(mv,nz)
double precision h(max),dh(max)
double precision ps1r(nz,nz),ps12r(nz,nz),ps13r(nz,nz)
double precision ps11(nz,nz),ps122(nz,nz),ps133(nz,nz)
double precision ps1lp(nz,nz),ps12p(nz,nz),ps13p(nz,nz)
double precision ps1s(nz,nz),ps12s(nz,nz),ps13s(nz,nz)
double precision KE(mv*mv,mv*mv,mv*mv),PE(mv*mv,mv*mv,mv*mv)
double precision
 KE1(mv*mv,mv*mv,mv*mv),PE1(mv*mv,mv*mv,mv*mv)
double precision Hamil(mv**3,mv**3),dipole(lp,lp)
double precision
 AEV(mv,mv,mv),V(nz,nz,nz),wavefp(lp,ns,ns,ns)
double precision am(mz,mz),norm(lp,lp),tdm(ns,ns,ns)
real*8, allocatable, dimension(:,:,:) :: wavef_j,wavefp_j
real*8, allocatable, dimension(:) :: bs_j,bsi_j
!

MPI STAFF------------------
!
include 'mpif.h'
integer ierror,comm,rc
common/pedat/mype,npe,comm
!

!
c MPI start:
call MPI_INIT(ierror)
comm=MPI_COMM_WORLD
call MPI_COMM_RANK(comm,mype,ierror)
call MPI_COMM_SIZE(comm,npe,ierror)
print *, 'mype=',mype,' npe=',npe
if (npe.ne.mv+1) then
 print *, 'processor # is wrong'
 print *, npe, mv
 stop
end if

c harmonic parameters for Cd ion (in a.u.):
call mysecond(ts)
mass1=111.d0
mass1=mass1*1822.8885d0
mu=1.d0
w=2770.0*2*pi
w=w*3.33564d8/219474.63d0
dk1=dsqrt(mass1)*w !dk=dsqrt(k)
open(5,file='Eigenvalue.dat',status='old')
do iz=1,mz
 read(5,*) ek(iz)
end do
close(5)
open(4,file='Eigenvector.dat',status='old')
do iz1=1,mz
 read(4,*) (am(iz1,iz2),iz2=1,mz)
end do
close(4)
open(3,file='position.dat',status='old')
do iz=1,mz
 read(3,*) cz(iz)
end do
close(3)

do i=1,mv
 do j=1,mv
 do k=1,mv
 AEV(i,j,k) = (i-0.5d0)*dsqrt(ek(1)) + (j-0.5d0)*dsqrt(ek(2))
 $ + (k-0.5d0)*dsqrt(ek(mz))
 AEV(i,j,k) = AEV(i,j,k) * automhz
 end do
 end do
end do
open(2,file='ApproEigen.dat',status='unknown')
do i=1,mv
 do j=1,mv
 write(2,50) (AEV(i,j,k),k=1,mv)
 end do
end do
close(2)
call gauher(z1,weight1,nz)
call gauher(z2,weight2,nz)
call gauher(z3,weight3,nz)
c harmonic parameters for ion 1 (in a.u.)
w1=dsqrt(ek(1))
alpha1=dsqrt(mass1*w1)
do iz1=1,nz
 zp1(iz1)=z1(iz1)/alpha1
end do
c harmonic wavefunctions for ion 1
do iz1=1,nz
 y1=z1(iz1)
 iv1=0
\[
\psi_1^{(iv_1+1,iz_1)} = \frac{\sqrt{\alpha_1}}{\pi^{0.25d0}} \cdot \exp\left(-\frac{y_1^2}{2.d0}\right)
\]

!!!!!!!!! call the subroutine which will give the value of Hermite.

\[
\text{call othpl}(4,mv,y_1,h,dh)
\]

\[
do \ iv_1=1,mv-1,1
\]

\[
n=iv_1
\]

\[
call \ nvj(n,b)
\]

\[
n_1 = \frac{\sqrt{\alpha_1}}{\sqrt{\pi}} \cdot \frac{1}{2^n} \cdot b
\]

\[
\psi_1^{(iv_1+1,iz_1)} = n_1 \cdot h^{(iv_1+1)} \cdot \exp\left(-\frac{y_1^2}{2.d0}\right)
\]

\[
\text{ps}_{1}^{(iv_1+1,iz_1)} = n_1 \cdot h^{(iv_1+1)}
\]

\end do
\]

\end do
\]

cc Normalization of wavefunctions for ion 1.

\[
do \ iv_1=1,mv
\]

\[
sum_1 = 0.d0
\]

\[
do \ iz_1=1,nz
\]

\[
sum_1 = sum_1 + \text{ps}_{1}^{(iv_1,iz_1)} \cdot \text{weight}_{1}(iz_1) / \alpha_1
\]

\end do
\]

\end do
\]

c Hamonic parameters for ion 2 (in a.u.)

\[
w_2 = \sqrt{ek(2)}
\]

\[
alpha_2 = \sqrt{\text{mass}_1 \cdot w_2 \cdot ek(1)/ek(2)}
\]

\[
do \ iz_2=1,nz
\]

\[
zp_2^{(iz_2)} = z_2^{(iz_2)} / alpha_2
\]

\end do
\]

c Hamonic wavefunctions for ion 2

\[
\psi_2^{(iv_2+1,iz_2)} = \frac{\sqrt{\alpha_2}}{\pi^{0.25d0}} \cdot \exp\left(-\frac{y_2^2}{2.d0}\right)
\]

\[
\text{ps}_{2}^{(iv_2+1,iz_2)} = \frac{\sqrt{\alpha_2}}{\pi^{0.25d0}}
\]

!!!!!!!!! call the subroutine which will give the value of Hermite.

\[
\text{call othpl}(4,mv,y_2,h,dh)
\]

\[
do \ iv_2=1,mv-1,1
\]

\[
n=iv_2
\]

\[
call \ nvj(n,b)
\]

\[
n_2 = \frac{\sqrt{\alpha_2}}{\sqrt{\pi}} \cdot \frac{1}{2^n} \cdot b
\]

\[
\psi_2^{(iv_2+1,iz_2)} = n_2 \cdot h^{(iv_2+1)} \cdot \exp\left(-y_2^2/2.d0\right)
\]

\[
\text{ps}_{2}^{(iv_2+1,iz_2)} = n_2 \cdot h^{(iv_2+1)}
\]

\end do
\]

\end do
\]

cc Normalization of wavefunctions for ion 2.

\[
do \ iv_2=1,mv
\]

\[
sum_2 = 0.d0
\]

\[
do \ iz_2=1,nz
\]

\[
sum_2 = sum_2 + \text{ps}_{2}^{(iv_2,iz_2)} \cdot \text{weight}_{2}(iz_2) / \alpha_2
\]

\end do
\]

\end do
\]

c Hamonic parameters for ion 3 (in a.u.)

\[
w_3 = \sqrt{ek(mz)}
\]

\[
alpha_3 = \sqrt{\text{mass}_1 \cdot w_3 \cdot ek(1)/ek(mz)}
\]

\[
do \ iz_3=1,nz
\]

\[
\text{end do}
\]

\]
zp3(iz3)=z3(iz3)/alpha3
end do

c Harmonic wavefunctions for ion 3
do iz3=1,nz
 y3=z3(iz3)
 iv3=0
 psi3(iv3+1,iz3)=dsqrt(alpha3)/(pi**0.25d0)*dexp(-y3**2/2.d0)
 ps3(iv3+1,iz3)=dsqrt(alpha3)/(pi**0.25d0)
 !!!!!!!! call the subroutine which will give the value of Hermite.
call othpl(4,mv,y3,h,dh)
do iv3=1,mv-1,1
 n=iv3
 call nvj(n,b)
 n3=dsqrt(alpha3/dsqrt(pi)/(2**n)/b)
 psi3(iv3+1,iz3)=n3*h(iv3+1)*dexp(-y3**2/2.d0)
 ps3(iv3+1,iz3)=n3*h(iv3+1)
end do
end do

c normalization of wavefunctions for ion 3.
do iv3=1,mv
 sum3=0.d0
 do iz3=1,nz
 sum3=sum3+ps3(iv3,iz3)**2*weight3(iz3)/alpha3
 end do
 do iz3=1,nz
 psi3(iv3,iz3)=psi3(iv3,iz3)/dsqrt(sum3)
 end do
end do

c test of wavefunction
if(mype.eq.0) then
 open(10,file='basisset1.dat',status='unknown')
do iz1=1,nz
 write(10,10) zp1(iz1),(psi1(iv1,iz1),iv1=1,mv)
 end do
 close(10)
do iz2=1,nz
 write(30,10) zp2(iz2),(psi2(iv2,iz2),iv2=1,mv)
 end do
 close(30)
do iz3=1,nz
 write(50,10) zp3(iz3),(psi3(iv3,iz3),iv3=1,mv)
 end do
 close(50)
end if

call MPI_BARRIER(comm,ierror)
c calculate hamiltonian
c kinetic energy for ion 1
 do iz1=1,nz
 y1=z1(iz1)
 call othpl(4,mv,y1,h,dh)
 G=exp(-1*y1**2/2.d0)
 G1=-1*alpha1*y1*exp(-1*y1**2/2.d0)
 G2=alpha1**2*exp(-1*y1**2/2.d0)*(y1**2-1)
 iv1=0
 psi11(iv1+1,iz1)=dsqrt(alpha1/dsqrt(pi))*G2
do iv1=1,mv
 n=iv1
 call nvj(n,b)
 n1=dsqrt(alpha1/dsqrt(pi)/(2**n)/b)
 H1=alpha1*dh(iv1+1)
 H2=2*iv1*dh(iv1)*alpha1**2
 psi11(iv1+1,iz1)=n1*(G2*h(iv1+1)+2*G1*H1+G*H2)
 end do
 do iv1=0,mv-1
 psi1p(iv1+1,iz1)=psi11(iv1+1,iz1)/G
 end do
end do

end do

do iv1=1,mv
 do iz1=1,nz
 psi1r(iv1,iz1)=-psi11(iv1,iz1)/2.d0/mass1
 psi1s(iv1,iz1)=-psi1p(iv1,iz1)/2.d0/mass1
 end do
end do

c kinetic energy for ion 2

do iz2=1,nz
 y2=z2(iz2)
 call othpl(4,mv,y2,h,dh)
 G=exp(-1*y2**2/2.d0)
 G1=-1*alpha2*y2*exp(-1*y2**2/2.d0)
 G2=alpha2**2*exp(-1*y2**2/2.d0)*y2**2-1
 iv2=0
 psi22(iv2+1,iz2)=dsqrt(alpha2/dsqrt(pi))*G2
 do iv2=1,mv-1
 n=iv2
 call nvj(n,b)
 n2=dsqrt(alpha2/dsqrt(pi)/(2**n)/b)
 H1=alpha2*dh(iv2+1)
 H2=2*iv2*dh(iv2)*alpha2**2
 psi22(iv2+1,iz2)=n2*(G2*h(iv2+1)+2*G1*H1+G*H2)
 end do
 do iv2=0,mv-1
 psi2p(iv2+1,iz2)=psi22(iv2+1,iz2)/G
 end do
end do

c kinetic energy for ion 3

do iz3=1,nz
 y3=z3(iz3)
 call othpl(4,mv,y3,h,dh)
 G=exp(-1*y3**2/2.d0)
 G1=-1*alpha3*y3*exp(-1*y3**2/2.d0)
 G2=alpha3**2*exp(-1*y3**2/2.d0)*y3**2-1
 iv3=0
 psi33(iv3+1,iz3)=dsqrt(alpha3/dsqrt(pi))**G2
 do iv3=1,mv-1
 n=iv3
 call nvj(n,b)
 n3=dsqrt(alpha3/dsqrt(pi)/(2**n)/b)
 H1=alpha3*dh(iv3+1)
 H2=2*iv3*dh(iv3)*alpha3**2
 psi33(iv3+1,iz3)=n3*(G2*h(iv3+1)+2*G1*H1+G*H2)
 end do
 do iv3=0,mv-1
end do
psi3p(iv3+1,iz3)=psi33(iv3+1,iz3)/G
end do
end do

do iv3=1,mv
do iz3=1,nz
psi3r(iv3,iz3)=-psi33(iv3,iz3)*ek(mz)/ek(1)/2.d0/mass1
psi3s(iv3,iz3)=-psi3p(iv3,iz3)*ek(mz)/ek(1)/2.d0/mass1
end do
end do

c second derivative of first ion wavefunction
if(mype.eq.0) then
 open(20,file='secwav1.dat',status='unknown')
do iz1=1,nz
 write(20,30) zp1(iz1),(psi1r(iv1,iz1),iv1=1,mv)
 end do
 close(20)

 open(40,file='secwav2.dat',status='unknown')
do iz2=1,nz
 write(40,30) zp2(iz2),(psi2r(iv2,iz2),iv2=1,mv)
 end do
 close(40)

 open(60,file='secwav3.dat',status='unknown')
do iz3=1,nz
 write(60,30) zp3(iz3),(psi3r(iv3,iz3),iv3=1,mv)
 end do
 close(60)
end if

c basis set
if(mype.eq.0) then
 do iz1=1,nz
 do iz2=1,nz
do iz3=1,nz
 za1=am(1,1)*zp1(iz1)+am(1,2)*zp2(iz2)*dsqrt(ek(1)/ek(2))
 za2=am(2,1)*zp1(iz1)+am(2,2)*zp2(iz2)*dsqrt(ek(1)/ek(mz))
 za3=am(3,1)*zp1(iz1)+am(3,2)*zp2(iz2)*dsqrt(ek(1)/ek(mz))

 V(iz1,iz2,iz3)=
 alpha*0.5d0*dk1**2*(za1+cz(1))**2
 +beta*dk1**2*(za1+cz(1))**4

 +alpha*0.5d0*dk1**2*(za2+cz(2))**2
 +beta*dk1**2*(za2+cz(2))**4

 +alpha*0.5d0*dk1**2*(za3+cz(mz))**2
 +beta*dk1**2*(za3+cz(mz))**4

 +1/abs((za2-za1)+(cz(2)-cz(1)))

 +1/abs((za3-za1)+(cz(mz)-cz(1)))

 +1*abs((za3-za2)+(cz(mz)-cz(2)))

 -alpha*0.5d0*dk1**2*cz(1)**2
 -alpha*0.5d0*dk1**2*cz(2)**2

 -alpha*0.5d0*dk1**2*cz(mz)**2
 -beta*dk1**2*cz(1)**4

 -beta*dk1**2*cz(2)**4-beta*dk1**2*cz(mz)**4

 -1/abs(cz(2)-cz(1))

 -1/abs(cz(mz)-cz(1))-1/abs(cz(mz)-cz(2))
 end do
end do
if(mype.eq.mv) then
 call MPI_BARRIER(comm,ierror)
do iv=1,mv
 do jv=1,mv
 do kv=1,mv
 do iv1=1,mv
 do jv1=1,mv
 do kv1=1,mv
 sum4=0.d0
 sum5=0.d0
 sum6=0.d0
 call delta(iv,iv1,delta1)
 call delta(jv,jv1,delta2)
 call delta(kv,kv1,delta3)
 do iz1=1,nz
 sum4=sum4+ps1(iv,iz1)*psi1s(iv1,iz1)*delta2*delta3
 *weight1(iz1)/alpha1
 end do
 do iz2=1,nz
 sum5=sum5+ps2(jv,iz2)*psi2s(jv1,iz2)*delta1*delta3
 *weight2(iz2)/alpha2
 end do
 do iz3=1,nz
 sum6=sum6+ps3(kv,iz3)*psi3s(kv1,iz3)*delta1*delta2
 *weight3(iz3)/alpha3
 end do
 end do
 end do
 end do
 end do
 end do
end do
else
 do iv=mype+1,mype+1
 do jv=1,mv
 call mysecond(tf)
 filetime='cputime_
 write(filetime(9:10),'(i2.2)') mype+1
 open(6,file=filetime,status='unknown')
 write(6,807) 'CPU Time= ',(tF
 do kv=1,mv
 do iv1=1,mv
 do jv1=1,mv
 do kv1=kv,mv
 sum1=0.d0
 sum2=0.d0
 sum3=0.d0
 do iz1=1,nz
 comm1=ps1(iv,iz1)
 commt1=ps1(iv1,iz1)
 do iz2=1,nz
 comm2=ps2(jv,iz2)
 commt2=ps2(jv1,iz2)
 do iz3=1,nz
 comm3=ps3(kv,iz3)
 commt3=ps3(kv1,iz3)
 sum3=sum3+comm1*comm2*comm3*V(iz1,iz2,iz3)*commt1*commt2*
 *weight3(iz3)/alpha3*weight2(iz2)/alpha2
 end do
 end do
 end do
 end do
 end do
 end do
 end do
 end do
 end do
 end do
end else
end do
end do
end do
close(6)
end if

call MPI_BARRIER(comm,ierror)

do i=1,mv**3
do j=1,mv**3
 call MPI_ALLREDUCE(PE1(i,j),PE(i,j),
 1,MPI_DOUBLE_PRECISION,MPI_SUM,comm,ierror)
end do
end do

if(mype.eq.mv) then
do i=1,mv**3
do j=i,mv**3
 PE(j,i)=PE(i,j)
end do
end do
c Hamiltonian
do i=1,mv**3
do j=1,mv**3
 Hamil(i,j)=KE(i,j)+PE(i,j)
end do
call DSYEV(JOBZ, UPLO, mv**3, Hamil, mv**3, EV, WORK,
 3*(mv**3)-1, INFO)
open(130,file='Eigenv.dat',status='unknown')
do i=1,mv**3
 write(130,60) EV(i)*automhz
end do
close(130)

open(131,file='eigen.dat',status='unknown')
write(131,*) lm
do i=1,lm
 write(131,60) EV(i)
end do
close(131)
call MPI_BARRIER(comm,ierror)
c call gauher(zf1,wt1,ns)
call gauher(zf2,wt2,ns)
call gauher(zf3,wt3,ns)
c Hamonic parameters for ion 1 (in a.u.)
 w1=dsqrt(ek(1))
 alphal=dsqrt(mass1*w1)
do is1=1,ns
 zfx1(is1)=zf1(is1)/alphal
end do
c Hamonic wavefunctions for ion 1
do is1=1,ns
 y1=zf1(is1)
 iv1=0
 bsi1(iv1+1,is1)=dsqrt(alphal)/(pi**0.25d0)*dexp(-y1**2/2.d0)
 bsi1(iv1+1,is1)=dsqrt(alphal)/(pi**0.25d0)
!!!!!!!!! call the subroutine which will give the value of Hermite.
call othpl(4,mv,y1,h,dh)
do iv1=1,mv-1,1
 n=iv1
call nvj(n,b)
n1=dsqrt(alpha1/dsqrt(pi)/(2**n)/b)
bsi1(iv1+1,is1)=n1*h(iv1+1)*dexp(-y1**2/2.d0)
bs1(iv1+1,is1)=n1*h(iv1+1)
end do
end do

cc Normalization of wavefunctions for ion 1.
do iv1=1,mv
 sum1=0.d0
do is1=1,ns
 sum1=sum1+bs1(iv1,is1)**2*wt1(is1)/alpha1
 end do
do is1=1,ns
 bs1(iv1,is1)=bs1(iv1,is1)/dsqrt(sum1)
end do
end do

c Hamonic parameters for ion 2 (in a.u.)
w2=dsqrt(ek(2))
alpha2=dsqrt(mass1*w2*ek(1)/ek(2))
do is2=1,ns
 zfx2(is2)=zf2(is2)/alpha2
end do
c Hamonic wavefunctions for ion 2
do is2=1,ns
 y2=zf2(is2)
 iv2=0
 bs2(iv2+1,is2)=dsqrt(alpha2)/(pi**0.25d0)*dexp(-y2**2/2.d0)
end do

cc Normalization of wavefunctions for ion 2.
do iv2=1,mv
 sum2=0.d0
do is2=1,ns
 sum2=sum2+bs2(iv2,is2)**2*wt2(is2)/alpha2
 end do
do iz2=1,nz
 bs2(iv2,is2)=bs2(iv2,is2)/dsqrt(sum2)
end do
end do

c Hamonic parameters for ion 3 (in a.u.)
w3=dsqrt(ek(mz))
alpha3=dsqrt(mass1*w3*ek(1)/ek(mz))
do is3=1,ns
 zfx3(is3)=zf3(is3)/alpha3
end do
c Hamonic wavefunctions for ion 3
do is3=1,ns
 y3=zf3(is3)
iv3=0
bsi3(iv3+1,is3)=dsqrt(alpha3)/(pi**0.25d0)*dexp(-
y3**2/2.d0)
bs3(iv3+1,is3)=dsqrt(alpha3)/(pi**0.25d0)

!!!!!!!!! call the subroutine which will give the value
of Hermite.
call othpl(4,mv,y3,h,dh)
do iv3=1,mv-1,1
 n=iv3
 call nvj(n,b)
 n3=dsqrt(alpha3/dsqrt(pi)/(2**n)/b)
 bsi3(iv3+1,is3)=n3*h(iv3+1)*dexp(-y3**2/2.d0)
 bs3(iv3+1,is3)=n3*h(iv3+1)
end do
end do

cc Normalization of wavefunctions for ion 3.
do iv3=1,mv
 sum3=0.d0
 do is3=1,ns
 sum3=sum3+bs3(iv3,is3)**2*wt3(is3)/alpha3
 end do
 do is3=1,ns
 bsi3(iv3,is3)=bsi3(iv3,is3)/dsqrt(sum3)
 end do
end do

c Test of wavefunction
open(10,file='bset1.dat',status='unknown')
do is1=1,ns
 write(10,10) zfx1(is1),(bsi1(iv1,is1),iv1=1,mv)
end do
close(10)

\[
ds_2(jv, is_2) * s_3(kv, is_3)
\]

do end do
end do

\[
s_{\text{sum}} = 0. d_0
\]
do i = 1, \(m_v \times 3 \)
sum5 = \(\text{sum}_{5} + \text{Hamil}(i, j) * \text{bs}_{i_j}(i) \)
sum6 = \(\text{sum}_{6} + \text{Hamil}(i, j) * \text{bs}_{j}(i) \)
end do
wavef_j(is_1, is_2, is_3) = sum5
wavef_{p_j}(is_1, is_2, is_3) = sum6
wavef_p(j, is_1, is_2, is_3) = sum6
end do
end do

\[
do i = 1, lp
\]
\[
\text{if}(\text{wavef}_{p}(i, 13, 13, 13) .lt. 0) \hbox{ then }
do is_1 = 1, ns
\]
do is_2 = 1, ns
\]
do is_3 = 1, ns
wavef_p(i, is_1, is_2, is_3) = -1.d0 * wavef_p(i, is_1, is_2, is_3)
end do
end do
end if
end do

c Transition dipol moments:
do is_1 = 1, ns
\]
do is_2 = 1, ns
sa_1 = a_1(1, 1) * zfx_1(is_1) + a_1(1, 2) * zfx_2(is_2) * dsqrt(ek(1)/ ek(2)) + a_1(1, 3) * zfx_3(is_3) * dsqrt(ek(1)/ ek(mz))
sa_2 = a_2(1, 1) * zfx_1(is_1) + a_2(1, 2) * zfx_2(is_2) * dsqrt(ek(1)/ ek(2)) + a_2(1, 3) * zfx_3(is_3) * dsqrt(ek(1)/ ek(mz))
sa_3 = a_3(1, 1) * zfx_1(is_1) + a_3(1, 2) * zfx_2(is_2) * dsqrt(ek(1)/ ek(2)) + a_3(1, 3) * zfx_3(is_3) * dsqrt(ek(1)/ ek(mz))
tdm(is_1, is_2, is_3) = sa_1 + sa_2 + sa_3 + cz(1) + cz(2) + cz(mz)
end do
end do
end do

\[
d = 1, lp
\]
do j = 1, lp
\]
sum = 0.d0
\]
do is_1 = 1, ns
\]
do is_2 = 1, ns
\]
do is_3 = 1, ns
sum = \(\text{sum} + \text{wavef}_{p}(i, is_1, is_2, is_3) \times \mu \times \text{tdm}(is_1, is_2, is_3) \)
do end do
end do
end do
end do

open(160, file='transitiondipole.dat', status='unknown')
do i = 1, lp
write(160, 60) \(\text{dipole}(i, j), j = 1, lp \)
end do
close(160)
open(161, file='dipol.dat', status='unknown')
write(161,*) lm
do i=1,lm
 write(161, 60) (dipole(i,j), j=1, lm)
end do
close(161)
deallocate(bsi_j)
deallocate(bs_j)
deallocate(wavef_j)
deallocate(wavefp_j)
end if

if(ii.eq.ji) then
deltav=1.d0
end if

c--

SUBROUTINE OTHPL(KF, N, X, PL, DPL)
C
C ---------------------------------------
C Purpose: Compute orthogonal polynomials: Tn(x) or Un(x),
C or Ln(x) or Hn(x), and their derivatives
C Input : KF --- Function code
C KF=1 for Chebyshev polynomial Tn(x)
C KF=2 for Chebyshev polynomial Un(x)
C KF=3 for Laguerre polynomial Ln(x)
C KF=4 for Hermite polynomial Hn(x)
C n --- Order of orthogonal polynomials
C x --- Argument of orthogonal polynomials
C Output: PL(n) --- Tn(x) or Un(x) or Ln(x) or Hn(x)
C

\[\text{DPL}(n) \text{--- } Tn'(x) \text{ or } Un'(x) \text{ or } Ln'(x) \text{ or } Hn'(x) \]

C

\[\text{==} \]

C

\[\text{IMPLICIT DOUBLE PRECISION (A-H,O-Z)} \]

\[\text{DIMENSION } \text{PL}(0:N), \text{DPL}(0:N) \]

\[A=2.0D0 \]

\[B=0.0D0 \]

\[C=1.0D0 \]

\[Y0=1.0D0 \]

\[Y1=2.0D0*X \]

\[DY0=0.0D0 \]

\[DY1=2.0D0 \]

\[\text{PL}(0)=1.0D0 \]

\[\text{DPL}(0)=0.0D0 \]

\[\text{IF } (\text{KF} \text{.EQ.1) THEN} \]

\[Y1=X \]

\[DY1=1.0D0 \]

\[\text{PL}(1)=X \]

\[\text{DPL}(1)=1.0D0 \]

\[\text{ELSE IF } (\text{KF} \text{.EQ.3) THEN} \]

\[Y1=1.0D0-X \]

\[DY1=-1.0D0 \]

\[\text{PL}(1)=1.0D0-X \]

\[\text{DPL}(1)=-1.0D0 \]

\[\text{END IF} \]

\[\text{DO 10 } K=2,N \]

\[\text{IF } (\text{KF} \text{.EQ.3) THEN} \]

\[A=-1.0D0/K \]

\[B=2.0D0+A \]

\[C=1.0D0+A \]

\[\text{ELSE IF } (\text{KF} \text{.EQ.4) THEN} \]

\[C=2.0D0*(K-1.0D0) \]

\[\text{END IF} \]

\[YN=(A*X+B)*Y1-C*Y0 \]

\[DYN=A*Y1+(A*X+B)*DY1-C*DY0 \]

\[\text{PL}(K)=YN \]

\[\text{DPL}(K)=DYN \]

\[Y0=Y1 \]

\[Y1=YN \]

\[DY0=DY1 \]

\[10 \text{ } DY1=DYN \]

\[\text{RETURN} \]

\[\text{END} \]

C

\[\text{==} \]

subroutine mysecond(time)\]

\[\text{real*8 time} \]

\[\text{time=MPI_WTIME()} \]

\[\text{return} \]

\[\text{end} \]

C

\[\text{==} \]

Subroutine gauher(x,w,n)

\[\text{Integer n,MAXIT} \]

\[\text{Real*8 x(n),w(n)} \]

\[\text{Double precision EPS,PIM4} \]

\[\text{Parameter (EPS=3.d-14,PIM4=.751125544469425d0,MAXIT=10)} \]

\[\text{Integer i,its,j,m} \]

\[\text{Double precision p1,p2,p3,pp,z,z1} \]

\[\text{m=(n+1)/2} \]

\[\text{do i=1,m} \]

\[\text{if(i.eq.1)then} \]

\[\text{Subroutine gauher(x,w,n)} \]

\[\text{Integer n,MAXIT} \]

\[\text{Real*8 x(n),w(n)} \]

\[\text{Double precision EPS,PIM4} \]

\[\text{Parameter (EPS=3.d-14,PIM4=.751125544469425d0,MAXIT=10)} \]

\[\text{Integer i,its,j,m} \]

\[\text{Double precision p1,p2,p3,pp,z,z1} \]

\[\text{m=(n+1)/2} \]

\[\text{do i=1,m} \]

\[\text{if(i.eq.1)then} \]
z = sqrt(float(2*n+1)) - 1.85575d0*(2*n+1)**(-.16667d0)
else if(i.eq.2) then
 z = z - 1.14d0*n**.426d0/z
else if(i.eq.3) then
 z = 1.86d0*z - .86d0*x(1)
else if(i.eq.4) then
 z = 1.91d0*z - .91d0*x(2)
else
 z = 2.d0*z - x(i-2)
end if

do its=1,MAXIT
 pl = PIM4
 p2 = 0.d0
 do j = 1,n
 p3 = p2
 p2 = pl
 pl = z*dxsqrt(2.d0/j)*p2 - dxsqrt(dble(j-1)/dble(j))*p3
 end do
 pp = dxsqrt(2.d0*n)*p2
 z1 = z
 z = z1 - pl/pp
 if(abs(z-z1).le.EPS) goto 1
end do
1 x(i) = z
x(n+1-i) = -z
w(i) = 2.d0/(pp*pp)
w(n+1-i) = w(i)
end do
return
end